Chapter 9
Bioprospection of Potential Trypanocidal Drugs: A Scientific Literature Survey over the Period 2000–2010 Liliana V. Muschietti, Valeria P. Su¨lsen and Virginia S. Martino Ca´tedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Facultad de Farmacia y Bioquı´mica, Universidad de Buenos Aires, Buenos Aires, Argentina
Chapter Outline Introduction Methods Search Strategy Criteria for Selection of Articles Data Extraction Data Interpretation
297 299 299 299 299 299
Results Databases Search Discussion Concluding Remarks References
299 299 300 327 328
INTRODUCTION Chagas disease or American trypanosomiasis is a parasitic disease that affects nearly 10 million people in Latin America [1]. It is known as a “neglected disease” because it persists exclusively among the poorest and the most marginalized communities. For this reason, low attention is paid to them, remaining outside of the pharmaceutical market. The causative agent of Chagas disease is the hemoflagellate protozoan parasite Trypanosoma cruzi transmitted by the hematophagous insect known as “vinchuca” in Argentina. Chagas disease has two sequential clinical phases: the acute phase, which is usually asymptomatic and starts soon after parasite infection, lasting up to 2 months and the chronic phase, in which 30–40% of infected patients develop cardiac and/or digestive damage after a silent period lasting from several years to decades [2]. Studies in Natural Products Chemistry, Vol. 39. http://dx.doi.org/10.1016/B978-0-444-62615-8.00009-6 © 2013 Elsevier B.V. All rights reserved.
297
298
Studies in Natural Products Chemistry
The nitroheterocyclic compounds nifurtimox and benznidazole, which were developed more than four decades ago, remain the current treatments for American trypanosomiasis. These drugs are considered far from ideal because they cause multiple side effects and present limited efficacy, especially in patients with the chronic form of the disease. Moreover, a wide range of susceptibility of different strains of T. cruzi has been reported [3]. Despite the long list of compounds tested against this parasite, only few drugs have been assayed in clinical trials. Among these, the antifungal triazole derivatives, E-1224 (a prodrug of ravuconazole) and TAK-187, have completed preclinical studies and phase I testing, thus becoming promising candidates [4]. Natural products for the treatment of human illnesses have been used for decades, and the majority of new drugs have been developed from natural products and from compounds derived from this source. In recent years, the introduction of combinatorial chemistry and high-throughput synthesis has precipitated a global decline in the screening of natural products. Nevertheless, this situation has been reverted, due to unrealistic expectations, and the interest in natural products has been rekindled mainly in the antimicrobial and anticancer therapeutic areas [5]. To date, many compounds obtained from medicinal plants and their analogues have proved to be clinically useful drugs. The most interesting characteristic of natural products is the one associated with their structural complexity as a result of the presence of multiple chiral centers, heterocyclic substituents, and polycyclic structures which cannot be easily synthesized in the laboratory. The influence of natural products as leads or sources of drugs over the period 1981–2006 has been pointed out by Newman [6]. Natural products, compounds derived from natural products, and synthetic compounds derived from a natural pharmacophore comprise 50.6% of the total small-molecule lead drugs. Bioprospection of antimicrobial agents (antibacterial, antifungal, and antiparasitic) and anticancer drugs has been particularly successful. Of about 14 antiparasitic drugs reported in the period 1981–2006, nine are natural derived compounds. Among them, artemisinin and its derivatives, artesunate, artether, and artemether, and quinine and its derivatives can be mentioned as effective natural antiparasitic drugs [7]. It is estimated that around 250,000 flowering plant species are reported to occur globally. Approximately half of these species are found in the tropical forests. Only a small portion of the available biodiversity has been explored so far, and the potential for finding new compounds is enormous, for only about 1% of tropical species have been studied for their pharmaceutical potential. The search among natural products, particularly from higher plants, is a unique opportunity for finding new bioactive compounds [8]. In this chapter, an analysis of the scientific literature concerning the trypanocidal activity of natural products of plant origin, over the period 2000–2010, will be presented. Data will be discussed under a critical point of view which may be useful for the development of new trypanocidal drugs.
Chapter
9
Bioprospection of Potential Trypanocidal Drugs
299
METHODS Search Strategy A literature survey was carried out using SCOPUS and MEDLINE databases from January 1, 2000 to December 31, 2010. The search was performed using the following combination of keywords: trypanocidal, T. cruzi, antiparasitic, and antitrypanosomal, each combinated with medicinal plants, plant extracts, and natural compounds. The results were limited for English language. All articles were assessed by title/abstract in MEDLINE and for title/ abstract/keywords in SCOPUS.
Criteria for Selection of Articles The selection of articles was limited to those corresponding only to higher plants and T. cruzi. References related to other parasites and natural compounds from other origins (animals, marine organisms, fungus, and microorganisms) were excluded. Articles concerning natural product analogues were included. If no bioactivity was found for both plant extracts or isolated compounds, data were excluded. When the information extracted from the abstract was insufficient, the full text was read. The three authors of the present review performed the selection independently.
Data Extraction Data on botanical source (genus, species, and family), ethnomedical uses of plants, search approaches for the identification of bioactive compounds (screening and bioassay-guided fractionation, phytochemical analysis/biological activity), and class of bioactive compounds and bioassays (in vitro/vivo) were collected.
Data Interpretation The extracted data were analyzed and discussed looking out for different approaches and strategies applied in a trypanocidal drug discovery process.
RESULTS Databases Search The databases search identified a total of 1621 articles that matched the combination of keywords described in the search strategy. After the application of the selection criteria, a total of 191 articles (11.8%) were finally selected Fig. 1.
300
Studies in Natural Products Chemistry
Total records (n = 1621)
Identified by literature search in MEDLINE (n = 268)
Identified by literature search in SCOPUS (n = 1353)
Exclusion criteria • Parasites other than Trypanosoma cruzi • Natural compounds from origins other than higher plants (animals, marine organisms, fungus, microorganisms) • Duplicate records • No activity reported for Trypanosoma cruzi • Incomplete information/no full text available
Articles selected (n = 191) FIGURE 1 Articles selection process.
The 191 references matching the search criteria are shown in Table 1. This table includes all data on botanical sources and class of bioactive compounds of only those species which were stated as “actives” by the authors. Data included in Table 1 were analyzed for the most representative plant families and the most representative class of bioactive compounds, including their semisynthetic analogues. Results are shown in Figs. 2 and 3. The analysis shows that the most frequently reported active families are Asteraceae, Fabaceae, Rutaceae, Annonaceae, and Lamiaceae. Terpenoids were the most represented class of trypanocidal compounds representing a 32% of the total, followed by alkaloids and flavonoids 17% each (Fig. 3). Further analysis within the terpenoid subclasses (monoterpenes, sesquiterpenes, diterpenes, triterpenes, sesquiterpene lactones (STLs), and steroids) showed that triterpenes (26%) and STLs (24%) were the major ones (Fig. 4).
DISCUSSION One of the most important steps in any drug discovery program from higher plants is the selection of plant species to be collected. There are different approaches that can be applied: search within plants selected for their traditional use, plants from promising families from which bioactive compounds have been reported, plants known to contain characteristic compounds of proven trypanocidal potential, or plants selected at random. These strategies
TABLE 1 Results of the Search Strategy Matching the Selection Criteria First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
Abe/2002
Annona reticulata
Annonaceae
Lignans
Annona muricata
Annonaceae
Aristolochia taliscana
Aristolochiaceae
Cecropia obtusifolia
Cecropiaceae
Chenopodium graveolens
Chenopodiaceae
Artemisia ludoviciana
Asteraceae
Bidens odorata
Asteraceae
Muntingia calabura
Elaeocarpaceae
Calophyllum brasiliense
Clusiaceae
Garcinia intermedia
Clusiaceae
Mammea americana
Clusiaceae
Persea americana
Lauraceae
Gliricidia sepium
Fabaceae
Haematoxylum brasiletto
Fabaceae
Senna hirsuta
Fabaceae
Zornia thymifolia
Fabaceae
Piper sp.
Piperaceae
Pouteria sapota
Sapotaceae
References [9]
Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
Abe/2002
Rosmarinus officinalis
Lamiaceae
Terpenoids
[10]
Abe/2003
Garcinia subelliptica
Clusiaceae
Xanthones
[11]
Abe/2004
Garcinia intermedia
Clusiaceae
Benzophenones
[12]
Calophyllum brasiliense
Clusiaceae
Xanthones
Persea americana
Lauraceae
Aliphatic compounds
Spondias mombin
Anacardiaceae
Annona cherimola
Annonaceae
Annona muricata
Annonaceae
Annona purpurea
Annonaceae
Annona reticulata
Annonaceae
Aristolochia grandiflora
Aristolochiaceae
Aristolochia taliscana
Aristolochiaceae
Alnus acuminate
Betulaceae
Parmentiera aculeata
Bignoniaceae
Heliopsis longipes
Asteraceae
Piqueria trinervia
Asteraceae
Tanacetum parthenium
Asteraceae
Abe/2005
References
[13]
Equisetum giganteum
Equisetaceae
Gaultheria acuminate
Ericaceae
Hippocratea excelsa
Hyppocrateaceae
Amphipterygium adstringens
Julianaceae
Hyptis stellulata
Lamiaceae
Marrubium vulgare
Lamiaceae
Acacia farnesiana
Fabaceae
Lonchocarpus guatemalensis
Fabaceae
Lonchocarpus phenthaphylus
Fabaceae
Smilax aristolochiifolia
Liliaceae
Smilax xalapensis
Liliaceae
Talauma mexicana
Liliaceae
Psidium guajava
Myrtaceae
Adiantum princeps
Polypodiaceae
Phlebodium aureum
Polypodiaceae
Coluania Mexicana
Rosaceae
Solanum hispidum
Solanaceae
Chiranthodendron pentadactylon
Sterculiaceae
Taxodium macronatum
Taxodiaceae Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
References
Ternstroemia sylvatica
Theaceae
Eryngium carlinae
Umbelliferae
Lippia dulcis
Verbenaceae
Larrea tridentate
Zygophylaceae
Abe/2006
Physalis angulata
Solanaceae
Terpenoids
[14]
Abegaz/2002
Bulbine frutescens
Asphodelaceae
Quinones
[15]
Albernaz/2010
Spiranthera odoratissima
Rutaceae
[16]
Ali/2002
Gardenia lutea
Rubiaceae
[17]
Pamianthe peruviana
Amaryllidaceae
Amal Nour/2009
Xanthium brasilicum
Asteraceae
Terpenoids
[18]
Ambro´sio/2008
Viguiera arenaria
Asteraceae
Terpenoids
[19]
Ambrozin/2004
Almeidea coerulea
Rutaceae
Almeidea rubra
Rutaceae
Conchocarpus heterophyllus
Rutaceae
Galipea carinata
Rutaceae
Trichilia ramalhoi
Meliaceae
[20]
Flavonoids
Aponte/2008
Iryanthera juruensis
Myristicaceae
Flavonoids and analogues
[21]
Aponte/2010
Plagiochila distichia
Plagiochillaceae
Terpenoids
[22]
Ambrosia peruviana
Asteraceae
Azorella compacta
Umbelliferae
Terpenoids
[23]
Flavonoids
[24]
Araya/2003 Arioka/2010
Quinones Asaruddin/2001
Desmos dasymachalus
Annonaceae
Alkaloids
[25]
Asaruddin/2003
Michelia alba
Magnoliaceae
Terpenoids
[26]
Astelbauer/2010
Glycosmis sp.
Rutaceae
Sulfur compounds
[27]
Balde´/2010
Pavetta crassipes
Rubiaceae
Alkaloids
[28]
Barbosa/2008
Arrabidaea chica
Bignoniaceae
Barreto-Menna/2008
Pterodon pubescens
Fabaceae
Terpenoids
[30]
Batista/2008
Piper gaudichaudianum
Piperaceae
Chromanes
[31]
Piper aduncum
Piperaceae
Neurolaena lobata
Asteraceae
Terpenoids
[32]
Lignan analogues
[33]
Berger/2001 Bernardes/2006
[29]
Biavatti/2001
Raulinoa echinata
Rutaceae
Terpenoids
[34]
Biavatti/2001
Raulinoa echinata
Rutaceae
Coumarins
[35]
Terpenoids Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
Biavatti/2002
Raulinoa echinata
Rutaceae
Terpenoids
Billo/2005
Amborella trichopoda
Amborellaceae
Glochidion billardieri
Euphorbiaceae
Erythrina variegata
Fabaceae
Smilax orbiculata
Smilacaceae
Cerberiopsis candelabra
Apocynaceae
Pagiantha cerifera
Apocynaceae
Bolognesi/2008
References [36] [37]
Quinone analogues
[38]
Borges-Arga´ez/2007
Lonchocarpus spp.
Fabaceae
Flavonoids
[39]
Borges-Arga´ez/2009
Lonchocarpus xuul
Fabaceae
Flavonoids and analogues
[40]
Bradacs/2010
Baccaurea stylaris
Phyllantaceae
Dysoxylum arborescens
Meliaceae
Intsia bijuga
Fabaceae
Gyrocarpus americanus
Hernandiaceae
Tabernaemontana pandacaqui
Apocynaceae
Macropiper latifolium
Piperaceae
Dunalia brachyacantha
Solanaceae
Bravo/2001
[41]
Terpenoids
[42]
Brengio/2000
Artemisia douglasiana
Asteraceae
Terpenoids
[43]
Bringmann/2000
Ancistrocladus ealaensis
Ancistrocladaceae
Alkaloids
[44]
Bringmann/2002
Ancistrocladus congolensis
Ancistrocladaceae
Alkaloids
[45]
Bringmann/2002
Dioncophyllum thollonii
Dioncophyllaceae
Alkaloids
[46]
Bringmann/2002
Ancistrocladus griffithii
Ancistrocladaceae
Alkaloids
[47]
Bringmann/2003
Ancistrocladus likoko
Ancistrocladaceae
Alkaloids
[48]
Bringmann/2003
Ancistrocladus tanzaniensis
Ancistrocladaceae
Alkaloids
[49]
Bringmann/2004
Ancistrocladus tanzaniensis
Ancistrocladaceae
Alkaloids
[50]
Bringmann/2004
Ancistrocladus benomensis
Ancistrocladaceae
Alkaloids
[51]
Bringmann/2008
Ancistrocladus taxon
Ancistrocladaceae
Alkaloids
[52]
Cabral/2010
Nectandra glabrescens
Lauraceae
Lignans
[53]
Ocotea cymbarum
Lauraceae
Acnistus arborescens
Solanaceae
Scoparia dulcis
Scrophulariaceae
Maianthemum paludicola
Convallariaceae
Chromolaena leivensis
Asteraceae
Annona muricata
Annonaceae
Argemone subfusiformis
Papaveraceae
Caesalpinia paraguariensis
Fabaceae
Piper barbatum
Piperaceae
Caldero´n/2010
[54]
Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
Calis/2006
Astragalus baibutensis
Fabaceae
Terpenoids
[55]
Quinones
[56]
Camacho/2004
References
Alkaloids Campos/2005
Bertholletia excelsa
Lecythidaceae
Terpenoids
[57]
Campos/2010
Croton cajucara
Euphorbiaceae
Terpenoids
[58]
Cardona Zuleta/2003
Calycophyllum spruceanum
Rubiaceae
Iridoids
[59]
Carmona/2010
Pentalinon andrieuxii
Apocynaceae
Terpenoids
[60]
Chaves/2007
Mikania hoehnei
Asteraceae
Mikania stipulacea
Asteraceae
Mikania cordifolia
Asteraceae
Mikania camporum
Asteraceae
Mikania lasiandrae
Asteraceae
Mikania micrantha
Asteraceae
Che´rigo/2005
Nectandra lineata
Lauraceae
Lignans
[62]
Cunha/2003
Miconia fallax
Melastomataceae
Terpenoids
[63]
Miconia stenostachya
Melastomataceae
Miconia sellowiana
Melastomataceae
Terpenoids
[64]
Miconia ligustroides
Melastomataceae
Cunha/2006
[61]
da Silva Filho/2004
Baccharis dracunculifolia
Asteraceae
Flavonoids
[65]
Organic acids de Fatima/2006
Pyranone analogues
[66]
de Marchi/2004
Coumarin analogues
[67]
Annona crassiflora
Annonaceae
Duguetia furfuracea
Annonaceae
Casearia sylvestris
Flacourtiaceae
de Moura/2001
Tabebuia spp.
Bignoniaceae
Quinone analogues
[69]
de Oliveira/2001
Bauhinia bauhinioides
Fabaceae
Proteins
[70]
Lignan analogues
[71]
de Mesquita/2005
de Oliveira/2006
[68]
del Olmo/2001
Notholaena nivea
Pteridaceae
Stilbenoids and analogues
[72]
do Nascimento/2004
Calea uniflora
Asteraceae
Acetophenones
[73]
dos Santos/2001
Tecoma heptaphylla
Bignoniaceae
Quinones and analogues
[74]
Duarte/2000
Macfadyena unguis-cati
Bignoniaceae
Flavonoids
[75]
Terpenoids Erosa-Rejo´n/2010
Bourreria pulchra
Boraginaceae
Chromanes
[76]
Espindola/2004
Casearia sylvestris
Flacourtiaceae
Terpenoids
[77]
Faria/2007
Erythrina speciosa
Fabaceae
Feresin/2003
Oxalis erythrorhiza
Oxalidaceae
Quinones
[79]
Ferreira/2007
Zanthoxylum chiloperone
Rutaceae
Alkaloids
[80]
[78]
Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Ferreira da Silva/2008 Fournet/2007
Ocotea lancifolia
Lauraceae
Galarreta/2008 Ganapaty/2008
Tephrosia pumila
Fabaceae
Garro/2010
Class of Bioactive Compounds
References
Alkaloid analogues
[81]
Alkaloids
[82]
Heterocyclic compounds
[83]
Flavonoids
[84]
Alkaloids
[85]
Gerscht/2003
Phyllanthus piscatorum
Euphorbiaceae
Lignans
[86]
Gohari/2003
Dracocephalum kotschyi
Lamiaceae
Flavonoids
[87]
Gohari/2008
Rubus hyrcanum
Rosaceae
Salvia sclera
Lamiaceae
Gonza´lez/2006 Gonza´lez-Coloma/2002
Grael/2000
Rollinia membranacea
Annonaceae
Annona cherimola
Annonaceae
Annona glabra
Annonaceae
Lychnophora granmongolense
Asteraceae
[88]
Alkaloids
[89]
Acetogenins
[90]
Terpenoids
[91]
Flavonoids Grael/2005
Lychnophora pohlii
Asteraceae
Terpenoids Flavonoids Phenolics
[92]
Guzma´n/2008
Senna villosa
Fabaceae
Hamilton/2006
Aliphatic compounds
[93]
Alkaloid analogues
[94]
Hay/2007
Pseudocedrela kotschyi
Meliaceae
Terpenoids
[95]
Heilmann/2000
Amomum aculeatum
Zingiberaceae
Spiroacetals
[96]
Heilmann/2001
Amomum aculeatum
Zingiberaceae
Spiroacetals
[97]
Herrera/2001
Cyrtanthus elatus
Amaryllidaceae
Alkaloids
[98]
Herrera/2008
Cranolaria annua
Bignoniaceae
Terpenoids
[99]
Izumi/2008
Tanacetum parthenium
Asteraceae
Terpenoids
[100]
Janua´rio/2005
Dipteryx odorata
Fabaceae
Flavonoids
[101]
Jimenez-Coello/2010
Senna villosa
Fabaceae
Aliphatic compounds
[102]
Terpenoids
[103]
Jimenez-Ortiz/2005 Jime´nez-Romero/2007
Stylogyne turbacensis
Myrsinaceae
Phenolics
[104]
Jorda˜o/2004
Lychnophora salicifolia
Asteraceae
Terpenoids
[105]
Flavonoids Karioti/2009
Anthemis auriculata
Asteraceae
Terpenoids
[106]
Kiuchi/2002
Chenopodium ambrosioides
Chenopodiaceae
Terpenoids
[107]
Kiuchi/2002
Combretum quadrangulare
Combretaceae
Sophora flavescens
Fabaceae
Paris polyphylla
Liliaceae
[108]
Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
Alpinia galanga
Zingiberaceae
Phenolics
Pogostemon cablin
Lamiaceae
Vitex trifolia
Lamiaceae
Dendrobium nobile
Orquidaceae
Kiuchi/2004
Pogostemon cablin
Lamiaceae
Terpenoids
[109]
Labran˜a/2002
Narcissus angustifolius
Amaryllidaceae
Alkaloids
[110]
Leite/2006
Arrabidaea triplinervia
Bignoniaceae
Terpenoid analogues
[111]
Leite/2009
Cedrela fissilis
Meliaceae
Cipadessa fruticosa
Meliaceae
Trichilia ramalhoi
Meliaceae
Rapanea lancifolia
Myrsinaceae
Flavonoids
Cipadessa fruticosa
Meliaceae
Terpenoids
Lia˜o/2009
Cheiloclinium cognatum
Hippocrateaceae
Terpenoids
Lirussi/2004
Pueraria lobata
Fabaceae
Mahonia bealei
Berberidaceae
Dictamnus dasycarpus
Rutaceae
Leite/2010
References
[112] Flavonoids
[113]
[114] [115]
Kochia scoparia
Chenopodiaceae
Sophora flavescens
Fabaceae
Ligustrum lucidum
Oleaceae
Lithospermum erythrorhizon
Boraginaceae
Saussurea lappa
Asteraceae
Melia toosendan
Meliaceae
Cinnamomum cassia
Lauraceae
Baccharis trı´mera
Asteraceae
Cymbopogon citratus
Panicoideae
Matricaria chamomilla
Asteraceae
Mikania glomerata
Asteraceae
Piper regnellii
Piperaceae
Stryphnodendron adstringens
Fabaceae
Tanacetum parthenium
Asteraceae
Tanacetum vulgare
Asteraceae
Luize/2006
Piper regnellii
Piperaceae
Lignans
[117]
Luize/2006
Piper regnellii
Piperaceae
Lignans
[118]
Machocho/2004
Crinum kirkii
Amaryllidaceae
Alkaloids
[119]
Luize/2005
[116]
Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Mafezoli/2000
Almeidea coerulea
Rutaceae
Conchocarpus gaudichaudianus
Rutaceae
Conchocarpus ovobatus
Rutaceae
Conchocarpus inopinatus
Rutaceae
Pilocarpus spicatus
Rutaceae
Zanthoxylum minutiflorum
Rutaceae
Mahiou/2000
Guatteria boliviana
Annonaceae
Alkaloids
[121]
Martı´nez/2009
Castela coccinea
Simaroubaceae
Alkaloids
[122]
Martins/2003
Piper solmsianum
Piperaceae
Lignans
[123]
Mbwambo/2004
Vismia orientalis
Clusiaceae
Quinones
[124]
Mbwambo/2006
Garcinia livingstonei
Clusiaceae
Xanthones
[125]
Mendes do Nascimento/2004
Mikania stipulacea
Asteraceae
Terpenoids
[126]
Mikania hoehnei
Asteraceae
Terpenoids
Menezes/2003 Mesia/2008
Piptadenia africanum
Chrysochlamys tenuis
Fabaceae
Clusiaceae
References [120]
Coumarins
Mezenceb/2009 Molinar-Toribio/2006
Class of Bioactive Compounds
[127] [128]
Indole phytoalexins
[129]
Xanthones
[130]
Montenegro/2007
Clidemia sericea
Anacardiaceae
Mosquitoxylon jamaicense
Anacardiaceae
Mota da Silva/2009
Peperomia obtusifolia
Piperaceae
Muelas-Serrano/2000
Mikania cordifolia
Asteraceae
Philodendron bipinnatifidum
Araceae
Cecropia pachystachya
Moraceae
Solanum pilcomayense
Solanaceae
Scutia buxifolia
Rhamnaceae
Curcuma longa
Zingiberaceae
Mimosa tenuiflora
Fabaceae
Neurolaena lobata
Asteraceae
Manilkara achras
Sapotaceae
Muscia/2008
Flavonoids
[131]
Chromanes
[132] [133]
Alkaloid analogues
[134]
Nagafuji/2004
Physalis angulata
Solanaceae
Terpenoids
[135]
Nakayama/2001
Galipea longiflora
Rutaceae
Alkaloids
[136]
Navarro/2003
Acalypha guatemalensis
Euphorbiaceae
Smilax spinosa
Smilacaceae
Ndjakou Lenta/2007
Albizia zygia
Fabaceae
Nkwengoua/2009
Enantia chlorantha
Annonaceae
[137]
[138] Alkaloids
[139] Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
References
Nour/2010
Ageratum conyzoides
Asteraceae
Flavonoids
[140]
Osorio/2007
Annona muricata
Annonaceae
Rollinia exsucca
Annonaceae
Rollinia pittieri
Annonaceae
Xylopia aromatica
Annonaceae
Osorio/2010
Phaedranassa dubia
Amaryllidaceae
Alkaloids
[142]
Paveto/2004
Camellia sinensis
Theaceae
Phenolics
[143]
Phenolics and analogues
[144]
Terpenoids
[145]
Quinone analogues
[146]
Pereira/2008 Pinheiro/2009
Annona amazonica
Annonaceae
Pinto/2000
[141]
Baccharis platypode
Asteraceae
Eugenia jambolana
Myrtaceae
Polygala sabulosa
Polygalaceae
Polygala cyparissias
Polygalaceae
Trichilia catigua
Meliaceae
Ramirez/2003
Cissampelos pareira
Menispermaceae
Flavonoids
[148]
Regasini/2009
Piper arboretum
Piperaceae
Alkaloids
[149]
Piper tuberculatum
Piperaceae
Pizzolatti/2002
[147]
Reyes-Chilpa/2008
Mammea americana
Clusiaceae
Rosas/2007
Ampelozizyphus amazonicus
Rhamnaceae
[151]
Rosella/2007
Gaillardia cabrerae
Asteraceae
[152]
Gaillardia megapotamica
Asteraceae
Rubio/2005
Pinus oocarpa
Pinaceae
Terpenoids
[153]
Ruiz-Mesia/2005
Remijia peruviana
Rubiaceae
Alkaloids
[154]
Saeidnia/2004
Dracocephalum kotschyi
Lamiaceae
Terpenoids
[155]
Saedinia/2005
Dracocephalum subcapitatum
Lamiaceae
Terpenoids
[156]
Saeidnia/2007
Satureja macrantha
Lamiaceae
Terpenoids
[157]
Saeidnia/2008
Nepeta cataria
Lamiaceae
Essential oil
[158]
Salvador/2002
Blutaparon portulacoides
Amaranthaceae
Flavonoids
[159]
Sanchez/2006
Salvia gilliessi
Lamiaceae
Terpenoids
[160]
Santoro/2007
Origanum vulgare
Lamiaceae
Thymus vulgaris
Lamiaceae
Terpenoids
Santoro/2007
Cymbopogon citratus
Poaceae
Essential oil
[162]
Santoro/2007
Syzygium aromaticum
Myrtaceae
Terpenoids
[163]
Ocimum basilicum
Lamiaceae
Achillea millefolium
Asteraceae
Cassia fistula
Fabaceae
Flavonoids
[164]
Sartorelli/2009
Coumarins
[150]
[161]
Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
References
Sartorelli/2010
Aristolochia cymbifera
Aristolochiaceae
Terpenoids
[165]
Terpenoid analogues
[166]
Sau´de-Guimara˜es/2007 Angelica dahurica
Apiaceae
Angelica pubescens
Apiaceae
Angelica sinensis
Apiaceae
Astragalus membranaceus
Fabaceae
Coptis chinensis
Ranunculaceae
Haplophyllum hispanicum
Rutaceae
Scutellaria baicalensis
Lamiaceae
Phellodendron amurense
Rutaceae
Ranunculus sceleratus
Ranunculaceae
Schinor/2004
Moquinia kingii
Asteraceae
Flavonoids
[168]
Schinor/2006
Chresta exsucca
Asteraceae
Flavonoids
[169]
Schinor/2007
Chresta scapigera
Asteraceae
Flavonoids
[170]
Schmeda-Hirschmann/2001
Cryptocarya alba
Lauraceae
Pyranones
[171]
Schmidt/2002
Arnica sp.
Asteraceae
Terpenoids
[172]
Scio/2003
Kielmeyera albopunctata
Clusiaceae
Coumarins
[173]
Schinella/2002
[167]
Scio/2003
Alomia myriadenia
Scotti/2010
Different sources
Senn/2007
Cussonia zimmermannii
Araliaceae
Su¨lsen/2006
Ambrosia scabra
Asteraceae
Ambrosia tenuifolia
Asteraceae
Baccharis spicata
Asteraceae
Eupatorium buniifolium
Asteraceae
Lippia integrifolia
Verbenaceae
Mulinum spinosum
Apiaceae
Satureja parvifolia
Lamiaceae
Ambrosia tenuifolia
Asteraceae
Flavonoids
Eupatorium buniifolium
Asteraceae
Flavonoids
Su¨lsen/2008
Ambrosia tenuifolia
Asteraceae
Terpenoids
[179]
Su¨lsen/2010
Ambrosia tenuifolia
Asteraceae
Terpenoids
[180]
Takeara/2003
Lychnophora staavioides
Asteraceae
Flavonoids
[181]
Taketa/2004
Ilex affinis
Aquifoliaceae
Terpenoids
[182]
Ilex buxifolia
Aquifoliaceae
Chromolaena hirsuta
Asteraceae
Flavonoids
[183]
Quinones
[184]
Su¨lsen/2007
Taleb-Continil/2004 Tasdemir/2006
Asteraceae
Terpenoids
[174]
Flavonoids
[175]
Polyacetylenes
[176] [177]
[178]
Continued
TABLE 1 Results of the Search Strategy Matching the Selection Criteria—Cont’d First Author/Year of Publication
Plant Species
Family
Class of Bioactive Compounds
References
Tasdemir/2008
Scrophularia cryptophila
Scrophulariaceae
Resins
[185]
Tempone/2005
Annona coriacea
Annonaceae
Annona crassiflora
Annonaceae
Cissampelos ovalifolia
Menispermaceae
Duguetia furfuracea
Annonaceae
Siparuna guianensis
Siparunaceae
Xylopia emarginata
Annonaceae
Guatteria australis
Annonaceae
Duguetia lanceolata
Annonaceae
Neoraputia magnifica
Rutaceae
Tomazela/2000
[186]
Flavonoids
[187]
Chalcones Torres Mendoza/2003
Myrospermum frutescens
Fabaceae
Terpenoids
[188]
Truiti/2005
Cayaponia podantha
Cucurbitaceae
Melochia arenosa
Sterculiaceae
Uchiyama/2002
Laurus nobilis
Lauraceae
Terpenoids
[190]
Uchiyama/2003
Dracocephalum komarovi
Lamiaceae
Terpenoids
[191]
Uchiyama/2004
Dracocephalum komarovi
Lamiaceae
Terpenoids
[192]
[189]
Valde´s/2008
Simarouba glauca
Simaroubaceae
Verza/2009
Viguiera arenaria
Asteraceae
Lignans
[194]
Vieira/2001
Almeidea coerulea
Rutaceae
Coumarins
[195]
Pilocarpus spicatus
Rutaceae
Conchocarpus obovatus
Rutaceae
Monnieira trifolia
Rutaceae
Ravenia infelix
Rutaceae
Harpalyce brasiliana
Fabaceae
Flavonoids
[196]
Acnistus arborescens
Solanaceae
Quinones
Physalis angulata
Solanaceae
Terpenoids
Cordia globosa
Boraginaceae
Protium amplum
Burseraceae
Marila laxiflora
Clusiaceae
Guarea polymera
Meliaceae
Otoba novogranatensis
Myristicaceae
Otoba parviflora
Myristicaceae
Conobea scoparioides
Scrophulariaceae
Vieira/2008
Weniger/2001
Weniger/2006 Yanes/2004
[193]
[197]
Flavonoids Azadirachta indica
Meliaceae
Melia azedarach
Meliaceae
[198] [199]
322
Studies in Natural Products Chemistry
45 40 35 30 25 20 15 10 5 Amar Anac Anci Anno Apia Apoc Aris Aste Bign Bora Chen Clus Euph Faba Lami Laur Lilia Mela Meli Myri Myrt Pipe Rubi Ruta Scro Sola Zing
0
FIGURE 2 Most representative plant families for which trypanocidal activity has been reported in the period 2000–2010. Only plant families with three or more citations were included. (Data derived from Table 1, repeated species were not considered). Amaryllidaceae (Amar), Anacardiaceae (Anac), Ancistrocladaceae (Anci), Annonaceae (Anno), Apiaceae (Apia), Apocynaceae (Apoc), Aristolochiaceae (Aris), Asteraceae (Aste), Bignoniaceae (Bign), Boraginaceae (Bora), Chenopodiaceae (Chen), Clusiaceae (Clus), Euphorbiaceae (Euph), Fabaceae (Faba), Lamiaceae (Lami), Lauraceae (Laur), Liliaceae (Lilia), Melastomataceae (Mela), Meliaceae (Meli), Myristicaceae (Myri), Myrtaceae (Myrt), Piperaceae (Pipe), Rubiaceae (Rubi), Rutaceae (Ruta), Scrophulariaceae (Scro), Solanaceae (Sola), and Zingiberaceae (Zing).
3%
9%
5%
17%
32%
6% 11%
17%
Lignans
Terpenoids
Flavonoids
Other phenolics
Quinones
Alkaloids
Coumarins
Miscellaneous
FIGURE 3 Most represented class of trypanocidal bioactive compounds for which trypanocidal activity has been reported in the period 2000–2010.
can be used alone or in combination. Within the period 2000–2010, all of them have been applied. More than 70% of the investigated species are medicinal plants, but only three are reported as being specifically used for the treatment of American Trypanosomiasis, that is, Annona crassiflora, Oxalis erythrorhiza, and Guatteria
Chapter
9
323
Bioprospection of Potential Trypanocidal Drugs
3%
15%
24% 10%
22%
26% Monoterpenes
Sesquiterpenes
Diterpenes
Triterpenes
STLs
Steroids
FIGURE 4 Subclasses of terpenoid compounds with trypanocidal activity reported in the period 2000–2010. STLs, sesquiterpene lactones.
australis [68,79,186]. In general, this pathology is not recognized as a specific disease by people, so traditional therapeutic practices, involving medicinal plants, are used to treat symptomatologies (fatigue, depression, constipation, gastric pains) or heart complains rather than as antiparasitics [200]. This is the reason why there are very few examples of medicinal plants reported to be specifically used to treat Chagas disease. The antitrypanosomal activity of the species A. crassiflora and G. australis, both belonging to the Annonaceae family, was concentrated in the total alkaloid fractions. It has been reported that this family produces isoquinoline alkaloids, which are strongly implicated in the inhibition of the trypanothione reductase (TryR), an essential antioxidant enzyme of T. cruzi [201]. From the species O. erythrorhiza, Feresin et al. have identified the benzoquinone embelin as an active molecule against T. cruzi trypomastigotes and with cytotoxicity above the trypanocidal concentration [79]. When considering the different classes of bioactive compounds most frequently isolated and identified, in the same period, terpenoids, alkaloids, and flavonoids seem to be the most promising ones as new “lead molecules” with trypanocidal activity. Biological screening is generally the starting point in an investigation process in the search of bioactive compounds from plant origin. From the total number of selected references, 18 papers concerning with the screening of trypanocidal activity of plants were found (considering “screening” the analysis of five or more species). In five of these, the authors reported the screening and the isolation of active compounds within the same paper. Trypanocidal compounds of different classes have been thus reported: lignans from Aristolochia taliscana, aliphatic compounds from Persea americana, phenolics from Alpinia galanga, and several natural coumarins such as chalepin isolated from different species of Rutaceae [9,13,108,195]. Flavonoids from Conchocarpus heterophyllus showed only moderate trypanocidal activity [20].
324
Studies in Natural Products Chemistry
Other bioactive compounds isolated from plants previously screened have also been reported in the period: coumarins from Mammea americana and Almeidea coerulea, terpenoids from Neurolaena lobata and Pogostemon cablin, STLs from Tanacetum parthenium and Ambrosia tenuifolia, flavonoids from A. tenuifolia and Eupatorium bunnifolium, lignans from Piper regnellii, xanthones from Calophyllum brasiliense, and benzophenones from Garcinia intermedia, and essential oils from Cymbopogon citratus [12,32,100,109,118,150,162, 178,179,195]. These results indicate that biological screening can be considered a successful strategy in the search of trypanocidal compounds. According to Pieters and Vlietinck, bioassay-guided fractionation can still be considered a valuable approach to obtain new lead compounds from plants [202]. Frequently, this methodology is perceived as rate limiting and resource consuming. However, this process can be improved, in terms of speed, by the implementation of robotics used in other drug discovery processes [203]. The bioassay-guided fractionation strategy was found to be applied in about 30% of the selected articles. Most of the investigations were carried out using whole parasites in vitro (97.4%) and were mainly performed using trypomastigote and epimastigote forms. Works dealing with in vitro assays on amastigotes, the intracellular form of the parasite, are scarce. Several investigations have been performed with parasites transfected with reporter genes encoding b-galactosidase, enabling an easy and rapid detection of the antiparasitic activity. In vivo assays represent only a 2.6% [64,80,102,136,179]. The latter observation is particularly important since many medicinal plant projects never go beyond the in vitro analysis [204]. One of the strategies for the development of trypanocidal drugs involves the identification of specific targets within key metabolic pathways. In the past two decades, an improved understanding of the biology and biochemistry of T. cruzi has led to the identification of various targets for chemotherapy to treat Chagas disease [205]. The main promising ones involve proteinases (cysteine proteases), sterol biosynthetic pathways, and thiol-dependent redox metabolism. Polyamine metabolism and transport pathways, enzymes of the glycolytic and pentose biosynthetic pathways, and some organelles functions including DNA modulation in nucleus and kinetoplast have also been extensively studied. In T. cruzi, the fourth enzyme of the pathway that catalyzes the production of orotate from dihydroorotate, the dihydroorotate dehydrogenase, differs markedly from the human enzyme [206]. Recently, this enzyme has been suggested as a promising target for the design of trypanocidal agents [207]. The knowledge of these metabolic pathways is important for the rational design and synthesis of candidates for the treatment of Chagas disease, but unfortunately, literature data regarding the interaction of natural products and these targets are scarce. Within the reviewed period, 14 manuscripts reported different targets such as TryR, glyceraldehyde-3-phosphate dehydrogenase
Chapter
9
325
Bioprospection of Potential Trypanocidal Drugs
(GAPDH), cysteine proteinase, DNA synthesis, arginine kinase, trans-sialidase, and NADH oxidase. Particularly, those related to the inhibition of GAPDH were the most represented. On the basis of the essential role in the life cycle of the parasite, GAPDH has been considered an attractive target for it possesses important structural differences with the homologue protein of the mammalian host [144]. Many natural compounds and derivatives have been evaluated against this target, all of them belonging to the phenolic group (flavonoids, coumarins, and anacardic acids) [67,101,112, 127,144,187,195]. Among these, 3-piperonylcoumarins were designed as inhibitors of T. cruzi GAPDH based on the structure of other natural products (chalepin). Leite et al. and de Marchi et al. found that the most active synthesized derivatives from chalepin contained heterocyclic rings at position 6, making this class of substances one of the most promising with GAPDH inhibitory activity [67]. Within the flavonoids tested (flavones, isoflavones, chalcones), highly oxygenated flavones appear to possess the structural requirements to cause inhibition of the trypanosomal GAPDH [112,187]. A great number of trypanocidal drugs are TryR inhibitors. TryR is a NADPH-dependent oxidoreductase which plays an essential role in the parasites’ defenses against various reactive oxygen species (H2O2, O2, and OH) and it has been tested as an attractive target for drug design [208]. de Oliveira et al. and Hamilton et al. have reported the activity of alkaloids, lignans, and their synthetic analogues as TryR inhibitors [71,94]. Another molecular strategy is the inhibition of cruzipain, the major cysteine proteinase from T. cruzi. A protein isolated from a saline extract of Bauhinia bauhinioides has been reported to be an inhibitor of this enzyme [70]. Other reports dealing with the inhibition of the enzymes trans-sialidase, NADH oxidase, and arginine kinase and DNA synthesis inhibition can be found in the period reviewed [24,85,143,175]. Electron microscopy has proven to be a reliable and useful tool to study morphological alterations and target organelles in the investigation of new drugs for Chagas disease. Su¨lsen et al. have reported the ultrastructural alterations caused by the STL psilostachyin in T. cruzi epimastigotes. This compound induced cytoplasmic vacuolization, a slight increase in multivesicular bodies and mitochondrial swelling accompanied by a visible deformity of the kinetoplast [180]. Within the reviewed period, several other manuscripts referring to the study of T. cruzi morphological changes induced by active natural products were found [43,58,103,117,161–163]. Secondary metabolites are biosynthesized in order to exert some biological effect for a certain purpose within the plant. These compounds can be equally potent in other settings. The preparation of natural product analogues, which are themselves not naturally occurring, may allow tailoring and enhancing drug-like properties (bioactivity, pharmacokinetics, solubility, among others) of the medicines provided by nature [209]. Once a lead molecule has been identified, lead optimization follows. At this point, proprietary rights play l
326
Studies in Natural Products Chemistry
an important role in the pharmaceutical industry (unlike natural products, their derivatives can be patented as new chemical entities not present in nature). In our search, alkaloid, quinone, and flavonoid analogues have been found [21,33,38,40,66,67,69,71,72,74,81,94,111,134,144,146,166]. In the first stages of a drug discovery process of novel trypanocidal compounds (in vitro studies), criteria for considering either an extract or a pure compound as “active” or “inactive” have been found to be very variable within the selected references. There are no widely accepted criteria of IC50 limit values for considering a promising extract or compound. Gertsch has commented the low level of self-criticism (evaluation) in the interpretation of molecular pharmacological data in the ethnopharmacological area [204]. There are different opinions about which concentrations are substantial to meaningful effects. In this regard, Pink et al. have set different criteria for considering antiparasitic hits, lead, and candidate molecules [210]. An IC50 < 1 mg/ml and a 10-fold selectivity index (SI) is recommended by these authors as a cutoff value for in vitro activity of pure compounds. Osorio et al., in a screening performed on Annonaceae Colombian plants, have established the following criteria for extracts: highly active IC50 < 10 mg/ml, active 10 < IC50 < 50 mg/ml, moderately active 50 < IC50 < 100 mg/ml, and inactive IC50 > 100 mg/ml [141]. Romanha et al. have recommended testing concentrations of 1 mg/ml for pure compounds and 10 mg/ml for extracts in comparison with benznidazole (IC50 ¼ 3.8 mM) [2]. Thus, compounds displaying a trypanocidal effect similar or greater than that of benznidazole will move on to the next phase of screening. Upon reviewing patents related to the claim of natural compounds as antitrypanosomal agents, few were found [206]. Three of them were related to alkaloids such as a series of 3,3-dimethyl-8-oxoisoquinoline derivatives from natural naphthyl isoquinoline and tetrahydroisoquinoline derivatives [211,212]. The alkaloid canthin-6-one has been disclosed for the treatment of Chagas disease, being more effective than benznidazole in both chronic and acute mouse models [213]. A sulfonate derivative of the 1-phenyl-2-aminoethyl naphthalene showed selectivity with an IC50 value within the micromolar range [214]. A patent claimed that the lignans, cubebin and methylpluviatolide, isolated from Zanthoxylum naranjillo or Piper cubeba, and the semisynthetic derivatives of cubebin, especially dibenzylbutyrolactonic lignans, were useful for the treatment and prophylaxis of Chagas disease [215]. During a workshop held in Rio de Janeiro, Brazil, in 2008, organized by Fiocruz, Me´decines sans Frontie`rs, and WHO/TDR (among other organizations), a protocol was accorded where minimum standardized procedures to advance leading compounds to clinical trials were outlined. The recommendations included the use of parasite forms relevant to human infection (trypomastigotes and amastigotes) in the in vitro assays; screening for cytotoxicity in mammalian cell culture linkages for the determination of SI with an established cutoff value of <50; toxicity assays prior to in vivo studies; and in vivo
Chapter
9
Bioprospection of Potential Trypanocidal Drugs
327
studies in different steps, considering parasitemia reduction in the acute phase, cure in this same phase, and cure using other T. cruzi strains resistant to benznidazole [2]. These recommendations should be kept in mind by researchers working with natural products when the aim is to find a new lead drug feasible to be incorporated to the market so as to give a solution to the millions of people suffering from Chagas disease.
CONCLUDING REMARKS This review has focused on the research carried out on plants as sources of new trypanocidal drugs, over the period 2000–2010. The results shown herein demonstrate that bioprospection is important and that plants are still a good source since several secondary metabolites have great potential as new lead structures. The major drawback is that, even though, at early stages of research, many compounds might show promising activity against T. cruzi, only a few standardized protocols are available and a minimum set of criteria are required to guarantee reliable results. As shown above, only three species have been selected based upon their ethnomedical uses to treat Chagas disease, possibly due to the absence of external symptoms and the lack of recognition by general population as a specific disease. Instead, a good strategy may be the selection based on chemotaxonomic criteria. The most representative plant family for which trypanocidal activity has been reported, in the period studied, is the Asteraceae followed by the Fabaceae, Rutaceae, Annonaceae, and Lamiaceae. Among these, the Asteraceae, Lamiaceae, Rutaceae, and also the Ancistrocladaceae have given good hits. Although the analysis presented in this review demonstrates that there are plenty of classes of compounds with trypanocidal activity, only terpenoids (diterpenoids, sesquiterpenoids), alkaloids, and lignanes are the most promising ones in the search for new lead molecules with trypanocidal activity. Unfortunately, most extracts and isolated compounds regarded as active have rather low potency. The semisynthetic approach of several natural compounds has generated structurally diverse analogues with improved properties as evidenced by the patents shown herein. A wide range of therapeutic targets are currently under investigation. Among them, cysteine proteinase inhibitors and ergosterol biosynthesis inhibitors are currently in the pipeline. However, such bioassays for compounds of plant origin are scarce or still lacking. Moreover, although these compounds could not serve as drugs or templates, they can lead to a better understanding of specific targets. The majority of the compounds have been screened only in in vitro assays. Only five works have been done employing in vivo bioassays. Standardization of in vivo tests, both in acute and in chronic phase models, is of crucial importance.
328
Studies in Natural Products Chemistry
As for the early steps of a drug discovery process, from the finding of an active plant extract up to preclinical studies, some premises should be followed to ensure a sustainable pipeline for innovative products. Extracts from plants with an IC50 < 10 mg/ml should be further investigated for the isolation of active principles. Only, in vitro active compounds against the infective forms of the parasite (trypomastigotes and amastigotes) should be studied. Compounds with IC50 < 1 mg/ml and SI between 10 and 50 should be followed up. In vivo studies should be carried out on the most promising compounds. The preparation of analogues with better activity should be considered in the study, in order to encourage pharmaceutical industry to continue with the next stages of the development so as to bring a drug into the market. Although a large number of articles about new trypanocidal compounds have been published in the period, no new drug has come into clinical trials yet. This point needs a critical assessment in order to make the drug discovery process shorter and more effective.
REFERENCES [1] WHO Factsheet N 340. http://www.who.int/mediacentre/factsheets/fs340/en/index.html, 2010 (accessed 2011). [2] A. Romanha, S. Lisboa de Castro, M. Correia Soeiro, J. Lannes-Vieira, I. Ribeiro, A. Talvani, B. Bourdin, B. Blum, B. Olivieri, C. Zani, C. Spadafora, E. Chiari, et al., Mem. Inst. Oswaldo Cruz 105 (2010) 233–238. [3] M.N.C. Soeiro, S.L. de Castro, Expert Opin. Ther. Targets 13 (2009) 105–121. [4] DNDi. http://www.dndi.org (accessed 2011). [5] J.I. Ortholand, A. Ganesan, Curr. Opin. Chem. Biol. 8 (2004) 271–280. [6] D. Newman, J. Med. Chem. 51 (2008) 2589–2599. [7] D.J. Newman, G.M. Cragg, J. Nat. Prod. 70 (2007) 461–477. [8] S. Jachak, A. Saklani, Curr. Sci. 92 (2007) 1251–1257. [9] F. Abe, S. Nagafuji, T. Yamauchi, H. Okabe, J. Maki, H. Hiroo Higo, H. Akahane, A. Aguilar, M. Jime´nez-Estrada, R. Reyes-Chilpa, Biol. Pharm. Bull. 25 (2002) 1188–1191. [10] F. Abe, T. Yamauchi, T. Nagao, J. Kinjo, H. Okabe, H. Higo, H. Akahane, Biol. Pharm. Bull. 25 (2002) 1485–1487. [11] F. Abe, S. Nagafuji, H. Okabe, H. Higo, H. Akahane, Biol. Pharm. Bull. 26 (2003) 1730–1733. [12] F. Abe, S. Nagafuji, H. Okabe, H. Akahane, E. Estrada-Mun˜iz, M. Huerta-Reyes, R. ReyesChilpa, Biol. Pharm. Bull. 27 (2004) 141–143. [13] F. Abe, S. Nagafuji, M. Okawa, J. Kinjo, H. Akahane, T. Ogura, M. Martinez-Alfaro, R. Reyes-Chilpa, Biol. Pharm. Bull. 28 (2005) 1314–1317. [14] F. Abe, S. Nagafuji, M. Okawa, J. Kinjo, Chem. Pharm. Bull. 54 (2006) 1226–1228. [15] B.M. Abegaz, M. Bezabih, T. Msuta, R. Brun, D. Menche, J. Muhlbacher, G. Bringmann, J. Nat. Prod. 65 (2002) 1117–1121. [16] L.C. Albernaz, J.E. de Paula, G.A.S. Romero, M.D.R.R. Silva, P. Grellier, L. Mambu, L.S. Espindola, J. Ethnopharmacol. 131 (2010) 116–121. [17] H. Ali, G.M. Ko¨nig, S.A. Khalid, A.D. Wright, R. Kaminsky, J. Ethnopharmacol. 83 (2002) 219–228.
Chapter
9
Bioprospection of Potential Trypanocidal Drugs
329
[18] M.M. Amal Nour, S.A. Khalid, M. Kaiser, R. Brun, W.E. Abdallah, T.J. Schmidt, Planta Med. 75 (2009) 1363–1368. [19] S. Ambro´sio, N.S. Arakawa, V.R. Esperandim, S. De Albuquerque, F.B. Da Costa, Phytother. Res. 22 (2008) 1413–1415. [20] A. Ambrozin, P. Vieira, J. Fernandes, M. Fernandes Da Silva, S. De Albuquerque, Mem. Inst. Oswaldo Cruz 99 (2004) 227–231. [21] J.C. Aponte, M. Verastegui, E. Malaga, M. Zimic, M. Quiliano, A.J. Vaisberg, R.H. Gilman, G.B. Hammond, J. Med. Chem. 51 (2008) 6230–6234. [22] J.C. Aponte, H. Yang, A.J. Vaisberg, D. Castillo, E. Ma´laga, M. Vera´stegui, L.K. Casson, N. Stivers, P.J. Bates, R. Rojas, I. Fernandez, W.H. Lewis, C. Sarasara, M. Sauvain, R.H. Gilman, G.B. Hammond, Planta Med. 76 (2010) 705–707. [23] J.E. Araya, I. Neira, S. Silva, R.A. Mortara, P. Manque, E. Cordero, H. Sagua, A. Loyola, J. Bo´rquez, G. Morales, J. Gonza´lez, Mem. Inst. Oswaldo Cruz 98 (2003) 413–418. [24] S. Arioka, M. Sakagami, R. Uematsu, H. Yamaguchi, H. Togame, H. Takemoto, H. Hinou, S. Nishimura, Bioorg. Med. Chem. 18 (2010) 1633–1640. [25] M. Asaruddin, F. Kiuchi, G. Honda, Nat. Med. 55 (2001) 149–151. [26] M.R. Asaruddin, G. Honda, A. Tsubouchi, J. Nakajima, T. Aoki, F. Kiuchi, Nat. Med. 57 (2003) 61–63. [27] F. Astelbauer, A. Obwaller, A. Raninger, B. Brem, H. Greger, M. Ducheˆne, W. Wernsdorfer, J. Walochnik, Int. J. Antimicrob. Agents 36 (2010) 570–572; A.P. Balbani, D.H. Silva, J.C. Montovani, Expert Opin. Ther. Pat. 19 (2009) 461–473. [28] E.S. Balde´, V. Megalizzi, M.S. Traore´, P. Cos, L. Maes, C. Decaestecker, L. Pieters, A.M. Balde´, J. Ethnopharmacol. 130 (2010) 529–535. [29] W.L.R. Barbosa, L.D.N. Pinto, E. Quignard, J.M.D.S. Vieira, J.O.C. Silva Jr., S. Albuquerque, Braz. J. Pharm. Sci. 18 (2008) 544–548. [30] R.F.S. Barreto-Menna, G.A.T. Laranja, M.C.C. Silva, M.G.P. Coelho, M.C. Paes, M.M. Oliveira, S.L. de Castro, Parasitol. Res. 103 (2008) 111–117. [31] J.M. Batista Jr., A.A. Lopes, D.L. Ambro´sio, L.O. Regasini, M.J. Kato, V.D.S. Bolzani, R.M.B. Cicarelli, M. Furlan, Biol. Pharm. Bull. 31 (2008) 538–540. [32] I. Berger, C.M. Passreiter, A. Ca´ceres, W. Kubelka, Phytother. Res. 15 (2001) 327–330. [33] L. Bernardes, M. Kato, S. Albuquerque, I. Carvalho, Bioorg. Med. Chem. 14 (2006) 7075–7082. [34] M.W. Biavatti, P.C. Vieira, M.F. da Silva, J.B. da Fernandes, S. Albuquerque, Z. Naturforsch. C 56 (2001) 570–574. [35] M.W. Biavatti, P.C. Vieira, M.F. da Silva, J.B. Fernandes, S. Albuquerque, C.M. Magalha˜es, F.C. Pagnocca, Phytomedicine 8 (2001) 121–124. [36] M.W. Biavatti, P.C. Vieira, M.F.G.F. da Silva, J.B. Fernandes, S.T. Albuquerque, J. Nat. Prod. 65 (2002) 562–565. [37] M. Billo, A. Fournet, P. Cabalion, J. Waikedre, C. Bories, P. Loiseau, E. Prina, A. Rojas de Arias, R. Fourneaua, R. Hocquemiller, J. Ethnopharmacol. 96 (2005) 569–575. [38] M.L. Bolognesi, F. Lizzi, R. Perozzo, R. Brun, A. Cavalli, Bioorg. Med. Chem. Lett. 18 (2008) 2272–2276. [39] R. Borges-Arga´ez, L. Balnbury, A. Flowers, A. Gime´nez-Turba, G. Ruiz, P. Waterman, L. Pen˜a-Rodrı´guez, Phytomedicine 14 (2007) 530–533. [40] R. Borges-Arga´ez, T. Vela-Catzı´n, A. Yam-Puc, M.J. Chan-Bacab, R.E. Moo-Puc, M. Ca´ceres-Farfa´n, Planta Med. 75 (2009) 1336–1338. [41] G. Bradacs, L. Maes, J. Heilmann, Phytother. Res. 24 (2010) 800–809. [42] B.J. Bravo, M. Sauvain, T. Gimenez, E. Balanza, L. Serani, O. Laprevote, G. Massiot, C. Lavaud, J. Nat. Prod. 64 (2001) 720–725.
330
Studies in Natural Products Chemistry
[43] S.D. Brengio, S. Belmonte, E. Guerreiro, O.S. Giordano, E.O. Pietrobon, M.A. Sosa, J. Parasitol. 86 (2000) 407–412. [44] G. Bringmann, A. Hamm, C. Gu¨nther, M. Michel, R. Brun, V. Mudogo, J. Nat. Prod. 63 (2000) 1465–1470. [45] G. Bringmann, K. Messer, R. Brun, V. Mudogo, J. Nat. Prod. 65 (2002) 1096–1101. [46] G. Bringmann, K. Messer, K. Wolf, J. Mu¨hlbacher, M. Gru¨ne, R. Brun, A.M. Louis, Phytochemistry 60 (2002) 389–397. [47] G. Bringmann, M. Wohlfarth, H. Rischer, J. Schlauer, R. Brun, Phytochemistry 61 (2002) 195–204. [48] G. Bringmann, W. Saeb, M. Ru¨ckert, J. Miesa, M. Michel, V. Mudogo, R. Brun, Phytochemistry 62 (2003) 631–636. [49] G. Bringmann, M. Dreyer, J.H. Faber, P.W. Dalsgaard, D. Stærk, J.W. Jaroszewski, H. Ndangalasi, F. Mbago, R. Brun, M. Reichert, K. Maksimenka, S.B. Christensen, J. Nat. Prod. 66 (2003) 1159–1165. [50] G. Bringmann, M. Dreyer, J. Faber, P. Dalsgaard, D. Stærk, J. Jaroszewski, H. Ndangalasi, F. Mbago, R. Brun, S. Christensen, J. Nat. Prod. 67 (2004) 743–748. [51] G. Bringmann, M. Dreyer, H. Rischer, K. Wolf, H. Hadi, R. Brun, H. Meimberg, G. Heubl, J. Nat. Prod. 67 (2004) 2058–2062. [52] G. Bringmann, J. Spuziak, J.H. Faber, T. Gulder, I. Kajahn, M. Dreyer, G. Heubl, R. Brun, V. Mudogo, Phytochemistry 69 (2008) 1065–1070. [53] M.M.O. Cabral, J.M. Barbosa-Filho, G.L.A. Maia, M.C.O. Chaves, M.V. Braga, W. De Souza, R.O.A. Soares, Exp. Parasitol. 124 (2010) 319–324. [54] A.I. Caldero´n, G. Tamayo, L.I. Romero, C. Guerra, E. Ortega-Barrı´a, A. Espinosa, M. Correa, P.N. Solı´s, S. Zacchino, M.P. Gupta, A. Gimenez, R. Pinzo´n, A. Ca´ceres, Pharm. Biol. 48 (2010) 545–553. [55] I. Calis, S. Koyunog˘lu, A. Yes¸ilada, R. Brun, P. Ru¨edi, D. Tasdemir, Chem. Biodivers. 3 (2006) 923–929. [56] M. Camacho, J. Phillipson, S. Croft, V. Yardley, P. Solis, Planta Med. 70 (2004) 70–72. [57] F. Campos, A. Janua´rio, L. Rosas, S. Nascimento, P. Pereira, S. Franc¸a, M. Cordeiro, M. Toldo, S. Albuquerque, Fitoterapia 76 (2005) 26–29. [58] M.C.O. Campos, K. Saloma˜o, D.B. Castro-Pinto, L.L. Leon, H.S. Barbosa, M.A.M. Maciel, L.S. de Castro, Parasitol. Res. 107 (2010) 1193–1204. [59] L. Cardona Zuleta, A. Cavalheiro, D. Siqueira Silva, M. Furlan, M.C. Marx Young, S. Albuquerque, I. Castro- Gamboa, V. da Silva Bolzani, Phytochemistry 64 (2003) 549–553. [60] D.B. Carmona, F. Escalante-Erosa, K. Garcı´a-Sosa, G. Ruiz-Pinell, D. Gutierrez-Yapu, M.J. Chan Bacab, A. Gime´nez-Turba, L.M. Pen˜a-Rodrı´guez, Phytomedicine 17 (2010) 379–382. [61] J. Chaves, A. Nascimento, A. Soares, L. De Campos, P. De Oliveira, S. De Albuquerque, D. De Oliveira, Pharm. Biol. 45 (2007) 749–752. [62] L. Che´rigo, V. Polanco, E. Ortega-Barria, M. Heller, T. Capson, L. Rios, Nat. Prod. Res. 19 (2005) 373–377. [63] W.R. Cunha, C. Martins, D. Silva Ferreira, A.E. Miller Crotti, N.P. Lopes, S. Albuquerque, Planta Med. 69 (2003) 470–472. [64] W. Cunha, E. Crevelin, G. Arantes, A. Miller Crotti, M. Andrade E Silva, N. Cardoso Furtado, S. Albuquerque, D. Da Silva Ferreira, Phytother. Res. 20 (2006) 474–478. [65] A. da Silva Filho, P. Pires Bueno, L. Grego´rio, M. Andrade Silva, S. Albuquerque, J. Bastos, J. Pharm. Pharmacol. 56 (2004) 1195–1199.
Chapter
9
Bioprospection of Potential Trypanocidal Drugs
331
ˆ . de Fa´tima, C. Marquissolo, S. de Albuquerque, A. Carraro-Abraha˜o, R. Pilli, Eur. J. [66] A Med. Chem. 41 (2006) 1210–1213. [67] A. de Marchi, M. Castilho, P. Nascimento, F. Archanjo, G. Del Ponte, G. Oliva, M. Pupo, Bioorg. Med. Chem. 12 (2004) 4823–4833. [68] M. de Mesquita, J. Desrivot, C. Bories, A. Fournet, J. De Paula, P. Grellier, L. Espindola, Mem. Inst. Oswaldo Cruz 100 (2005) 783–787. [69] K.C.G. de Moura, F.S. Emery, C. Neves-Pinto, A.P. Dantas, K. Saloma˜o, S.L. de Castro, A.V. Pinto, J. Braz. Chem. Soc. 12 (2001) 325–338. [70] C. de Oliveira, L.A. de Santana, A.K. Carmona, M.H. Cezari, M.U. Sampaio, C.A. Sampaio, M.L. Oliva, Biol. Chem. 382 (2001) 847–852. [71] R. de Oliveira, A. Vaz, R. Alves, D. Liarte, C. Donnici, A. Romanha, C. Zani, Mem. Inst. Oswaldo Cruz 101 (2006) 169–173. [72] E. del Olmo, M. Garcı´a Armas, J.L. Lo´pez-Pe´rez, G. Ruiz, F. Vargas, F. Gime´nez, E. Deharo, A. San-Feliciano, Bioorg. Med. Chem. Lett. 11 (2001) 2755–2757. [73] A. do Nascimento, M. Salvador, R. Candido, S. de Albuquerque, D. de Oliveira, J. Pharm. Pharmacol. 56 (2004) 663–669. [74] A.F. dos Santos, P.A.L. Ferraz, F.C. de Abreu, E. Chiari, M.O.F. Goulart, A.E.G. Sant’Ana, Planta Med. 67 (2001) 92–93. [75] D.S. Duarte, M.F. Dolabela, C.E. Salas, D.S. Raslan, A.B. Oliveiras, A. Nenninger, B. Wiedemann, H. Wagner, J. Lombardi, M.T. Lopes, J. Pharm. Pharmacol. 52 (2000) 347–352. [76] G.J. Erosa-Rejo´n, A. Yam-Puc, M.J. Chan-Bacab, A. Gime´nez-Turba, E. Salamanca, L.M. Pen˜a-Rodrı´guez, Phytochem. Lett. 3 (2010) 9–12. [77] L. Espindola, E. Rossy, J. Vasconcelos Jr., M. De Mesquita, P. Marquie´, J. De Paula, L. Mambu, J. Santana, Planta Med. 70 (2004) 1093–1095. [78] T. Faria, M. Cafeˆu, G. Akiyoshi, D. Ferreira, O. Gala˜o, C. Andrei, P. Pinge Filho, M. Carvalho Paiva, A. Melo Barbosa, R. Braz-Filho, Quim. Nova 30 (2007) 525–527. [79] G.E. Feresin, A. Tapia, M. Sortino, S. Zacchino, A.R. de Arias, A. Inchausti, G. Yaluff, J. Rodriguez, C. Theoduloz, G. Schmeda-Hirschmann, J. Ethnopharmacol. 88 (2003) 241–247. [80] M. Ferreira, H. Nakayama, A. de Arias, A. Schinini, N. de Bilbao, E. Serna, D. Lagoutte, F. Soriano-Agaton, E. Poupon, R. Hocquemiller, A. Fournet, J. Ethnopharmacol. 109 (2007) 258–263. [81] W. Ferreira da Silva, A. Echevarria, L. Freire-de-Lima, M.E.F. de Lima, Bioorg. Med. Chem. 16 (2008) 2984–2991. [82] A. Fournet, M. Ferreira, A. Rojas de Arias, I. Guy, H. Guinaudeau, H. Heinzen, Fitoterapia 78 (2007) 382–384. [83] B.C. Galarreta, R. Sifuentes, A.K. Carrillo, L. Sanchez, M.R.I. Amado, H. Maruenda, Bioorg. Med. Chem. 16 (2008) 6689–6695. [84] S. Ganapaty, S.T. Pannakal, G.V.K. Srilakshmi, P. Lakshmi, P.G. Waterman, R. Brun, Phytochem. Lett. 1 (2008) 175–178. [85] H.A. Garro, M. Juri Ayub, M. Nieto, C. Lucero Estrada, C.R. Pungitore, C.E. Tonn, Cell. Mol. Biol. 54 (2010) 1318–1323. [86] J. Gertsch, R.T. Tobler, R. Brun, O. Sticher, J. Heilmann, Planta Med. 69 (2003) 420–424. [87] A. Gohari, S. Saeidnia, K. Matsuo, N. Uchiyama, T. Yagura, M. Ito, F. Kiuchi, G. Honda, Nat. Med. 57 (2003) 250–252. [88] A.R. Gohari, S. Saeidnia, A. Hadjiakhoondi, A. Naghinejad, T. Yagura, J. Med. Plants 7 (2008) 44–48.
332
Studies in Natural Products Chemistry
[89] P. Gonza´lez, C. Marı´n, I. Rodrı´guez-Gonza´lez, A. Illana, H. Mateo, S. Longoni, M. Rosales, A. Gonzalez-Coloma, M. Reina, M. Sa´nchez-Moreno, Pharmacology 76 (2006) 123–128. [90] A. Gonza´lez-Coloma, A. Guadan˜o, C. de Ine´s, R. Martı´nez-Dı´az, D. Cortes, Z. Naturforsch. C 57 (2002) 1028–1034. [91] C.F. Grael, W. Vichnewski, G.E. Souza, J.L. Lopes, S. Albuquerque, W.R. Cunha, Phytother. Res. 14 (2000) 203–206. [92] C.F. Grael, S. Albuquerque, J.L. Lopes, Fitoterapia 76 (2005) 73–82. [93] E. Guzma´n, C. Pe´rez, M.A. Zavala, K.Y. Acosta-Viana, S. Pe´rez, Phytomedicine 15 (2008) 892–895. [94] C. Hamilton, A. Saravanamuthu, C. Poupat, A. Fairlamb, I. Eggleston, Bioorg. Med. Chem. 14 (2006) 2266–2278. [95] A. Hay, J. Ioset, K. Ahua, D. Diallo, R. Brun, K. Hostettmann, J. Nat. Prod. 70 (2007) 9–13. [96] J.A. Heilmann, S.A. Mayr, R.B. Brun, T.C. Rali, O.A. Sticher, Helv. Chim. Acta. 83 (2000) 2939–2945. [97] J. Heilmann, R. Brun, S. Mayr, T. Rali, O. Sticher, Phytochemistry 57 (2001) 1281–1285. [98] M.R. Herrera, A.K. Machocho, J.J. Nair, W.E. Campbell, R. Brun, F. Viladomat, C. Codina, J. Bastida, Fitoterapia 72 (2001) 444–448. [99] J.C. Herrera, G. Troncone, D. Henrı´quez, N. Urdaneta, Z. Naturforsch. C 63 (2008) 821–829. [100] E. Izumi, L.G. Morello, T. Ueda-Nakamura, S.F. Yamada-Ogatta, B.P. Dias Filho, D.A. Garcia Cortez, I.C. Piloto Ferreira, J.A. Morgado-Dı´az, C.V. Nakamura, Exp. Parasitol. 118 (2008) 324 300. [101] A. Janua´rio, M. Lourenc¸o, L. Dome´zio, R. Pietro, M. Castilho, D. Tomazela, M. Da Silva, P. Vieira, J. Fernandes, S. Franc¸a, Chem. Pharm. Bull. 53 (2005) 740–742. [102] M. Jimenez-Coello, K.Y. Acosta-Viana, E. Guzman-Marin, C. Perez Gonzalez, M. Salud Perez Gutierrez, Pharm. Biol. 48 (2010) 666–671. [103] V. Jimenez-Ortiz, S. Brengio, O. Giordano, C. Tonn, M. Sa´nchez, M. Burgos, M. Sosa, J. Parasitol. 91 (2005) 170–174. [104] C. Jime´nez-Romero, D. Torres-Mendoza, L. Gonzalez, E. Ortega-Barrı´a, K. McPhail, W. Gerwick, L. Cubilla-Rios, J. Nat. Prod. 70 (2007) 1249–1252. [105] C. Jorda˜o, W. Vichnewski, G. Petto De Souza, S. Albuquerque, J. Callegari Lopes, Phytother. Res. 18 (2004) 332–334. [106] A. Karioti, H. Skaltsa, M. Kaiser, D. Tasdemir, Phytomedicine 16 (2009) 783–787. [107] F. Kiuchi, Y. Itano, N. Uchiyama, G. Honda, A. Tsubouchi, J. Nakajima-Shimada, T. Aoki, J. Nat. Prod. 65 (2002) 509–512. [108] F. Kiuchi, K. Matsuo, Y. Itano, M. Ito, G. Honda, T.K. Qui, J. Nakajima-Shimada, T. Aoki, Nat. Med. 56 (2002) 64–68. [109] F. Kiuchi, K. Matsuo, M. Ito, T. Qui, G. Honda, Chem. Pharm. Bull. 52 (2004) 1495–1496. [110] J. Labran˜a, A. King’ori Machochoa, V. Kricsfalusy, R. Brun, C. Codina, F. Viladomat, J. Bastida, Phytochemistry 60 (2002) 847–852. [111] J. Leite, A. Oliveira, J. Lombardi, J. Filho, E. Chiari, Biol. Pharm. Bull. 29 (2006) 2307–2309. [112] A.C. Leite, A.R.P. Ambrozin, O.H. Thiemann, M.I.S. Lima, M.S. Castilho, J.R. Pirani, P.C. Vieira, J.B. Fernandes, G. Oliva, M.F.G.F. Da Silva, Braz. J. Pharmacogn. 19 (2009) 1–6. [113] A.C. Leite, S. Albuquerque, A.P. Neto, A.R.P. Ambrorozin, J.B. Fernandes, P.C. Vieira, M.F.G.F. da Silva, Braz. J. Pharmacogn. 20 (2010) 1–6.
Chapter
9
Bioprospection of Potential Trypanocidal Drugs
333
[114] L.M. Lia˜o, G.A. Silva, M.R. Monteiro, S. Albuquerque, Z. Naturforsch. C 63 (2009) 207–210. [115] D. Lirussi, J. Li, J. Prieto, M. Gennari, H. Buschiazzo, J. Rı´os, A. Zaidenberg, Fitoterapia 75 (2004) 718–723. [116] P. Luize, T. Tiuman, L. Morello, P. Maza, T. Ueda-Nakamura, B. Dias Filho, D. Cortez, J. Palazzo de Mello, C. Nakamura, J. Pharm. Sci. 41 (2005) 85–94. [117] P. Luize, T. Ueda-Nakamura, B. Filho, D. Cortez, J. Morgado-Dı´az, W. De Souza, C. Nakamura, Parasitol. Res. 100 (2006) 31–37. [118] P. Luize, T. Ueda-Nakamura, B. Dias Filho, D. Cortez, C. Nakamura, Biol. Pharm. Bull. 29 (2006) 2126–2130. [119] A. Machocho, J. Bastida, C. Codina, F. Viladomat, R. Brun, S. Chhabra, Phytochemistry 65 (2004) 3143–3149. [120] J. Mafezoli, P.C. Vieira, J.B. Fernandes, M.F. Silva, S. da Albuquerque, J. Ethnopharmacol. 73 (2000) 335–340. [121] V. Mahiou, F. Roblot, A. Fournet, R. Hocquemiller, Phytochemistry 54 (2000) 709–716. [122] M.L. Martı´nez, M.N. Noel Campagna, M.S. Ratti, I. Nocito, E. Serra, S. Gattuso, M.A. Gattuso, Bol. Latinoam. Caribe Plant. Med. Aromat. 8 (2009) 211–218. [123] R. Martins, J. Lago, S. Albuquerque, M. Kato, Phytochemistry 64 (2003) 667–670. [124] Z. Mbwambo, S. Apers, M. Moshi, M. Kapingu, S. Van Miert, M. Claeys, R. Brun, P. Cos, L. Pieters, A. Vlietinck, Planta Med. 70 (2004) 706–710. [125] Z. Mbwambo, M. Kapingu, M. Moshi, F. Machumi, S. Apers, P. Cos, D. Ferreira, J. Marais, D. Vanden Berghe, L. Maes, A. Vlietinck, L. Pieters, J. Nat. Prod. 69 (2006) 369–372. [126] A. Mendes do Nascimento, J. Siqueira Chaves, S. Albuquerque, D. Rodrigues De Oliveira, Fitoterapia 75 (2004) 381–384. [127] I.R. Menezes, J.C.D. Lopes, C.A. Montanari, G. Oliva, F. Pava˜o, M.S. Castilho, P.C. Vieira, M.T. Pupo, J. Comput. Aided Mol. Des. 17 (2003) 277–290. [128] G.K. Mesia, G.L. Tona, T.H. Nanga, R.K. Cimanga, S. Apers, P. Cos, L. Maes, L. Pieters, A.J. Vlietinck, J. Ethnopharmacol. 115 (2008) 409–415. [129] R. Mezenceb, M. Galizzib, P. Kutschyc, R. Docampo, Exp. Parasitol. 122 (2009) 66–69. [130] E. Molinar-Toribio, J. Gonza´lez, E. Ortega-Barrı´a, T. Capson, P. Coley, T. Kursar, K. McPhail, L. Cubilla-Rios, Pharm. Biol. 44 (2006) 550–553. [131] H. Montenegro, J. Gonza´lez, E. Ortega-Barria, L. Cubilla-Rios, Pharm. Biol. 45 (2007) 376–380. [132] J. Mota da Silva, A.C. Leite, J.M. Batista Jr., S.N. Lo´pez, D.L. Ambro´sio, G.D. Passerriini, M.J. Kato, V. Bolzani, R. Cicarelli, M. Furlan, Planta Med. 75 (2009) 620–623. [133] S. Muelas-Serrano, J.J. Nogal, R.A. Martı´nez-Dı´az, J.A. Escario, A.R. Martı´nez-Fernandez, A. Go´mez-Barrio, J. Ethnopharmacol. 71 (2000) 101–107. [134] G.C. Muscia, J.P. Carnevale, M. Bollini, S.E. Ası´s, J. Heterocycl. Chem. 45 (2008) 611–614. [135] S. Nagafuji, H. Okabe, H. Akahane, F. Abe, Biol. Pharm. Bull. 27 (2004) 193–197. [136] H. Nakayama, M.E. Ferreira, A. Rojas de Arias, N. Vera de Bilbao, S. Torres, A. Schinini, A. Fournet, Phytother. Res. 15 (2001) 630–632. [137] M.C. Navarro, M.P. Montilla, M.M. Cabo, M. Galisteo, A. Ca´ceres, C. Morales, I. Berger, Phytother. Res. 17 (2003) 325–329. [138] B. Ndjakou Lenta, C. Vonthron-Se´ne´cheau, R. Fongang Soh, F. Tantangmo, S. Ngouela, M. Kaiser, E. Tsamo, R. Anton, B. Weniger, J. Ethnopharmacol. 111 (2007) 8–12. [139] E.T. Nkwengoua, I. Ngantchou, B. Nyasse, C. Denier, C. Blonski, B. Schneider, Nat. Prod. Res. 23 (2009) 1144–1150.
334
Studies in Natural Products Chemistry
[140] A.M.M. Nour, S.A. Khalid, M. Kaiser, R. Brun, W.E. Abdalla, T.J. Schmidt, J. Ethnopharmacol. 129 (2010) 127–130. [141] E. Osorio, G. Arango, N. Jime´nez, F. Alzate, G. Ruiz, D. Gutie´rrez, M. Paco, A. Gimenez, S. Robledo, J. Ethnopharmacol. 111 (2007) 630–635. [142] E.J. Osorio, S. Berkov, R. Brurun, C. Codina, F. Viladomat, F. Cabezas, J. Bastida, Phytochem. Lett. 3 (2010) 161–163. [143] C. Paveto, M. Gu¨ida, M. Esteva, V. Martino, J. Coussio, M. Flawia´, H. Torres, Antimicrob. Agents Chemother. 48 (2004) 69–74. [144] J.M. Pereira, G. Oliva, R.P. Severino, A.G. Correˆa, P.C. Vieira, J.B. Fernandes, M.F.G. F. da Silva, A. Zottis, A.D. Andricopulo, Bioorg. Med. Chem. 16 (2008) 8889–8895. [145] M.L.B. Pinheiro, F.R. Campos, A. Barison, C.M. Xavier, R.H. Valdez, A.D.L. de Souza, T. Ueda-Nakamura, D.M. Rabelo, C.V. Nakamura, C.L. Batista, E.V. Costa, J. Braz. Chem. Soc. 20 (2009) 1095–1102. [146] C.N. Pinto, A.P. Dantas, K.C. De Moura, F.S. Emery, P.F. Polequevitch, M.C. Pinto, S.L. de Castro, A.V. Pinto, Arzneim. Forsch. 50 (2000) 1120–1128. [147] M.G. Pizzolatti, A.H. Koga, E.C. Grisard, M. Steindel, Phytomedicine 9 (2002) 422–426. [148] I. Ramirez, A. Carabot, P. Melendez, J. Carmona, M. Jimenez, A.V. Patel, T.A. Crabb, G. Blunden, P.D. Cary, S.L. Croft, M. Costa, Phytochemistry 64 (2003) 645–647. [149] L.O. Regasini, F. Cotinguiba, G.D. Passerini, V.D.S. Bolzani, R.M.B. Cicarelli, M.J. Kato, M. Furlan, Braz. J. Pharmacogn. 19 (2009) 199–203. [150] R. Reyes-Chilpa, E. Estrada-Mun˜iz, E. Vega-Avila, S. Herna´ndez-Ortega, Mem. Inst. Oswaldo Cruz 103 (2008) 431–436. [151] L. Rosas, M. Cordeiro, F. Campos, S. Nascimento, A. Janua´rio, S. Franc¸a, A. Nomizo, M. Toldo, S. Albuquerque, P. Pereira, Braz. J. Med. Biol. Res. 40 (2007) 663–670. [152] M. Rosella, A. Castillo, L. Romero, E. Spegazzini, L. Uren˜a, J. Gonza´lez, E. Ortega-Barria, S. Debenedetti, Lat. Am. J. Pharm. 26 (2007) 270–274. [153] J. Rubio, J. Caldero´n, A. Flores, C. Castro, C. Ce´spedes, Z. Naturforsch. 60 (2005) 711–716. [154] L. Ruiz-Mesia, W. Ruiz-Mesı´a, M. Reina, R. Martı´nez-Diaz, C. De Ine´s, A. Guadan˜o, A. Gonza´lez-Coloma, J. Agric. Food Chem. 53 (2005) 1921–1926. [155] S. Saeidnia, A. Gohari, N. Uchiyama, M. Ito, G. Honda, F. Kiuchi, Chem. Pharm. Bull. 52 (2004) 1249–1250. [156] S. Saeidnia, A. Gohari, M. Ito, F. Kiuchi, G. Honda, Z. Naturforsch. 60 (2005) 22–24. [157] S. Saeidnia, A. Gohari, A. Hadjiakhoondi, Int. J. Essent. Oil Ther. 1 (2007) 184–186. [158] S. Saeidnia, A.R. Gohari, A. Hadjiakhoondi, J. Med. Plants 7 (2008) 54–57. [159] M.J. Salvador, E.O. Ferreira, E.M.F. Pral, S.C. Alfieri, S. Albuquerque, I.Y. Ito, D.A. Dias, Phytomedicine 9 (2002) 566–571. [160] A. Sanchez, V. Jimenez-Ortiz, T. Sartor, C. Tonn, E. Garcı´a, M. Nieto, M. Burgos, M. Sosa, Acta Trop. 98 (2006) 118–124. [161] G. Santoro, M. Das Grac¸as Cardoso, L. Guimara˜es, A. Salgado, R. Menna-Barreto, M. Soares, Parasitol. Res. 100 (2007) 783–790. [162] G. Santoro, M. Cardoso, L. Guimara˜es, J. Freire, M. Soares, Parasitology 134 (2007) 1649, 165. [163] G. Santoro, M. Cardoso, L. Guimara˜es, L. Mendonc¸a, M. Soares, Exp. Parasitol. 116 (2007) 283–290. [164] P. Sartorelli, C. Salomone Carvalho, J. Quero Reima˜o, M.J. Pena Ferreira, G.A. Tempone, Parasitol. Res. 104 (2009) 311–314. [165] P. Sartorelli, C. Salomone Carvalho, J. Quero Reima˜o, H. Lorenzi, A.G. Tempone, Planta Med. 76 (2010) 1454–1456.
Chapter
9
Bioprospection of Potential Trypanocidal Drugs
335
[166] D. Sau´de-Guimara˜es, K. Perry, D. Raslan, E. Chiari, A. Barrero, J. Oltra, Magn. Reson. Chem. 45 (2007) 1084–1087. [167] G.R. Schinella, H.A. Tournier, J.M. Prieto, J.L. Rı´os, H. Buschiazzo, A. Zaidenberg, Fitoterapia 73 (2002) 569–575. [168] E. Schinor, M. Salvador, I. Ito, S. De Albuquerque, D. Dias, Phytomedicine 11 (2004) 224–229. [169] E. Schinor, M. Salvador, J. Tomaz, E. Pral, S. Alfieri, S. De Albuquerque, I. Ito, D. Dias, Braz. J. Pharm. Sci. 42 (2006) 83–90. [170] E. Schinor, M.J. Salvador, E.M. Furusho Pral, S.C. Alfieri, S. Albuquerque, D.A. Dias, Braz. J. Pharm. Sci. 43 (2007) 295–300. [171] G. Schmeda-Hirschmann, L. Astudillo, J. Bastida, C. Codina, A. Rojas De Arias, M.E. Ferreira, A. Inchaustti, G. Yaluff, J. Pharm. Pharmacol. 53 (2001) 563–567. [172] T.J. Schmidt, R. Brun, G. Willuhn, S.A. Khalid, Planta Med. 68 (2002) 750–751. [173] E. Scio, A. Ribeiro, T.M.A. Alves, A.J. Romanha, Y.G. Shin, G.A. Cordell, C.L. Zani, J. Nat. Prod. 66 (2003) 634–637. [174] E. Scio, A. Ribeiro, T.M.A. Alvesa, A.J. Romanhac, J. Dias de Souza Filhod, G.A. Cordelle, C.L. Zania, Phytochemistry 64 (2003) 1125–1131. [175] L. Scotti, E.I. Ferreira, M.S. Da Silva, M.T. Scotti, Molecules 15 (2010) 7363–7377. [176] M. Senn, S. Gunzenhauser, R. Brun, U. Se´quin, J. Nat. Prod. 70 (2007) 1565–1569. [177] V. Su¨lsen, C. Gu¨ida, J. Coussio, C. Paveto, L. Muschietti, V. Martino, Parasitol. Res. 98 (2006) 370–374. [178] V. Su¨lsen, S. Cazorla, F. Frank, F. Redko, C. Anesini, J. Coussio, E. Malchiodi, V. Martino, Am. J. Trop. Med. Hyg. 77 (2007) 654–659. [179] V. Su¨lsen, F. Frank, S. Cazorla, C. Anesini, E. Malchiodi, B. Freixa, R. Vila, L. Muschietti, V. Martino, Antimicrob. Agents Chemother. 52 (2008) 2415–2419. [180] V. Su¨lsen, P. Barrera, L. Muschietti, V. Martino, M. Sosa, Molecules 15 (2010) 545–553. [181] R. Takeara, S. Albuquerque, N.P. Lopes, J.L.C. Lopes, Phytomedicine 10 (2003) 490–493. [182] A. Taketa, S. Gnoatto, G. Gosmann, V. Pires, E. Schenkel, D. Guillaume, J. Nat. Prod. 67 (2004) 1697–1700. [183] S. Taleb-Continil, M. Salvador, J. Balanco, S. Albuquerque, D. De Oliveira, Phytother. Res. 18 (2004) 250–254. [184] D. Tasdemir, R. Brun, V. Yardley, S. Franzblau, P. Ru¨edi, Chem. Biodivers. 3 (2006) 1230–1237. [185] D. Tasdemir, R. Brun, S.G. Franzblau, Y. Sezgin, I. C ¸ alis, Phytomedicine 15 (2008) 209–215. ´ . Yogi, [186] A. Tempone, S. Treiger Borborema, H. De Andrade Jr., N. De Amorim Gualda, A C. Salerno Carvalho, D. Bachiega, F. Lupo, S. Bonotto, D. Fischer, Phytomedicine 12 (2005) 382–390. [187] D.M. Tomazela, M.T. Pupo, E. Passador, M.F. da Silva, P.C. Vieira, J.B. Fernandes, E.R. Fo, G. Oliva, J.R. Pirani, Phytochemistry 55 (2000) 643–651. [188] D.T. Torres Mendoza, L.D. Uren˜a Gonza´lez, E. Ortega-Barrı´a, T.L. Capson, L.C. Rios, J. Nat. Prod. 66 (2003) 928–932. [189] M. Truiti, I. Ferreira, M. Zamuner, C. Nakamura, M. Sarragiotto, M. Souza, Braz. J. Med. Biol. Res. 38 (2005) 1873–1878. [190] N. Uchiyama, K. Matsunaga, F. Kiuchi, G. Honda, A. Tsubouchi, J. Akajima-Shimada, J. Aoki, Chem. Pharm. Bull. 50 (2002) 1514–1516. [191] N. Uchiyama, F. Kiuchi, M. Ito, G. Honda, Y. Takeda, O.K. Khodzhimatov, O.A. Ashurmetov, J. Nat. Prod. 66 (2003) 128–131.
336
Studies in Natural Products Chemistry
[192] N. Uchiyama, M. Ito, F. Kiuchi, G. Honda, Y. Takeda, O. Khodzhimatov, O. Ashurmetov, Tetrahedron Lett. 45 (2004) 531–533. [193] A.F. Valde´s, J.M. Martı´nez, R.S. Lizama, M. Vermeersch, P. Cos, L. Maes, Mem. Inst. Oswaldo Cruz 103 (2008) 615–618. [194] M. Verza, N.S. Arakawa, N.P. Lopes, M.J. Kato, M.T. Pupo, S. Said, I. Carvalho, J. Braz. Chem. Soc. 20 (2009) 195–200. [195] P.C. Vieira, J. Mafezoli, M.T. Pupo, J.B. Fernandes, M.F. da Silva, S. Albuquerque, G. Oliva, F. Pava˜o, Pure Appl. Chem. 73 (2001) 617–622. [196] N.C. Vieira, L.S. Espı´ndola, J.M. Santana, M.L. Veras, O.D.L. Pessoa, S.M. Pinheiro, R.M. de Arau´jo, M.A.S. Lima, E.R. Silveira, Bioorg. Med. Chem. 16 (2008) 1676–1682. [197] B. Weniger, S. Robledo, G.J. Arango, E. Deharo, R. Arago´n, V. Mun˜oz, J. Callapa, A. Lobstein, R. Anton, J. Ethnopharmacol. 78 (2001) 193–200. [198] B. Weniger, C. Vonthron-Se´ne´cheau, M. Kaiser, R. Brun, R. Anton, Phytomedicine 13 (2006) 176–180. [199] A. Yanes, H.J. Finol, M. Hasegawa, J. Submicrosc. Cytol. Pathol. 36 (2004) 149–154. [200] M.R. Martinez, M.L. Pochettino, A.R. Cortella, J. Ethnopharmacol. 95 (2004) 317–327. [201] A. Fournet, A. Rojas de Arias, M.A. Ferreira, H. Nakayama, S. Torres de Ortiz, A. Schinini, M. Samudio, N.F. de Bilbao, M. Lavault, F. Bonte´, Int. J. Antimicrob. Agents 13 (2000) 189–195. [202] L. Pieters, A. Vlietinck, J. Ethnopharmacol. 100 (2005) 57–60. [203] M.S. Butler, J. Nat. Prod. 67 (2004) 2141–2153. [204] J. Gertsch, J. Ethnopharmacol. 122 (2009) 177–183. [205] N. Uchiyama, J. Health Sci. 55 (2009) 31–39. [206] V.G. Duschak, A.S. Couto, Recent Pat. Antiinfect. Drug Discov. 2 (2007) 19–51. [207] J. Cheleski, J.R. Rocha, M.P. Pinheiro, H.J. Wiggers, A.B.F. Da Silva, M.C. Nonato, C.A. Montanari, Eur. J. Med. Chem. 45 (2010) 5899–5909. [208] K. Augustyns, K. Amssoms, A. Yamani, P.K. Rajan, A. Haemers, Curr. Pharm. Des. 7 (2001) 1117–1141. [209] I. Peterson, E. Anderson, Science 310 (2005) 451–453. [210] R. Pink, A. Hudson, M. Mouries, M. Bendig, Nat. Rev. 4 (2005) 727–740. [211] G. Bringmann, C. Rummey, S. Neumann, R. Brun, A. Stich, V. Hoerr, W.E.G. Mueller, WO04067514A1, 2004. [212] A. Buske, A.S. Kekule, A. Haring, G. Adam, WO03000272A1, 2003. [213] M.E. Ferreira, A. Fournet, A. Rojas de Arias, R. Hocquemiller, E. Poupon, WO04050092A1, WO04050092B1, 2004 and US 2007/0149461A1, 2007. [214] G. Bringmann, R.M. Pfeifer, R. Brun, W.E.G. Mueller, WO04065349, 2004. [215] M.L.A. Silva, S. Albuquerque, G.H.B. Souza, J.K. Bastos, R. Silva, WO03080600A1, 2003.