CHNAES-00685; No of Pages 16 Acta Ecologica Sinica xxx (2020) xxx
Contents lists available at ScienceDirect
Acta Ecologica Sinica journal homepage: www.elsevier.com/locate/chnaes
Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir Asha Sohil, Neeraj Sharma ⁎ Institute of Mountain Environment, University of Jammu, India
a r t i c l e
i n f o
Article history: Received 18 February 2019 Received in revised form 10 January 2020 Accepted 6 February 2020 Available online xxxx Keywords: Mosaic landscapes Terrestrial Protected areas Guild structure Similarity Diversity
a b s t r a c t The composition and persistence of avian population depends not only on the size and structure of habitat patch but also on surrounding landscapes which contribute to many environmental functions in an urban environment. To assess the bird assemblages around an urban conglomeration, we surveyed the urban landscape of Jammu stratified into six habitat types from January 2017 to December 2017. These comprised two aquatic (Nikki Tawi & Gharana Wetland Conservation Reserve), three terrestrial (Ramnagar Wildlife Sanctuary, BahuMahamaya Forest & Jammu University Campus) and a mixed ecosystem, the Southern Open plains. Two hundred and eight species of birds in 63 families and 16 orders were recorded during the investigations. We observed that the protected ecosystems and semi disturbed landscapes harbored rich avian diversity among other sites. A distinct species overlap was noticed in all the study sites while the protected areas shared maximum similarity. The study indicated a defined set of bird assemblages for different habitats across the study area. More datasets are however required to understand the patterns and drivers of bird biodiversity in relation to the fast-expanding urbanization. © 2020 Ecological Society of China. Published by Elsevier B.V. All rights reserved.
1. Introduction The heterogeneity of natural environments is one of the most critical factors that contribute to biodiversity [1] and the mosaic of habitats like crop fields, woodlands, wetlands, farms, grasslands, green spaces ensure the presence of habitat-restricted taxa and increased community diversity [2–4]. The birds are always associated with particular habitats [5,6], and their composition and structure are affected by changes in vegetation structure [7–10], population trends, behaviour patterns and reproductive ability [11]. The birds, among others, are the most common wildlife found in urban areas and are the best indicators of a healthy ecosystem [12–13]. Urban biodiversity is well improved by urban green areas like residential parks, greenways, avenues, educational institutions and defence premises [14]. These green spaces as well as the protected areas, such as wildlife sanctuaries, national parks and biodiversity reserves in urban areas attract many birds especially the forest specialists and maintain rich avifaunal diversity [15]. Other artificial habitats such as agricultural landscapes, open landfill sites, sewage stabilization ponds, wastewater treatment plants, rubbish dumps benefit birds as key feeding habitats [16–22] around the urban agglomerations. The sub-urban wetlands and polluted river sections also provide unique habitats and ⁎ Corresponding author at: Faculty of Life Sciences, Institute of Mountain Environment, Bhaderwah Campus, University of Jammu, 180012, India. E-mail address:
[email protected] (N. Sharma).
extensive food chains to resident and migratory waterfowl [23,24,26,27] and play an essential role in shaping bird species richness [25]. Out of 310 Indian wetland birds, 107 species are winter migrants [28]. Urbanization is one of the most important causes of biodiversity loss [29] as it influences the environmental transformation, thereby reducing natural habitats [30,31]. The spread of agricultural landscapes and farm intensification is another associated player. The rapidly expanding urban landscapes [32–34], intensification of farming practices [35–37] and shrinking urban water bodies [38–41] are linked to declining avian biodiversity [1,42–51], a primary concern in conservation ecology [52]. In new urban conditions, the existing or remaining ‘green’ areas are often altered, through the plantation of non-native plant species, managed lawns, and removal of the mid-story canopy [42,53]. The absence of natural environment thus leads to species homogenization with low species richness [53–60] and high similarity [61–63]. Although, the total number of bird species decline once an area is urbanized, many other birds seem to flourish [64]. Among over 10,000 recognized bird species in the world, around 2000 (nearly 20%) occur in cities [55]. The urban areas act as ecological traps as they attract many birds with higher abundance of resources [64-67] and affect their distribution and diversity [68]. The highly urbanized places are preferred by urban exploiters, while urban adapters dominate intermediate level urbanizations. The well-conserved rural areas or protected urban fringes harbor the forest specialists (urban avoiders) [69,70]. As the land-use type strongly influence the structure of the bird
https://doi.org/10.1016/j.chnaes.2020.02.005 1872-2032/© 2020 Ecological Society of China. Published by Elsevier B.V. All rights reserved.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
2
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
community, it is essential to understand the effects of agricultural land use to retain their diversity as well [71]. In this context, the assessment of bird community assemblages [72] and their distribution pattern is pre-requisite for understanding the population dynamics and their conservation significance [73,74]. While there have been quite a lot of studies on the urban bird dynamics in different parts of the world, the knowledge on bird assemblages in fast urbanizing Indian cities is scanty. The impacts of land conversion into urban use on the avian communities are quite evident now. In last 30 years, the extent of urban land around Jammu city has increased to 21.5%, while the scrub forest reduced to 5% against 10% [75]. The newly carved Union Territory of Jammu and Kashmir located in the Western and Trans-Himalayan biogeographical region of India [76] divided into two regions [77] is well surveyed for the birds so far [78–92]. An increasing number of bird-watching hobbyists and researchers over the last one decade have recorded a total of 386 bird species from Jammu region [93] with few listed as globally threatened [92] and new for the area [86]. Jammu, a fast-expanding urban agglomeration has a great conservation value owed to the diverse habitats and ecosystem uniqueness. Strategically located on a hill, along the right bank of river Tawi, the old city is bounded in the north by a thick patch of forest (including Ramnagar Wildlife Sanctuary). The southern fringe merges into vast agricultural landscapes, the rich bowl of basmati rice and vegetables. Eastwards, across the river is the new urban sprawl bordered by patches of old, mixed and planted forests. Inspite of a number of avian explorations, the information on species diversity, distribution and assemblages at micro-landscape levels in a given climatic regime is still missing from the region. The present study focuses on understanding the bird species distribution, richness, diversity and assemblages, and, the comparison thereof in the mosaic landscapes of Jammu comprising of forestfarmland-wetland interfaces.
comprised of agriculture, fallow and irrigated land. The information on the spatial attributes and habitat characteristics of the sampling sites is provided in Table 1, Fig. 1. 2.2. Field surveys and sampling During the systematic field surveys from January 2017 to December 2017, we recorded the bird observations from 7 am to 11 am and between 5 pm to sunset twice a month. The sampling time varied from 15 to 30 min per transect based on the transect length, weather and terrain of the sampling location. Following the line transect method [94], linear transects were walked for a variable linear distance of 100 m to 200 m with a horizontal shoulder of 25 m on either side. All the transects were at least 150 m apart to avoid double counting of birds. We applied visual census method [95] to record water birds with vantage points fixed for the visual observations. We counted the larger flocks by block method [96]. The study area was divided into several blocks and birds (mostly wintering waterfowls) in each block were counted in tens, twenties, fifties and hundreds. Twenty transects were walked at least twice a month (Table 1). However, for the sake of convenience, we considered the average mean per month. The sight observations included the species encountered, their number, behaviour and the type of habitat they occupied. 2.3. Bird identification, nomenclature and taxonomy
2. Material and methods
We identified most of the birds in the field by consulting field guides [97,98] and online bird identification platforms like J&K Birdlife, Indian Birds, Ask id's of Indian Birds and online web pages like Oriental Bird Images. We also used call and song notes in identifying and locating the birds in their respective habitats [99]. Only those species which were personally seen and/or photographed/heard within transect including birds flying high over the sites were recorded. To avoid any ambiguity, we referred the binomial nomenclature and taxonomy [100,101].
2.1. Study area
2.4. Species diversity and richness
Six sites with varied physiography and environmental attributes were selected in the urban-suburban-farmland landscapes around Jammu city (Table 1, Fig. 1). These included two aquatic (a sub-urban eutrophic wetland & urban polluted river section), three terrestrial (a protected area, reserve forest & an urban forest) and a mixed ecosystem
The ecological parameters such as richness, evenness, abundance are an important component of species diversity. We took the bird species richness as the total number of species observed. We used different indices to calculate species diversity (Shannon-Weiner's index [102], Simpson's index [103]), species richness (Margalef's index [104],
Table 1 The micro-landscapes (study sites) with details on elevation, geo-cordinates and geo-features. S Sampling site / no acronym
Lat / long & area
Sample size (Grid)
Elevation (asl)
Remarks
Transects number / length
hours spent / fort-night
1
Nikki Tawi (NT)
32°43′14″N 74°50′17″E
4 km2
290–300 m
Three (100 m*1 & 200 m*2)
6.5
2
Gharana Wetland Conservation Reserve (GWCR) Jammu University Campus (JU)
32°34′29″N 74°40′06″E
2 km2
262 m
Three (100 m*3)
7.0
32°43′08″N 74°51′58″E
2 km2
320 m
Five (100 m*5)
7.5
4
Ramnagar Wildlife Sanctuary (RWLS)
32°45′08″N 74°52′15″E
5 km2
360–450 m
Three (100 m*2 & 200 m*1)
8.0
5
Bahu-Mahamaya Forest (BMF)
32°43′43″N 74°53′29″E
4 km2
350–470 m
Three (100 m*1 & 200 m*2)
7.0
6
Southern Open plains (SOP)
32°45′32″N 74°48′26″E
4 km2
260–270 m
Nikki (small) Tawi is a natural right-hand side offshoot of perennial river Tawi which bifurcates just close to fourth Tawi bridge southwards of Jammu City. A small eutrophic wetland, the designated Important Bird Area (IBA) spread in 185 acres located very close to the international Indo-Pak border is home to several trans-boundary winter visitors. The green campus of the University of Jammu sprawled in 118 acres holds a range of avenue plantations, hedges and palms with well maintained botanical and cactus gardens providing a rich array of habitats conducive to avian richness. Adjacent to Jammu city, the Ramnagar Wildlife Sanctuary is a well managed protected area covering an area of 31 km2. It provides a rich habitat to several forest specialists. A typical subtropical mixed patch of deciduous forest (and exotic plantations), the erstwhile grazing fields of Maharaja (the Prince), now designated as Bahu-Mahamaya Conservation Reserve located along the left bank of river Tawi is also a favoured bird's destination. The area included the vast landmass comprising a vast array of agricultural landscapes dotted with habitations, small fallows, marshes and ponds close to Ranbir Singh Pura and village Gharana.
Three (200 m*3)
8.0
3
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
3
Fig. 1. Map of the study area showing different study sites.
Menhinick's index [105]) and evenness [106,107]. The bird abundance, richness and diversity were performed in PAST ver. 3.06 software package [108]. We classified the species in different threat categories following IUCN Red List of threatened species [109]. The relative abundance
was calculated by using the following formula: Relative Abundance ¼
Number of Individuals of one species 100 Total number of Individuals of all species
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
4
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
Table 2 Bird species, familial richness and order profile of study area. Study sites
NT
GWCR
JU
RWLS
BMF
SOP
Whole study area
Species Families Order
65 23 8
106 38 13
98 43 12
113 46 12
107 46 13
109 37 13
208 63 16
The rarefaction curves obtained at 95% confidence interval represent the summary counts of birds recorded from six different habitats (Fig. 3). The lines illustrate the comparison of species richness viz-aviz bird abundance observed maximum for the aquatic ecosystems i.e. NT and GWCR usually flocked with a large number of winter migrants. 3.1. Species abundance
2.5. Birds assemblages and similarity We used Sorrensen's similarity coefficient [110] to compare the avian species similarity in terms of richness and diversity among different landscapes using the formula, S = 2C/A + B, Where, C = common species between the habitats; A = total number of species in habitat A, and B = total number of species in habitat B.
3. Results During the field surveys, we recorded a total of 208 species of birds contained in 63 families and 16 orders from six study sites over a period of one year (Table 2). The checklist of birds, their feeding guilds, migratory status and threat category is placed as Appendix A. The surveys indicated higher species richness in terrestrial ecosystems (NRWLS = 113; NSOP = 109, NBMF = 107; NJU = 98) followed by the aquatic (NGWCR = 106; NNT = 65). The mean number of birds encountered across each sampling site per sampling effort was recorded maximum in Southern Open plains (45.41± 3.84) followed by JU (40.08± 2.98), GWCR (39.33± 6.2), BMF (37.16± 3.19), RWLS (31.16 ± 3.7) and NT (27.66 ± 1.81) (Fig. 2).
Majority of birds were observed in the aquatic ecosystems, especially during winter months. The mean bird abundance varied significantly and ranged between 22.18 ± 7.87 (NT) and 22.88 ± 10.99 (GWCR) in aquatic ecosystems to moderately low in terrestrial habitats (SOP = 9.18± 1.62; JU = 7.88 ± 1.66; BMF = 7.70 ± 1.48; RWLS = 6.67 ± 1.55) (Fig. 4). Anser indicus (RA = 0.142) showed the highest abundance followed by Petrochelidon fluvicola (RA = 0.089), Corvus splendens (RA = 0.055) and Turdoides striata (RA = 0.035), etc. Gharana Wetland Conservation Reserve showed the maximum species dominance (0.234) followed by Nikki Tawi (0.130) while Southern Open plains revealed minimum dominance (0.035). The mean monthly species richness among study sites was accounted high for Gharana Wetland Conservation Reserve (Fig. 5a). When compared season-wise, the species richness was observed low during monsoon and high in summer (Fig. 5b). 3.2. Bird assemblages and similarity A distinct species overlap of 15 species (mostly passerines) was noticed in all the study sites which included Dicrurus macrocercus, Milvus migrans, Acridotheres tristis, Streptopelia decaocto, Merops orientalis, Pycnonotus leucogenis, Corvus splendens, Passer domesticus, Oenanthe
Fig. 2. Mean number of species counted at each sampling site.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
5
Fig. 3. Bird species rarefaction curve for the study area.
fusca, Saxicola caprata, Pycnonotus cafer, Columba livia, Psittacula krameri, Streptopelia chinensis and Halcyon smyrnensis. Terrestrial ecosystems, Ramnagar Wildlife Sanctuary, Bahu-Mahamaya forest and Jammu University Campus harbored a variety of terrestrial birds mainly Cyanoderma pyrrhops, Turdoides striata, Argya earlei, Pellorneum ruficeps, Chrysomma sinense, Erythrogenys erythrogenys, Dinopium benghalense, Gracupica contra, Aethopyga siparaja, Cinnyris asiaticus, Cuculus canorus, Hierococcyx varius, Clamator jacobinus, Tephrodornis pondicerianus, Geokichla citrine, Trochalopteron lineatum, Myophonus caeruleus, Monticola rufiventris, Turdus atrogularis, Terpsiphone paradisi, Cyornis rubeculoides, Culicicapa ceylonensis, Eumyias thalassinus, Iduna caligata and community of Abrornis sp., Seicercus sp., Psittacula sp., Psilopogon
sp., Dendrocopos sp., Sturnia sp., Streptopelia sp., Dicrurus sp., Pericrocotus sp., Prinia sp., Dendrocitta sp., Emberiza sp., Lanius sp., Merops sp., Ficedula sp., etc., and shared the maximum species i.e. 64 birds among them (Table 3, Fig. 6). The aquatic ecosystems (Gharana Wetland Conservation Reserve and Nikki Tawi) contained 49 species in common (Table 3, Fig. 6). A large number of aquatic birds like Dendrocygna javanica, Tadorna ferruginea, Ardeola grayii, Nycticorax nycticorax, Phalacrocorax carbo, Microcarbo niger, Mycteria leucocephala, Bubulcus ibis, Egretta garzetta, Actitis hypoleucos, Alcedo atthis, Megaceryle lugubris, Ceryle rudis, Halcyon smyrnensis, Charadrius dubius and a community of Calidris sp., Tringa sp., Anser sp., Ardea sp., Ciconia sp., Tringa sp., Sterna sp., Motacilla sp., and raptors like Neophron percnopterus, Aquila nipalensis,
Fig. 4. Mean bird abundance at different study sites.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
6
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
67.5
-
Species Richness
60.0 -
52.5 -
45.0
-
37.5
-
30.0
-
22.5
-
15.0
-
o
o
0
NT
GWCR
JU
RWLS
BMF
SOP
(a) 75 70 -
Species Richness
6560 55 50 45 40 35 30 25 20 15 10 -
Summer
Monsoon
Post Monsoon
Winter
(b) Fig. 5. Box-plot showing comparison of a habitat wise. b season-wise species richness of birds in the study area.
Circus sp., Milvus sp., were the common sightings besides the rarities like Vanellus vanellus, Dendrocygna javanica, Anser anser, Anser albifrons, Hydrophasianus chirurgus, etc. Southern Open plains comprised a mix of water dependent, marshy, and terrestrial species including large
number of raptors. The birds mainly included Ciconia nigra, Mycteria leucocephala, Ciconia episcopus, Grus grus, Elanus caeruleus, Circus cyaneus, Clanga hastata, Buteo rufinus, Circus aeruginosus, Coracias benghalensis, Lanius sp., Milvus sp., Ploceus sp., Saxicola sp. and more.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx Table 3 Relative proportion of common birds among different habitats. Habitat type
Study sites
Aquatic
Gharana Wetland Conservation Reserve and Nikki Tawi Terrestrial Ramnagar Wildlife Sanctuary, Bahu-Mahamaya Forest and Jammu University Campus Mosaic Gharana Wetland Conservation Reserve, landscape Nikki Tawi, Ramnagar Wildlife Sanctuary, Bahu-Mahamaya Forest, Jammu University Campus and Southern Open plains
7
Table 4 Sorensen's similarity index among study sites. Common birds
Relative proportion
49
23.55%
64
30.76%
15
7.21%
The higher extent of similarity has been noticed between the terrestrial ecosystems i.e. BMF-RWLS (Sorensen's Similarity Index = 0.8) and RWLS-JU (SI =0.71). The aquatic ecosystems NT and GWCR showed the SI value of 0.57 while the comparison among the aquatic and Southern Open plains exhibited moderately high SI = 0.52 and SI = 0.65 among NT-SOP and GH-SOP, respectively. The terrestrial and aquatic habitats when correlated depicted the least Sorensen's similarity index (BMFGWCR, SI = 0.27; BMF-NT, S = 30 and RWLS-NT, S = 0.31) (Table 4). Correspondence analysis ordination showed the differences in bird communities between the habitats enclosed in the polygon (Fig. 7). Abbreviations of scientific names represent the bird species. From the plot, it is evident that RWLS and BMF (left-hand side) were strongly related and shared a good number of terrestrial birds, specifically the forest birds. The axis is also shared by other habitats like Southern Open plains and Jammu University Campus including mostly the terrestrial and some water-dependent birds. The opposite axis (on the right-hand side) is occupied by aquatic habitats i.e. NT and GWCR,.comprised of exclusively aquatic and a good number of water-dependent birds.
Sorensen's similarity index
GWCR
JU
RWLS
BMF
SOP
NT GWCR JU RWLS BMF
0.57 – – – –
0.47 0.43 – – –
0.31 0.32 0.71 – –
0.30 0.27 0.65 0.8 –
0.52 0.65 0.53 0.52 0.51
the lowest values for species richness. The species diversity varied among the sites with the maximum value of Shannon-Weiner's index recorded for Southern Open plains (H′ = 3.86) followed by BahuMahamaya Forest (H′ = 3.82) and least for Gharana Wetland Conservation Reserve (H′ = 2.73). The highest value of Simpson's index (D= 0.96) was again recorded for Southern Open plains followed by Bahu Mahamaya Forest (D = 0.95) while Gharana Wetland Conservation Reserve revealed the least values (D = 0.76). The Berger-Parker's index showed the highest values for aquatic ecosystems i.e., Gharana Wetland Conservation Reserve (0.47) and Nikki Tawi (0.30) and least for Southern Open plains (0.10) The abundance-based estimator of species richness Chao-1 indicated the maximum values for Ramnagar Wildlife Sanctuary (SChao = 129.7) and least for Nikki Tawi (SChao = 76). The value for Pielou's evenness index was recorded highest for Southern Open plains (J = 0.82) and least for Gharana Wetland Conservation Reserve (J = 0.58) (Table 5). When compared for the mean diversity values obtained for Shannon Weiner's index, the Southern Open plains exhibited maximum diversity (3.33± 0.08) followed by Jammu University Campus (3.23 ± 0.07), Bahu-Mahamaya Forest (3.09 ± 0.09), Ramnagar Wildlife Sanctuary (2.89 ± 0.13) Gharana Wetland Conservation Reserve (2.83± 0.17) and Nikki Tawi (2.31 ± 0.12). 3.4. Bray-Curtis cluster analysis (single link)
3.3. Species richness and diversity The bird diversity described by the Whittaker curves revealed the highest diversity rank of GWCR followed by NT and RWLS whereas BMF and SOP ranked low in bird diversity (Fig. 8). RWLS, BMF and SOP with more slanting curves show high species richness and evenness. A steep curve is the indicator of low species richness and evenness for Nikki Tawi. We recorded the highest species richness (n = 113) in Ramnagar Wildlife Sanctuary, a peri-urban protected area comprising the subtropical broadleaved forests and dry scrub interspersed with patches of subtropical pine forests with maximum values recorded for Menhinick's (3.03) and Margalef's indices (15.48). Nikki Tawi (n = 65) exhibited
In terms of species composition, the Bray-Curtis cluster analysis indicates that aquatic ecosystems (NT & GWCR) were most similar. At a little distance were the protected areas (RWLS & BMF) and further apart, the JU and SOP (Fig. 9a). In terms of species diversity, the aquatic habitats, NT and GWCR were altogether different from the remaining landscapes. In contrast, the terrestrial habitats RWLS-BMF and JU-SOP were more similar (Fig. 9b). The aquatic and terrestrial ecosystems exhibited a positive correlation among the particular habitat types in terms of species richness. We observed significantly positive correlation for GWCR-NT and GWCR-SOP; while GWCR-BMF, GWCR-RWLS, GWCR-JU, NT-RWLS and NT-BMF were negatively correlated (Table 6). When compared with terrestrial ecosystems, the Nikki Tawi and Gharana Wetland Conservation Reserve exhibited a strong negative correlation with Jammu University Campus, Ramnagar Wildlife Sanctuary and Bahu-Mahamaya Forests. On the contrary, the Gharana Wetland Conservation Reserve correlated positively with Bahu-Mahamaya Forests in terms of species diversity (Table 6). 4. Discussion
Fig. 6. Venn diagram showing the extent of common bird species among different habitats.
Our study on mosaic landscapes around Jammu city has revealed that terrestrial ecosystems exhibit high bird species richness and diversity while the aquatic habitats exhibit high abundance as reflected by individual rarefaction analysis. The mosaic landscapes within and along the urban fringes, mainly the protected forests recorded more bird species richness and diversity as they offer conducive habitats for many residents and migratory species of high conservation concern. It may be attributed to good vegetation cover, nesting, roosting, food availability and less human interventions [8–10, 64–67, 111–114]. During the surveys, 89 species have been identified as migratory (summer, winter
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
8
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
Fig. 7. Correspondence analysis ordination between different habitats. Where; AI = Anser indicus; PF=Petrochelidon fluvicola; CS=Corvus splendens; TS = Turdoides striata; HH=Himantopus himantopus; PL = Pycnonotus leucogenis; PC=Pycnonotus cafer; VI= Vanellus indicus; AT = Acridotheres tristis; ML = Milvus [migrans] lineatus; CL = Columba livia; PD = Passer domesticus; AGi = Acridotheres ginginianus; EG = Egretta garzetta; MA = Motacilla alba; TT = Tringa tetanus; AC = Anas crecca; AG = Ardeola grayii; CF=Corvus frugilegus; BI=Bubulcus ibis; TO = Tringa ochropus; CSa = Copsychus saularis; MN = Microcarbo niger; DM = Dicrurus macrocercus; CA = Cinnyris asiaticus; PP=Ploceus philippinus; SC=Streptopelia chinensis; SCl = Spatula clypeata; MM = Milvus migrans; ZP = Zosterops palpebrosus; CP=Calidris pugnax; PPo = Porphyrio porphyrio; PK = Psittacula krameri; FA = Fulica atra; MO = Merops orientalis; AH = Actitis hypoleucos; PB=Ploceus benghalensis; GX = Gymnoris xanthocollis; OF=Oenanthe fusca; RC = Riparia chinensis; TG = Tringa glareola; SD = Streptopelia decaocto; MC = Motacilla citreola; SS=Streptopelia senegalensis; MMa = Motacilla maderaspatensis; DV = Dendrocitta vagabunda; GC = Gracupica contra; PCi = Parus cinereus; PCr = Pavo cristatus; HS=Halcyon smyrnensis; PCn = Pericrocotus cinnamomeus; OB=Ocyceros birostris; MCi = Motacilla cinerea; CD = Charadrius dubius; LS = Lanius schach; MS = Mareca strepera; SCa = Saxicola caprata; SV=Sturnus vulgaris; EM = Euodice malabarica; CM = Calidris minuta; PZ = Psilopogon zeylanicus; GCh = Gallinula chloropus; OS=Orthotomus sutorius; SF=Saxicoloides fulicatus; LSv = Luscinia svecica; AP = Amaurornis phoenicurus; AA = Ardea alba; CSi = Centropus sinensis; RA = Rhipidura albicollis; CMa = Corvus macrorhynchos; EC = Elanus caeruleus; LP = Lonchura punctulata; MP = Merops philippinus; UE = Upupa epops; AAc = Anas acuta; PS=Prinia socialis; HR = Hirundo rustica; SP=Sturnia pagodarum; AI = Ardea intermedia; GH = Gyps himalayensis; DB = Dinopium benghalense; GG = Gallus gallus; ES = Eudynamys scolopaceus; SH=Sterna hirundo; PH=Psilopogon haemacephalus; AS = Aethopyga siparaja; AAn = Anser anser; AN = Aquila nipalensis; PA = Prunella atrogularis; GGa = Gallinago gallinago; PCy = Psittacula cyanocephala; MA = Mirafra assamica; TN = Tringa nebularia; GCr = Galerida cristata; EG = Eremopterix griseus; SFe = Saxicola ferreus; AC = Abrornis chloronotus; CJ = Cisticola juncidis; AB = Athene brama; CE = Carpodacus erythrinus; DC = Dendrocopos canicapillus; PO=Phoenicurus ochruros; MCa = Myophonus caeruleus; CB=Coracias benghalensis; CR = Ceryle rudis; SM = Saxicola maurus; ACi = Ardea cinerea; NP= Neophron percnopterus; SA = Sterna aurantia; EE = Erythrogenys erythrogenys; CSn = Chrysomma sinense; PAs = Psilopogon asiaticus; PCo = Phylloscopus collybita; DH = Dicrurus hottentottus; PAi = Perdicula asiatica; PE = Pericrocotus ethologus; CDa = Cecropis daurica; CAe = Circus aeruginosus; SX = Seicercus xanthoschistos; TE = Tringa erythropus; CH= Chelidorhynx hypoxanthus; CN=Ciconia nigra; DMa = Dendrocopos macei; DF = Dendrocitta formosae; PHo = Prinia hodgsonii; TP = Terpsiphone paradisi; PEu = Psittacula eupatria; CC=Cuculus canorus; SCu = Sylvia curruca; CP = Cyanoderma pyrrhops; OK=Oriolus kundoo; TR = Tachybaptus ruficollis; PR = Pellorneum ruficeps; PCg = Prinia crinigera; CEp = Ciconia episcopus; TPe = Tephrodornis pondicerianus; PV=Psilopogon virens; TL = Trochalopteron lineatum; PL = Phoenicurus leucocephalus; TM = Threskiornis melanocephalus; CJa = Clamator jacobinus; PI=Prinia inornata; APu = Ardea purpurea; MF = Motacilla flava; SW=Seicercus whistleri; VL = Vanellus leucurus; DL = Dicrurus leucophaeus; CHi = Certhia himalayana; GGr = Grus grus; AR = Anthus rufulus; ECi = Emberiza cia; PBu = Prinia buchanani; AE = Argya earlei; TA = Turdus atrogularis; DJ = Dendrocygna javanica; ML = Mycteria leucocephala; ESt = Emberiza stewarti; GCu = Glaucidium cuculoides; HV=Hierococcyx varius; AAt = Alcedo atthis; AAl = Anser albifrons; CCe = Culicicapa ceylonensis; BR = Buteo rufinus; ST = Streptopelia tranquebarica; TF = Tadorna ferruginea; HSm = Hirundo smithii; FF=Francolinus francolinus; NN=Nycticorax nycticorax; SM = Sturnia malabarica; AT = Aegithina tiphia; FT = Falco tinnunculus; JT = Jynx torquilla; SQ = Spatula querquedula; PCa = Phalacrocorax carbo; CHa = Clanga hastata; SO=Streptopelia orientalis; ABa = Accipiter badius; CT = Calidris temminckii; ET = Eumyias thalassinus; DA = Dendrocopos auriceps; RB = Rostratula benghalensis; AHu = Abrornis humei; GCi = Geokichla citrine; BT = Butastur teesa; LC = Lanius cristatus; APl = Abrornis pulcher; EL = Emberiza lathami; MLu = Megaceryle lugubris; TB = Turdus boulboul; CCy = Circus cyaneus; DHi = Dendrocopos himalayensis; PP=Pseudibis papillosa; HC=Hydrophasianus chirurgus; PFu = Phoenicurus fuliginosus; AR = Anthus roseatus; NS=Niltava sundara; FS=Ficedula strophiata; ACa = Anthus campestris; ATr = Anthus trivialis; CRu = Cyornis rubeculoides; IC=Iduna caligata; MR = Monticola rufiventris; STr = Seicercus trochiloides; SMa = Seicercus magnirostris; VV=Vanellus vanellus; ELe = Emberiza leucocephalus; FPa = Ficedula parva; TMu = Tichodroma muraria.
and passage) and rest were resident (n = 119). The terrestrial habitats (RWLS, BMF & JU) mainly attract the elevational summer migrants (n = 31) while the aquatic (GWCR, NT) / mixed habitats (SOP) offer potential wintering sites for winter migrants (n = 51). Food resources, climatic conditions, mating and nesting opportunities are the key drivers of bird altitudinal migrations [115]. The inter-altitudinal and intercontinental winter migrants move from the high elevated breeding zones to non-breeding areas /wintering grounds for food [116–118] while summer migrants move to higher elevations for breeding [119, 120]. The frequently encountered migrants included Anser indicus, Anser albifrons, Tadorna ferruginea, Dendrocygna javanica, Grus grus, Corvus frugilegus, Dicrurus hottentottus, Ficedula strophiata, Sylvia curruca, Turdus atrogularis, Ciconia episcopus, Mycteria leucocephala, Merops philippinus, Sturnia malabarica, etc. while rarities like Cyornis rubeculoides, Iduna caligata, Ficedula parva, Tichodroma muraria, Emberiza leucocephalus, Vanellus vanellus, Seicercus magnirostris,
Seicercus trochiloides and Monticola rufiventris were observed only once during the entire sampling (RA = 0.0001). According to Gaston [121], rare species occupy few sites and use more scarce resources while Rice et al. [122] found these species with restricted distributions as habitat specialists. The globally threatened species recorded from the study area included Gyps himalayensis, Vanellus vanellus, Mycteria leucocephala, Sterna aurantia, Psittacula eupatria, Threskiornis melanocephalus as Near Threatened; Neophron percnopterus and Aquila nipalensis (Endangered), and, Clanga hastata and Ciconia episcopus (Vulnerable). The high degree of similarity among the Southern Open plains and the protected forests, including Jammu University Campus supports that protected areas are not always wildlife-rich [41,123–125]. Trophic and habitat preferences of birds on spatial and temporal scales [126, 127] may be linked to the lower degree of similarity between aquatic and terrestrial ecosystems. The species diversity and evenness indices
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
9
Fig. 8. Rank abundance (Whittaker curves) of birds for all the study sites.
showed how the landscapes determine bird species richness. Species diversity as measured by Shannon-Weiner's index was high for the terrestrial habitats i.e. RWLS, BMF, JU and SOP indicating higher community diversity wherein large numbers of species were equally abundant. The abundance of birds across microlandscapes is relatively uniform because each landscape offers a range of suitable habitats for a range of bird species [41]. It may also be attributed to the continuous block of wooded areas and a minimal level of built-up areas [128]. The generalists and opportunistic species that eat insects, fruits and seeds prefer the urban forest remnants and secondary forests [129,130]. Moreover, the species turnover rates between urban and rural habitats are inversely related to the intensity of urbanization and distance to source habitats [42,131]. The habitat heterogeneity hypothesis proposes that species diversity in a landscape is positively correlated with habitat heterogeneity [132]. As expected, species dominance was high, and species richness low in semi-disturbed aquatic ecosystems. The riverside landscapes harbor the most specialized bird fauna, including species restricted to wetlands and water bodies [41]. The aquatic ecosystems, Nikki Tawi, a highly polluted offshoot of river Tawi and Gharana Wetland Conservation Reserve, a shrunk lentic water body reel under considerable pressure from eutrophication, pollution and litter disposal, sewage disposal,
Table 5 Diversity, richness and evenness attributes of birds in the study area. Diversity indices
NT
GWCR JU
RWLS BMF
SOP
Total
Species richness Individuals Dominance Simpson's index (D) Shannon Weiner's index (H′) Menhinick's index Margalef's index Pielou's Evenness index (J) Berger-Parker index Chao-1
65 4615 0.130 0.869 2.746
106 4760 0.234 0.765 2.735
98 1640 0.049 0.950 3.596
113 1389 0.058 0.941 3.596
107 1603 0.041 0.958 3.824
109 1911 0.035 0.964 3.865
208 15,918 0.041 0.958 4.047
0.956 7.586 0.657 0.307 76
1.536 12.4 0.586 0.475 109.1
2.42 13.1 0.784 0.111 123.3
3.032 15.48 0.760 0.162 129.7
2.672 14.36 0.818 0.107 108.6
2.493 14.29 0.823 0.100 113.5
1.649 21.39 0.758 0.142 210.3
agricultural runoff, land encroachment and human disturbances as reported for other urban water bodies [133–135]. A positive and strong correlation exists between species richness, evenness and diversity [136]. Low evenness has high single-species dominance, and maximum evenness indicates an equal abundance of all species [137,138]. The dominance index increases with the decrease in the equitability of the environment, and it goes well with our findings. Highest evenness in the Southern Open plains (J = 0.82) reveals that the species are evenly distributed. These vast landscapes during the winters offer reasonable foraging grounds in the form of harvested fields (retaining the previous crop refuse), freshly tilled agricultural fields (for worms and other invertebrates), tender wheat/mustard fields (for seeds and grains). These fields also provide an excellent habitat to the ground dwellers like rodents, snakes, frogs, lower invertebrates (even fishes during the paddy season) and thus attract many raptors the year around. Standing crops shelter resident and attracts many migratory birds [139]. We recorded the highest diversity (H = 3.86 and D = 0.96), and lowest dominance index (D = 0.03) for this site. We recorded the lowest diversity (H = 2.73) for Gharana Wetland Conservation Reserve because of unequal distribution of species population (lowest evenness, J = 0.58) and highest dominance (0.23) due to higher abundance of Anser indicus, a winter migrant flocking in thousands, each year. The Gharana Wetland Conservation Reserve support a variety of aquatic invertebrates, small fishes and aquatic plants that sustain a significant population of wetland birds such as Fulica atra, Gallinula chloropus, Amaurornis phoenicurus, Porphyrio porphyrio, Ardeola grayii, Nycticorax nycticorax, Ciconia nigra, Ciconia episcopus, Mycteria leucocephala and community of Anser sp., Anas sp., Ardea sp., Calidris sp., Tringa sp. and more. The primary threats like human encroachment, cattle grazing and bathing, military shelling and stray dogs have greatly affected the species richness of birds [140]. The richness and diversity of birds also depend upon wetland characteristics such as size, water level, habitat alterations and plant species [141]. Human encroachment, poor water quality and the receding water level lead to decreased species richness and diversity at Gharana Wetland Conservation Reserve. Our results regarding Sorensen's similarity index are in agreement with Tubelis & Cavalcanti [142] who speculated that the habitats with higher structural similarity support more similar bird communities. As the habitat generalists (in the present case), these species use equally
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
10
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
Fig. 9. a) Species richness b) diversity viz-a-viz mosaic landscapes clusters.
Table 6 Pearson's correlation in terms of species richness and diversity. Correlation
NT GWCR JU RWLS BMF
GWCR
JU
RWLS
BMF
SOP
SR
H′
SR
H′
SR
H′
SR
H′
SR
H′
0.674⁎ – – – –
0.158 – – – –
0.042 −0.048 – – –
−0.247 −0.055 – – –
−0.460 −0.560 0.511 – –
−0.510 −0.045 0.605⁎ – –
−0.508 −0.681⁎
−0.240 0.099 0.350 0.678⁎ –
0.419 0.754⁎⁎ 0.524 −0.014 −0.231
0.028 0.662⁎ 0.566 0.344 0.010
0.406 0.690⁎ –
RWLS = Ramnagar Wildlife Sanctuary; SOP = Southern Open plains; BMF=Bahu-Mahamaya Forest; GWCR = Gharana Wetland Conservation Reserve; JU = Jammu University Campus; SR = species richness; H′ = Shannon-Weiner's diversity Index. ⁎ Significant at 0.05 level. ⁎⁎ At 0.01 level.
abundant resources distributed widely [121,122]. Moreover, the urban habitats attract a certain kind of individuals that are more explorative and bold [143–146]. Such urban exploiters and invasive species take advantage of a great variety of anthropogenic resources [65–67,147,148]. Our results are consistent with the generalization that urban areas tend to favour resident species [49]. We agree with Terraube et al. [149] that increasing landscape-scale habitat complexity benefit the species living in varied landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favour bird functional guilds [149]. Mosaic landscapes in Jammu provides the most congenial refuge and stopover sites for migratory birds (summer as well as winter; regional as well as intercontinental) which contributes to high avian diversity in the Jammu region. With the moderately higher level of species richness and diversity among avifaunal communities in the mixed landscapes (sub-tropical ecosystems) of Jammu region, affective conservation planning needs (1) landscape-scale management of habitats (2) strengthening conservation policies, and (3) raising public awareness. We suggest for intensive explorations around Jammu (municipal limits) and associated townships for the better understanding of patterns and drivers of bird biodiversity viz-a-viz the fast-expanding urbanization.
5. Conclusions Our results provide evidence that the protected areas, as well as aquatic habitats around Jammu city, are important habitats for the birds with high conservation value. The provision of creating new and maintaining the existing biological corridors needs to be integrated into future urban /landscape planning. This will facilitate the dispersal of birds and their population connectivity within the habitats. Well managed greener spaces and water bodies around the urban / suburban limits support great avian diversity. This invites a crucial debate on conservation and development. Declaration of Competing Interest The authors declare no conflict of interest. Acknowledgements Authors gratefully acknowledge Department Wildlife Protection, Govt. of Jammu & Kashmir for providing necessary permits for field surveys in the protected areas. Rector Bhaderwah Campus is duly thanked for providing the financial support and logistics during the investigations.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
11
Appendix A A complete checklist of birds recorded at six study sites around Jammu urban along with the information on feeding guilds, migratory status and threat rate (IUCN). S. No.
Binomial name
Family
NT
GWCR
JU
RWLS
BMF
SOP
FG
MS
TS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
Abrornis chloronotus J.E. Gray and G.R. Gray Abrornis humei Brooks Abrornis pulcher Blyth Accipiter badius Gmelin Acridotheres ginginianus Latham Acridotheres tristis Linnaeus Actitis hypoleucos Linnaeus Aegithina tiphia Linnaeus Aethopyga siparaja Raffles Alcedo atthis Linnaeus Amaurornis phoenicurus Pennant Anas acuta Linnaeus Anas crecca Linnaeus Anser albifrons Scopoli Anser anser Linnaeus Anser indicus Latham Anthus campestris Linnaeus Anthus roseatus Blyth Anthus rufulus Vieillot Anthus trivialis Linnaeus Aquila nipalensis Hodgson Ardea alba Linnaeus Ardea cinerea Linnaeus Ardea intermedia Wagler Ardea purpurea Linnaeus Ardeola grayii Sykes Argya earlei Blyth Athene brama Temminck Bubulcus ibis Linnaeus Butastur teesa Franklin Buteo rufinus Cretzschmar Calidris minuta Leisler Calidris pugnax Linnaeus Calidris temminckii Leisler Carpodacus erythrinus Pallas Cecropis daurica Laxmann Centropus sinensis Stephens Certhia himalayana Vigors Ceryle rudis Linnaeus Charadrius dubius Scopoli Chelidorhynx hypoxanthus Blyth Chrysomma sinense Gmelin Ciconia episcopus Boddaert Ciconia nigra Linnaeus Cinnyris asiaticus Latham Circus aeruginosus Linnaeus Circus cyaneus Linnaeus Cisticola juncidis Rafinesque Clamator jacobinus Boddaert Clanga hastata Lesson Columba livia Gmelin Copsychus saularis Linnaeus Coracias benghalensis Linnaeus Corvus frugilegus Linnaeus Corvus macrorhynchos Wagler Corvus splendens Vieillot Cuculus canorus Linnaeus Culicicapa ceylonensis Swainson Cyanoderma pyrrhops Blyth Cyornis rubeculoides Vigors Dendrocitta vagabunda Latham Dendrocitta formosae Swinhoe Dendrocopos auriceps Vigors Dendrocopos canicapillus Blyth Dendrocopos himalayensis Jardine & Selby Dendrocopos macei Vieillot Dendrocygna javanica Horsfield Dicrurus hottentottus Linnaeus Dicrurus leucophaeus Vieillot Dicrurus macrocercus Vieillot
Phylloscopidae Phylloscopidae Phylloscopidae Accipitridae Sturnidae Sturnidae Scolopacidae Aegithinidae Nectariniidae Alcedinidae Rallidae Anatidae Anatidae Anatidae Anatidae Anatidae Motacillidae Motacillidae Motacillidae Motacillidae Accipitridae Ardeidae Ardeidae Ardeidae Ardeidae Ardeidae Leiothrichidae Strigidae Ardeidae Accipitridae Accipitridae Scolopacidae Scolopacidae Scolopacidae Fringillidae Hirundinidae Cuculidae Certhiidae Alcedinidae Charadriidae Stenostiridae Sylviidae Ciconiidae Ciconiidae Nectariniidae Accipitridae Accipitridae Cisticolidae Cuculidae Accipitridae Columbidae Muscicapidae Coraciidae Corvidae Corvidae Corvidae Cuculidae Stenostiridae Timaliidae Muscicapidae Corvidae Corvidae Picidae Picidae Picidae Picidae Anatidae Dicruridae Dicruridae Dicruridae
− − − − + + + − − + − − − − − − + − − − + − + + − + − − + − − + + + − − − − + + − − − − − − − − − − + − − − + + − − − − + − − − − − − − − +
− − − − + + + − − + + + + + + + − − + − + + + + + + + − + − + + + + − − + − + + − − + + − + + + − + + + + − − + − − − − + − − − − − + − − +
+ + + + + + + − + + + − − − − − − + − − + + − − − + − + + − − − − − + − + + + − + − − − + − − − + − + + − − + + + − − − + + − − − − − + + +
+ + + − − + − + + − − − − − − − − + + − − − − − − − − + − − + − − − + + + + − − + + − − + − − − + − + + + − − + − + + + + + + + + + − − + +
+ + − + − + − + + − − − − − − − − − − + + − − − − − − + + + + − − − + + + + − − + + − − + − − − + − + + + − + + + − + − + + + + + + − − − +
+ − − + + + + − − − + − − − − − − − + − + − − + − + + − + + + + − − − + + − + + − + + + + + + + + + + + + + + + − − − − + _ − + − + − − − +
I I I C O O I I N C O O O O O O I I I I C C C C C C I C C C C I I I O I O I C C I O C C N C C I O C G I C O O O C I O I O O I I I I O O I I
SV SV SV R R R R R R R R WV WV WV WV WV WV WV R PM R R WV R R R R R R R R PM WV WV PM SV R R R R WV R WV WV R WV WV R SV R R R R WV R R SV SV R SV R R R R R R SV WV SV R
LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC EN LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC VU LC LC LC LC LC LC VU LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC
(continued on next page)
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
12
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
(continued) S. No.
Binomial name
Family
NT
GWCR
JU
RWLS
BMF
SOP
FG
MS
TS
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
Dinopium benghalense Linnaeus Egretta garzetta Linnaeus Elanus caeruleus Desfontaines Emberiza cia Linnaeus Emberiza lathami Gray Emberiza leucocephalus Gmelin Emberiza stewarti Blyth Eremopterix griseus Scopoli Erythrogenys erythrogenys Vigors Eudynamys scolopaceus Linnaeus Eumyias thalassinus Swainson Euodice malabarica Linnaeus Falco tinnunculus Linnaeus Ficedula parva Bechstein Ficedula strophiata Hodgson Francolinus francolinus Linnaeus Fulica atra Linnaeus Galerida cristata Linnaeus Gallinago gallinago Linnaeus Gallinula chloropus Linnaeus Gallus gallus Linnaeus Geokichla citrine Latham Glaucidium cuculoides Vigors Gracupica contra Linnaeus Grus grus Linnaeus Gymnoris xanthocollis Burton Gyps himalayensis Hume Halcyon smyrnensis Linnaeus Hierococcyx varius Vahl Himantopus himantopus Linnaeus Hirundo smithii Leach Hirundo rustica Linnaeus Hydrophasianus chirurgus Scopoli Iduna caligata Lichtenstein Jynx torquilla Linnaeus Lanius cristatus Linnaeus Lanius schach Linnaeus Lonchura punctulata Linnaeus Luscinia svecica Linnaeus Mareca strepera Linnaeus Megaceryle lugubris Temminck Merops orientalis Latham Merops philippinus Linnaeus Microcarbo niger Vieillot Milvus [migrans] lineatus Gray Milvus migrans Boddaert Mirafra assamica Horsfield Monticola rufiventris Jardine & Selby Motacilla alba Linnaeus Motacilla cinerea Tunstall Motacilla citreola Pallas Motacilla flava Linnaeus Motacilla maderaspatensis Gmelin Mycteria leucocephala Pennant Myophonus caeruleus Scopoli Neophron percnopterus Linnaeus Niltava sundara Hodgson Nycticorax nycticorax Linnaeus Ocyceros birostris Scopoli Oenanthe fusca Blyth Oriolus kundoo Sykes Orthotomus sutorius Pennant Parus cinereus Vieillot Passer domesticus Linnaeus Pavo cristatus Linnaeus Pellorneum ruficeps Swainson Perdicula asiatica Latham Pericrocotus cinnamomeus Linnaeus Pericrocotus ethologus Bangs & Phillips Petrochelidon fluvicola Blyth Phalacrocorax carbo Linnaeus Phoenicurus fuliginosus Vigors Phoenicurus leucocephalus Vigors Phoenicurus ochruros Gmelin Phylloscopus collybita Vieillot Ploceus benghalensis Linnaeus
Picidae Ardeidae Accipitridae Emberizidae Emberizidae Emberizidae Emberizidae Alaudidae Timaliidae Cuculidae Muscicapidae Estrildidae Falconidae Muscicapidae Muscicapidae Phasianidae Rallidae Alaudidae Scolopacidae Rallidae Phasianidae Turdidae Strigidae Sturnidae Gruidae Passeridae Accipitridae Alcedinidae Cuculidae Recurvirostridae Hirundinidae Hirundinidae Jacanidae Acrocephalidae Picidae Laniidae Laniidae Estrildidae Muscicapidae Anatidae Alcedinidae Meropidae Meropidae Phalacrocoracidae Accipitridae Accipitridae Alaudidae Muscicapidae Motacillidae Motacillidae Motacillidae Motacillidae Motacillidae Ciconiidae Muscicapidae Accipitridae Muscicapidae Ardeidae Bucerotidae Muscicapidae Oriolidae Cisticolidae Paridae Passeridae Phasianidae Pellorneidae Phasianidae Campephagidae Campephagidae Hirundinidae Phalacrocoracidae Muscicapidae Muscicapidae Muscicapidae Phylloscopidae Ploceidae
− + − − − − − + − − − − − − − − − + + − − − − − − − − + − + − − − − − − − − + − + + − + + + − − + + + + + − − + − − + + − − − + − − − − − + + + + + + −
− + + − − − − − − + − − + − − − + − + + − − − + + − − + − + − + + − + + + − + + + + + + + + + − + + + + + + − − − + − + − − + + − − − − − − + − + − − +
+ + − − − − − − − + − + − + − − + − − − − − + + − − + + + − + − − + − − + + − − − + − + + + − − + + − − − − + + − − + + + + + + − − − + + − + − + + + −
+ − − + − − + − + + + + + − − − − − − − + + + + − + + + + − + + − − − − + + − − − + − − − + − + + − − + + − + − − − + + + + + + + + + + + − − − + + + −
+ − + + + + + − + − + + − − + + − − − − + + + + − + + + − − − − − − − − + + − − − + + − − + − − − − − − − − + + + − + + + + + + + + + + + − − − − − + −
− + + − − − − + − + − − + − − + − + + − − − − + + + + + + + + + − − + + + + + − − + + − + + + − − + + − + + + + − − − + − + − + + − + − − + − − + + − +
I C C O O O O O O O I G C I I O O O I O O I C O O G C C C C I I I I I I C G I O C I I C C C O I I I I I I C I C I C O I O I I G O I O I I I C I I O I I
R R R R SV WV SV R R SV WV R R PM WV R R R WV R R SV R R WV SV R R R WV SV SV SV WV WV WV R R WV WV R R SV R R R R WV WV SV SV PM R WV WV R WV R R R SV R R R R R R R WV R R R R WV WV R
LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC NT LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC NT LC EN LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
13
(continued) S. No.
Binomial name
Family
NT
GWCR
JU
RWLS
BMF
SOP
FG
MS
TS
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
Ploceus philippinus Linnaeus Porphyrio porphyrio Linnaeus Prinia buchanani Blyth Prinia crinigera Hodgson Prinia hodgsonii Blyth Prinia inornata Sykes Prinia socialis Sykes Prunella atrogularis Brandt Pseudibis papillosa Temminck Psilopogon asiaticus Latham Psilopogon haemacephalus Muller Psilopogon virens Boddaert Psilopogon zeylanicus Gmelin Psittacula cyanocephala Linnaeus Psittacula eupatria Linnaeus Psittacula krameri Scopoli Pycnonotus cafer Linnaeus Pycnonotus leucogenis Gray Rhipidura albicollis Vieillot Riparia chinensis Gray Rostratula benghalensis Linnaeus Saxicola caprata Linnaeus Saxicola ferreus Gray & Gray Saxicola maurus Pallas Saxicoloides fulicatus Linnaeus Seicercus magnirostris Blyth Seicercus trochiloides Sundevall Seicercus whistleri Ticehurst Seicercus xanthoschistos Gray & Gray Spatula clypeata Linnaeus Spatula querquedula Linnaeus Sterna aurantia Gray Sterna hirundo Linnaeus Streptopelia chinensis Scopoli Streptopelia decaocto Frivaldszky Streptopelia orientalis Latham Streptopelia senegalensis Linnaeus Streptopelia tranquebarica Hermann Sturnia malabarica Gmelin Sturnia pagodarum Gmelin Sturnus vulgaris Linnaeus Sylvia curruca Linnaeus Tachybaptus ruficollis Pallas Tadorna ferruginea Pallas Tephrodornis pondicerianus Gmelin Terpsiphone paradisi Linnaeus Threskiornis melanocephalus Latham Tichodroma muraria Linnaeus Tringa erythropus Pallas Tringa nebularia Gunnerus Tringa ochropus Linnaeus Tringa tetanus Linnaeus Tringa glareola Linnaeus Trochalopteron lineatum Vigors Turdoides striata Dumont Turdus atrogularis Jarocki Turdus boulboul Latham Upupa epops Linnaeus Vanellus indicus Boddaert Vanellus leucurus Lichtenstein Vanellus vanellus Linnaeus Zosterops palpebrosus Temminck
Ploceidae Rallidae Cisticolidae Cisticolidae Cisticolidae Cisticolidae Cisticolidae Prunellidae Threskiornithidae Megalaimidae Megalaimidae Megalaimidae Megalaimidae Psittaculidae Psittaculidae Psittaculidae Pycnonotidae Pycnonotidae Rhipiduridae Hirundinidae Rostratulidae Muscicapidae Muscicapidae Muscicapidae Muscicapidae Phylloscopidae Phylloscopidae Phylloscopidae Phylloscopidae Anatidae Anatidae Laridae Laridae Columbidae Columbidae Columbidae Columbidae Columbidae Sturnidae Sturnidae Sturnidae Sylviidae Podicipedidae Anatidae Vangidae Monarchidae Threskiornithidae Sittidae Scolopacidae Scolopacidae Scolopacidae Scolopacidae Scolopacidae Leiothrichidae Leiothrichidae Turdidae Turdidae Upupidae Charadriidae Charadriidae Charadriidae Zosteropidae
− − − − − − − − − − − − − − − + + + − + − + + − − − − − − − − + + + + − + − − − − − − − − − − − − + + + + − − − − + + − + −
+ + + − − − − − + − − − − + − + + + − − + + − + + − − − − + + + − + + − − − − − + − + + − − + − + + + + + − − − − − + + − +
− − − − − − + − − + + + + + + + + + + − − + + − + − − − + − − − − + + − + + + + + + − − − + − + − − − − − − + + − + + − − +
− − + + + + + + − + + + + + + + + + + − − + + − + + − + + − − − − + + + + + − + + + − − + + − − − − − − − + + + + + + − − +
− − − + + + + + − + + + + + − + + + + − − + + + + − + + + − − − − + + + + + − + − + − − + + − − − − − − − + + − − + + − − +
+ + + + + − + + − − − − − + + + + + − − − + + + + − − − + − − − − + + − + − − + + − − − − − − − − + + − + − + − − + + − − +
I O I I I I I I C F F O F F F F O O I I O I I O I I I I I O O C C G G G G G O O O I C O O I C I I I I I I I I I I I I C C O
R R R R R R R R WV R R R R R R R R R R R R R R SV R SV SV SV R WV WV R SV R R SV R SV SV R WV WV WV WV R SV WV WV PM WV WV PM WV R R WV R R R WV WV R
LC LC LC LC LC LC LC LC LC LC LC LC LC LC NT LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC NT LC LC LC LC LC LC LC LC LC LC LC LC LC LC NT LC LC LC LC LC LC LC LC LC LC LC LC LC NT LC
Sampling Sites: NT = Nikki Tawi; GWCR = Gharana Wetland Conservation Reserve; JU = Jammu University Campus; RWLS = Ramnagar Wildlife Sanctuary; BMF=Bahu-Mahamaya Forest; SOP = Southern Open plains; FG = Feeding Guild; I=Insectivorous; C = Carnivorous; O = Omnivorous; F = Frugivorous; G = Granivorous; N=Nectarivorous; MS = Migratory Status; R = Resident; WV=Winter Visitor; SV=Summer Visitor; PM = Passage Migrant; TS = Threat Status (IUCN = International Union for Conservation of nature); LC = Least Concern; NT = Near Threatened; VU=Vulnerable; EN = Endangered.
References [1] M.A. Manhaes, A. Loures-ribeiro, Spatial distribution and diversity of bird community in an urban area of Southeast Brazil, Braz. Arch. Biol. Technol. 48 (2005) 285–294. [2] A. Berg, Composition and diversity of bird communities in Swedish farmland– forest mosaic landscapes, Bird Study 49 (2002) 153–165. [3] A. Stein, H. Kreft, Terminology and quantification of environmental heterogeneity in species-richness research, Biol. Rev. 90 (2014) 815–836.
[4] A. Stein, K. Gerstner, H. Kreft, Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales, Ecol. Lett. 17 (2014) 866–880. [5] J.D. Brawn, S.K. Robinson, F.R. Tompson, The role of disturbance in the ecology and conservation of birds, Annu. Rev. Ecol. Syst. 32 (2001) 251–276. [6] C.L. Seymour, R.E. Simmons, Can severely fragmented patches of riparian vegetation still be important for arid-land bird diversity? J. Arid Environ. 72 (2008) 2275–2281. [7] S.M. Caziani, E. Derlindati, Abundance and habitat of High Andes Flamingos in northwestern Argentina, Waterbirds 23 (2000) 121–133.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
14
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
[8] A.P. Gabbe, S.K. Robinson, J.D. Brawn, Tree-species preferences of foraging insectivorous birds: implications for floodplain forest restoration, Conserv. Biol. 16 (2002) 462–470. [9] S.L. Earnst, A.L. Holmes, Bird-habitat relationships in interior Columbia Basin shrub steppe, Condor 114 (2012) 15–29. [10] C.A. Nsor, E. Acquah, G. Mensah, V. Kusi-Kyei, S. Boadi, Avian community structure as a function of season, habitat type, and disturbance, in Mole National Park, northern region (Ghana), Int. J. Ecol. (2018) 1–14. [11] M.N. Harisha, B.B. Hosetti, Diversity and Distribution of Avifauna of Lakkavalli Range Forest, Bhadra Wildlife Sanctuary, Western Ghats, India, Ecoprint, 16, 2009 21–27. [12] J. Mistry, A. Berardi, M. Simpson, Birds as indicators of wetland status and change in the North Rupununi, Guyana, Biodivers. Conserv. 17 (2008) 2383–2409. [13] H. Slabbekoorn, E.A.P. Ripmeester, Birdsong and anthropogenic noise: implications and applications for conservation, Mol. Ecol. 17 (2008) 72–83. [14] A. Patvarthan, S. Nalavade, Saharsabuddhe, G. Utkarsh, Urban Wildlife from Neros Fiddle to Noahs Arch-A Report, RANWA, Pune, 2000. [15] R. Defries, A. Hansen, B.L. Turner, R. Reid, J. LIU, Land use change around protected areas: management to balance human needs and ecological function, Ecol. Appl. 17 (2007) 1031–1038. [16] S.J. Ormerod, A.R. Watkinson, Birds and agriculture, J. Appl. Ecol. 37 (2000) 699–705. [17] J.R. Garrido, C.G. Sarasa, V. Pividal, The role of garbage dumps in the control and management of bird population, Proceedings of the XV Jomadas Ornithologicas Espanolas, SEO/Birdlife, Madrid, 2002. [18] J.R. Garrido, C.G. Sarasa, M. Fernandez-Cruz, Rubbish dumps as key habitats for migration and wintering in the griffon vulture (Gyps fulvus) in a migratory bottleneck. Implications on conservation, Proceedings of the World Conference on Birds of Prey and Owls, International birding and research center in Eilat, Eilat, Israel, 2002. [19] A. Nyari, C. Ryall, A.T. Peterson, Global invasive potential of the house crow (Corvus splendens) based on ecological niche modeling, J. Avian Ecol. 37 (2006) 306–311. [20] C. Ryall, G.G. Meier, House crow in the Middle East, Wildl. Middle East News 3 (2008) 7. [21] T. Anika, B.M. Parasharya, Importance of sewage treatment ponds for water-birds in semi-arid zone of Gujarat, India, Int. J. Res. Bio Sci. 2 (2013) 7–25. [22] GISD, Global Invasive Species Database of the IUCN/ISSG (Invasive Species Specialist Group of the World Conservation Union). Fact Sheet on Corvus Splendens, Accessed online at http://www.issg/database 2015. [23] J. Desgranges, J. Ingram, B. Drolet, J. Morin, C. Savage, D. Borcard, Modeling wetland bird response to water level changes in the Lake Ontarioe St. Lawrence River hydro system, Environ. Monit. Assess. 113 (2006) 329–365. [24] W.J. Mitsch, J.G. Gosselink, Wetlands, New York, United States of America, John Wiley and Sons, 2000. [25] P. Skorka, R. Martyka, J.D. Wojcik, Species richness of breeding birds at a landscape scale: which habitat type is the most important? Acta Ornithol. 41 (2006) 49–54. [26] V. Carignan, M.A. Villard, Selecting indicator species to monitor ecological integrity: a review, Environ. Assess. 78 (2002) 45–61. [27] S.M.P. Sullivan, M.C. Watzin, W.S. Keeton, A riverscape perspective on habitat associations among riverine bird assemblages in the Lake Champlain Basin, USA, Landsc. Ecol. 22 (2007) 1169–1186. [28] A. Kumar, J.P. Sati, P.C. Tak, J.R.B. Alfred, Handbook on Indian Wetland Birds and Their Conservation, Zoological Survey of India, 2005 472. [29] J.D. Carvajal-Castro, A.M. Ospina-L, Y. Toro-Lo'pez, G.A. Pulido, L.X. Cabrera-Casas, S. Guerrero-Pela'ez, V.H. Garcıa-Merchan, F. Argas-Salinas, Birds vs bricks: patterns of species diversity in response to urbanization in a Neotropical Andean city, PLoS ONE 14 (6) (2019) https://doi.org/10.1371/journal.pone.0218775e0218775. [30] M.L. McKinney, Urbanization, biodiversity and conservation, Bioscience 52 (2002) 883–890, https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2. [31] M. Ferenc, O. Sedláček, R. Fuchs, M. Dinetti, M. Fraissinet, D. Storch, Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe, Glob. Ecol. Biogeogr. 23 (2014) 479–489, https://doi.org/10.1371/journal.pone.0218775. [32] S.B. Lerman, P.S. Warren, The conservation value of residential yards: linking birds and people, Ecol. Appl. 21 (2011) 1327–1339. [33] Worldwide urbanization and its effects on birds, in: J.M. Marzluff, J.M. Marzluff, R. Bowman, R. Donelly (Eds.), Avian Ecology and Conservation in an Urbanizing World, Kluwer Academic Publishers, Boston, MA, USA 2001, pp. 19–47. [34] E. Shochat, P.S. Warren, S.H. Faeth, N.E. McIntyre, D. Hope, From patterns to emerging processes in urban evolutionary ecology, Trends Ecol. Evol. 21 (2006) 186–191. [35] T. Fartmann, M. Behrens, H. Loritz, Orthopteran communities in the conifer broadleaved woodland zone of the Russian Far East, Eur. J. Entomol. 105 (2008) 673–680. [36] S.A. Cunningham, S.J. Attwood, K.S. Bawa, To close the yield-gap while saving biodiversity will require multiple locally relevant strategies, Agric. Ecosyst. Environ. 173 (2013) 20–27. [37] D. Gabriel, S.M. Sait, W.E. Kunin, T.G. Benton, Food production vs. biodiversity: comparing organic and conventional agriculture, J. Appl. Ecol. 50 (2013) 355–364. [38] B.O. Wilen, Status and trend of inland wetlands and deepwater habitats in the conterminous United States, in: R.R. Sharitz, J.W. Gibbons (Eds.),Freshwater Wetlands and Wildlife 1989, pp. 719–727. [39] O. Parra, C. Jara, L. Guzmán, Las lagunas interurbanas de Concepción: Estado actual y perspectivas de recuperación y uso, CIPMA, Concepción, Chile, 1989. [40] P.J. Dugan, Wetland Conservation. A Review of Current Issues and Required Action, IUCN, Gland, Switzerland, 1990.
[41] T. Gatesire, D. Nsabimana, A. Nyiramana, J.L. Seburanga, M.O. Mirville, Bird diversity and distribution in relation to urban landscape types in northern Rwanda, Sci. World J. 14 (2014) 1–13. [42] G.W. Luck, L.T. Smallbone, Species diversity and urbanisation: patterns, drivers, and implications, in: K.J. Gaston (Ed.), Urban Ecology, Cambridge University Press, New York 2010, pp. 88–119. [43] H. Hillebrand, On the generality of the latitudinal diversity gradient, Am. Nat. 163 (2004) 92–211. [44] K. Safi, M.V. Cianciaruso, R.D. Loyola, D. Brito, K. Armour-Marshall, J.A.F. Diniz-Filho, Understanding global patterns of mammalian functional and phylogenetic diversity, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366 (2011) 2536–2544, https:// doi.org/10.1098/rstb.2011.0024 (PMID: 21807734). [45] P. Clergeau, J.P.L. Savard, G. Mennechez, G. Falardeau, Bird abundance and diversity along an urban-rural gradient: a comparative study between two cities on different continents, Condor 100 (1998) 413–425. [46] E. Cam, J.D. Nichols, J.R. Sauer, J.E. Hines, C.H. Flather, Relative species richness and community completeness: birds and urbanization in the mid-Atlantic states, Ecol. Appl. 10 (2000) 1196–1210. [47] S. Melles, S. Glenn, K. Martin, Urban bird diversity and landscape complexity: species-environment associations along a multi scale habitat gradient, Conserv. Ecol. 7 (2003). [48] H.C. Lim, N.S. Sodhi, Responses of avian guilds to urbanisation in a tropical city, Landsc. Urban Plan. 66 (2004) 199–215. [49] J.F. Chace, J.J. Walsh, Urban effects on native avifauna: a review, Landsc. Urban Plan. 74 (2006) 46–69. [50] D. Palomino, L.M. Carrascal, Urban influence on birds at a regional scale: a case study with the avifauna of northern Madrid province, Landsc. Urban Plan. 77 (2006) 276–290. [51] U.G. Sandstrom, P. Angelstam, G. Mikusinski, Ecological diversity of birds in relation to the structure of urban green space, Landsc. Urban Plan. 77 (2006) 39–53. [52] J.R. Miller, R.J. Hobbs, Habitat restoration—do we know what we're doing? Restor. Ecol. 15 (2007) 382–390. [53] M.F.J. Aronson, F.A. La Sorte, C.H. Nilon, M. Katti, M.A. Goddard, C.A. Lepczyk, P.S. Warren, N.S.G. Williams, S. Cilliers, B. Clarkson, C. Dobbs, R. Dolan, M. Hedblom, S. Klotz, J.L. Kooijmans, I. Kuhn, I. MacGregor-Fors, M. McDonnell, U. Mortberg, P. Pysek, S. Siebert, J. Sushinsky, P. Werner, M. Winter, A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers, Proc. R. Soc. Lond. B 281 (2014) https://doi.org/10.1098/rspb.2013.3330. [54] I. MacGregor-Fors, L. Morales-Pérez, J.E. Schondube, From forest to cities: Effects of urbanization on tropical birds, in: C.A. Lepczyk, P.S. Warren (Eds.), Urban Bird Ecology and Conservation, Studies in Avian Biology, University of California Press, Berkeley 2012, pp. 33–38. [55] M.L. McKinney, Urbanization as a major cause of biotic homogenization, Biol. Conserv. 127 (2006) 247–260. [56] K.L. Evans, S.E. Newson, K.J. Gaston, Habitat influences on urban avian assemblages, Ibis 151 (2009) 19–39. [57] S.T.A. Pickett, M.L. Cadenasso, J.M. Grove, C.G. Boone, P.M. Groffman, E. Irwin, S.S. Kaushal, V. Marshall, B.P. McGrath, C.H. Nilon, R.V. Pouyat, K. Szlavecz, A. Troy, P. Warren, Urban ecological systems: scientific foundations and a decade of progress, J. Environ. Manag. 93 (2011) 331–362. [58] A. Puga-Caballero, I. MacGregor-Fors, R. Ortega-Álvarez, Birds at the urban fringe: avian community shifts in different peri-urban ecotones of a megacity, Ecol. Res. 29 (2014) 619–628. [59] J. Beninde, M. Veith, A. Hochkirch, Biodiversity in cities needs space: a metaanalysis of factors determining intra-urban biodiversity variation, Ecol. Lett. 18 (2015) 581–592. [60] M. Dallimer, Z.G. Davies, D.F. Diaz-Porras, K.N. Irvine, L. Maltby, P.H. Warren, P.R. Armsworth, K.J. Gaston, Historical influences on the current provision of multiple ecosystem services, Glob. Environ. Chang. 31 (2015) 307–317. [61] R.B. Blair, Creating a homogeneous avifauna, in: J.M. Marzluff, R. Bowman, R. Donnelly (Eds.), Avian Ecology in an Urbanizing World, Kluwer Academic Publishers, Norwell. MA 2001, pp. 459–487. [62] R.B. Blair, Birds and butterflies along urban gradients in two ecoregions of the United States: Is urbanization creating a homogeneous fauna? in: J.L. Lockwood, M.L. McKinney (Eds.), Biotic Homogenization: The Loss of Diversity through Invasion and Extinction, Kluwer Academic Publishers, New York 2001, pp. 33–56. [63] P. Clergeau, S. Croci, J. Jokimaki, M.L. Kaisanlahti-Jokimaki, M. Dinetti, Avifauna homogenisation by urbanisation: analysis at different European latitudes, Biol. Conserv. 127 (2006) 336–344. [64] C. Isaksson, Impact of urbanization on birds, D.T. Tietze, Bird Species, Fascinating Life Sciences, 235–259, (10.1007/978-3-319-91689-7_13). [65] Y. Hu, G.C. Cardoso, Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behav. Ecol. 20 (2009) 1268–1273, https://doi.org/ 10.1093/beheco/arp131. [66] B. Robertson, G. Kriska, V. Horvath, G. Horvath, Glass buildings as bird feeders: urban birds exploit insects trapped by polarized light pollution, Acta Zool. Acad. Sci. H. 56 (2010) 283–293. [67] J.A. Tomasevic, J.M. Marzluff, Cavity nesting birds along an urban-wild land gradient: is human facilitation structuring the bird community? Urban Ecosyst. 20 (2017) 435–448, https://doi.org/10.1007/s11252-016-0605-6. [68] D. Western, J.J.R. Grimsdell, Measuring the distribution of animals in relation to the environment, Handbook No. 2, African Wildlife Leadership Foundation, Nairobi, 1979. [69] W.C. Zipperer, G.R. Guntenspergen, Vegetation composition and structure of forest patches along urban-rural gradients, in: M.J. McDonnell, A.K. Hahs, J.H. Breuste
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
[70]
[71] [72]
[73]
[74]
[75] [76]
[77] [78] [79] [80] [81] [82]
[83]
[84] [85]
[86] [87] [88] [89]
[90] [91]
[92]
[93] [94] [95]
[96]
[97] [98] [99] [100] [101] [102] [103] [104] [105]
(Eds.), Ecology of Cities and Towns: A Comparative Approach, Cambridge University Press, New York 2009, pp. 274–286. A.P. Blair, Birds and butterflies along urban gradients in two ecoregions of the U.S, in: J.L. Lockwood, M.L. McKinney (Eds.),Biotic Homogenization, Norweel Kluwer 2001, pp. 33–56. K. Norris, Agriculture and biodiversity conservation: opportunity knocks, Conserv. Lett. 1 (2008) 2–11. D. Bensizerara, H. Chenchouni, A.S. Bachir, M. Houhamdi, Ecological status interactions for assessing bird diversity in relation to a heterogeneous landscape structure, Avian Biol. Res. 6 (1) (2013) 67–77. J.E.C. Figueira, R. Cintra, L.R. Viana, C. Yamashita, Spatial and temporal patterns of bird species diversity in the Pantanal of Mato Grosso, Brazil: implications for conservation, Braz. J. Biol. 66 (2006) 393–404. Z. Girma, Y. Mamo, G. Mengesha, A. Verma, T. Asfaw, Seasonal abundance and habitat use of bird species in and around Wondo genet forest, southCentral Ethiopia, Ecol. Evol. 7 (2017) 3397–3405, https://doi.org/10.1002/ ece3.2926. S.A. Dar, S. Tauseef, M.S. Dar, R. Bhardwaj, Impacts of urbanization on quality of environment in Jammu region, Int. J. Theor. Appl. Sci. 9 (2) (2017) 54–60. A.R. Rahmani, M.Z. Islam, R.M. Kasambe, Important Bird and Biodiversity Areas in India: Priority Sites for Conservation (Revised and updated), Bombay Natural History Society, Indian Bird Conservation Network, Royal Society for the Protection of Birds and BirdLife International (U.K.), 2016. S.S. Narwade, G.A. Jathar, A.R. Rahmani, Bibliography of the birds of North India, BUCEROS 11 (1) (2006) 1–144, https://doi.org/10.13140/2.1.2121.5529. R. Gupta, Enthralling birds of Kashmir, Newsl. Birdwatchers 42 (2002) 92. N. Choudhary, Diversity and Status of Wildlife Fauna of District Rajouri, J&K, Ph.D Thesis, University of Jammu, Jammu, 2010. R. Kait, Studies on Avian and Mammalian Diversity of Trikuta Hills, Ph.D Thesis, University of Jammu, Jammu, 2011. S.A. Khah, R.J. Rao, K.A. Wani, Studies on bird diversity of Overa-Aru wildlife sanctuary of Jammu and Kashmir, India, J. Threat. Taxa 4 (2012) 3228–3232. K.K. Sharma, M. Saini, Impact of anthropogenic pressure on habitat utilization by the waterbirds in Gharana wetland (reserve), Jammu (J&K, India), Int. J. Environ. Sci. 2 (2012) 2050–2062. A. Noor, Z.R. Mir, M.A. Khan, A. Kamal, M. Ahmad, B. Habib, J.N. Shah, Species diversity and density of some common birds in relation to human disturbance along the bank of Dal Lake, Srinagar, Jammu and Kashmir, Northwestern India, PODOCES 9 (2014) 47–53. A. Raina, Striated heron Butorides striata: an addition to the avifauna of Jammu and Kashmir, Indian BIRDS 13 (2017) 43–44. N. Sharma, M. Kichloo, Avian habitat-use and dietary guilds in different forest communities of Bhaderwah, Jammu and Kashmir, India, Int. J. Recent Sci. Res. 6 (2015) 5145–5149. N. Sharma, A. Sohil, Bronzed Drongo Dicrurus aenea and hair-crested Drongo Dicrurus hottentottus from Jammu & Kashmir, India, Indian BIRDS 13 (2017) 168. S. Sharma, N. Sharma, A recent record of rooks Corvus frugilegus from the Jammu plains, North-Western India, Indian BIRDS 13 (2017) 51–52. M.F. Fazili, B.A. Bhat, F.A. Ahangar, Avian diversity of Anchar lake, Kashmir, India, New York Sci. J. 10 (2017) 92–97. N. Sharma, First record of Rufous-tailed scrub Robin cercotrichas galactotes (Aves: Passeriformes: Muscicapidae) from Jammu & Kashmir, India, J. Threat. Taxa 9 (2017) 10726–10728. M.A. Kichloo, A. Sohil, P. Kumar, N. Sharma, Avian diversity at new campus of University of Jammu, Jammu and Kashmir, Researcher 13 (2018) 28–40. N. Sharma, S.K. Rana, P. Raina, R. Amir, M.A. Kichloo, An annotated checklist of the birds of upper Chenab catchment, Jammu and Kashmir, India, J. Threat. Taxa 10 (2018) 11869–11894. A. Sohil, Avian Composition and Diversity in the Mosaic Landscape Around Jammu, J & K, M.Phil Dissertation, Department of environmental sciences, University of Jammu, 2019. eBird, Electronic data base, available at https://ebird.org/region/IN-JK?yr=all 2018 (Data accessed: 20 January 2019). C.J. Bibby, N.D. Burgess, D.A. Hill, Bird Census Techniques, Academic Press, London, 1992. G.M. Shah, Birds of Hokersar-Food, Feeding and Breeding Biology of Resident and Non-Resident Birds, PhD Thesis, P. G. Department of Zoology, University of Kashmir, 1984. F.A. Ahangar, Studies on Avian Diversity and Breeding Biology of Mallard (Anas platyrhynchos platyrhynchos) in the Wetlands of Kashmir, Ph.D Thesis, Department of Zoology, University of Kashmir, 2008. S. Ali, The Book of Indian Birds, 13th ed. Published by Bombay Natural History Society, Oxford University Press, Mumbai, India, 2002. R. Grimmett, C. Inskipp, T. Inskipp, Birds of the Indian Subcontinent, Oxford University Press, 2011. S. Ali, The Book of Indian Birds, 6th ed. Oxford University Press, New Delhi, 1996. J. Praveen, R. Jayapal, A. Pittie, A checklist of the birds of India, Indian BIRDS 11 (2016) 113–172. J. Praveen, R. Jayapal, A. Pittie, Taxonomic updates to the checklist of birds of India and the south Asian region, Indian BIRDS 142 (2018) 37–42. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois, 1949. E.H. Simpson, Measurement of diversity, Nature 163 (1949) 688. D.R. Margalef, Information theory in ecology, Genet. Syst. 3 (1968) 36–71. E.F. Menhinick, A comparison of some species diversity indices applied to samples of field insects, Ecology 45 (1964) 858–862.
15
[106] R. Peet, The measurement of species diversity, Annu. Rev. Ecol. Evol. Syst. 5 (1974) 285–307. [107] A.E. Magurran, Measuring Biological Diversity, Blackwell Science Publishing, Oxford, 2004 256. [108] J.R. Krebs, J.D. Wilson, R.B. Bradbury, G.M. Siriwardena, The second silent spring? Nature 400 (1989) 611–612. [109] International Union for conservation of Nature and Natural Resources, Red List of Threatened Species, Version 2018–2, www.iucnredlist.org 2019 (Downloaded on10 June (2018)). [110] R.H. Whittaker, Evolution and measurement of species diversity, Taxon 21 (1972) 213–251. [111] S.V.S. Rana, Essentials of Ecology and Environmental Science, 2nd ed. Prentice-Hall of India Private Ltd, New Delhi, 2005. [112] C. Rahbek, R. Graves, Multiscale assessment of patterns of avian species richness, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 4534–4539. [113] J. Jokimaki, Marja-Liisa Kaisanlahti-Jokim, The role of residential habitat type on the temporal variation of wintering bird assemblages in northern Finland, Ornis Fennica 89 (2012) 20–23. [114] R.C. Rodrigues, P.I. Prado, Sampling methods affect observed response of bird species richness to vegetation structure in Brazilian savannas, Condor 120 (2018) 402–414. [115] L. Barcante, M.M. Vale, M.A.S. Alves, Altitudinal migration by birds: a review of the literature and a comprehensive list of species, J. Field Ornithol. 88 (2017) 321–335. [116] F.E. Hayes, Definitions for migrant birds: what is a Neotropical migrant? Auk 112 (1995) 521–523. [117] H. Dingle, V.A. Drake, What is migration? Bio Sci. 57 (2007) 113–121. [118] J.H. Rappole, The Avian Migrant: The Biology of Bird Migration, Columbia University Press, New York, 2013. [119] B.S. Cade, R.W. Hoffman, Differential migration of blue grouse in Colorado, Auk 110 (1993) 70–77. [120] N. Norbu, M.C. Wikelski, D.S. Wilcove, J. Partecke Ugyen, U. Tenzin Sherub, T. Tempa, Partial altitudinal migration of a Himalayan forest pheasant, PLoS ONE 8 (2013), e60979. [121] K.J. Gaston, Rarity. London: Chapman and Hall, 1994 283. [122] J. Rice, R.D. Ohmart, B.W. Anderson, Habitat selection attributes of an avian community: a discriminant analysis investigation, Ecol. Monogr. 53 (1983) 226–229. [123] O. Gilbert, The Ecology of Urban Habitats, Chapman and Hall, London, UK, 1989. [124] C. Dowd, Effect of development on bird species composition of two urban forested wetlands in Staten Island, New York, J. Field Ornithol. 63 (1992) 455–461. [125] S.H. Faeth, P.S. Warren, E. Shochat, W.A. Marussich, Trophic dynamics in urban communities, BioScience 55 (2005) 399–407. [126] A. Berg, Diversity and abundance of birds in relation to forest fragmentation, habitat quality and heterogeneity, Bird Study 44 (1997) 355–366. [127] A. Elafri, M. Belhamra, M. Houhamdi, Comparing habitat preferences of a set of waterbird species wintering in the coastal wetlands of North Africa: implication for management, Ekológia 36 (2017) 158–171. [128] B.M. Vallejo, A.B. Aloy, P.S. Ong, The distribution, abundance and diversity of birds in Manila's last greenspaces, Landsc. Urban Plan. 89 (2009) 75–85. [129] C.J. Ralph, S.J.R. Auer, S. Droege, Monitoring bird populations by point counts, US Department of Agriculture, Forest Service, Pacific Southwest Research Station. Gen. Albany: Tech. Rep. PSW-GTR-149, 1995. [130] M.C. Muñoz, K. Fierro-Caldero'n, H.F. Rivera-Gutierrez, Las aves del campus de la Universidad del Valleuna isla verde urbana en Cali, Colombia, Ornitologı'a Colombiana, 5, 2007 5–20. [131] S. Dale, Urban bird community composition influenced by size of urban green spaces, presence of native forest, and urbanization, Urban Ecosyst. 21 (2018) 1–14, https://doi.org/10.1007/s11252-0170706-x. [132] R.H. MacArthur, J.W. MacArthur, On bird species diversity, Ecology 42 (1961) 594–598. [133] P.M. Acharya, S.L. Rajbhandari, Investigation of Population Status and Habitats of Lutrogale perspicillata in Narayani River, Chitwan National Park, A final research report to Rufford Foundation U.K, 2012 50. [134] S.L. Rajbhandari, P.M. Acharya, Study of Investigation of Population, Habitat and Hatching Success of Gavialis gangeticus in Narayani River of Chitwan National Park, A Final Research Report Submitted to Rufford Foundation, U.K, 2015 38. [135] B.B. Khadka, P.M. Acharya, S.L. Rajbhandari, Population status and species diversity of wetland birds in the Rapti and Narayani rivers and associated wetlands of Chitwan National Park, Nepal, J. Threat. Taxa 9 (2017) 10297–10306. [136] P.A. De Benedictis, On the correlation between certain diversity indices, Am. Nat. 107 (1973) 295–302. [137] R.D. Routledge, Bias in estimating the diversity of large, uncensused communities, Ecology 61 (1980) 276–281. [138] R.V. Alatalo, Problems in the measurement of evenness in ecology, Oikos 37 (1981) 199–204. [139] C. Sivaperuman, K.L. Kankane, S. Kumar, N.S. Rathode, Q.H. Baqri, Diversity and abundance of avifauna in the Thar desert, Rajasthan, India, Indian Forester 133 (2007) 1350–1366. [140] P.S. Jamwal, P. Chandan, R. Rattan, A. Anand, P.M. Kannan, M.H. Parsons, Survey of avifauna of the Gharana wetland reserve: implications for conservation in a semi-arid agricultural setting on the contested indo-Pakistan border, BMC Zool. 2 (2017) 7. [141] W. Woldemariam, T. Mekonnen, K. Morrison, A. Aticho, Assessment of wetland flora and avifauna species diversity in Kafa zone, Southwestern Ethiopia, J. Asia-Pacific Biodivers. 11 (2018) 494–502. [142] D.P. Tubelis, R.B. Cavalcanti, Community similarity and abundance of bird species in open habitats of a central Brazilian Cerraddo, Orntologica Neotropica 12 (2001) 57–73.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005
16
A. Sohil, N. Sharma / Acta Ecologica Sinica xxx (2020) xxx
[143] J.-N. Audet, S. Ducatez, L. Lefebvre, The town bird and the country bird: problem solving and immunocompetence vary with urbanization, Behav. Ecol. 27 (2016) 637–644, https://doi.org/10.1093/beheco/arv201. [144] A. Charmantier, V. Demeyrier, M. Lambrechts, S. Perret, A. Gregoire, Urbanization is associated with divergence in pace-of-life in great tits, Front. Ecol. Evol. 5 (2017) 53, https://doi.org/10.3389/fevo.2017.00053. [145] S. Riyahi, M. Sánchez-Delgado, F. Calafell, D. Monk, J.C. Senar, Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major, Epigenetics 10 (2015) 516–525, https://doi.org/ 10.1080/15592294.2015.1046027. [146] J.C. Senar, L.Z. Garamszegi, V. Tilgar, C. Biard, G. Moreno-Rueda, P. Salmón, J.M. Rivas, P. Sprau, N.J. Dingemanse, A. Charmantier, V. Demeyrier, H. Navalpotro, C.
Isaksson, Urban great tits (Parus major) show higher distress calling and pecking rates than rural birds across Europe, Front. Ecol. Evol. 5 (2017) 163, https://doi. org/10.3389/fevo.2017.00163. [147] G.N. Robb, R.A. McDonald, D.E. Chamberlain, S. Bearhop, Food for thought: supplementary feeding as a driver of ecological change in avian populations, Front. Ecol. Environ. 6 (2008) 476–484, https://doi.org/10.1890/060152. [148] J.A. Galbraith, D.N. Jones, J.R. Beggs, K. Parry, Margaret Stanley, Urban bird feeders dominated by a few species and individuals, Front. Ecol. Evol. 5 (2017) 81, https:// doi.org/10.3389/fevo.2017.00081. [149] J. Terraube, F. Archaux, M. Deconchat, I. Halder, H. Jactel, L. Barbaro, Forest edges have high conservation value for bird communities in mosaic landscapes, Ecol. Evol. 6 (2016) 5178–5189, https://doi.org/10.1002/ece3.2273.
Please cite this article as: A. Sohil and N. Sharma, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2020.02.005