Bounds on the rank and kernel of perfect codes

Bounds on the rank and kernel of perfect codes

BZtIR Bt Y‚ „st, stI ,‚„t‚j BP }‚„P‚{ {BI‚R €‚%$t q _Y‚j}R VZAZ„t =t$%‚„R$k ‚„{r‚ z$jjstZ‚%s = VZrBtB8s I‚ s„{‚jBts V A$ts„k {BI‚ g BP j‚t...

102KB Sizes 0 Downloads 93 Views

BZtIR Bt Y‚ „st, stI ,‚„t‚j BP }‚„P‚{ {BI‚R €‚%$t q _Y‚j}R

VZAZ„t =t$%‚„R$k ‚„{r‚ z$jjstZ‚%s

= VZrBtB8s I‚ s„{‚jBts V A$ts„k {BI‚ g BP j‚tY z $R `ZR s R‚ BP A$ts„k zTZ}j‚R g 2 B z  B ) \(, di V j$t‚s„ wA$ts„kD {BI‚ $R `ZR s j$t‚s„ RZAR}s{‚ BP zTI$8‚tR$Btsj A$ts„k R}s{‚ V }‚„P‚{ R$tj‚ ‚„„B„ {B„„‚{$t A$ts„k {BI‚ wA„$‚4k dT}‚„P‚{ {BI‚D $R s RZAR‚ BP B z  RZ{Y Ys ‚%‚„k ? ; B z b$Y$t I$Rst{‚ d P„B8 ‚-s{jk Bt‚ {BI‚bB„I BP g y YsR j‚tY z ) 1E  d 8$t$8Z8 I$Rst{‚ n stI YsR 1z E {BI‚bB„IR N$t‚s„ dT}‚„P‚{ {BI‚R B„ wgD BY Y‚ „st, stI ,‚„t‚j BP dT}‚„P‚{ {BI‚R Ys%‚ A‚‚t RZI$‚I e9$Bt stI zs„Ik >dH ‚RsAj$RY‚I Y‚ ‚-$R‚t{‚ BP s dT}‚„P‚{ {BI‚ BP j‚tY z ) 1E  d z  dx stI „st, „wgD ) z  E L X PB„ ‚s{Y X X ) (, d, 3 3 3 , E _Y‚j}R stI N‚zst >;H ‚RsAj$RY‚I Ys PB„ ‚s{Y RZ{Y z  dx Y‚„‚ ‚-$RR s tBtj$t‚s„ dT }‚„P‚{ {BI‚ g BP j‚tY z b$Y s ,‚„t‚j BP I$8‚tR$Bt >wgD ) > PB„ ‚s{Y > ; \d, 1, 3 3 3 , z  E  1i qY‚ „st, stI ,‚„t‚j s„‚ ,tBbt B A‚ „‚js‚I 3B„ $tRst{‚ b‚ Ys%‚ >wgD L „wgD  z L d G‚ ‚RsAj$RY Z}}‚„ stI jBb‚„ ABZtIR Bt Y‚ „st, stI Y‚ I$8‚tR$Bt BP Y‚ ,‚„t‚j BP dT}‚„P‚{ A$ts„k {BI‚R

_„‚}„$t RZA8$‚I B ejR‚%$‚„ 7{$‚t{‚

235

qY‚ jBb‚„ ABZtI Bt Y‚ I$8‚tR$Bt BP Y‚ ,‚„t‚j $t ‚„8R BP Y‚ „st, BP Y‚ {BI‚ $R $%‚t Ak Y‚ PBjjBb$t „‚RZjR stI $ $R ‚-s{ qY‚B„‚8 d V dT}‚„P‚{ {BI‚ g BP j‚tY z ) 1E  d stI Ys%$t „st, „wgD ) z  E L X stI s ,‚„t‚j BP I$8‚tR$Bt >wgD Y‚t >wgD 

1E X

7W X k d

>wgD  1E @  d 7W X ) d

qY‚B„‚8 1 >;H 3B„ sjj E  ; Y‚„‚ ‚-$RR s dT}‚„P‚{ {BI‚ BP j‚tY z ) 1E  d Ys%$t „st, z  E L X stI ,‚„t‚j BP I$8‚tR$Bt > ) 1E X bY‚t X k d stI > ) 1E @  d bY‚t X ) d qY‚ Z}}‚„ ABZtI Bt Y‚ I$8‚tR$Bt BP Y‚ ,‚„t‚j BP s dT}‚„P‚{ {BI‚ $t ‚„8R BP Y‚ „st, BP Y‚ {BI‚ $R $%‚t Ak Y‚ PBjjBb$t „‚RZj qY‚B„‚8 n V dT}‚„P‚{ {BI‚ BP j‚tY z ) 1E  d Ys YsR „st, z  E L X stI s ,‚„t‚j BP I$8‚tR$Bt z  E  & Y‚t 1&  &  d  X e9$Bt stI zs„Ik >1H $%‚ s {BtR„Z{$Bt BP PZjj „st, dT}‚„P‚{ {BI‚R w$‚ X ) ED Ys s{Y$‚%‚ Y$R ABZtI bY‚t E  d( qY‚ „‚RZjR P„B8 _Y‚j}R >nH RYBb Ys Y$R ABZtI $R $Y PB„ E ) ; stI X c ; qB ‚RsAj$RY Y$R Z}}‚„ ABZtI b‚ b$jj t‚‚I RB8‚ „‚RZjR Bt
 x k

7; {

7

yzQ Q7EwI@  I D ) E L X

bY‚„‚ { $R s R‚ BP E  & $tI‚}‚tI‚t {BB„I$ts‚R $P 1&  &  d  X stI & c E qY‚B„‚8 x p$%‚t
 x k

7; {

7

yzQ Q7EwI@  I D ) E L X

Y‚„‚ ‚-$RR s dT}‚„P‚{ {BI‚ g BP j‚tY zI ) 1E  d bY‚„‚ EI ) E L d Ys YsR „st, zI  EI L X stI s ,‚„t‚j BP I$8‚tR$Bt zI  EI  & $P & $R Y‚ 8$t$8Z8 $t‚‚„ RZ{Y Ys 1&  &  d  X 1

236

WB${‚ Ys $P E  ; X ; \d, 3 3 3 , Ei Y‚„‚ ‚-$RR s j‚sR Bt‚ & RZ{Y Ys 1  &  d  X stI & c E 7B N‚88s ; stI qY‚B„‚8 x $%‚ ZR Ys Y‚ Z}}‚„ ABZtI $R $Y E  x stI X c E qB }„B%‚ Y‚ }„‚%$BZR qY‚B„‚8 b‚ t‚‚I B ‚RsAj$RY RB8‚ „‚RZjR Bt Y‚ „st, stI Y‚ ,‚„t‚j BP dT}‚„P‚{ {BI‚R {BtR„Z{‚I b$Y Y‚ *BZAj$t {BtR„Z{$Bt

i‚P‚„‚t{‚R

>dH

q

e9$Bt

V

  

zs„Ik

              

 yeee q„stR Bt ytPB„8s$Bt qY‚B„k

>1H

q e9$Bt V zs„Ik

            

7yV F *$R{„‚‚ sY >nH

€

q

_Y‚j}R

;(wd;D x;TEn



ddwdMD tB 1 1(xT11n

              ! "



1dw1(((D 1MT1M

VZR„sjsR$st FBZ„tsj BP ]B8A$tsB„${R >;H

€ q _Y‚j}R  N‚zst stI ]„k}B„s}Yk

#      $ 

 *‚R$tR ]BI‚R

EwdxD 1;T1x

237