Breakage patterns in Sima de los Huesos (Atapuerca, Spain) hominin sample

Breakage patterns in Sima de los Huesos (Atapuerca, Spain) hominin sample

Accepted Manuscript Breakage patterns in Sima de los Huesos (Atapuerca, Spain) hominin sample Nohemi Sala, Juan Luis Arsuaga, Ignacio Martínez, Ana Gr...

3MB Sizes 0 Downloads 57 Views

Accepted Manuscript Breakage patterns in Sima de los Huesos (Atapuerca, Spain) hominin sample Nohemi Sala, Juan Luis Arsuaga, Ignacio Martínez, Ana Gracia-Téllez PII:

S0305-4403(15)00005-9

DOI:

10.1016/j.jas.2015.01.002

Reference:

YJASC 4307

To appear in:

Journal of Archaeological Science

Received Date: 18 November 2014 Revised Date:

5 January 2015

Accepted Date: 7 January 2015

Please cite this article as: Sala, N., Arsuaga, J.L., Martínez, I., Gracia-Téllez, A., Breakage patterns in Sima de los Huesos (Atapuerca, Spain) hominin sample, Journal of Archaeological Science (2015), doi: 10.1016/j.jas.2015.01.002. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT 1

Breakage patterns in Sima de los Huesos (Atapuerca, Spain) hominin sample

2

Nohemi Salaa,b*, Juan Luis Arsuagaa,b, Ignacio Martíneza,c, Ana Gracia-Télleza,d

3

a

4

Spain.

5

b

6

c

7

d

8

* Corresponding author:

9

Nohemi Sala

Departamento de Paleontología. Universidad Complutense de Madrid, Spain.

RI PT

Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos. C/ Monforte de Lemos, 5. 28029 Madrid,

Área de Antropología Física. Departamento de Ciencias de la Vida. Universidad de Alcalá. Madrid, Spain.

M AN U

SC

Área de Paleontología. Departamento de Geografía y Geología. Universidad de Alcalá. Madrid, Spain.

Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos.

11

C/ Monforte de Lemos, 5. 28029, Madrid, Spain.

12

[email protected]

13

Tel: +34 91 822 28 51; Fax: +34 91 822 28 55

EP AC C

14

TE D

10

1

ACCEPTED MANUSCRIPT Abstract

16

Fracture pattern analysis implement the taphonomic information obtained and it help

17

understanding the largest accumulation of human remains from the Middle Pleistocene

18

known, the Sima de los Huesos (SH) sample. The SH hominin long bones exhibit a

19

fracture pattern characterized especially by the dominance of transverse fractures of the

20

long axis, complete circumferences and fracture edges with right angles and jagged

21

surfaces. These properties are expected for post-depositional fractures and are

22

compatible with collective burial assemblages. The very small proportion of fractures

23

typical of biostratinomic stage could be due to a blunt force trauma produced by a free-

24

fall down the vertical 13 m shaft that constitutes the access to the SH chamber.

25

Keywords: Taphonomy, bone breakage, Middle Pleistocene.

M AN U

SC

RI PT

15

AC C

EP

TE D

26

2

ACCEPTED MANUSCRIPT 1. Introduction

28

One of the key factors necessary for interpreting the origin of an accumulation of

29

skeletal remains and developing a taphonomic history is recognizing the processes

30

involved in fracturing. Bone is a two-phase material, and consists of an organic portion

31

(collagen) and another inorganic portion (a calcium phosphate mineral called

32

hydroxyapatite). The mineral phase provides rigidity and hardness while collagen

33

provides toughness, resiliency and elasticity to bones (Lyman, 1994 and references

34

therein). The bones differ in properties with regard to fracturing if they are conserved or

35

do not have collagen (Amprino, 1958, Johnson, 1985), i.e., if they behave as rigid or

36

elastic bodies, since a wet bone has more energy when it absorbs stress than a dry bone

37

(Evans, 1957). These features allow us, in principle, to establish criteria for recognizing

38

the state of the bone at the time of fracturing: fresh (or green) bone (that preserves

39

organic fractions), or dry bone (without collagen).

40

By taking these properties into account, we should be able to interpret two important

41

factors regarding bone breakage: the condition of the bone when the fracture occurred,

42

and the taphonomic agent responsible for the fractured bones (hominins, feeding

43

carnivores, weathering, trampling or geological agents). It is not always possible to

44

determine the agent responsible for fracturing the bones unless the mark associated is

45

preserved, but at least the fracture analysis allows us to determine if the bones have

46

been fractured in a dry or wet state. Wet state fractures occur while the bone contains

47

muscles, periosteum, skin and other soft tissues and have plastic properties. So fresh

48

fracturing can be ante- and perimortem (around death). Perimortem fractures, in

49

contrast to antemortem injuries, exhibit no evidence of healing (Ortner, 2008, Ubelaker

AC C

EP

TE D

M AN U

SC

RI PT

27

3

ACCEPTED MANUSCRIPT and Adams, 1995). Postmortem fractures take place when fracturing occurs on

51

defleshed bones, and contain no muscles or skin and undoubtedly the process occurs

52

after the individual's death.

53

Force must be applied to a bone to break it. There are two types of forces that can be

54

applied to a bone: a static loading force that involves the application of constant

55

pressure (i.e., sedimentary pressure on buried bones) or a dynamic loading force that

56

involves focused sudden impact (i.e., percussion by stone tools).

57

Hominin skeletal remains are usually found broken in Pleistocene archaeological sites.

58

How and when the bones were broken is one of the main taphonomical questions that

59

require an answer. The bone fracturation pattern in archaeological contexts differs

60

depending on the origin of the accumulation and is usually examined based on different

61

marks on the bone surface. In anthropic contexts (i.e., cannibalism) the intentional

62

fracturation is interpreted when cutmarks, peeling and percussion marks are found (this

63

is the case for the Gran Dolina TD-6 hominin remains; (Fernández-Jalvo et al., 1996,

64

1999, Saladié et al., 2011, 2012) and other fracture properties, such as V-shaped and

65

bevelled break patterns at an oblique angle as in the case of Moula-Guercy

66

Neanderthals, (Defleur et al., 1993, 1999). Also in El Sidrón, Neanderthals’ conchoidal

67

percussion scars and cutmarks are presumably related to a hominin breakage origin

68

(Rosas et al., 2006).

69

In intentional or natural hominin burial sites, fracture patterns are less frequent and

70

typically bone breakage is interpreted as caused by sediment pressure or block falls.

71

Nevertheless, there is a lack of specific research addressing fracture patterns in

72

Pleistocene hominin burials.

AC C

EP

TE D

M AN U

SC

RI PT

50

4

ACCEPTED MANUSCRIPT Villa and Mahieu (1991) establish a complete methodological framework for the study

74

of fractures in hominin long bones and they compare the frequency of the attributes

75

among three prehistoric assemblages of known accumulation origin: Late Neolithic

76

collective burial (Sarrians site), ancient anthropic (cannibalism) fracturation

77

(Fontbrégoua Early and Middle Neolithic site) and the excavation fractures sample

78

(Bezouce site).

79

Literature from other archaeological contexts without hominin remains is extensive and

80

facilitates understanding of the origin of the faunal bones accumulation (Alcántara-

81

García et al., 2006, Binford, 1981, Brain, 1981, Church and Lyman, 2003, Haglund et

82

al., 1988, Haynes, 1983, Karr and Outram, 2012, Klein and Cruz-Uribe, 1984, Morlan,

83

1984, Myers et al., 1980, Outram, 2001, 2002, Outram et al., 2005, Pérez Ripoll, 1992,

84

Pickering et al., 2005, Todd and Rapson, 1988), among others. Forensic works are

85

abundant and of interest in order to interpret the time of the breakage: i.e. antemortem,

86

perimortem or postmortem stages (Evans, 1952, 1957, Fleming-Farrell et al., 2013,

87

Petaros et al., 2013, Quatrehomme and Iscan, 1997, Wheatley, 2008), among others.

88

Obviously, in Pleistocene contexts where no soft tissue is preserved, the identification

89

of the perimortem period is far less accurate than in forensic cases.

90

Previous research deals with fracture patterns in the Sima de los Huesos (SH) hominin

91

sample (Andrews and Fernández-Jalvo, 1997, Arsuaga et al., 1990). Those works

92

concur with the fact that in the SH sample most of the bones show fractures. The first

93

taphonomical work suggests that the long bones display post-fossilization breakage

94

(Arsuaga et al., 1990). The latter work (Andrews and Fernández-Jalvo, 1997) suggest

95

two types of breakage were equally represented in the SH assemblage, green-bone

AC C

EP

TE D

M AN U

SC

RI PT

73

5

ACCEPTED MANUSCRIPT breakage, and dry-stick breakage occurring sometime after deposition but not recently.

97

Andrews and Fernández Jalvo (1997) also concluded that the breakage of the human

98

bones provides no evidence that they entered the cave by being dropped down the 13 m

99

vertical shaft. New taphonomic studies in hominin sample from SH state the evidence

100

of carnivore activity is of very low frequency and indicates only sporadic carnivore

101

activity at the site (Sala et al., 2014b). There is no evidence of cutmarks or any other

102

anthropic activity in the bones of the SH collection (Andrews and Fernández-Jalvo,

103

1997, Arsuaga et al., 1997, Sala et al., 2014b).

104

Therefore, there has never been a firm consensus regarding the causes of fracturation in

105

the human bones found in SH. This new study on the taphonomy of the SH sample

106

attempts to provide new data to contrast the different interpretations on this matter. The

107

objective of the present work is to describe and to quantify the fracturation patterns

108

observed in the SH.

SC

M AN U

TE D

109

RI PT

96

2. Material and Methods

111

2.1 Sima de los Huesos Site

112

The Sima de los Huesos (SH) site (Atapuerca, Burgos, Spain) is a small chamber at the

113

foot of a shaft located deep inside an underground karst system (Arsuaga et al., 1997).

114

Inside this chamber, twelve lithostratigraphic units (LU) were defined, but only two of

115

them (LU-6 and LU-7) are fossiliferous stratigraphic levels (Fig. 1) (Aranburu et al.,

116

Submitted). LU-6 consists of plastic red clays with a high density of hominin and

117

carnivore fossils. The red clay matrix is pure, devoid of extraclasts, and indicates low

AC C

EP

110

6

ACCEPTED MANUSCRIPT energy accumulation (decantation), which is compelling evidence that the fossils were

119

not subjected to long-distance transport (Aranburu et al., submitted). To date, over

120

6,700 human fossils, belonging to at least 28 individuals are represented in this

121

stratigraphic level (LU-6) (Arsuaga et al., 2014). A small portion (< 7% of the current

122

collection) of the hominin fossils from LU-6 was moved from the “in situ” levels to the

123

uppermost part of the site and disturbed and trampled by cavers before the formal

124

excavation period (Arsuaga et al., 1997).

125

Together with the hominin bones, thousands of remains of Ursus deningeri (MNI =

126

200) and other carnivores as well as microfaunal remains have been recovered (Arsuaga

127

et al., 2014, Cuenca-Bescós et al., 1997, Cuenca-Bescós and García, 2007, García et al.,

128

1997, García and Arsuaga, 2011). Hominin bones are present in the red clay level (LU-

129

6), but carnivores (especially bears) are present in both stratigraphic levels (LU-6 and

130

LU-7) (Aranburu et al., Submitted, Arsuaga et al., 2014). As yet, no ungulate remains

131

have been found at the site. Using a variety of techniques, the hominin-bearing layer

132

could be assigned to a period around 430 thousand years ago (Arsuaga et al., 2014).

SC

M AN U

TE D



EP

133

RI PT

118

2.2 The SH Fossil Sample

135

The human sample from SH is a large collection composed of more than 6,740 bone

136

fragments of all skeletal portions. Some of the remains fit together to form complete

137

bones. In this paper, we provide fracturation features of the hominin long and flat

138

postcranial bones: femur (Number of Identified Specimens NISP=77), tibia (NISP=33),

139

fibula (NISP=111), metatarsal (NISP=119), clavicle (NISP=42), humerus (NISP=87),

140

radius (NISP=62), ulna (NISP=58), metacarpal (NISP=89), innominate (NISP=148),

AC C

134

7

ACCEPTED MANUSCRIPT ribs (NISP=197), vertebra (NISP=203) and scapula (NISP=67) of the SH assemblage.

142

The phalanges (NISP=531), carpal and tarsal bones (NISP: 143) were quantified in

143

relation to the presence/absence of fractures because of their small size and high

144

density, which provide less information about fracturation processes. Dental remains

145

and bone fragments smaller than 2 cm were excluded. Cranial bones require a specific

146

study due to the complexity and different methodology necessary to conduct the

147

analysis. An inventory of human remains studied is included as supplementary material

148

(SI).

149

2.3 Methodological procedure

150

The SH bones are embedded in a highly humid, plastic and sticky clay sediment. This

151

makes them behave in a peculiar way that sometimes makes it difficult to differentiate

152

ancient and modern fractures. The usual criteria used to differentiate taphonomical

153

fractures from modern fractures, such as if their broken edges appear to be clean under

154

magnification, different coloration in fracture surface or if they are sharp and free of

155

matrix (Russell, 1987, Ubelaker and Adams, 1995), are not always diagnostic in this

156

field. This is because the clay moisture penetrates the bone, giving it a homogeneous

157

appearance. Furthermore, small changes in burial conditions, e.g., the excavation

158

process, sometimes produce cracks that are held together while the bone remains are

159

still buried, but are separated when the clay is removed. Due to the difficulty involved

160

in identifying this type of fragmentation in SH, the behavior of the fossils during the

161

2007 - 2014 excavation campaigns has been monitored. To that end, the characteristics

162

of the bones at the site have been noted, e.g., if they were complete, broken, cracked or

163

otherwise and if fractures occurred during excavation. Subsequently and before cleaning

AC C

EP

TE D

M AN U

SC

RI PT

141

8

ACCEPTED MANUSCRIPT them, we took detailed pictures and the remains were described. This has allowed us to

165

recognize the fracture properties in SH, thus helping us to interpret the rest of the

166

analysed collection. Therefore, in this work, the distinction was made between fractures

167

and fissures. Fractures correspond to bone breakage caused by any agent - e.g.,

168

carnivore biting, sediment pressure, etc. - while fissures are small cracks produced when

169

the burial conditions are changed (during the excavation of the fossil) without a

170

fracturing agent. Consequently, some bones from SH, despite being composed of

171

numerous fragments, actually belong to a single excavation unit (a single label) whose

172

fragments are separated by fissures during the excavation processes. In this study we

173

analysed only fractures, considering the excavation unit as bone fragment.

174

The fractures on the human remains were analysed and classified according to Villa and

175

Mahieu (1991) and are described as follows (Fig. 2).

176

Fracture outline: orientation of the fracture with respect to the long axis of the bone:

177

longitudinal, transverse or oblique/curved (Gifford-González, 1989, Haynes, 1983, Villa

178

and Mahieu, 1991).

179

Fracture angle: This is the angle formed by the fracture surface and the bone cortical

180

surface (Villa and Mahieu, 1991). This angle (α in Fig. 2) can be right (around 90º),

181

oblique for fractures that have more than 105º or less than 85º (Alcántara-García et al.,

182

2006) or mixed (when the bone exhibit both types of fracture angles).

183

Fracture edge: This feature describes the texture of the fracture’s surfaces. We consider

184

two attributes, smooth or jagged, following the criteria of Villa and Mahieu (1991).

AC C

EP

TE D

M AN U

SC

RI PT

164

9

ACCEPTED MANUSCRIPT Shaft Circumference: When a bone is fractured along the shaft portion, it may comprise

186

the entire circumference or not. To quantify it, Villa and Mahieu (1991) completed a

187

numerical index, similar to those used by Bunn (Bunn, 1982, 1983) which are: 1) Less

188

than half of the circumference; 2) more than half of the circumference; 3) complete

189

circumference in at least, a portion of the bone diaphysis.

190

Shaft fragment: This feature attempts to quantify the portion of diaphysis that is

191

preserved. We have considered four numerical indexes following Bunn (1982, 1983)

192

and Villa and Mahieu (1991): 1) Less than 1/4 of the total diaphysis; 2) between 1/4 -

193

1/2 of the total diaphysis; 3) between 1/2 to 3/4 of the diaphysis; 4) increased from 3/4

194

of the diaphysis.

195

In order to compare the fracture properties of SH with other comparative samples, we

196

performed a Multiple Correspondence Analysis (MCA) using the STATISTICA 8.0

197

(StatSoft, 2007) software. The samples included in the MCA analysis are divided into

198

four groups. The first group is composed of green bone breakage assemblages of

199

hominin long bones broken for marrow extraction (cannibalism scenario): Fontbrégoua

200

(data from Villa and Mahieu, 1991) and the assemblage of the Bronze Age level

201

(MIR4A) at El Mirador Cave (Atapuerca, Burgos) (Cáceres et al., 2007). The human

202

remains of the Mirador Cave site were boiled before buried and, therefore, the cooking

203

process could modify to some extent the characteristics of the fractures, so the data must

204

be taken with caution. The second group consists of two collective burials (hominin

205

assemblages) with two types of fracturing agents: i) breakage by sediment pressure:

206

Sarrians (Villa and Mahieu, 1991) and ii) breakage by archaeological works: Bezouce

207

(Villa and Mahieu, 1991). The third group is composed of two faunal assemblages from

208

Pleistocene carnivore dens: Cueva del Camino (Pinilla del Valle, Madrid, Spain) and 10

AC C

EP

TE D

M AN U

SC

RI PT

185

ACCEPTED MANUSCRIPT Cueva de la Zarzamora (Segovia, Spain) (Arsuaga et al., 2012, Sala et al., 2012),

210

assuming that the main fracturing occurred during the biostratinomic stage (green bone

211

breakage caused by carnivore activity). The last group consists of bears’ (Ursus

212

deningeri) long bones from the two fossiliferous layers (LU-6 and LU-7) of SH, that

213

clearly show a post-depositional fractures by sediment pressure (Sala, 2012). For

214

comparative purposes only, long bones were taken into account since they constituted a

215

good sample for our purposes due to their morphology and their behaviour.

216



SC

RI PT

209

3. Results

219

3.1 Long bones sample

220

The study of fracture patterns in the human fossil sample of SH reveals that 564

221

(82.8%) long bones display fractures (Table 1 and Fig. 3). Of the complete long bones

222

(117), 80 correspond to unfused immature epiphyses, so if we did not take these

223

remains into account, the percentage of broken diaphyses would be even higher

224

(94.6%). Therefore, the SH hominin sample has been subjected to fracturing processes.

225

The main characteristics of the fractures in hominin long bones are described as follows.

TE D

EP

AC C

226

M AN U

217 218



227

Regarding the fracture outline of broken long bones, almost 80% (NISP=466) of the

228

sample is characterized by having transversal fractures to the long axis of the bone.

229

When analysing the sample by bone type, we can observe that thinner diaphysis bones

230

(ulna and fibula) surpass 90% of the sample with transverse fractures. Large long bones

231

such as the femur, tibia, humerus and radius show transversal fractures in 80% of cases. 11

ACCEPTED MANUSCRIPT Clavicles are long bones with a higher incidence of oblique outlines in the fractures

233

(Table 1 and Fig. 3).

234

Almost 90% of the fracture planes are right angled. The clavicles reach 100%, and more

235

than 90% of the fibula, radius and ulna have right angles. Bevelled angles are rare in the

236

SH hominin sample and only appear in femur and metatarsal bones. Metapodials exhibit

237

the highest frequencies of mixed angles, followed by the femur and the humerus (Table

238

1 and Fig. 3).

239

Regarding the texture of the fracture surface most of the sample (96.0%) has jagged

240

surfaces on the broken edges (Table 1 and Fig. 3). Mixed texture is also present,

241

especially in metacarpal, humerus and femur fracture surfaces.

242

Another attribute analysed was the completeness of the long bone diaphyses, in terms of

243

circumference (shaft circumference) and size of the fragment (shaft fragment).

244

Considering the whole sample, we can observe that circumferences are complete in

245

more than 90% of the hominin long bones (Table 1, Figs. 3 and 4). This percentage

246

varies, according to bone type: between 72% (tibia) and 98% (radius) of the bones

247

analysed.

SC

M AN U

TE D

EP



AC C

248

RI PT

232

249

Although fragments clearly dominate close to one quarter of the shaft, this feature is

250

variable depending on the type of bone. In general, smaller fragments dominate (<1/4 of

251

the total length) followed by diaphyseal halves, then thirds and so on to full lengths.

252

This trend is observed in all kinds of bones except for the femur, metatarsal and

253

metacarpal diaphyses (Table 1, Figs. 3 and 4). 12

ACCEPTED MANUSCRIPT

255

It is remarkable that 41 long bones (6%) show rounding of broken ends in contrast with

256

the 24.8% noticed by Andrews and Fernández-Jalvo (1997). Almost half of these bones

257

(20 fossils) come from altered sediments, thus the polished broken ends from

258

undisturbed sediments represent 2.9% of the hominin sample.

259

In sum, the SH hominin long bones show a fracture pattern characterized by the

260

dominance of transverse fractures to the long axis, complete circumferences and

261

fracture edges with right angles and jagged surfaces (Fig. 5).

SC



M AN U

262

RI PT

254

3.2 Other postcranial bones sample

264

Similar to the long bones, most of the flat bones are fractured (97.2%), especially the

265

ribs and scapula which exhibit fractures in 100% of cases. With respect to innominate

266

bones, only 4 (2.7%) are complete. For vertebral remains, 96.06% are fractured: 96.00%

267

cervical, 95.00% thoracic and 97.7% lumbar vertebrae. 90.4% of vertebral fractures

268

occur in the vertebral processes, most commonly vertebral arches and the vertebral

269

columns. In the case of ribs, we have not found any element that did not have fractures,

270

although some have been completely reconstructed from fragments thereof (Gómez-

271

Olivencia et al., 2012). No evidence of peeling was found in the rib fragments. In flat

272

bones, there are predominant fractures with right angles and jagged fracture surfaces.

273

Small bones, such as phalanges, carpal and tarsal bones, are usually better preserved in

274

terms of fracturation over long and flat bones because of their high density and small

275

size. In regard to hand phalanges, a total of 56 (26.2%) show fractures. Regarding the

276

foot phalanges, 45 remains (17.2%) are fractured. Regarding the tarsal bones, 32 (2.2%)

AC C

EP

TE D

263

13

ACCEPTED MANUSCRIPT 277

fragments are fractured, especially the talus and calcaneus (Pablos et al., 2013, 2014).

278

The fractures are usually straight with irregular edges due to the spongy tissue of these

279

elements.

RI PT

280 4. Discussion

282

The results indicate that most of the SH hominin sample have fractures, especially long

283

and flat bones. In the study by Andrews and Fernández-Jalvo (1997), a low percentage

284

of complete bones were analysed, which would indicate destructive processes in SH.

285

The new results do corroborate that the SH sample is dominated by fractured bones and

286

that complete bones are scarce. The first question requiring an answer in the case of

287

fractures in SH is whether these fractures occurred when the bones were in a fresh

288

(green) or dry state, i.e., whether it was before burial (biostratinomic fracturing) or after

289

burial (diagenetic fracturing). This question is important due to the implications on the

290

origin of this extraordinary hominin accumulation.

291

Previous works maintain that bevelled or oblique angles of the fracture plane are

292

commonly associated with green bone fractures, while right fracture angles are said to

293

be associated with dry or mineralized bone (Johnson, 1985, Morlan, 1984, Villa and

294

Mahieu, 1991). On the other hand, green bone breakage is considered to be

295

characterized by smooth edges and surfaces while jagged edges are commonly found on

296

dry bones (Johnson, 1985, Morlan, 1984). Nevertheless, Villa and Mahieu (1991) do not

297

consider this attribute to be discriminate since smooth surfaces are also present in

298

excavation fracturing (Bezouce site). Finally, high frequencies of complete diaphysis

AC C

EP

TE D

M AN U

SC

281

14

ACCEPTED MANUSCRIPT diameters appear to characterize assemblages of post-depositional broken bones (Villa

300

and Mahieu, 1991).

301

As was brought to light in the results section, the SH hominin long bones exhibit a

302

fracture pattern characterized by the dominance of transverse fractures to the long axis,

303

complete circumferences and fracture edges with right angles and jagged surfaces.

304

These attributes are expected in a post-depositional fracturing. These results are

305

consistent with the work of Arsuaga et al (1990) but are in stark contrast with Andrews

306

and Fernández-Jalvo (1997) who claim that both transverse and spiral fractures are

307

equally represented in the SH sample. The fact that there were inconsistencies between

308

the present study and the study by Andrews and Fernández Jalvo (1997) could be

309

explained by the sample size since a large amount of hominin remains have been

310

recovered during the more recent SH field seasons, especially from the undisturbed

311

sediments.

312

Multiple Correspondence Analysis (MCA) showed a clear grouping of the different

313

comparative assemblages (Figure 6). Axis 1 (eigenvalue = 0.45360 (36.29% of the

314

inertia)) and Axis 2 (eigenvalue = 0.40799 (32.64% of the inertia)) clearly distinguishes

315

two sets according to the fracture traits, depending on the state of the bone when it was

316

fractured (transversal fractures, right angles, jagged surfaces and complete

317

circumferences in the post-depositional state versus oblique fractures, bevelled angles,

318

smooth surfaces and incomplete circumferences in the green bone breakage. In addition,

319

the MCA also suggests a direct statistical relationship between the hominin long bones

320

from the SH sample and the Sarrians site assemblage, a Late Neolithic collective burial,

AC C

EP

TE D

M AN U

SC

RI PT

299

15

ACCEPTED MANUSCRIPT 321

with post-depositional fracturation by sediment pressure as well as with the bear

322

remains of SH (fracturation by sediment pressure).

324

Although the majority of the analysed fractures exhibit post-depositional characteristics,

325

a small portion (around 4%) of analysed long bones display oblique fractures with

326

bevelled angles and smooth surfaces, which are typical of biostratinomic fractures

327

(perimortem). Several agents can produce this kind of bone breakage: i) hominin

328

breakage; ii) carnivore feeding; or iii) trauma process. No tool cutmarks, peeling,

329

percussion marks or any other anthropic modification have been found in the hominin

330

sample, and therefore it is very improbable that hominins could be responsible for that

331

kind of fracturing.

332

In the case of carnivore fracturation, a small portion of analysed bones show tooth

333

marks associated with broken bones (0.6% of the long bones sample). Thus, the

334

presence of tooth marks is not associated with fracture edges, and the long bone ends

335

are usually well preserved. If we compare these observations with actualistic data,

336

several studies indicate that the great majority of the bones broken by carnivores are

337

characterized by bevelled edge angles, isolated bone fragments with incomplete

338

circumferences, and they usually have tooth marks associated with broken bones (Sala

339

and Arsuaga, 2013, Sala et al., 2014a, Saladié et al., 2013). The same characteristics are

340

present in the archaeological record in carnivores’ dens (Arsuaga et al., 2012, Sala et al.,

341

2012). The absence of peeling also rules out carnivores as the main taphonomic agent of

342

bone breakage, since new actualistic work regarding live bears affirms that these

343

carnivores can also produce this typical anthropic trait (Arilla et al., 2014). These results

AC C

EP

TE D

M AN U

SC

RI PT

323

16

ACCEPTED MANUSCRIPT indicate that carnivores are not the main culprit behind bone fracturing for the SH

345

sample. This fact concurs with a previous study that maintains that carnivore activity

346

was very sporadic at the site (Sala et al., 2014b).

347

The third possible explanation for the perimortem fracturing (though with very low

348

frequency) is traumatism processes, and this could be due to the falling of the corpses

349

down the vertical shaft that provides access to the site. Andrews and Fernández Jalvo

350

(1997) concluded that there is no evidence from the breakage of the human bones that

351

would suggest that they entered the cave by being dropped down the 13 m vertical shaft;

352

this was based on an experiment dropping human bones onto a hard surface. A recent

353

geological study reveals that, at the time of the hominin and carnivore fossil

354

accumulations, the only possible access to the SH chamber was a deep (13 m) vertical

355

conduit (Aranburu et al., Submitted). A priori, this fact leads us to believe that

356

perimortem fractures should be present in a significant percentage of the sample. Recent

357

forensic observations determined that free-fall fractures can be difficult to interpret due

358

to the numerous factors that affect them, height being the main factor that influences the

359

frequency of fractured bones and fracture patterns (Petaros et al., 2013). One relevant

360

conclusion of that paper is that the area most susceptible to fractures in the free-fall

361

traumatism is the rib cage followed by the head (Petaros et al., 2013). Future research

362

analysing cranial fractures is necessary to contrast the free-fall fractures in SH hominin

363

sample. The SH long bone sample do not exhibit antemortem fractures, i.e., evidence of

364

bone remodelling. The only exception is the metatarsal AT-534 which shows a stress

365

fracture in the diaphysis (Gracia-Téllez et al., 2012).

AC C

EP

TE D

M AN U

SC

RI PT

344

17

ACCEPTED MANUSCRIPT For Andrews and Fernández-Jalvo (1997), the high percentage of rounding edges can be

367

explained by the reworking of the remains by movement with or within the sediment

368

sometime after deposition. Our results contrast with those provided by the

369

aforementioned authors in terms of quantitative analysis. Nevertheless, we also noted

370

that conjoining bone fragments may have differential post-depositional damage in terms

371

of rounded fracture edges. Humerus II is a good example (Fig. 7).

RI PT

366



373

This specimen is composed of three fragments that form a complete humerus. Two of

374

the fragments - the distal (AT-1115) and proximal thirds (AT-787) - show no signs of

375

abrasion in the transversal fracture edges. On the contrary, the central fragment (AT-

376

788) does show erosion in the fracture edges. The spatial distribution analysis of the

377

fragments (Fig. 7) reveals that the three remains were recovered very close spatially

378

within the site and, of course, in the same lithostratigraphical unit and at a similar

379

height. Therefore, our interpretation is that the polished broken edges developed inside

380

the SH chamber but not due to long-distance transportation of the bones inside the cave.

381

The causes of the slight rounding of the fracture edged could be due to: i) bioturbation

382

(trampling by bears) as in the case of the remains recovered in the disturbed sediment

383

(in this case trampled by cavers), or ii) due to slight gravitational sediment slides flows

384

from the ramp.

385

5. Conclusions

386

The Sima de los Huesos hominin sample exhibits fractures at a very high frequency.

387

The fracture patterns indicate that the main fracturation occurred after burial (fossil-

AC C

EP

TE D

M AN U

SC

372

18

ACCEPTED MANUSCRIPT diagenetic) caused by sediment pressure. The fracture properties are compatible with

389

those described in the bibliography for collective burial. The very low proportion of

390

fractures typical of the biostratinomic stage could be due to a blunt force trauma

391

produced by a free-fall down the only possible access to the SH chamber. Nevertheless,

392

studies of the cranial fractures are necessary to clarify this hypothesis. Moreover, in just

393

a few cases, it could be associated with bears feeding. These data are valuable since

394

they can shed light on the origin of this extraordinary hominin accumulation. All the

395

possible scenarios to explain the origin of this extraordinary hominin accumulation are

396

still under consideration, but the results of the fracture pattern are compatible with an

397

intentional accumulation of corpses into SH caused by other hominins.

M AN U

SC

RI PT

388

AC C

EP

TE D

398

19

ACCEPTED MANUSCRIPT Acknowledgements

400

Field work at the Sierra de Atapuerca sites was funded by the Junta de Castilla y León

401

and the Fundación Atapuerca. This study was made possible thanks to the Atapuerca

402

excavation team, especially those involved in the excavations at the Sima de los Huesos

403

site. The research was funded by the MINECO project (CGL2012-38434-C03-01).

404

Thanks also to the Fundación Atapuerca (Postdoctoral grant to Nohemi Sala) and the

405

Real Academia de Doctores de España. Thanks to Lauren Ames and Mario Alcolea for

406

the English revision of the manuscript. Thanks to Laura Rodríguez for their support. A.

407

Gracia-Téllez has a Contract-Grant from the Ramón y Cajal Program, RYC-2010-

408

06152. I. Martínez and A. Gracia are members of the ‘‘Human evolution and

409

Quaternary Paleoenvironmental Reconstruction’’ UAH Research Team. Thanks to the

410

BBP and 3R groups for their support and discussions.

M AN U

SC

RI PT

399

AC C

EP

TE D

411

20

ACCEPTED MANUSCRIPT Figure and table captions

413

Figure 1: Composite stratigraphic section of the Sima de los Huesos site with dating

414

ages obtained from Arsuaga et al. (2014). LU= Lithostratigraphic Unit. CCLC: Café con

415

Leche Clays. Note that the colors correspond to the Munsell tables in wet sediment.

416

Figure 2: Variables studied in the long bones from Sima de los Huesos. The figure

417

represents the fracture properties (fracture outline, fracture angle, fracture edge, shaft

418

circumference and shaft fragment) analysed in this work. Lg: longitudinal; Tr:

419

transversal; Ob: oblique.

420

Figure 3: Frequencies of fracture properties in hominin long bones from Sima de los

421

Huesos taking into account the total sample and each type of bone separately.

422

Figure 4: Three-dimensional bar diagrams showing relative frequencies of shaft length

423

by shaft circumference in the hominin long bone sample from Sima de los Huesos.

424

Figure 5: Examples of the most representative fracture patterns in the SH hominin

425

sample. A) Humerus VI with transverse fracture, right angle and jagged fracture

426

surface; B) Femur XI (AT-613) with transverse fracture, right angle and jagged fracture

427

surface; Example of a long bone broken in quarters (C: radius VI) and fractured in

428

thirds (D: ulna VIII); E) Diaphysis fragment of fibula (AT-4734); F) fragment of rib

429

AT-2664 with jagged surface fracture; G) Clavicle (AT-717+AT-4746).

430

Figure 6: Multiple Correspondence Analysis (MCA) showing all the comparative

431

samples and hominin long bone assemblages from the present study. SH: Sima de los

432

Huesos hominin sample (present study). LU-7: Ursus deningeri long bones from the

433

Lithostratigraphic unit 7 (data from Sala, 2012). LU-6: Ursus deningeri long bones

AC C

EP

TE D

M AN U

SC

RI PT

412

21

ACCEPTED MANUSCRIPT from the LU-6 (data from Sala, 2012). SAR: Sarrians (breakage by sediment pressure).

435

BEZ= Bezouce (breakage by archaeological woks). FONT: Fontbrégoua (breakage by

436

cannibalism). Data from Sarrians, Bezouze and Fontbrégoua obtained from Villa and

437

Mahieu, 1991. MIR: Mirador site (breakage by cannibalism) (data from Cáceres et al.,

438

2007). ZZM: Zarzamora Pleistocene carnivore den site (data from Sala et al., 2012).

439

CAM: Cueva del Camino Pleistocene carnivore den site (data from Arsuaga et al.,

440

2012).

441

Figure 7: Humerus II from the Sima de los Huesos site showing the rounding of broken

442

ends in only the central fragment. Spatial distribution of this specimen within the SH

443

chamber is also represented.

444

Table 1: Fracture properties in the Sima de los Huesos hominin long bones taking into

445

account the total sample and each type of bone separately.

EP AC C

447

TE D

446

M AN U

SC

RI PT

434

22

ACCEPTED MANUSCRIPT References

449

Alcántara-García, V., Barba-Egido, R., Pino, J.M.B.d., Ruiz, A.B.C.-., Eiriz-Vidal, A.I.,

450

Falquina-Aparicio, Á., Herrero-Calleja, S., Ibarra-Jiménez, A., Megõas-González, M.,

451

Pérez-Gil, M., Pérez-Tello, V., Rolland-Calvo, J., Terreros, J.Y.-S.D.L., Aixa-Vidal,

452

Domínguez-Rodrigo, M., 2006. Determinación de procesos de fractura sobre huesos

453

frescos: un sistema de análisis de los ángulos de los planos de fracturación como

454

discriminador de agentes bióticos, Trab Prehist 63, 37-45.

455

Amprino, R., 1958. Investigations on some physical propierties of bone tissue, Acta

456

Anatomica 34, 161-186.

457

Andrews, P., Fernández-Jalvo, Y., 1997. Surface modifications of the Sima de los

458

Huesos fossil humans, J Hum Evol 33, 191-217.

459

Aranburu, A., Arsuaga, J.L., Sala, N., Submitted. The stratigraphy of the Sima de los

460

Huesos (Atapuerca, Spain) and implications for the origin of the fossil hominin

461

accumulation, Quat Sci Rev.

462

Arilla, M., Rosell, J., Blasco, R., Domínguez-Rodrigo, M., Pickering, T.R., 2014. The

463

“Bear” essentials: Actualistic research on Ursus arctos arctos in the Spanish Pyrenees

464

and its implications for paleontology and archaeology, PLoS ONE 9, e102457.

465

Arsuaga, J.-L., Baquedano, E., Pérez-González, A., Sala, N., Quam, R.M., Rodríguez,

466

L., García, R., García, N., Álvarez-Lao, D., Laplana, C., Huguet, R., Sevilla, P.,

AC C

EP

TE D

M AN U

SC

RI PT

448

23

ACCEPTED MANUSCRIPT Maldonado, E., Blain, H.A., Ruiz-Zapata, M.B., Sala, P., Gil-García, M.J., Uzquiano,

468

P., Pantoja, A., Márquez, B., 2012. Understanding the ancient habitats of the last-

469

interglacial (late MIS5) Neanderthals of central Iberia: paleoenvironmental and

470

taphonomic evidence from the Cueva del Camino (Spain) site, Quatern Int 275, 55-75.

471

Arsuaga, J.L., Carretero, J.M., Gracia, A., Martínez, I., 1990. Taphonomical analysis of

472

the human sample from the Sima de los Huesos Middle Pleistocene site

473

(Atapuerca/Ibeas, Spain), Hum Evol 5, 505-513.

474

Arsuaga, J.L., Martínez, I., Gracia, A., Carretero, J.M., Lorenzo, C., García, N., Ortega,

475

A.I., 1997. Sima de los Huesos (Sierra de Atapuerca, Spain). The site, J Hum Evol 33,

476

109-127.

477

Arsuaga, J.L., Martínez, I., Arnold, L.J., Aranburu, A., Gracia, A., Sharp, W.D., Quam,

478

R., Falguères, C., Pantoja, A., Bischoff, J., Poza-Rey, E., Parés, J.M., Carretero, J.M.,

479

Demuro, M., Lorenzo, C., Sala, N., Martinón-Torres, M., García, N., Alcázar de

480

Velasco, A., Cuenca-Bescós, G., Gómez-Olivencia, A., Moreno, D., Pablos, A., Shen,

481

C.C., Rodríguez, L., Ortega, A.I., García, R., Bonmatí, A., Bermúdez de Castro, J.M.,

482

Carbonell, E., 2014. Neandertal roots: Cranial and chronological evidence from Sima de

483

los Huesos, Science 344, 1358-1363.

484

Binford, L.R., 1981. Bones: ancient men and modern myths, Academic Press, London.

485

Brain, C.K., 1981. The hunters or the hunted? An introduction to African cave

486

taphonomy, University of Chicago Press.

AC C

EP

TE D

M AN U

SC

RI PT

467

24

ACCEPTED MANUSCRIPT Bunn, H.T., 1982. Meat-eating and human evolution: studies on the diet and subsistence

488

patterns of Plio-Pleistocene hominids in East Africa, University of California, Berkeley.

489

Bunn, H.T., 1983. Comparative analysis of modern bone assemblages from a San

490

hunter-gartherer camp in the Kalahari desert, Botswana and from spotted hyena den

491

near Nairobi, Kenya, in: Clutton-Brock, J., Grigson, C. (Eds.), Animals and

492

archaeology: Hunters and their prey, BAR International Series, Oxford, pp. 143-148.

493

Cáceres, I., Lozano, M., Saladié, P., 2007. Evidence for Bronze age cannibalism in El

494

Mirador Cave (Sierra de Atapuerca, Burgos, Spain), Am J Phys Anthropol 133, 899-

495

917.

496

Cuenca-Bescós, G., Laplana, C., Canudo, J.I., Arsuaga, J.L., 1997. Small mammals

497

from Sima de los Huesos, J Hum Evol 33, 175-190.

498

Cuenca-Bescós, G., García, N., 2007. Biostratigraphic succession of the Early and

499

Middle Pleistocene mammal faunas of the Atapuerca cave sites (Burgos, spain), Cour.

500

Forsch.-Inst. Senckenberg 259, 99-110.

501

Church, R.R., Lyman, R.L., 2003. Small fragments make small differences in efficiency

502

when rendering grease from fractured artiodactyl bones by boiling, J Archaeol Sci 30,

503

1077–1084.

504

Defleur, A., Doutour, O., Valladas, H., Vandermeersch, B., 1993. Cannibals among the

505

Neanderthals?, Nature 362, 214.

AC C

EP

TE D

M AN U

SC

RI PT

487

25

ACCEPTED MANUSCRIPT Defleur, A., White, T., Valensi, P., Slimak, L., Crégut-Bonnoure, É., 1999. Neanderthal

507

cannibalism at Moula-Guercy, Ardèche, France, Science 286, 128-131.

508

Evans, F.G., 1952. Stress and strain in the long bones of the lower extremity, Am Acad

509

Orthopaedic Surgeons 9, 264-271.

510

Evans, F.G., 1957. Stress and strain in Bones. Their relation to fractures and

511

osteogenesis, Charles C. Thomas, Springfield, Illinois.

512

Fernández-Jalvo, Y., Díez Fernández-Lomana, J.C., Bermúdez de Castro, J.M.,

513

Carbonell, E., Arsuaga, J.L., 1996. Evidence of early canibalism, Science 271, 269-270.

514

Fernández-Jalvo, Y., Díez, J.C., Cáceres, I., Rosell, J., 1999. Human cannibalism in the

515

Early Pleistocene of Europe (Gran Dolina, Sierra de Atapuerca, Burgos, Spain), J Hum

516

Evol 37, 591-622.

517

Fleming-Farrell, D., Michailidis, K., Karantanas, A., Roberts, N., Kranioti, E.F., 2013.

518

Virtual assessment of perimortem and postmortem blunt force cranial trauma, Forensic

519

Sci Int 229, 162.e161-162.e166.

520

García, N., Arsuaga, J.L., Torres, T., 1997. The carnivore remains from the Sima de los

521

Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain), J Hum Evol 33, 155-174.

AC C

EP

TE D

M AN U

SC

RI PT

506

26

ACCEPTED MANUSCRIPT García, N., Arsuaga, J.L., 2011. The Sima de los Huesos (Burgos, northern Spain):

523

palaeoenvironment and habitats of Homo heidelbergensis during the Middle

524

Pleistocene, Quat Sci Rev 30, 1413-1419.

525

Gifford-González, D.P., 1989. Ethnographic analogues for interpreting modified bones:

526

Some cases from East Africa, in: Bonnichsen, R., Sorg, M. (Eds.), Bone modification,

527

Center for the Study of the First Americans, Orono, Maine, pp. 179-246.

528

Gómez-Olivencia, A., Arsuaga, J.L., Carretero, J.M., Gracia, A., Martínez, I., 2012. The

529

trunk remains from Sima de los Huesos (Sierra de Atapuerca, Spain), 2nd Annual

530

Meeting of the European Society for the study of Human Evolution, Bordeaux (France),

531

p. 66.

532

Gracia-Téllez, A., Pablos, A., Martínez, I., Lorenzo, C., Carretero, J.M., Arsuaga, J.L.,

533

2012. Stress in a Middle Pleistocene hominid (Atapuerca, Spain): periosteal reaction

534

compatible with fatigue fracture in a metatarsal bone, 39th Annual Meeting of the

535

Paleopathology Association, Portland (Oregon - USA), p. 43.

536

Haglund, W.D., Reay, D.T., Swindler, D.R., 1988. Tooth mark artifacts and survival of

537

bones in animal scavenged human skeletons, J Forensic Sci 33, 985-997.

538

Haynes, G., 1983. Frequencies of spiral and green-bone fractures on ungulate limb

539

bones in modern surface assemblages., Am Antiq 48, 102-114.

AC C

EP

TE D

M AN U

SC

RI PT

522

27

ACCEPTED MANUSCRIPT Johnson, E., 1985. Current developments in bone technology, in: Schiffer, M.B. (Ed.),

541

Advances in Archaeological method and Theory, New York, pp. 157-235.

542

Karr, L.P., Outram, A.K., 2012. Tracking changes in bone fracture morphology over

543

time: environment, taphonomy, and the archaeological record, J Archaeol Sci 39, 555-

544

559.

545

Klein, R.G., Cruz-Uribe, K., 1984. The analysis of animal bones from archaeological

546

sites, The University of Chicago Press, Chicago, London.

547

Lyman, R.L., 1994. Vertebrate taphonomy, Cambridge University Press, Cambridge.

548

Morlan, R.E., 1984. Toward the definition of criteria for the recognition of artificial

549

bone alteration, Quarter Res 22, 160-171.

550

Myers, T.P., Voorhies, M.R., Corner, R.G., 1980. Spiral fractures and bone pseudotools

551

at paleontological sites, Am Antiq 45, 483-490.

552

Ortner, D., 2008. Differential diagnosis of skeletal injuries, in: Kimmerle, E.H.,

553

Baraybar, J.P. (Eds.), Skeletal trauma: identification of injuries resulting from human

554

rights abuse and armed conflict, pp. 21-86.

555

Outram, A.K., 2001. A new approach to identifying bone marrow and grease

556

exploitation: Why the ‘‘indeterminate’’ fragments should not be ignored, J Archaeol Sci

557

28, 401–410.

AC C

EP

TE D

M AN U

SC

RI PT

540

28

ACCEPTED MANUSCRIPT Outram, A.K., 2002. Bone fracture and within-bone nutrients: an experimentally based

559

method for investigating levels of marrow extraction, in: Miracle, P., Milner, N. (Eds.),

560

Consuming Passions and Patterns of Consumption, McDonald Institute for

561

Archaeological Research, Cambridge, pp. 51-64.

562

Outram, A.K., Knüsel, C.J., Knight, S., Harding, A.F., 2005. Understanding complex

563

fragmented assemblages of human and animal remains: a fully integrated approach, J

564

Archaeol Sci 32, 1699-1710.

565

Pablos, A., Martínez, I., Lorenzo, C., Gracia, A., Sala, N., Arsuaga, J.L., 2013. Human

566

talus bones from the Middle Pleistocene site of Sima de los Huesos (Sierra de

567

Atapuerca, Burgos, Spain), J Hum Evol 65, 79-92.

568

Pablos, A., Martínez, I., Lorenzo, C., Sala, N., Gracia-Telléz, A., Arsuaga, J.L., 2014.

569

Human calcanei from the Middle Pleistocene site of Sima de los Huesos (Sierra de

570

Atapuerca, Burgos, Spain), J. Hum. Evol. 2014, 1-14.

571

Pérez Ripoll, M., 1992. Marcas de carnicería, fracturas intencionadas y mordeduras de

572

carnívoros en huesos prehistóricos del Mediterráneo español, Instituto de Cultura "Juan

573

Gil-Albert", Alicante.

574

Petaros, A., Slaus, M., Coklo, M., Sosa, I., Cengija, M., Bosnar, A., 2013. Retrospective

575

analysis of free-fall fractures with regard to height and cause of fall, Forensic Sci Int

576

226, 290-295.

AC C

EP

TE D

M AN U

SC

RI PT

558

29

ACCEPTED MANUSCRIPT Pickering, T.R., Domínguez-Rodrigo, M., Egeland, C.P., Brain, C.K., 2005. The

578

contribution of limb bone fracture patterns to reconstructing early hominid behaviour at

579

Swartkrans cave (South Africa): archaeological application of a new analytical method,

580

Int J Osteoarchaeol 15, 247-260.

581

Quatrehomme, G., Iscan, M.Y., 1997. Postmortem skeletal lesions, Forensic Sci Int 89,

582

155-165.

583

Rosas, A., Martínez-Maza, C., Bastir, M., García-Tabernero, A., Lalueza-Fox, C.,

584

Huguet, R., Ortíz, J.E., Juliá, R., Soler, V., de Torres, T., Martínez, E., Cañaveras, J.C.,

585

Sánchez-Moral, S., Cuezva, S., Lario, J., Santamaría, D., de la Rasilla, M., Fortea, J.,

586

2006. Paleobiology and comparative morphology of a late Neandertal sample from El

587

Sidron, Asturias, Spain., Proc Natl Acad Sci 103, 19266-19271.

588

Russell, M.D., 1987. Bone breakage in the Krapina hominid collection, Am J Phys

589

Anthropol 72, 373-379.

590

Sala, N., 2012. Tafonomía de yacimientos kársticos de carnívoros en el Pleistoceno,

591

Departamento de Paleontología, Universidad Complutense de Madrid, Madrid, p. 751.

592

Sala, N., Algaba, M., Arsuaga, J.L., Aranburu, A., Pantoja, A., 2012. A Taphonomic

593

study of the Búho and Zarzamora caves. Hyenas and Humans in the Iberian Plateau

594

(Segovia, Spain) during the Late Pleistocene, J Taph 10, 477-497.

AC C

EP

TE D

M AN U

SC

RI PT

577

30

ACCEPTED MANUSCRIPT Sala, N., Arsuaga, J.L., 2013. Taphonomic studies with wild brown bears (Ursus arctos)

596

in the mountains of northern Spain, J Archaeol Sci 40, 1389-1396.

597

Sala, N., Arsuaga, J.L., Haynes, G., 2014a. Taphonomic comparison of bone

598

modifications caused by wild and captives wolves (Canis lupus), Quatern Int 330, 126-

599

135.

600

Sala, N., Arsuaga, J.L., Martínez, I., Gracia-Téllez, A., 2014b. Carnivore activity in the

601

Sima de los Huesos (Atapuerca, Spain) hominin sample, Quat Sci Rev 97, 71-83.

602

Saladié, P., Huguet, R., Díez, C., Rodríguez-Hidalgo, A., Cáceres, I., Vallverdú, J.,

603

Rosell, J., Bermúdez de Castro, J.M., Carbonell, E., 2011. Carcass transport decisions in

604

Homo antecessor subsistence strategies, J Hum Evol 61, 425-446.

605

Saladié, P., Huguet, R., Rodríguez-Hidalgo, A., Cáceres, I., Esteban-Nadal, M.,

606

Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., 2012. Intergroup cannibalism in

607

the European Early Pleistocene: The range expansion and imbalance of power

608

hypotheses, J Hum Evol 63, doi: 10.1016/j.jhevol.2012.1007.1004.

609

Saladié, P., Huguet, R., Díez, C., Rodríguez-Hidalgo, A., Carbonell, E., 2013.

610

Taphonomic modifications produced by modern brown bears (Ursus arctos), Int J

611

Osteoarchaeol 23, 13-33.

612

StatSoft, I., 2007. STATISTICA (data analysis software system), version 8.0. ed.,

613

www.statsoft.com.

AC C

EP

TE D

M AN U

SC

RI PT

595

31

ACCEPTED MANUSCRIPT Todd, L.C., Rapson, D.J., 1988. Long bone fragmentation and interpretation of faunal

615

assemblages: Approaches to comparative analysis, J Archaeol Sci 15, 307-325.

616

Ubelaker, D.H., Adams, B.J., 1995. Differentiation of perimortem and postmortem

617

trauma using taphonomic indicators J Forensic Sci 40, 509-512.

618

Villa, P., Mahieu, E., 1991. Breakage patterns of human long bones, J Hum Evol 21,

619

27-48.

620

Wheatley, B.P., 2008. Perimortem or postmortem bone fractures? An experimental

621

study of fracture patterns in deer femora, J Forensic Sci 53, 69-72.

M AN U

SC

RI PT

614

622 623

AC C

EP

TE D

624

32

ACCEPTED MANUSCRIPT

Tibia

Fibula

Metatarsal

Clavicle

Longitudinal

6 (8.4%)

3 (7.7%)

2 (1.9%)

5 (7.2%)

2 (4.3%)

Transversal Oblique

58 (81.7%) 7 (9.9%)

32 (82.0%) 4 (10.3%)

92 (90.2%) 8 (7.8%)

50 (72.5%) 14 (20.3%)

30 (65.2%) 14 (30.4%)

Right Acute/obtuse

46 (76.7%) 4 (6.7%)

31 (79.49%) 0 (0.00%)

90 (92.78%) 0 (0.00%)

31 (72.1%) 1 (2.3%)

Mixed Smooth

10 (16.7%) 0 (0.0%)

1 (2.6%) 0 (0.0%)

7 (7.22%) 0 (0.00%)

Jagged Mixed

53 (94.6%) 3 (5.4%)

29 (96.7%) 1 (3.3%)

3 (5.4%) 1 (1.8%)

SHAFT FRAGMENT

2: 1/4-1/2 3: 1/2-3/4 4: >3/4

12 (11.8%)

0 (0.0%)

2 (3.3%)

2 (5.4%)

TOTAL 33 (5.6%)

72 (70.6%) 18 (17.6%)

50 (82.0%) 11 (18.0%)

54 (90.0%) 4 (6.7%)

27 (73.0%) 8 (21.6%)

466 (79.4%) 88 (15.0%)

40 (100%) 0 (0.0%)

56 (84.85%) 0 (0.00%)

56 (96.5%) 0 (0.0%)

54 (98.2%) 0 (0.0%)

14 (66.7%) 0 (0.0%)

418 (88.7%) 5 (1.1%)

11 (25.6%) 1 (2.2%)

0 (0.0%) 0 (0.0%)

10 (15.1%) 0 (0.0%)

2 (3.4%) 0 (0.0%)

1 (1.8%) 2 (3.6%)

7 (33.3%) 0 (0.0%)

48 (10.2%) 3 (0.6%)

94 (96.9%) 3 (3.1%)

42 (93.3%) 2 (4.4%)

40 (100%) 0 (0.0%)

62 (93.9%) 4 (6.1%)

59 (100%) 0 (0.0%)

53 (96.4%) 0 (0.0%)

21 (87.5%) 3 (12.5%)

453 (96.0%) 16 (3.4%)

3 (9.4%) 6 (18.7%)

0 (0.0%) 3 (3.1%)

1 (2.7%) 3 (8.1%)

1 (2.5%) 1 (2.5%)

3 (4.5%) 2 (3.0%)

0 (0.0%) 1 (1.7%)

1 (1.9%) 1 (1.9%)

0 (0.0%) 4 (11.4%)

12 (2.5%) 22 (4.6%)

52 (92.9%) 19 (32.8%)

23 (71.9%) 19 (59.4%)

94 (96.9%) 76 (78.3%)

33 (89.2%) 10 (27.0%)

38 (95.0%) 25 (62.5%)

61 (92.4%) 36 (54.5%)

58 (98.3%) 41 (69.5%)

51 (96.2%) 29 (54.7%)

31 (88.6%) 5 (14.3%)

441 (92.8%) 260 (54.5%)

30 (51.7%) 9 (15.5%)

10 (31.2%) 3 (9.4%)

17 (17.5%) 4 (4.1%)

14 (37.8%) 11 (29.7%)

11 (27.5%) 4 (10.0%)

23 (34.8%) 6 (9.1%)

12 (20.3%) 6 (10.2%)

12 (22.6%) 9 (17.0%)

7 (20.0%) 9 (25.7%)

136 (28.5%) 61 (12.8%)

0 (0.0%)

0 (0.0%)

0 (0.0%)

2 (5.4%)

0 (0.0%)

1 (1.5%)

0 (0.0%)

3 (5.7%)

14 (40.0%)

20 (4.2%)

M AN U

1: < 1/2 SHAFT CIRCUMFERENCE 2: > 1/2 3: Complete 1: <1/4

Metacarpal

TE D

FRACTURE EDGE

Ulna

EP

FRACTURE ANGLE

Radius

AC C

FRACTURE OUTLINE

Humerus

SC

Femur

%NISP

RI PT

Table 1

1

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT Highlights The Sima de los Huesos hominin sample exhibits fractures at a very high frequency. The fracture analysis suggests that the main fracturation occurred after burial, caused by sediment pressure.

AC C

EP

TE D

M AN U

SC

RI PT

The SH hominin long bones exhibit a fracture pattern compatible with collective burial assemblages.

ACCEPTED MANUSCRIPT Inventory of human bones analysed Inventory of femur fragments analysed AT‐136 AT‐153 AT‐431 AT‐432 AT‐434 AT‐449 AT‐463 AT‐473

AT‐612 AT‐613 AT‐616 AT‐617 AT‐665 AT‐844 AT‐845 AT‐851

AT‐854 AT‐855 AT‐857 AT‐999 AT‐1010 AT‐1020 AT‐1030 AT‐1039

AT‐1040 AT‐1042 AT‐1048 AT‐1052 AT‐1450 AT‐1520 AT‐1528 AT‐1529

AT‐085 AT‐091 AT‐119 AT‐328

AT‐438 AT‐439 AT‐440 AT‐647

AT‐836 AT‐837 AT‐838

AT‐1037 AT‐1046 AT‐1062

AT‐309 AT‐351 AT‐352 AT‐353 AT‐354 AT‐355 AT‐356 AT‐475 AT‐484 AT‐880 AT‐884 AT‐886

AT‐1058 AT‐1059 AT‐1065 AT‐1066 AT‐1067 AT‐1068 AT‐1074 AT‐1075 AT‐1076 AT‐1203 AT‐1251 AT‐1252

AT‐1255 AT‐1519 AT‐1532 AT‐1577 AT‐1578 AT‐1584a AT‐1624 AT‐1650 AT‐1677 AT‐1708 AT‐1724 AT‐1737

AT‐350 AT‐408 AT‐411 AT‐415 AT‐417 AT‐422 AT‐427 AT‐443 AT‐445 AT‐500 AT‐501 AT‐512 AT‐571 AT‐657 AT‐659

AT‐668 AT‐708 AT‐730 AT‐800 AT‐830 AT‐831 AT‐832 AT‐833 AT‐834 AT‐835 AT‐1001 AT‐1004 AT‐1006 AT‐1533 AT‐1534

AT‐1535 AT‐1579 AT‐1581 AT‐1583 AT‐1617 AT‐1649 AT‐1692 AT‐1693 AT‐1697 AT‐1699 AT‐1701 AT‐1706 AT‐1709 AT‐1721 AT‐1734

AT‐1530 AT‐1531 AT‐1538 AT‐1582 AT‐1769 AT‐1770 AT‐1795 AT‐1800

AT‐1802 AT‐1809 AT‐1812 AT‐1879 AT‐1882 AT‐1925 AT‐1963 AT‐1972

AT‐2029 AT‐2033 AT‐2067 AT‐2068 AT‐2089 AT‐2091 AT‐2094 AT‐2118

AT‐2157 AT‐2163 AT‐2230 AT‐2240 AT‐2344 AT‐2460 AT‐2461 AT‐2470

AT‐2554 AT‐2943 AT‐2944 AT‐2968 AT‐3207 AT‐3311 AT‐3855 AT‐4030

AT‐4033 AT‐4379 AT‐4724 AT‐4832 AT‐6213

AT‐2173 AT‐2199 AT‐2213

AT‐2482 AT‐2550 AT‐3858

AT‐3859 AT‐3997 AT‐4820

AT‐4726 AT‐4727 AT‐4728 AT‐4729 AT‐4730 AT‐4731 AT‐4732 AT‐4733 AT‐4734 AT‐4735 AT‐4736 AT‐4738

AT‐4740 AT‐4744 AT‐4745 AT‐4846 AT‐5165 AT‐5167 AT‐5217 AT‐5245 AT‐5542 AT‐5600 AT‐5601 AT‐5623

AT‐5660 AT‐5756 AT‐6187

AT‐4284 AT‐4291 AT‐4292 AT‐4299 AT‐4346 AT‐4352 AT‐4353 AT‐4497 AT‐4510 AT‐4562 AT‐4575 AT‐4687 AT‐4692 AT‐4720 AT‐5574

AT‐5588 AT‐5591 AT‐5592 AT‐5595 AT‐5789 AT‐6231 AT‐6233 AT‐6234 AT‐6235 AT‐6236 AT‐6237 AT‐6238

AT‐1070 AT‐1071 AT‐1073

AT‐1079 AT‐1080 AT‐1081

AT‐1083 AT‐2129 AT‐2134

Inventory of fibula fragments analysed AT‐3306 AT‐3307 AT‐3309 AT‐3310 AT‐3324 AT‐3659 AT‐3960 AT‐3967 AT‐3968 AT‐3989 AT‐3996 AT‐4035

AT‐4247 AT‐4254 AT‐4294 AT‐4382 AT‐4386 AT‐4389 AT‐4390 AT‐4393 AT‐4396 AT‐4512 AT‐4539 AT‐4541

SC

AT‐2648 AT‐2954 AT‐2957 AT‐2972 AT‐2973 AT‐2974 AT‐3078 AT‐3082 AT‐3086 AT‐3219 AT‐3304 AT‐3305

M AN U

AT‐1739 AT‐1806 AT‐1811 AT‐1936 AT‐1961 AT‐1984 AT‐1988 AT‐2469 AT‐2475 AT‐2484 AT‐2561 AT‐2562

RI PT

Inventory of tibia fragments analysed

Inventory of innominate bone fragments analysed AT‐2060 AT‐2116 AT‐2142 AT‐2235 AT‐2291 AT‐2346 AT‐2350 AT‐2410 AT‐2500 AT‐2501 AT‐2502 AT‐2503 AT‐2504 AT‐2505 AT‐2506

AC C

EP

TE D

AT‐1749 AT‐1785 AT‐1796 AT‐1799 AT‐1819 AT‐1915 AT‐1921 AT‐1927 AT‐1928 AT‐1939 AT‐1968 AT‐1974 AT‐1992 AT‐2019 AT‐2028

AT‐2507 AT‐2508 AT‐2698 AT‐2945 AT‐2947 AT‐2965 AT‐2966 AT‐2970 AT‐2975 AT‐2976 AT‐3069 AT‐3070 AT‐3089 AT‐3287 AT‐3298

AT‐3299 AT‐3300 AT‐3453 AT‐3454 AT‐3456 AT‐3495 AT‐3496 AT‐3497 AT‐3499 AT‐3761 AT‐3762 AT‐3807 AT‐3808 AT‐3809 AT‐3810

AT‐3811 AT‐3812 AT‐3813 AT‐3814 AT‐3815 AT‐3816 AT‐3817 AT‐3818 AT‐3819 AT‐3820 AT‐3821 AT‐3824 AT‐4183 AT‐4197 AT‐4214

ACCEPTED MANUSCRIPT Inventory of carpal and tarsal bone fragments analysed AT‐859 AT‐860 AT‐861 AT‐862 AT‐864 AT‐964 AT‐965 AT‐966 AT‐967 AT‐969 AT‐970 AT‐972 AT‐973 AT‐974 AT‐975

AT‐976 AT‐979 AT‐981 AT‐982 AT‐983 AT‐984 AT‐985 AT‐986 AT‐998 AT‐1012 AT‐1013 AT‐1201 AT‐1206 AT‐1322 AT‐1328

AT‐252 AT‐253 AT‐341 AT‐483 AT‐502 AT‐503 AT‐504 AT‐534 AT‐698 AT‐703 AT‐704 AT‐863

AT‐977 AT‐978 AT‐987 AT‐988 AT‐989 AT‐990 AT‐991 AT‐992 AT‐993 AT‐994 AT‐996 AT‐997

AT‐1015 AT‐1016 AT‐1125 AT‐1138 AT‐1149 AT‐1199 AT‐1308 AT‐1391 AT‐1443 AT‐1445 AT‐1508 AT‐1639

AT‐80 AT‐87 AT‐88 AT‐96 AT‐99 AT‐109 AT‐110 AT‐111 AT‐112 AT‐114 AT‐115 AT‐120 AT‐134 AT‐135 AT‐159 AT‐160 AT‐190 AT‐192 AT‐214 AT‐265 AT‐513 AT‐514 AT‐516 AT‐521 AT‐522 AT‐523 AT‐524

AT‐525 AT‐526 AT‐527 AT‐538 AT‐541 AT‐543 AT‐545 AT‐546 AT‐577 AT‐579 AT‐674 AT‐678 AT‐679 AT‐680 AT‐681 AT‐685 AT‐687 AT‐701 AT‐722 AT‐761 AT‐762 AT‐898 AT‐899 AT‐900 AT‐902 AT‐903 AT‐904

AT‐905 AT‐906 AT‐907 AT‐908 AT‐911 AT‐913 AT‐914 AT‐915 AT‐918 AT‐920 AT‐921 AT‐935 AT‐1025 AT‐1028 AT‐1031 AT‐1032 AT‐1033 AT‐1034 AT‐1041 AT‐1181 AT‐1188 AT‐1202 AT‐1285 AT‐1303 AT‐1324 AT‐1347 AT‐1349

AT‐1329 AT‐1339 AT‐1341 AT‐1342 AT‐1348 AT‐1392 AT‐1393 AT‐1477 AT‐1480 AT‐1498 AT‐1509 AT‐1512 AT‐1566 AT‐1576 AT‐1622

AT‐1645 AT‐1651 AT‐1658 AT‐1679 AT‐1694 AT‐1696 AT‐1700 AT‐1716 AT‐1740 AT‐1786 AT‐1789 AT‐1822 AT‐1832 AT‐1869 AT‐1930

AT‐1931 AT‐1971 AT‐2001 AT‐2185 AT‐2209 AT‐2345 AT‐2466 AT‐2467 AT‐2495 AT‐2497 AT‐2509 AT‐2557 AT‐2716 AT‐2717 AT‐2718

AT‐2741 AT‐2751 AT‐2803 AT‐2815 AT‐2816 AT‐2824 AT‐2833 AT‐2844 AT‐3130 AT‐3131 AT‐3132 AT‐3133 AT‐3134 AT‐3135 AT‐3136

AT‐3137 AT‐3138 AT‐3139 AT‐3140 AT‐3141 AT‐3269 AT‐3360 AT‐3771 AT‐3772 AT‐4182 AT‐4209 AT‐4285 AT‐4425 AT‐4426 AT‐4433

AT‐4435 AT‐4436 AT‐4440 AT‐4444 AT‐4445 AT‐4476 AT‐4500 AT‐4617 AT‐4712 AT‐4805 AT‐4982 AT‐5512 AT‐5639 AT‐5651 AT‐5569

AT‐5570 AT‐5571 AT‐5572 AT‐5709 AT‐6677 AT‐6186 AT‐6463 AT‐6466

AT‐4442 AT‐4451 AT‐4488 AT‐4533 AT‐4565 AT‐4706 AT‐4707 AT‐4773 AT‐4775 AT‐4776 AT‐4811 AT‐4819

AT‐5580 AT‐5582 AT‐5681 AT‐586 AT‐6193 AT‐6433 AT‐6434 AT‐6435 AT‐6475 AT‐6504 AT‐6505

AT‐4438 AT‐4439 AT‐4447 AT‐4449 AT‐4450 AT‐4452 AT‐4454 AT‐4455 AT‐4458 AT‐4459 AT‐4462 AT‐4463 AT‐4464 AT‐4467 AT‐4468 AT‐4469 AT‐4470 AT‐4472 AT‐4479 AT‐4481 AT‐4482 AT‐4485 AT‐4486 AT‐4487 AT‐4631 AT‐4633 AT‐4704

AT‐4711 AT‐4713 AT‐4715 AT‐5513 AT‐5612 AT‐5645 AT‐5657 AT‐5688 AT‐6457 AT‐6480 AT‐6481 AT‐6482 AT‐6483 AT‐6486 AT‐6488 AT‐6489 AT‐6490 AT‐6493

RI PT

AT‐ 971 AT‐ 980 AT‐319 AT‐339 AT‐423 AT‐458 AT‐490 AT‐492 AT‐575 AT‐663 AT‐702 AT‐705 AT‐707 AT‐709 AT‐710

Inventory of metatarsal bone fragments analysed AT‐2710 AT‐2711 AT‐2712 AT‐2713 AT‐2714 AT‐2715 AT‐2785 AT‐2808 AT‐2825 AT‐2826 AT‐2827 AT‐2828

AT‐2837 AT‐2842 AT‐2845 AT‐2865 AT‐308 AT‐3142 AT‐3143 AT‐3144 AT‐3145 AT‐3171 AT‐3172 AT‐3173

AT‐3174 AT‐3200 AT‐3208 AT‐3209 AT‐3210 AT‐3368 AT‐340 AT‐3467 AT‐4295 AT‐4424 AT‐4430 AT‐4441

SC

AT‐2141 AT‐2158 AT‐2159 AT‐2181 AT‐2262 AT‐2265 AT‐2306 AT‐2373 AT‐2494 AT‐2496 AT‐2518 AT‐2534

M AN U

AT‐1659 AT‐1660 AT‐1711 AT‐1727 AT‐1823 AT‐1834 AT‐1872 AT‐1966 AT‐1970 AT‐1997 AT‐2005 AT‐2014

Inventory of foot phalanx bone fragments analysed AT‐1488 AT‐1490 AT‐1503 AT‐1507 AT‐1510 AT‐1511 AT‐1517 AT‐1518 AT‐1525 AT‐1644 AT‐1652 AT‐1653 AT‐1656 AT‐1657 AT‐1684 AT‐1703 AT‐1736 AT‐1767 AT‐1820 AT‐1841 AT‐1878 AT‐1888 AT‐1933 AT‐1938 AT‐1964 AT‐2002 AT‐2003

AC C

EP

TE D

AT‐1355 AT‐1356 AT‐1357 AT‐1361 AT‐1394 AT‐1395 AT‐1421 AT‐1430 AT‐1431 AT‐1432 AT‐1433 AT‐1434 AT‐1435 AT‐1436 AT‐1437 AT‐1438 AT‐1439 AT‐1440 AT‐1441 AT‐1442 AT‐1454 AT‐1455 AT‐1456 AT‐1457 AT‐1476 AT‐1481 AT‐1482

AT‐2004 AT‐2006 AT‐2007 AT‐2009 AT‐2010 AT‐2011 AT‐2012 AT‐2016 AT‐2017 AT‐2018 AT‐2035 AT‐2107 AT‐2180 AT‐2183 AT‐2238 AT‐2287 AT‐2305 AT‐2310 AT‐2311 AT‐2352 AT‐2360 AT‐2371 AT‐2372 AT‐2415 AT‐2416 AT‐2417 AT‐2418

AT‐2419 AT‐2420 AT‐2499 AT‐2519 AT‐2527 AT‐2529 AT‐2538 AT‐2576 AT‐2579 AT‐2726 AT‐2727 AT‐2735 AT‐2744 AT‐2745 AT‐2801 AT‐2802 AT‐2804 AT‐2805 AT‐2807 AT‐2812 AT‐2814 AT‐2817 AT‐2818 AT‐2820 AT‐2821 AT‐2822 AT‐2829

AT‐2832 AT‐2847 AT‐2866 AT‐2869 AT‐2934 AT‐3146 AT‐3147 AT‐3149 AT‐3214 AT‐3215 AT‐3266 AT‐3267 AT‐3469 AT‐3470 AT‐3478 AT‐3482 AT‐3483 AT‐3773 AT‐3774 AT‐3775 AT‐3776 AT‐3777 AT‐4228 AT‐4414 AT‐4419 AT‐4423 AT‐4437

ACCEPTED MANUSCRIPT Inventory of vertebral fragments analysed AT‐2117 AT‐2201 AT‐2289 AT‐2465 AT‐2578 AT‐2582 AT‐2585 AT‐2586 AT‐2673 AT‐2674 AT‐2675 AT‐2853 AT‐2861 AT‐2883 AT‐3010 AT‐3012 AT‐3015 AT‐3025 AT‐3038 AT‐3041 AT‐3048

AT‐3049 AT‐3060 AT‐3068 AT‐3087 AT‐325a AT‐325b AT‐3325 AT‐3326 AT‐3327 AT‐3328 AT‐3329 AT‐3330 AT‐3331 AT‐3333 AT‐3334 AT‐3337 AT‐3339 AT‐3340 AT‐3341 AT‐3342 AT‐3343

AT‐327 AT‐358 AT‐462 AT‐585 AT‐1235 AT‐1236 AT‐1237 AT‐1238 AT‐1239 AT‐1241 AT‐1242 AT‐1245 AT‐1246 AT‐1247 AT‐1248 AT‐1249 AT‐1250 AT‐1917 AT‐1920 AT‐1923

AT‐1924 AT‐1926 AT‐1934 AT‐2626 AT‐2629 AT‐2632 AT‐2633 AT‐2637 AT‐2641 AT‐2642 AT‐2643 AT‐2646 AT‐2652 AT‐2661 AT‐2663 AT‐2664 AT‐2665 AT‐2670 AT‐2703 AT‐2983

AT‐2984 AT‐2985 AT‐2986 AT‐2988 AT‐2989 AT‐2990 AT‐2994 AT‐2995 AT‐2996 AT‐2998 AT‐3008 AT‐3019 AT‐3030 AT‐3031 AT‐3032 AT‐3033 AT‐3034 AT‐3037 AT‐3053 AT‐3067

AT‐3077 AT‐3249 AT‐3394 AT‐3395 AT‐3520 AT‐3521 AT‐3529 AT‐3531 AT‐3539 AT‐3540 AT‐3541 AT‐3542 AT‐3545 AT‐3554 AT‐3555 AT‐3556 AT‐3557 AT‐3559 AT‐3560 AT‐3570

AT‐3344 AT‐3345 AT‐3346 AT‐3347 AT‐3348 AT‐3349 AT‐3350 AT‐3351 AT‐3352 AT‐3353 AT‐3354 AT‐3355 AT‐3370 AT‐3371 AT‐3372 AT‐3373 AT‐3374 AT‐3375 AT‐3377 AT‐3378 AT‐3379

AT‐3387 AT‐3679 AT‐3680 AT‐3681 AT‐3682 AT‐3684 AT‐3688 AT‐3689 AT‐3690 AT‐3696 AT‐3701 AT‐3702 AT‐3703 AT‐3707 AT‐3708 AT‐3709 AT‐3710 AT‐3715 AT‐3716 AT‐3717 AT‐3719

AT‐3720 AT‐3721 AT‐3722 AT‐3725 AT‐3726 AT‐3728 AT‐3730 AT‐3731 AT‐3732 AT‐3738 AT‐3740 AT‐3741 AT‐3742 AT‐3744 AT‐3840 AT‐3841 AT‐3842 AT‐3843 AT‐3844 AT‐3845 AT‐3846

AT‐3847 AT‐3848 AT‐3849 AT‐3850 AT‐3851 AT‐3852 AT‐3854 AT‐3956 AT‐3957 AT‐3973 AT‐3976 AT‐3979 AT‐3980 AT‐3982 AT‐3983 AT‐3991 AT‐4039 AT‐4045 AT‐4046 AT‐4050 AT‐4051

AT‐4187 AT‐4188 AT‐4198 AT‐4199 AT‐4224 AT‐4305 AT‐4311 AT‐4312 AT‐4314 AT‐4491 AT‐4492 AT‐4622 AT‐4634 AT‐4643 AT‐4662 AT‐4673 AT‐4694 AT‐4759 AT‐4881 AT‐4886

AT‐4903 AT‐4904 AT‐4910 AT‐5037 AT‐5202 AT‐5578 AT‐5619 AT‐5673 AT‐5687 AT‐5689 AT‐5697 AT‐5700 AT‐5944 AT‐5966 AT‐5979 AT‐6007 AT‐6050 AT‐6130 AT‐6173 AT‐6175

AT‐4807 AT‐4838 AT‐4844 AT‐4850 AT‐4852 AT‐4855 AT‐4856 AT‐4859 AT‐4952 AT‐5125 AT‐5181 AT‐5183 AT‐5192 AT‐5212 AT‐5233 AT‐5234 AT‐5265 AT‐5281 AT‐5584 AT‐5596

AT‐5617 AT‐5624 AT‐5630 AT‐5631 AT‐5632 AT‐5633 AT‐5653 AT‐5655 AT‐5661 AT‐5698 AT‐5759 AT‐5760 AT‐5762 AT‐5763 AT‐5764 AT‐5775 AT‐5777 AT‐5784 AT‐5904 AT‐5905

AT‐5908 AT‐5911 AT‐5921 AT‐5955 AT‐6016 AT‐6020 AT‐6028 AT‐6053 AT‐6072 AT‐6081 AT‐6086 AT‐6108 AT‐6112 AT‐6113 AT‐6131 AT‐6133 AT‐6136

AT‐3828 AT‐3829 AT‐3831 AT‐3833 AT‐3834 AT‐3835 AT‐3836

AT‐3904 AT‐3951 AT‐3993 AT‐4202 AT‐4287 AT‐4349 AT‐4761

AT‐4818 AT‐5590 AT‐5788 AT‐6730

AT‐4178 AT‐4223 AT‐4298 AT‐4746

AT‐4768 AT‐4771 AT‐4772 AT‐4849

AT‐5140 AT‐5259 AT‐5607 AT‐5810

RI PT

AT‐1554 AT‐1555 AT‐1556 AT‐1557 AT‐1559 AT‐1569 AT‐1573 AT‐1609 AT‐1683 AT‐1686 AT‐1741 AT‐1742 AT‐1743 AT‐1744 AT‐1792 AT‐1793 AT‐1803 AT‐1817 AT‐1980 AT‐2063 AT‐2083

SC

AT‐150 AT‐261 AT‐311 AT‐315 AT‐321 AT‐532 AT‐565 AT‐714 AT‐769 AT‐865 AT‐866 AT‐867 AT‐868 AT‐869 AT‐870 AT‐875 AT‐1129 AT‐1131 AT‐1140 AT‐1225 AT‐1553

Inventory of ribs fragments analysed AT‐3632 AT‐3636 AT‐3637 AT‐3639 AT‐3647 AT‐3649 AT‐3652 AT‐3655 AT‐3657 AT‐3660 AT‐3663 AT‐3668 AT‐3669 AT‐3670 AT‐3671 AT‐3676 AT‐3749 AT‐3751 AT‐3752 AT‐3753

AT‐3757 AT‐3766 AT‐3868 AT‐3872 AT‐4040 AT‐4099 AT‐4242 AT‐4244 AT‐4248 AT‐4252 AT‐4253 AT‐4255 AT‐4258 AT‐4259 AT‐4260 AT‐4261 AT‐4266 AT‐4293 AT‐4494 AT‐4498

TE D

M AN U

AT‐3571 AT‐3573 AT‐3576 AT‐3577 AT‐3580 AT‐3585 AT‐3588 AT‐3592 AT‐3597 AT‐3598 AT‐3600 AT‐3605 AT‐3607 AT‐3609 AT‐3610 AT‐3612 AT‐3614 AT‐3617 AT‐3619 AT‐3621

EP

Inventory of scapular fragments analysed

AT‐583 AT‐713 AT‐749 AT‐794 AT‐801 AT‐1126 AT‐1127

AT‐1152 AT‐1154 AT‐1253 AT‐1256 AT‐1257 AT‐1575 AT‐1670

AT‐550 AT‐717 AT‐799 AT‐1093 AT‐1106

AT‐1119 AT‐1145 AT‐1146 AT‐1254

AC C

AT‐246 AT‐316 AT‐320 AT‐342 AT‐343 AT‐487 AT‐566

AT‐247 AT‐249 AT‐344 AT‐345 AT‐346

AT‐1671 AT‐1717 AT‐1720 AT‐1733 AT‐1750 AT‐1780 AT‐1791

AT‐1873 AT‐1902 AT‐2122 AT‐2205 AT‐2329 AT‐2462 AT‐2463

AT‐2471 AT‐2571 AT‐2654 AT‐2930 AT‐2941 AT‐2942 AT‐2949

AT‐2950 AT‐2964 AT‐2977 AT‐3202 AT‐3203 AT‐3291 AT‐3764

Inventory of clavicles fragments analysed AT‐1259 AT‐1407 AT‐1589 AT‐1910

AT‐2127 AT‐2203 AT‐2333 AT‐2481

AT‐2649 AT‐2754 AT‐3288 AT‐3289

AT‐3292 AT‐3760 AT‐3838 AT‐4177

ACCEPTED MANUSCRIPT Inventory of humerus fragments analysed AT‐025 AT‐069 AT‐093 AT‐217 AT‐268 AT‐332 AT‐333 AT‐464 AT‐474

AT‐658 AT‐660 AT‐661 AT‐740 AT‐741 AT‐742 AT‐743 AT‐744 AT‐745

AT‐789 AT‐790 AT‐791 AT‐1084 AT‐1089 AT‐1094 AT‐1095 AT‐1096 AT‐1101

AT‐1102 AT‐1103 AT‐1107 AT‐1108 AT‐1110 AT‐1112 AT‐1113 AT‐1114 AT‐1116

AT‐251 AT‐347 AT‐348 AT‐477 AT‐753 AT‐795 AT‐802

AT‐887 AT‐1087 AT‐1090 AT‐1091 AT‐1092 AT‐1097 AT‐1109

AT‐1260 AT‐1261 AT‐1262 AT‐1330 AT‐1702 AT‐1747

AT‐1782 AT‐1833 AT‐1874 AT‐1932 AT‐2026 AT‐2032

AT‐218 AT‐248 AT‐254 AT‐476 AT‐488 AT‐662

AT‐669 AT‐796 AT‐798 AT‐883 AT‐1085 AT‐1086

AT‐1098 AT‐1099 AT‐1104 AT‐1105 AT‐1120 AT‐1266

AT‐1267 AT‐1270 AT‐1514 AT‐1587 AT‐1674 AT‐1675

AT‐547 AT‐548 AT‐689 AT‐936 AT‐968 AT‐995 AT‐1014 AT‐1142 AT‐1207

AT‐1273 AT‐1276 AT‐1290 AT‐1295 AT‐1300 AT‐1306 AT‐1318 AT‐1320 AT‐1336

AT‐1337 AT‐1338 AT‐1344 AT‐1362 AT‐1363 AT‐1371 AT‐1372 AT‐1397 AT‐1408

AT‐49 AT‐78 AT‐81 AT‐89 AT‐94 AT‐95 AT‐97 AT‐108 AT‐116 AT‐117 AT‐189 AT‐191 AT‐259 AT‐264 AT‐266 AT‐267 AT‐288 AT‐289 AT‐290 AT‐292 AT‐293 AT‐294 AT‐295 AT‐297 AT‐298 AT‐305 AT‐480

AT‐515 AT‐517 AT‐518 AT‐519 AT‐520 AT‐529 AT‐542 AT‐544 AT‐551 AT‐552 AT‐574 AT‐672 AT‐673 AT‐675 AT‐676 AT‐677 AT‐682 AT‐683 AT‐684 AT‐690 AT‐691 AT‐692 AT‐693 AT‐694 AT‐695 AT‐696 AT‐697

AT‐699 AT‐747 AT‐752 AT‐878 AT‐890 AT‐891 AT‐892 AT‐893 AT‐895 AT‐896 AT‐897 AT‐901 AT‐909 AT‐912 AT‐916 AT‐917 AT‐924 AT‐1007 AT‐1017 AT‐1018 AT‐1021 AT‐1022 AT‐1023 AT‐1024 AT‐1026 AT‐1027 AT‐1029

AT‐1117 AT‐1148 AT‐1268 AT‐1269 AT‐1691 AT‐1787 AT‐1801 AT‐1808 AT‐1813

AT‐1967 AT‐1999 AT‐2046 AT‐2052 AT‐2097 AT‐2200 AT‐2204 AT‐2357 AT‐2431

AT‐2468 AT‐2563 AT‐2564 AT‐2574 AT‐2580 AT‐2946 AT‐2951 AT‐2952 AT‐2967

AT‐3493 AT‐3494 AT‐3861 AT‐3986 AT‐4023 AT‐4024 AT‐4025 AT‐4095 AT‐4167

AT‐4169 AT‐4170 AT‐4175 AT‐4180 AT‐4181 AT‐4184 AT‐4315 AT‐4316 AT‐4499

AT‐4503 AT‐4625 AT‐4699 AT‐5142 AT‐5605 AT‐5635

AT‐3278 AT‐3279 AT‐3280 AT‐3281 AT‐3282 AT‐3283

AT‐4166 AT‐4174 AT‐4206 AT‐4216 AT‐4723 AT‐4739

AT‐4836 AT‐5135 AT‐5581 AT‐5625 AT‐5641 AT‐6184

AT‐3959 AT‐3984 AT‐3998 AT‐4022 AT‐4171 AT‐4172

AT‐4173 AT‐4176 AT‐4207 AT‐4281 AT‐4653 AT‐4737

AT‐4981 AT‐5001 AT‐5002 AT‐5791

AT‐3271 AT‐3359 AT‐3362 AT‐3466 AT‐3488 AT‐4420 AT‐4434 AT‐4477 AT‐4601

AT‐4774 AT‐5565 AT‐5566 AT‐5567 AT‐5568 AT‐5618 AT‐5626 AT‐5690

AT‐2871 AT‐3108 AT‐3109 AT‐3114 AT‐3115 AT‐3116 AT‐3118 AT‐3121 AT‐3124 AT‐3129 AT‐3152 AT‐3154 AT‐3161 AT‐3166 AT‐3167 AT‐3168 AT‐3170 AT‐3264 AT‐3265 AT‐3270 AT‐3296 AT‐3500 AT‐3800 AT‐4411 AT‐4421 AT‐4422 AT‐4428

AT‐4431 AT‐4432 AT‐4446 AT‐4453 AT‐4456 AT‐4460 AT‐4461 AT‐4465 AT‐4466 AT‐4471 AT‐4473 AT‐4475 AT‐4478 AT‐4480 AT‐4484 AT‐4621 AT‐4648 AT‐4716 AT‐4817 AT‐5017 AT‐5620 AT‐5644 AT‐6188 AT‐6196 AT‐6217 AT‐6674 AT‐6688

AT‐2474 AT‐2483 AT‐2487 AT‐2488 AT‐2493 AT‐2498

AT‐2569 AT‐2575 AT‐2685 AT‐2686 AT‐2742 AT‐2864

AT‐2953 AT‐2959 AT‐2960 AT‐2961 AT‐3079 AT‐3277

RI PT

Inventory of radius fragments analysed

Inventory of ulna fragments analysed AT‐2560 AT‐2573 AT‐2650 AT‐2962 AT‐3284 AT‐3286

AT‐3308 AT‐3581 AT‐3629 AT‐3860 AT‐3863 AT‐3864

SC

AT‐1788 AT‐1929 AT‐2184 AT‐2198 AT‐2480 AT‐2559

M AN U

Inventory of metacarpal fragments analysed AT‐1409 AT‐1410 AT‐1411 AT‐1494 AT‐1524 AT‐1564 AT‐1567 AT‐1584 AT‐1641

AT‐1655 AT‐1687 AT‐1772 AT‐1835 AT‐1842 AT‐1870 AT‐1871 AT‐1887 AT‐1982

AT‐2242 AT‐2288 AT‐2492 AT‐2511 AT‐2512 AT‐2555 AT‐2556 AT‐2581 AT‐2622

AT‐2653 AT‐2689 AT‐2756 AT‐2793 AT‐2795 AT‐2797 AT‐2799 AT‐2800 AT‐2839

AT‐2843 AT‐2848 AT‐2933 AT‐2936 AT‐3104 AT‐3106 AT‐3127 AT‐3128 AT‐3165

Inventory of hand phalanx bone fragments analysed AT‐1327 AT‐1332 AT‐1333 AT‐1334 AT‐1353 AT‐1367 AT‐1373 AT‐1374 AT‐1377 AT‐1378 AT‐1383 AT‐1384 AT‐1385 AT‐1386 AT‐1387 AT‐1389 AT‐1390 AT‐1412 AT‐1413 AT‐1414 AT‐1415 AT‐1416 AT‐1417 AT‐1423 AT‐1424 AT‐1485 AT‐1487

AC C

EP

TE D

AT‐1035 AT‐1036 AT‐1277 AT‐1278 AT‐1279 AT‐1280 AT‐1281 AT‐1282 AT‐1283 AT‐1284 AT‐1287 AT‐1289 AT‐1291 AT‐1292 AT‐1293 AT‐1294 AT‐1296 AT‐1297 AT‐1298 AT‐1299 AT‐1301 AT‐1302 AT‐1304 AT‐1312 AT‐1316 AT‐1325 AT‐1326

AT‐1489 AT‐1521 AT‐1523 AT‐1611 AT‐1638 AT‐1643 AT‐1647 AT‐1654 AT‐1669 AT‐1690 AT‐1695 AT‐1730 AT‐1745 AT‐1804 AT‐1827 AT‐1831 AT‐1940 AT‐1977 AT‐1978 AT‐1981 AT‐1989 AT‐1994 AT‐1996 AT‐1998 AT‐2182 AT‐2190 AT‐2294

AT‐2312 AT‐2313 AT‐2314 AT‐2315 AT‐2316 AT‐2317 AT‐2359 AT‐2361 AT‐2362 AT‐2364 AT‐2365 AT‐2366 AT‐2367 AT‐2369 AT‐2370 AT‐2413 AT‐2421 AT‐2422 AT‐2423 AT‐2424 AT‐2478 AT‐2479 AT‐2485 AT‐2520 AT‐2521 AT‐2523 AT‐2524

AT‐2525 AT‐2526 AT‐2532 AT‐2535 AT‐2539 AT‐2540 AT‐2541 AT‐2542 AT‐2543 AT‐2544 AT‐2545 AT‐2577 AT‐2729 AT‐2746 AT‐2747 AT‐2757 AT‐2798 AT‐2806 AT‐2819 AT‐2830 AT‐2831 AT‐2836 AT‐2838 AT‐2840 AT‐2856 AT‐2857 AT‐2867