Breaking the waves: Human use of marine bivalves in a microtidal range coast during the Upper Pleistocene and the Early Holocene, Vestíbulo chamber, Nerja Cave (Málaga, southern Spain)

Breaking the waves: Human use of marine bivalves in a microtidal range coast during the Upper Pleistocene and the Early Holocene, Vestíbulo chamber, Nerja Cave (Málaga, southern Spain)

Quaternary International 407 (2016) 59e79 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/loca...

6MB Sizes 2 Downloads 66 Views

Quaternary International 407 (2016) 59e79

Contents lists available at ScienceDirect

Quaternary International journal homepage: www.elsevier.com/locate/quaint

Breaking the waves: Human use of marine bivalves in a microtidal range coast during the Upper Pleistocene and the Early Holocene, laga, southern Spain) Vestíbulo chamber, Nerja Cave (Ma  Pardo a, *, J. Emili Aura Tortosa b, Ba rbara Avezuela Aristu a, Jesús F. Jorda c  rez d, Adolfo Maestro e ndez , Alfonso García-Pe Esteban Alvarez-Ferna n a Laboratorio de Estudios Paleolíticos, Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad Nacional de Educacio Distancia, Paseo Senda del Rey 7, E-28040 Madrid, Spain n ria i Arqueologia, Universitat de Val ~ ez 28, E-46010 Val Department de Prehisto encia, Avda, Blasco Iba encia, Spain c Departamento de Prehistoria, Historia Antigua y Arqueología, Facultad de Geografía e Historia, Universidad de Salamanca, Calle Cerrada de Serranos s/n, E-37002 Salamanca, Spain d lculo Num n Operativa y Ca n a Distancia, Paseo Departamento de Estadística, Investigacio erico, Facultad de Ciencias, Universidad Nacional de Educacio Senda del Rey 9, E-28040 Madrid, Spain e n y Recursos Geolo gicos, Instituto Geolo gico y Minero de Espan ~ a, Calle Calera, 1, Tres Cantos, E-28760 Madrid, Spain Departamento de Investigacio a

b

a b s t r a c t Keywords: Molluscs Bivalves Shell midden Upper Palaeolithic Upper Pleistocene Southern Iberia

This paper presents the results obtained from the study of the bivalves recovered during the archaeological excavations in the Vestíbulo chamber of Nerja Cave (M alaga, southern Spain) carried out by  Cerda  between 1983 and 1987. These excavations recovered the archaeological Professor Francisco Jorda record of the sequence from the Gravettian to the Neolithic. The mollusc remains from the Vestíbulo chamber of Nerja Cave record constitute an extraordinary collection, composed of more than 136000 specimens which correspond to more than 78 kg. In this work, only marine bivalves were studied. The bivalve remains are more than 124000 specimens, corresponding to more than 65 kg from 31 taxa. More than 115000 of these specimens (59 kg) are derived from the shell midden dated to GS 1. The archaeological record of Nerja Cave is distinguished by the abundant presence of human-provided marine and continental molluscs with a high presence of bivalves. Marine bivalves increased clearly from the LGM to the mid-Holocene, and the human inhabitants of the cave accumulated an important shell midden in the contact between MIS 2 and MIS 1. © 2016 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction One of the remarkable features of the prehistory of the Western Mediterranean is the consumption of marine resources during the Upper Pleistocene. Their exploitation is associated, at least, with two populations (Neanderthals and anatomically modern humans) and shows an uneven path, according to the morphology of the continental margin and the effects of the sea level rise, upon the preservation of archaeological sites.

* Corresponding author.  Pardo), [email protected] E-mail addresses: [email protected] (J.F. Jorda (J.E. Aura Tortosa), [email protected] (B. Avezuela Aristu), estebalfer@hotmail.  ndez), [email protected] (A. García-Pe rez), a.maestro@ com (E. Alvarez-Fern a igme.es (A. Maestro). http://dx.doi.org/10.1016/j.quaint.2015.12.089 1040-6182/© 2016 Elsevier Ltd and INQUA. All rights reserved.

In southern Europe, there are references to the use of marine resources prior to MIS 8, but most are from post-MIS 6, concentrated mainly between MIS 2 and 1 (Erlandson, 2001; Cleyet-Merle and Madelaine, 2005; Ramos and Cantillo, 2009;  ndez, 2010; Jorda  et al., 2010; Colonese et al., 2011; Alvarez-Fern a  Brown et al. 2011; Marean, 2014; Aura et al., 2013; Alvarez Fernandez, 2015). Most of the Western Mediterranean sites are caves and rock shelters, located on the same coastline, or only a few kilometers apart. The identification of mollusc remains is the most common reference, although the presence of other marine resources is also cited. This work is a contribution to the knowledge of marine molluscs, in particular bivalves, from one of the most emblematic South Western Europe prehistoric sites: Nerja Cave.

60

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

2. Nerja Cave: geomorphological, archaeological and palaeogeographical framework laga, Spain) is located at the Nerja Cave (Maro, Nerja, Ma laga southern end of the Iberian Peninsula, on the coast of Ma province, northern shore of the Albor an Sea, western end of the Mediterranean Sea (Fig. 1.1). The cave is developed in the Triassic rride Complex, Betic Range) marbles of the Almijara nappe (Alpuja (Sanz de Galdeano, 1993) and opens in the contact zone between the mountains of Sierra de Almijara and the coastal plain, up to 158 m above sea level and 930/940 m away from the current coastline. Below the entrance of the cave, the coastal plain extends over detrital materials from the Pliocene and the Pleistocene dissected by deep canyons with a NeS direction and seasonal wan and Serrano, 1993; Guerra-Merch tercourses (Guerra-Mercha an  Pardo, 2004). et al., 1999; Jorda The coastline is characterized by a succession of narrow beaches associated with the river mouths and limited by strong cliffs developed over Pliocene and Pleistocene materials (Fig. 2) (Jord a Pardo, 2004). Currently, on the coast of Nerja, the tides are of a

weak intensity with a micro tidal range (0.80 m) with springs between 0.40 and 0.1 m and neaps between 0.40 and 0.10 m (Tabla de Mareas on line). This limited tidal range determines the development of narrow and stable beaches throughout the year without tidal plains during low tide. These beaches have a marked nearshore berm, where the waves break, which determines that at 4e5 m from the shore the depth is greater than 2 m. The main geomorphological feature of the continental shelf of the Nerja area is a well-developed littoral prism on the inner shelf that extends to about 20 m water depth, parallel to the coastline (Jord a Pardo et al., 2011). This littoral prism has been mainly formed by contributions of rivers and gullies present on this part of the coast. Besides these deposits, there are also accumulations of sediment corresponding to the deltas of Torrox and Verde rivers, which are located west and east of the study area, respectively. The prodeltaic wedge fronts locally reach depths of 60 m and they show morphologies associated with alluvial fans, landslides, and creeping sedimentary processes. Moreover, the gullies also contribute to the development of small alluvial fans whose distal edges are located between 50 and 60 m deep. In the outer continental shelf,

Fig. 1. 1: Geographical location of Nerja Cave. 2: Map of the cave. 3: Position of the chambers with the archaeological record.

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

61

Fig. 2. Panoramic view of the coast of Nerja indicating the position of the cave.

there are located relict sea-bottom features (erosional surfaces and submerged terraces located at 70, 80, and 90 m depth) and depositional forms such as sand bars parallel or slightly oblique to the bathymetric lines. The continental shelf break is situated at 100e120 m water depth and is clearly defined, although between ~ ecar sector, a marginal platform extends down the Nerja and Almun  Pardo et al., 2011). to 130 m depth (Jorda The external chambers of Nerja Cave (Vestíbulo, Mina, and Torca) (Fig. 1.2 and 1.3) contain an important archaeological site from the Upper Pleistocene and the Holocene. The ample information obtained in the archaeological excavations of Professor Francisco Jord a Cerd a (henceforth, FJC) has been disclosed in  Pardo, 1986a, 1986b; Aura Tortosa et al., several publications (Jorda  et al., 2010; Jorda  Pardo 2002, 2006, Aura et al., 2010, 2013; Jorda and Aura Tortosa, 2010). A recent short synthesis presents the state of knowledge on this site (Aura Tortosa and Jord a Pardo, 2014). The geological, stratigraphic and archaeological framework from the Vestíbulo of Nerja Cave was published in an earlier paper about  Pardo et al., 2011). the shell midden of the NV4 level (Jorda The archaeological sequence of the Vestíbulo chamber (henceforth NV) consists of thirteen levels grouped into six lithostratigraphic units separated by four stratigraphic hiatuses of different duration (Fig. 3): the Gravettian (Unit 1: NV13, NV12 and NV11), the Solutrean (Unit 2: NV10, NV9, NV80 , NV8 and NV8s), the Magdalenian (Unit 3: NV7, NV6 and NV5), the Epimagdalenian (Unit 4: NV4), the Geometric Mesolithic and the Early Neolithic (Unit 5: NV3Meso, NV3Neo, NV2 and NV1) (Aura et al., 2010). From a chronological point of view, the sequence spans between 30 and 6 ka cal BP, from the end of MIS 3 (GI 4 interstadial) to the beginning of MIS 1 (Atlantic chronozone) (Jord a Pardo and Aura Tortosa, 2006, 2008, 2009). The palaeogeographic evolution of the coast near Nerja Cave shows a progressive transgression in which it is possible to identify several episodes related with the human occupation of the cave (Fig. 4) (Jord a Pardo et al., 2011). At the beginning of the sequence (Gravettian), during MIS 3 (between 30 and 28 ka cal BP), the coastline was at 100/-110 m. During the beginning of MIS 2 (between 23 and 19 ka cal BP) the coastline was situated 130/120 m below the current sea level and 4.5 km offshore with respect to the present coastline. The coastal strip was extended above the wide surface of the current continental shelf which was covered by sandy deposits and it ended on beaches near the continental break. During the Last Glacial Maximum (LGM), coinciding with the Solutrean occupation of the cave, the coastal strip had a width much greater than the current one and the sea was farther from the cave. At the end of the LGM the sea level began rising which produced the retreat of the coastline. Thus, during the GS2a, coinciding with the H1 event (between 16.5 and 16 ka cal BP), the coastline was at 90 m and 3.5 km from its current position, whereas in the GI1

and GS1 (between 14 and 12 ka cal BP), during the Magdalenian and Epimagdalenian, the sea was at 70 m and 3 km away. At these moments the coast was shaped by a succession of cliffs, beaches, marshes, and estuaries. The rise in level continued until it stabilized at 50 m in the Pre-boreal and the Boreal (from 11 to 8.5 ka cal BP), with the sea 1 km away from the modern shore, and it rose again in the Atlantic and the Sub-boreal with the sea level at 20 m and the coastline 400 m away from its current position. The high resolution curve of Sea Surface Temperature (SST) n Sea (Cacho et al., provided by the MD95-2043 core of the Albora 2001) located south of Nerja allows us to relate its variations  with the different episodes of the NV human occupations (Jorda Pardo et al., 2011): the Gravettian, with a SST between 10 and 14 C (the last cold event of the MIS 3a); the Solutrean, with a SST between 12 and 13 C (GS 3, GI 2 and GS 2c); the Magdalenian with a SST between 12 and 14 C (GI 1); the Epimagdalenian, with a SST reaching a minimum of 12  C (GS 1); and the Mesolithic and Early Neolithic, with a SST between 18 and 20 C (Atlantic chronozone). 3. Background The archaeological excavations carried out by different research teams in the archaeological record of Nerja Cave have provided a large number of plant and animal remains. Most of these remains are related with the activities developed in the cave by human groups during the Upper Pleistocene and the Early Holocene (Jord a Pardo et al. 2003). Amongst the invertebrates, the presence of molluscs is paramount, having been studied by different researchers depending on the origin and source of the collections. Between 1979 and 1986, we studied the molluscs recovered during the archaeological excavations of FJC in 19 m2 at the Mina chamber (¼NM); campaigns of 1979, 1980 and 1981; and in a square meter test unit (C4 square) at the Vestíbulo chamber (¼NV); campaigns of 1982, 1983 and 1984. This research has been extensively published (Jord a Pardo, 1981, 1982, 1983, 1984e85, 1986a, lez-Tablas Sastre et al., 1984; Jord 1986b; Gonza a Cerd a et al., 1987; Aura Tortosa et al., 1993). Later, other scholars studied the n molluscs from the excavations of professor Manuel Pellicer Catala (Mina and Torca chambers; see Serrano et al., 1995, 1997, 1998) and Ana M. de la Quadra Salcedo (Vestíbulo chamber; see Lozanoez et al., 2003; Corte s Francisco et al., 2003, 2004; Vera Pela nchez et al., 2008), with results similar to ours. Sa Between 1996 and 1999, we systematically studied (determination and classification) the molluscs of the NV chamber obtained during the FJC excavations (campaigns of 1983, 1984, 1985, 1986, and 1987). This study found an abundance of continental and marine species: 87 taxa and more than 136,000 remains of the  classes Gastropoda, Scaphopoda, Bivalvia and Cephalopoda (Jorda et al., 2010). In relation with the vertical distribution of the

62

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Fig. 3. Lithostratography, archaeological stratigraphy an chronostratigraphy of the sedimentary sequences of Vestíbulo and Mina chambers of Nerja Cave.

molluscs in the NV archaeological record, during the Gravettian the terrestrial snail are dominant. In the Solutrean levels, terrestrial snails continue to dominate, but marine snails began to be consumed. During the Magdalenian, marine bivalves are dominant. The marine molluscs reached their maximum during the Epipmagdalenian, giving rise to a shell midden, formed primarily by  Pardo et al., 2011). The mussels and diverse species of limpets (Jorda replacement of land snails by marine molluscs has been explained by the greater distance from the coast to the cave during the Gravettian and Solutrean (Jord a Pardo, 1981, 1983, 1984e85, 1986a, lez-Tablas et al., 1984; Aura Tortosa et al., 1993; 1986b; Gonza s Lozano-Francisco et al., 2003, 2004; Vera et al., 2003; Corte nchez et al., 2008). Sa In addition, we have detected numerous echinoid remains s et al., 2007), crustaceans (Jorda  et al., 2010), fishes (Villalba Curra (Rodrigo García, 1991), marine avifauna (Eastham, 1986; Aura rez Tortosa et al., 2002), marine mammals (seals and dolphins) (Pe Ripoll and Raga, 1998), and even whale barnacles whose host was  ndez et al., 2014). This suggests Eubalena australis (Alvarez-Fern a the existence of a strategy of exploitation of marine resources which began to increase significantly from the LGM to the Late Upper Pleistocene and Holocene with a maximum at GS 1 (Aura

et al., 2010). During the Epimagdalenian, marine resources were systematically exploited with development of specific tools, reaching values greater than for terrestrial mammals (Aura et al., 2013).

4. Objectives, materials and methods 4.1. Objectives In the NV collection, the total bivalve remains are 91.5% of molluscs. The stratigraphic sequence highlights a strong presence of bivalves, which have their highest representation in the shell  et al., 2011). midden of NV4 (Jorda Considering that the entire collection and the shell midden  et al., gastropods were presented in previous publications (Jorda  Pardo et al., 2011), the main objective of this paper is 2010; Jorda the study of the bivalves recovered during the FJC archaeological excavations in the NV between 1983 and 1987, excluding the materials already published from the C-4 test unit, which were studied  Pardo, 1983, 1986a, 1986b). using a different methodology (Jorda The goals of the study are: taxonomical determination of bivalves,

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

63

Fig. 4. Block diagrams that show the coast position from the LGM to the present with indication of the emerged surface in the studied area relative to current coast line. The triangle shows the position of the Nerja Cave. The bathymetric and topographic data have been obtained from GEBCO (2003) data base.

quantitative and qualitative analysis, Principal Components Analysis, and stratigraphic, ecological and taphonomic analysis. 4.2. Materials The studied material comes from the FJC fieldwork campaigns in the NV chamber between 1983 and 1987. All the sediments were

washed and selected by sizes across a triple sieve, and later the archaeological remains were recovered and sorted. The invertebrate remains were later further sorted in the laboratory, where the molluscs were separated from the other invertebrates, packed in cardboard trays and identified with contextual information from the excavation units. The malacological collection of the NV is held laga, available to researchers. in the Provincial Museum of Ma

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

64

In relation to the archaeological levels, we have studied all those detected in the NV chamber: from NV13 up to NV I. However, the excavations in NV did not affect all the archaeostratigraphic units in the same way. During the excavations from 1983 to 1987, a series of tests left from the excavations of Ana M. de la Quadra Salcedo in 1962 and 1963 were excavated. This differential excavation suggests that the volume of excavated sediment changes very much from one level to another, between 3.94 m3 at the Solutrean levels and 0.25 m3 at the Mesolithic ones (Table 1).

All the data were recorded in a database containing the following fields: location data, list of taxa recognized in every excavation unit, recognized elements of every taxon and ecological characteristics of every taxon. The location data contains the information of the excavation context: site (Nerja Cave), chamber (Vestíbulo), year of excavation (1983, 1984, 1985, 1986, 1987), excavation square, stratigraphic level (NV1 to NV13) and operative levels (from a to z). The list of taxa (Table 2) including species, genera and families consists of 31 taxa of marine bivalves from a

Table 1 Volume distribution of sediment excavated by levels and cultural contexts. Lithostratigraphy Units

Levels

Unit 5

NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV

Unit 4 Unit 3

Unit 2

Unit 1

1 2 3 Neo 3 Meso 4 5 6 7 8s 8 80 9 10 11 12 13

Sediment volumen (m3)

Cultural context

Sediment volumen (m3)

0.2 0.3 0.35 0.25 2.45 0.32 0.25 0.65 0.83 1.1 0.62 0.58 0.81 0.3 0.5 1.03

Neolithic

0.85

Mesolithic Epimagdalenian Magdalenian

0.25 2.45 1.22

Solutrean

3.94

Gravettian

1.83

4.3. Methods To identify the different species, as well as for information about habitat and distribution, we consulted a variety of references on marine bivalves (Malatesta, 1963, 1974; Cox et al., 1969e1972; Nordsieck, 1969; Ghisotti and Melone, 1975; Parenzan, 1976; Riedl, 1986; D'Angelo and Gargiullo, 1987; Poppe and Goto, 1993; Lindner, 2000; Mexía Unzurrunzaga, 2000; Gofas et al., 2011; VV. AA, 2012). We followed the taxonomy of Bruschi et al. (1985), Lindner (2000), and online sources such as NatureServe, Fauna rica and the Check List of European Marine Mollusca (CLEMAM). Ibe

 et al., 2010). Their ecological total of 87 taxa of molluscs (Jorda characteristics can be seen in Table 3. The mollusc remains were identified taxonomically and all were counted (except millimeterscale unidentifiable fragments) and weighed with a precision balance. Amongst the different remains, we have identified the following anatomical elements: bivalve specimens, complete valves (right or left), umbos, and shell fragments. In some species like mussels and oysters, we have identified the different stages of growth of the shells: breeding, juvenile, and adult. In relation to the taphonomy we have distinguished burnt remains, incrusted valves, and sea rolled remains.

Table 2 List and systematic of bivalve taxa recovered at the Vestíbulo chamber of Nerja Cave. Classe

Subclasses

Orders

Families

Taxa

Bivalvia

Pteriomorphia

Arcoida Mytiloida

Glycymerididae Mytilidae

Pectinoida

Pectinidae

Ostreoida

Spondylidae Ostreidae

 1758) Glycymeris glycymeris (Linne  1758 Mytilus edulis Linne  1758) Lithophaga lithophaga (Linne  1758) Modiolus barbatus (Linne Modiolus sp. Mytilidae indet.  1758) Mimachlamys varia (Linne  1758) Pecten maximus (Linne  1758) Pecten jacobeus (Linne Pecten sp. Pectinidae indet. Spondylus sp.  1758 Ostrea edulis Linne Ostrea sp. Ostreidae indet. Bornia sebetia (Costa O.G. 1829)  1758) Acanthocardia tuberculata (Linne Acanthocardia sp.  1758) Cerastoderma edule (Linne re 1789) Cerastoderma glaucum (Bruguie Cerastoderma sp. Laevicardium crassum (Gmelin 1791) Cardidae indet.

Heterodonta

Veneroida

Kelliidae Cardiidae

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

65

Table 2 (continued ) Classe

Subclasses

Orders

Without order assigned

From this information the total mass of remains (W) has been calculated (Table 4), the total number of remains (NR) has been quantified (Table 5) and the minimum number of individuals (MNI) has been calculated (Table 6). The MNI of the bivalves was obtained by the addition of entire valves and umbos of valves divided by two. Due to the difference of excavated volume in every level, in order to compare the content of molluscs from the different levels, we calculated this content per unit of volume (m3), and so obtained

Families

Taxa

Mactridae Veneridae

 1758) Mactra stultorum (Linne  1758 Venus verrucosa Linne  1758) Ruditapes decussatus (Linne Ruditapes sp. Veneridae indet. Solen marginatus Pulteney 1799 Solenidae indet. Bivalvia indet.

Solenidae

comparable values: weighed total mass of remains (WW) or W/m3 (Table 4), weighed total number of remains (WNR) or NR/m3 (Table 5) and weighed minimum number of individuals (WMNI) or MNI/m3 (Table 6). We are aware that the density is not the best method for inferring intensity of coastal resources (Jerardino, 1995, 2015), but nevertheless it is the best tool we have, considering that we have a good knowledge of the palaeoshoreline reconstruction (Jord a Pardo et al., 2011).

Table 3 Ecological characteristics of the bivalves from the Vestíbulo chamber of Nerja Cave. Taxa

Habitat

SubZone environment

Depth

Substract Water energy

Salinity

Temperature Habits

Feeding

Glycymeris glycymeris

Benthic infauna

Continental shelf

Infralittoral

10e100 m

Mytilus edulis

Benthic epifauna

Cliff/Reef

to 40 m

Lithophaga lithophaga

Benthic infauna

Cliff/Reef

Mediolittoral/ Shallow infralittoral Infralittoral

Sandy/ Sandymuddy Rocky

to 25 m

Rocky

Modiolus barbatus

Benthic epifauna

Continental shelf

Infralittoral

to 100 m

Mimachlamys Benthic varia epifauna Pecten maximus Benthic epifauna

Continental shelf Continental shelf

Mediolittoral/ Infralittoral Infralittoral/ Circalitoral

to 100 m

Calm Stony/ Posidonia prairies Stony Calm

8e250 m

Stony

Pecten jacobeus Benthic epifauna Spondylus sp. Benthic epifauna

Continental shelf Continental shelf

to 250 m

Current distribution

Calm

Normal

Eurytherm

Mobile

Filter-feeding Mediterranean and Atlantic

Rough

Normal/ Euryhaline

Eurytherm

Filter-feeding Mediterranean and Atlantic

Rough

Normal

Eurytherm

Normal

Eurytherm

Normal

Eurytherm

Fixed to substratum in colonies Fixed to substratum, in holes dug for it Between stones and algae Mobile

Calm

Normal

Eurytherm

Mobile

Stony

Calm

Normal

Mobile

7e40 m

Rocky

Stream zone

Normal

Temperate/ Warm Temperate/ Warm

to 50 m

Rocky/ Stony

Rough/ Calm

Normal

Eurytherm

Calm

Normal

Temperate/ Warm

Filter-feeding Mediterranean Fixed to and Atlantic substratum in colonies Fixed Cavenger Mediterranean

Calm

Normal

Eurytherm

Mobile

Calm

Eurytherm

Mobile

Eurytherm

Mobile

Calm

Brackish/ Normal Brackish/ Normal Normal

Eurytherm

Mobile

Filter-feeding Mediterranean and Atlantic

Filter-feeding Mediterranean and Atlantic Filter-feeding Mediterranean and Atlantic Filter-feeding Atlantic and rare in Western Mediterranean Filter-feeding Mediterranean

Ostrea edulis

Benthic epifauna

Infralittoral/ Circalitoral Infralittoral/ Upper circalittoral Continental Mediolittoral/ shelf/Estuary Infralittoral

Bornia sebetia

Benthic epifauna

Continental shelf

Mediolittoral/ Infralittoral

Shallow waters

Acanthocardia tuberculata Cerastoderma edule Cerastoderma glaucum Laevicardium crassum

Benthic infauna Benthic infauna Benthic infauna Benthic infauna

Mediolittoral/ Infralittoral Mediolittoral

to 100 m to 10 m

Mediolittoral

to 2e3 m

Infralittoral/ Circalitoral

>7 m

Mactra stultorum

Benthic infauna

Continental shelf Estuary/ Marsh Estuary/ Marsh Beach/ Restricted environment Beach/ Continental shelf Beach/ Continental shelf Beach/ Estuary Beach/ Continental shelf

Stonysandy/ Echinoids Sandymuddy Sandymuddy Sandymuddy Sandy

Mediolittoral

1e10 m

Sandy

Calm

Normal

Eurytherm

Mobile

Filter-feeding Mediterranean and Atlantic

Mediolittoral/ Infralittoral

1e100 m

Calm

Normal

Eurytherm

Mobile

Filter-feeding Mediterranean and Atlantic

Mediolittoral/ Infralittoral Mediolittoral/ Infralittoral

to 4 m

Sandy/ Coarse detritic Sandy/ Muddy Sandymuddy

Calm

Normal

Eurytherm

Mobile

Calm

Normal

Eurytherm

Mobile

Filter-feeding Mediterranean and Atlantic Filter-feeding Mediterranean and Atlantic

Venus verrucosa Benthic infauna Ruditapes decussatus Solen marginatus

Benthic infauna Benthic infauna

to 20 m

Calm

Fixed

Filter-feeding Mediterranean and Atlantic

Filter-feeding Mediterranean and Atlantic Filter-feeding Mediterranean and Atlantic Filter-feeding Mediterranean and Atlantic Filter-feeding Mediterranean and Atlantic

Taxa

Neolithic NV 1 W

NV 2 WW

W

WW

Mesolithic

Epimagdalenian Magdalenian

NV 3 Neo

NV 3 Meso

NV 4

W

W

W

WW

WW

NV 5 WW

W

Solutrean NV 6

WW

66

Table 4 Bivalves from the Vestíbulo chamber of Nerja Cave. Total number of remains (NR) and weighed number of remains (WNR).

W

NV 7 WW W

NV 8s WW W

Gravettian NV 8

WW W

NV 80 WW W

NV 9 WW W

NV 10 WW W

NV 11

WW W

NV 12

NV 13

WW W WW W WW 0.0 0.0 2.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 1.6 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 2.2 2.1 6.8 6.6

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Glycymeris 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.8 22.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 glycymeris Mytilus edulis 516.0 2580.0 580.2 1934.0 1138.2 3252.0 307.4 1218.8 56626.3 23112.8 824.0 2575.0 51.4 205.6 404.7 622.6 458.1 551.9 107.6 97.8 33.6 54.2 9.2 15.9 8.8 10.9 0.8 2.7 0.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113.6 103.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mytilidae indet Lithophaga 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 lithophaga 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.0 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Modiolus barbatus Modiolus sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.2 21.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mimachlamys 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 5.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 varia Pecten 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 jacobeus Pecten 2.0 10.0 11.2 37.3 80.0 228.6 21.8 87.2 1951.6 796.6 0.0 0.0 15.4 61.6 13.0 20.0 6.4 7.7 27.0 24.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 maximus Pecten sp. 0.0 0.0 10.2 34.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 2.0 7.4 24.7 0.0 0.0 Pectinidae 0.0 0.0 3.8 12.7 6.8 19.4 2.6 10.4 250.4 102.2 11.4 35.6 0.0 0.0 6.0 9.2 2.2 2.7 13.6 12.4 8.2 13.2 14.4 24.8 4.8 5.9 8.2 27.3 0.4 0.8 indet. Spondylus sp. 0.0 0.0 0.0 0.0 0.0 0.0 2.4 9.6 5.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ostrea edulis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 563.2 229.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ostrea sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.2 28.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ostreidae 0.0 0.0 0.0 0.0 1.6 4.6 10.8 43.2 4.8 2.0 1.2 3.8 0.0 0.0 0.0 0.0 27.4 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 indet. Bornia sebetia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Acanthocardia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.6 80.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54.2 87.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 tuberculata Acanthocardia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 1.7 0.0 0.0 0.0 0.0 3.8 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 sp. 0.0 8.4 12.9 15.0 18.1 2.4 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cerastoderma 2.4 12.0 9.4 31.3 0.0 0.0 3.6 14.4 38.2 15.6 43.6 136.3 0.0 edule Cerastoderma 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.4 13.7 0.0 0.0 3.2 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 glaucum Cerastoderma 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.2 1.2 3.8 1.2 4.8 2.0 3.1 7.4 8.9 0.0 0.0 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 sp. Cardidae 2.0 10.0 3.2 10.7 6.4 18.3 0.0 0.0 71.8 29.3 1.4 4.4 1.2 4.8 12.8 19.7 13.0 15.7 1.8 1.6 3.0 4.8 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 indet. Laevicardium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.4 21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 crassum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.6 15.8 0.0 0.0 0.4 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 3.0 0.0 0.0 0.0 0.0 Mactra stultorum Solen 0.0 0.0 0.0 0.0 0.0 0.0 0.8 3.2 5.8 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 marginatus Solenidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 indet. Venus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 verrucosa Ruditapes 0.0 0.0 0.8 2.7 0.9 2.6 0.0 0.0 31.0 12.7 35.0 109.4 3.0 12.0 13.8 21.2 119.2 143.6 58.4 53.1 7.8 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 decussatus Ruditapes sp. 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 8.0 3.3 8.8 27.5 18.8 75.2 19.2 29.5 40.0 48.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.0 0.0 0.0 Veneridae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 indet. Bivalvia indet. 0.0 0.0 2.4 8.0 8.6 24.6 0.0 0.0 130.2 53.1 60.0 187.5 0.2 0.8 4.4 6.8 39.4 47.5 20.8 18.9 11.6 18.7 1.8 3.1 3.4 4.2 0.4 1.3 0.0 0.0 TOTAL 522.4 2612.0 621.3 2071.0 1242.6 3550.3 349.4 1386.8 59858.9 24432.2 1012.2 3163.1 91.6 366.4 503.5 774.6 748.7 902.0 420.6 382.4 122.2 197.1 26.0 44.8 21.0 25.9 17.4 58.0 1.0 2.0

Table 5 Bivalves from the Vestíbulo chamber of Nerja Cave. Total weight of remains (W) and weighed total weight of remains (WW). Taxon

Neolithic NV 1 NR

Mesolithic NV 2

WNR NR

NV 3 Neo WNR NR

Epimagdal.

NV 3 Meso NV 4

WNR NR

WNR NR

Magdalenian NV 5

WNR

NR

Solutrean NV 6

WNR NR

NV 7 WNR NR

1 2 452 695 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 5 8 0 0 0 0 0 0 0 0 0 0 0 0 1 2 7 11 0 0 3 5 3 5 0 0 0 0 0 0 0 0 0 0 18 28 28 0 1 2 6 9 526 766

NV 8

WNR NR

0 0 213 257 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 2 2 0 0 0 0 0 0 9 11 2 2 0 0 15 18 0 0 0 0 0 0 0 0 0 0 104 125 15 18 0 0 32 39 395 476

NV 8

NV 9

NV 10

NV 11

NV 12

NV 13

WNR NR WNR NR WNR NR WNR NR WNR NR WNR NR WNR

0 0 115 105 0 0 1 1 3 3 19 17 0 0 0 0 2 2 0 0 8 7 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 2 0 0 0 0 5 5 0 0 0 0 0 0 0 0 1 1 78 78 0 0 0 0 30 27 265 248

0 0 49 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 10 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 1 2 1 2 4 6 0 0 0 0 0 0 0 0 0 0 7 11 0 0 0 0 9 15 78 126

0 0 14 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 7 28 48

0 0 9 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 7 9 24 30

0 6 0 0 0 0 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 20

0 20 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 10 50

0 0 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 12

0 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 2 11 11

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Glycymeris glycymeris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mytilus edulis 1242 6210 1148 3827 2508 7166 899 3596 114996 46937 1657 5178 136 544 Mytilidae indet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lithophaga lithophaga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Modiolus barbatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Modiolus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mimachlamys varia 0 0 0 0 1 3 0 0 2 1 0 0 0 0 Pecten jacobeus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pecten maximus 1 5 2 7 7 20 8 32 147 60 0 0 2 8 Pecten sp. 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Pectinidae indet. 0 0 8 27 6 17 3 12 112 46 2 6 0 0 Spondylus sp. 0 0 0 0 0 0 1 4 1 0 0 0 0 0 Ostrea edulis 0 0 0 0 0 0 0 0 14 6 0 0 0 0 Ostrea sp. 0 0 0 0 0 0 0 0 12 5 0 0 0 0 Ostreidae indet. 0 0 0 0 1 3 3 12 3 1 2 3 0 0 Bornia sebetia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Acanthocardia tuberculata 0 0 0 0 0 0 0 0 0 0 3 9 0 0 Acanthocardia sp. 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Cerastoderma edule 3 15 5 17 0 0 3 8 24 10 34 106 0 0 Cerastoderma glaucum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cerastoderma sp. 0 0 0 0 0 0 0 0 5 2 3 9 5 20 Cardidae indet. 5 25 9 30 11 31 0 0 95 39 2 6 1 16 Laevicardium crassum 0 0 0 0 0 0 0 0 18 7 0 0 0 0 Mactra stultorum 0 0 0 0 0 0 0 0 4 2 0 0 1 4 Solen marginatus 0 0 0 0 0 0 2 8 8 3 0 0 0 0 Solenidae indet. 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Venus verrucosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ruditapes decussatus 0 0 3 10 2 6 0 0 32 13 36 113 1 4 Ruditapes sp. 0 0 2 7 0 0 0 0 15 6 8 25 34 136 Veneridae indet. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bivalvia indet. 0 0 4 13 8 23 0 0 45 18 17 53 1 4 TOTAL 1251 6255 1182 3940 2544 7269 919 3672 115535 47157 1764 5509 181 736

NV 8s WNR NR

Gravettian 0

67

68

Table 6 Bivalves from the Vestíbulo chamber of Nerja Cave. Minimum number of individuals (MNI) and weighed minimum number of individuals (WMNI). Taxon

Neolithic NV 1

Mesolithic NV 2

NV 3 Neo

NV 3 Meso

Epimagdal. NV 4

NV 5

MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI 570 1900 0 0

1254 3583 0 0

449 1796 0 0

Solutrean

NV 6

NV 7

NV 8s

Gravettian NV 8

NV 8

0

NV 9

NV 10

NV 11

NV 12

NV 13

WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI MNI WMNI

57500 23469 879 2747 0 0 0 0

240 240 0 0

221 340 0 0

107 129 0 0

47 1

43 1

19 0

31 0

1 0

3 0

0 0

0 0

1 0

3 0

0 0

0 0

3 0

3 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

2 0

2 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1

3

1

3

0

0

18

7

0

0

0

0

1

2

1

1

2

2

0

0

0

0

0

0

0

0

0

0

0

0

1 1

3 3

0 0

0 0

0 0

0 0

0 3

0 1

0 1

0 3

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 3

0 3

0 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

7 0 0

3 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 2 2

0 2 2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

3

10

0

0

4

4

10

4

0

0

0

0

2

3

5

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

3

12

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

4

4

1

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

0

0

4

4

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

4

2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

1

3

9

8

8

4

6

14

14

4

4

1

2

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

3 0

0 0

0 0

1 1

2 2

3 0

4 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

3 4 137 162

0 56

0 51

0 20

0 32

0 1

0 3

0 1

0 1

0 4

0 7

0 0

0 0

0 3

0 3

0 0 576 1920

0 0 1255 3586

0 0 1801 1804

1 0 0 0 57550 23490 884 2763

0 0 259 268

0 0 231 355

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Mytilus edulis 620 3100 Lithophaga 0 0 lithophaga Modiolus sp. 0 0 Mimachlamys 0 0 varia Pecten 0 0 maximus Pecten sp. 0 0 Pectinidae 0 0 indet. Ostrea edulis 0 0 Bornia sebetia 0 0 Ostreidae 0 0 indet. Cerastoderma 2 10 edule Cerastoderma 0 0 glaucum Cerastoderma 0 0 sp. Cardidae 0 0 indet. Laevicardium 0 0 norvegicum Mactra 0 0 stultorum Solen 0 0 marginatus Ruditapes 0 0 decussatus Ruditapes sp. 0 0 Veneridae 0 0 indet. Bivalvia indet. 0 0 TOTAL 622 3110

Magdalenian

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

This information was collected in three data matrices with the same names, WW, WNR and WMNI. The first data matrix is composed of 31 taxa observed from 16 levels; the second one, the WNR, contains only 30 taxa from 16 levels, as Mytilidae indet. shells were weighed but not counted because of their small size and high

69

number. Finally, the WMNI only contains data from 21 taxa and 15 levels (all but the NV12). A Q- and R-mode Principal Components Analysis and Q-mode Cluster Analysis (Davis, 1973: 563) was carried out in these three data sets to analyze the relationships between levels and between taxa. We have used the statistical software R Foundation 498 for Statistical Computing (R Development

Fig. 5. Molluscos of Vestíbulo chamber of Nerja Cave. 1: Weighted total number of remains. 2: Weighted total weigh of remains.

70

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Core Team, 2013). For the formation of clusters we have used the method of Ward, also called the incremental sum of squares method, which uses the within-cluster (squared) distances and the between-cluster (squared) distances (Ward, 1963; Wishart, 1969; Rencher, 2002: 466). 5. Bivalves from the Vestíbulo chamber of Nerja Cave 5.1. Quantitative and qualitative analysis The malacological collection of FJC excavations from the NV consists of more than 136000 remains of which more than 124000 are bivalves, 6500 marine gastropods, 5000 continental gastropods, 10 scaphopods and 4 cephalopods. The total number of bivalves' remains (NR) was 91.5%, whereas that of continental gastropods (land snails and fresh water gastropods) was 4.7%, marine gastro et al., pods 3.6%, scaphopods 0.007% and cephalopods 0.003% (Jorda 2010). Considering the weighed total number of remains (WNR), bivalves represent 79.97% against 13.39% of marine gastropods, 6.62% of continental gastropods and 0.01% of scaphopods and cephalopods (Jord a et al., 2010) (Fig. 5.1). These data contrast with those from the excavations of A. Mª. de la Quadra Salcedo (1962e1963) for the NV, which provided a collection of invertebrates formed by 2193 NMI (23 from Gravettian, 723 from Solutrean and 1447 from Magdalenian) for the LGM s Sa nchez et al., 2005). These samples originated from an (Corte archaeological sediment volume of approximately 20 m3 of sediment, double the one studied by us. Along the sequence, we can observe a slight increase of bivalves between the Gravettian and the Solutrean levels, a marked rise at the top of the Solutrean (NV8s) which continued during the Magdalenian and Epimagdalenian, reaching its maximum point at

the NV4 level, followed by a decline in the Mesolithic and Neolithic levels (Fig. 5.1). The largest number of bivalves (WNR) is found at  Pardo et al., the Epimagdalenian shell midden of level NV4 (Jorda 2011) with 95.89% while the smallest number (WNR) is found in the Gravettian levels at the bottom of the sequence with 3.14% in the NV13 level. Considering the weighed total weight of remains (WW), bivalve ranges are slightly higher (Fig. 5.2). The whole bivalve collection of the NV record consists of 124705 remains (NR) weighing more than 65 kg (W). The MNI is 61866. If we use the weighed data per m3, the values are: WNR ¼ 76348, WW ¼ 40 kg and WMNI ¼ 37586 (Tables 4e6, Fig. 6). The number of taxa present is 31: 16 identified to species, 8 to genus, 6 to family and 1 to class (Table 2). NV4 has the largest and most diverse number of taxa (19), while NV12 only has 2 taxa. Only two of the three classes of Bivalvia are represented in the archaeological record of the Vestíbulo: Pteriomorphia and Heterodonta. Pteriomorphia are represented by four orders (Arcoida, Mytiloida, Pectinoida and Ostroida) and five families (Glycymerididae, Mytilidae, Pectinidae, Spondylidae and Ostreidae), while Heterodonta are represented by only one order (Veneroida) and five families (Kellidae, Cardidae, Mactridae, Veneridae and Solenidae). 5.2. Principal Components Analysis A Q-mode Principal Components Analysis (PCA) was carried out to analyze the relationship between the archaeological levels of the three data matrices: WW, WNR and WMNI. We have performed the PCA grouping numerical data of the different taxa represented in ten families (Glycymeridae, Mytilidae, Pectinidae, Spondylidae, Ostreidae, Kellidae, Cardiidae, Mactridae, Veneridae and Solenidae). PCA in Q-mode were done using cosine coefficient of proportionality as a similarity measure.

Fig. 6. 1: Bivalves from the archaeological sequence of Vestíbulo chamber of Nerja Cave with indication of weighted total number of remains (WNR) and weighted minimal number of individuals (WMNI). 2: Zoom of the previous figure to highlight the transition between Solutrean, Magdalenian and Epimagdalenian.

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Fig. 7 shows the loadings of Principal Component I versus Principal Component II for the three data matrices. The first two components explain 91.82% of the variance in the case of WW data matrix, 95.13% in the case of WNR data matrix and 99.93% in the case of WMNI data matrix. Hence, in the analysis, it is enough to consider only the first two principal components. For the first data set WW, the figure of PC I versus PC II shows a clear group (i.e., a good relationship) between the first ten levels (from NV1 to NV8s), it also shows that the lower levels are scattered and that there is a certain grouping of levels NV10, NV12 and NV13 (Fig. 7a). The first PC shows a very similar behavior for the first ten levels (from NV1 to NV8s), which represent the human occupations from the top of the Solutrean to the Neolithic, while the second PC shows a very similar behavior for the five lower levels (from NV9 to NV13), which correspond to the lower levels with the oldest human occupations of the cave (Solutrean and Gravettian). In the case of the WNR, the Principal Components I and II show three groups (Fig. 7b): one with the upper levels from NV1 to NV7, including NV80 , NV12 and NV13; the second group includes NV9, NV10 and NV11; and the third includes layers NV8 and NV8s. The Neolithic, Mesolithic, Epimagdalenian, Magdalenian, one of the Solutrean layers and two Gravettian layers can be grouped in a single cluster. From the loadings of the first PC we observed a very similar behavior for the first eight levels plus NV80 , NV12, and NV 13 levels. From the loadings of the second PC we observed a very similar behavior for NV8s and NV8 levels. The interpretation is similar to the previous data set. Finally, the WMNI data set and the Principal Components I and II (Fig. 7c) show that all levels are very similar except for levels NV10 and NV11. We observed that with the first PC we have 97% of the variation and with two PCs we reach 99.9%, so that the conclusions can be obtained from the first PC. The interpretation is similar to the other two data sets, but somewhat wider for the first PC. Cluster analyses in Q-mode were done using an agglomerative hierarchical clustering technique where the similarity relations were established on the basis of the d coefficient (average taxonomic distance) and Ward method as linkage criterion. As usual, the final

71

conclusions were obtained from the dendrogram (Fig. 8). Clusters of levels achieved are similar to those provided by PCA. 5.3. Stratigraphic analysis All levels of the stratigraphic sequence from the NV contain bivalves but most are in the Epimagdalenian shell midden of level NV4 (115545 remains and 59.9 kg). The other bivalves are distributed in smaller amounts along the Gravettian, Solutrean, Magdalenian, Mesolithic and Neolithic levels (Tables 4e6, Figs. 6 and 9). In relation to the volume of excavated sediments, the presence of bivalves is barely significant in the three Gravettian levels (NV13, NV12, NV11 ¼ 1.83 m3). These levels have only Mytilus edulis, Pecten sp., Pectinidae indet., Cardidae indet., Ruditapes sp. and Bivalvia indet witn a WNR of 70. The WW is 66.6 g and the WMNI is 6 M. edulis and 3 Pectinidae indet. The presence of bivalves slightly increases per unit of volume of excavated sediment in the lower four levels of the Solutrean (NV10, NV9, NV80 , NV8). These levels contain 452 of WNR from which more than half (219) are M. edulis, versus a few Lithophaga lithophaga, Modiolus barbatus, Modiolus sp., Pecten maximus, Pectinidae indet., Bornia sebetia, Acanthocardia tuberculata, Cerastoderma edule, Cerastoderma glaucum, Cerastoderma sp. Cardidae indet., Mactra stultorum, Venus verrucosa, Ruditapes decussatus and Bivalvia indet. The WW is 650 g and the WMNI is 100: 77 M. edulis, 1 L. lithophaga, 2 Modiolus sp., 2 P. maximus, 1 B. sebetia, 1 M. stultorum and 6 R. decussatus. The last Solutrean level (NV8s) and the first two Magdalenian levels (NV7 and NV6) show an increase of bivalves per cubic meter: the WNR is 1978 and the WW is 2.43 kg. The most abundant species is M. edulis with a WNR of 1496 and 1.38 kg of WW. There is also an increase in the diversity of taxa: Glycymeris sp., Pecten jacobeus, P. maximus, Pectinidae indet., Ostreidae indet., Acanthocardia sp., C. edule, C. glaucum, Cerastoderma sp., Cardidae indet, M. stultorum, Ruditapes decussatus, Ruditapes sp., Veneridae indet and Bivalvia indet. The WMNI is 709 M. edulis, 3 P. maximus, 2 Ostreidae indet., 9 C. edule, 2 C. glaucum, 12 Cerastoderma sp., 6 Cardidae indet., 4

Fig. 7. Principal Components Analysis. a: WW, PC I versus PC II. b: WNR, PC I versus PC II. c: WMNI, PC I versus PC II.

72

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Fig. 8. Cluster Analysis. a: WW, b: WNR, c: WMNI.

M. stultorum, 31 R. decussatus, 6 Ruditapes sp., 2 Veneridae indet. and 4 Bivalvia indet. The end of the Magdalenian is marked by an increase in bivalves per unit of volume of excavated sediment. At level NV5, bivalves increase sharply to the amount of 5509 of WNR and a WW of 3.16 kg, with a predominance of M. edulis (5178 of WNR and a WW of 2.57 kg) against Pectinidae indet., Ostreidae indet., A. tuberculata, C. edule, Cerastoderma sp., Cardidae indet., R. decussatus, Ruditapes

sp., and Bivalvia indet. The WMNI is 2747 M. edulis, 3 Pectinidae indet. and 9 R. decussatus. The Epimagdalenian level (NV4) is characterized by an extraordinary increase in bivalves per unit of volume of excavated sediment, both in quantity and diversity. At this level the WNR is 47,157 and the WW is 24.43 kg. Mussels (M. edulis) are strongly predominant: the WNR is 46,937, the WW is 23.12 kg and the WMNI is 23,469. The rest of taxa is constituted by: Mimachlamys

Fig. 9. Vertical distribution of the different taxa of bivalves along the stratigraphic sequence of Vestíbulo chamber of Nerja Cave.

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

73

 n (N83VTestigoIV). 2. Modiolus barbatus (N84VTestigoVIIIg). 3. Lithophaga Fig. 10. Mytilidae: 1: Growth stages (breeding, juvenile, adult) of Mytilus edulis (N85D5IVl) y concentracio lithophaga (N84VA7B7A8B8B9VIIIe).

varia, Pecten maximus, Pectiniadae indet., Spondylus sp., Ostrea edulis, Ostrea sp., Ostreidae indet., Acanthocardia sp., C. edule, Cerastoderma sp., Laevicardium norvegicuum, Cardidae indet., M. stultorum, Solen marginatus, Soleniadae indet., R. decussatus, Ruditapes sp. and Bivalvia indet. The WMNI is 1 M. varia, 7 P. maximus, 1 Pectinidade indet., 3 O. edulis, 4 C. edule, 1 Cerastoderma sp., 1 L. crassum, 1 Cardiade indet., 1 M. stultorum, 1 S. marginatus and 1 R. decussatus. During the Mesolithic (level NV3meso), bivalves decreased per unit of volume of excavated sediment: with 3672 of WNR and 1.39 kg of WW. The predominant species is M. edulis with 3596 of WNR, 1.22 kg and 1796 of WMNI. Other taxa are: P. maximus, Pectiniadae indet., Ostreidae indet., C. edule and S. marginatus, the last one with 4 of WMNI. In the three Neolithic levels (NV3neo, NV2 and NV1) we observed a slight increase in the number of bivalves per m3 of excavated sediment with 17463 of WNR and 8.22 kg of WW. Their taxonomic composition is very similar. The most numerous species is M. edulis: with 17202 of WNR, 7.76 kg of WW and 8582 of WMNI. Mussels are accompanied by M. varia, P. maximus (5 WMNI), Pecten sp. (3 WMNI), Pectiniadae indet. (3 WMNI), Ostreidae indet., C. edule (20 WMNI), Cardidae indet., R. decussatus, Ruditapes sp. and Bivalvia indet.

5.4. Ecological analysis All taxa of bivalves, which are present in the sequence of the Vestíbulo chamber, have their habitat in different parts of the littoral zone. Most species are characteristic of the mediolittoral zone, even if some of them dwell in an infralittoral zone (G. glycymeris, M. barbatus, P. maximus, P. jacobeus, Spondylus sp. and L. crassum). A group of species lives on hard substrates as part of the epifauna (M. edulis, M. barbatus, P. maximus, P. jacobeus, M. varia, Spondylus sp. and O. edulis). Another group of species has its habitat in mobile bottoms as part of the infauna (G. glycymeris, B. sebetia, A. tuberculata, C. edule, C. glaucum, L. crassum, M. stultorum, V. verrucosa, R. decussatus and S. marginatus, S. marginatus) and even within rocky substrates (L. lithophaga) or on equinoderms (B. sebetia). M. edulis and L. lithophaga are characteristic species from cliffs at the rocky coasts of the mediolittoral and subtidal zones respectively, while M. barbatus lives between stones and algae at the infralittoral zone and O. edulis and M. varia dwell on hard bottoms in estuarine environments. The remaining bivalves live in sandy and muddy substrates such as beaches and the continental shelf (A. tuberculata, L. crassum, M. stultorum, S. marginatus and V. verrucosa), estuaries and marshes (C. edule, C. glaucum and

74

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Fig. 11. Cardidae: 1. Acanthocardia tuberculata (N84VC6B6VIII). 2. Cerastoderma edule (N84VA7B7A8B8V-VI). 3. Cerastoderma glaucum (N84VC6B6VIIIi) 4. Laevicardium norvegicum (N85VD3IVf).

R. decussatus) and areas of deeper waters in bottoms of muddy sands (G. glycymeris), in stony-sandy bottoms (P. maximus, P. jacobeus, B. sebetia) and in rocky bottoms (Spondylus sp.). Most species are distinctive of calm waters, although some prefer rough waters (M. edulis, M. barbatus, L. lithophaga) or those with streams (Spondylus sp.). With respect to water salinity, all species need a normal salinity except C. edule and C. glaucum which prefer brackish waters. Most species are mobile and independent while the representatives of the Mytilidae family, Spondylus sp. and O. edulis live fixed to the substratum grouped in colonies or on echinoids, like the little Veneroida B. sebetia and M. barbatus which often lives on rocky bottoms and also over Posidonia prairies. All species are filter-feeding except B. sebetia which is a scavenger. With respect to sea water temperature, most species are euritherms and live in Mediterranean and Atlantic waters except for P. jacobeus and B. sebetia which currently only inhabit warm and temperate Mediterranean waters. P. maximus is currently found in n Sea coasts. In the rest of the the Atlantic Ocean and in the Albora Mediterranean Sea and in the Atlantic islands it is replaced by P. jacobeus, and off western Africa by P. keppelianus.

The bivalve species present in the archaeological record of the Vestíbulo chamber of Nerja Cave are indicative of four distinct types  Pardo, 1986a; Serrano et al., 1995): of littoral environments (Jorda the mediolittoral zone with rocky cliffs (M. edulis and L. lithophaga), the mediolittoral zone with shallow waters at the nearshore of beaches (M. stultorum, V. verrucosa, R. decussatus and S. marginatus), the restricted mediolittoral environment with stony, sandy and muddy bottoms, estuaries and marshes (O. edulis, C. edule, C. glaucum and R. decussatus), and the mediolittoral and infralittoral environment with stony, sandy and muddy bottoms (G. glycymeris, M. barbatus, M. varia, P. maximus, P. jacobeus, B. sebetia, A. tuberculata y L. crassum), and even hard bottoms (Spondylus sp.). 5.5. Origin and human use of bivalves Given the position of Nerja Cave relative to the present and past coastline (Jord a Pardo et al., 2011), the set of bivalve shells which appears in its archaeological record has been transported to the cave, from different littoral environments, by the human groups that inhabited it over time. Some species with very low

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

75

Fig. 12. Ostreidae: 1. Ostrea edulis (N85VD4IVl). Glycimeridae: 2. Glycymeris glycimeris (N85VD4IVi). Mactridae: 3. Mactra stultorum (N87VA7Xc). 4. Solen marginatus (NV85VD4IVj). 5. Solen sp. (NV85VD4IVj). Veneridae: 6. Venus verrucosa (N87VA7VIIIc). 7. Ruditapes decussatus (N83VB7VIIb). Kelliidae: 8. Bornia sebetia (N87VA7VIIIc).

representation, like B. sebetia (a single remain in level NV8), may have been introduced unintentionally together with the tests of sea urchins over which it lives, inasmuch as these were collected by humans as food (Villalba Curr as et al., 2007). The possibility that birds deposited the recovered mollusc and crustacean remains is unlikely due to the distance to the coastline. Some species were collected from cliffs and beaches to be consumed as food, M. edulis, C. edule and R. decussatus. Other possibly consumed species are Glycymeris sp., M. barbatus, P. jacobeus, P. maximus, O. edulis and S. marginatus. The remaining underrepresented taxa do not present any alimentary interest and their shells may have been collected on the beach as provided by the waves: L. lithophaga, M. varia, Spondylus sp., A. tuberculata, L. crassum, M. stultotum, and V. verrucosa. At some archaeological levels, the shells of some taxa appear burnt in different proportions of NR. The levels with burnt shells of M. edulis are NV7 (0.25%), NV4 (10.81%), NV3Neo (0.35%) and NV2 (48.26). P. maximus, O. edulis, L. crassum and R. decussatus are burnt at NV4 (5.44%, 50%, 42.86% and 62.50% respectively). C. edule appears burnt at NV7 (11.90%), NV5 (29.41%) and NV4 (4.17%) and R. decussatus at NV8 (46.23%). Mytilus edulis (mussel) is the most relevant species of the collection and appears across the whole sequence from the Gravettian to the Neolithic (Fig. 10). The shells of mussels appear in all growth stages (breeding, juvenile, adult), which indicates that were collected in bunches from rocky cliffs. Gathering bunches does not require specialized technical equipment and is also

compatible with the presence of individuals of all ages and sexes. Some of the shells of mussels are burnt in the Magdalenian, Epimagdalenian and Neolithic levels, and at NV4 level these shells formed a shell midden during the Epimagdalenian. This fact and the high number of shells indicate that mussels were used for consumption as food, especially from the Magdalenian and with a great intensity during the Epimagdalenian. In southern Iberia, Mytilus sp. were consumed by the Neanderthal population between s Sa nchez et al., 2011; MIS 6 and MIS 3 (Barton, 2000; Corte Finlayson et al., 2014). This use continued at the Upper Paleolithic and Mesolithic of other Mediterranean caves such as Complejo laga) (Ramos Ferna ndez et al., 2006; Aura et al., 2014). Humo (Ma Other relevant species are: Cerastoderma edule: cockles appear across the sequence from the top of the Solutrean to the Neolithic, all specimens are adults and their shells are burnt in the Magdalenian and Epimagdalenian (Fig. 11). Ruditapes decussatus: clams appear across the sequence from the top of the Solutrean to the Neolithic, all specimens are adults and their shells are burnt in the top of the Solutrean (Fig. 12). Clams are abundant in the Magdalenian of the Mina chamber of Nerja  Pardo, 1986a) and in the Epimagdalenian shell midden Cave (Jorda of Hoyo de la Mina (M alaga) (Such, 1920; Aura et al., 2013). Pecten maximus: scallops appear across the sequence from the top of the Solutrean to the Neolithic, always as adult specimens (Fig. 13). Their shells only appear burnt in the Epimagdalenian and could have been consumed and used later as containers or lamps. In

76

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Fig. 13. Pectinidae: 1. Pecten maximus (N85VD4IVl). 2. Chlamys varia (N85VC3IVd). Spondylidae: 3. Spondylus sp. (N83VTestigoIV).

Nerja Cave, some Pecten sp. were used as lamps in the deeper chambers, sometimes associated with cave paintings (Medina et al., 2012). Their use as containers has already been referenced in the  Cave (Pericot García, descriptions of the excavations at Parpallo 1942). In other caves, scallops appear with intentional perforations as in the Upper Magdalenian of Caballo Cave (Cartagena, Murcia) (Martínez Andreu, 1989). Pecten maximus is currently found in Atlantic waters and is rare in the Mediterranean coasts, so n Sea. it is an indicator of cold water in the Albora Ostrea edulis: oysters only appear in the Epimagdalenian shellmidden and their specimens are adults and juvenile (Fig. 12). Their shells appear burnt, and they could have been consumed first and used later as lamps. 6. Conclusions The archaeomalacological record of NV contains a long history about how humans provisioned themselves of marine molluscs with a high presence of bivalves. Humans were the only accumulation agent. The whole archaeostratigraphic sequence of the NV contains shells of bivalves, but there are very clear differences between the units. From the Gravettian to the Solutrean (NV13 to NV8) there are few remains (NV13: 6 WRN, 3 WMNI; NV8: 247 WRNM, 51 WMNI)

and a low diversity (Mytilus, Pectinidae, Cerastoderma and Ruditapes). In those times, the coast was 5 km from the cave and characterized by the development of beaches, lagoons and estu Pardo et al., 2011). Although it aries with few small cliffs (Jorda might seem that the low diversity at these levels is due to the small sample size, the diversity is similar at the Mina chamber with larger  Pardo, 1981, 1982, 1984e85, 1986a, 1986b). samples (Jorda From the end of the Solutrean to the Neolithic (NV8s to NV1) the bivalve remains show a marked increase in number (e.g.: NV5 5500 WRN, 2760 WMNI; NV4 47,157 WRN, 23,490 WMNI; NV1 6255 WRN, 3110 WMNI) and also in diversity (Magdalenian 11 taxa, Epimagdalenian 18 taxa). We have detected two trends in diversity: an increase from NV13 to NV4 and a decrease from NV3 to NV1. Due to changes in the coastline position, the site was located at varying distances, between 2 and 5 km, so that changes in the density of marine resources, especially bivalves, may have been related to human decisions. The most prominent inflection points can be placed at the end of the LGM (NV8s) and the beginning of the Neolithic (NV3neo). Changes in the use of molluscs reflect the trends observed in other sites in southern Iberia (Aura Tortosa et al., 1993, 2002, 2010), which highlights the importance of gastropods in the  Pardo et al., 2011). In general, the bivalves increase LGM (Jorda considerably at sites dated post-LGM (Aura Tortosa et al., 2014).

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

Along the sequence, the archaeomalacological record shows an increase in the anthropic exploitation of littoral environments, especially the cliffs. Mussels of these cliffs began to be systematically collected for consumption from the top of the Solutrean and the Magdalenian. This increased exploitation of littoral resources is related to the Late Pleistocene transgression which allowed the development of a well configured rocky coast during the GS 1. This cliffy coast allowed an exploitation of its resources, both bivalves  Pardo et al., 2011). and gastropods (Jorda Other species, as clams and cockles, were collected alive from the beach in order to be consumed as food. This is consistent with the observations in the archaeological record of the other chambers  Pardo, 1986a,b; Serrano et al., 1995). Finally, of Nerja Cave (Jorda shells of underrepresented species were collected at the swash zone and beach face of the beaches, moved by the waves once the molluscs had died, and used for utilitarian purposes, like oysters and scallops. Marine bivalves were consumed from the top of the Solutrean and during the Mediterranean Upper Magdalenian through the Mesolithic and the Early Neolithic. During the Epimagdalenian human activity produced a large accumulation of shells, or shell midden. Mussels are the most important species in the entire sequence, with special relevance in the Epimagdalenian. Some species of bivalves were beach collected, and their shells were introduced in the cave for use as containers or lamps, although some specimens could be collected for human consumption.

Acknowledgments This work is funded by the NPI of the Spanish Ministry of Economy and Competitiveness (Project: LongTransMed, HAR201346861-R). The archaeological excavations in Nerja Cave directed by  were subsidized by the Nerja Cave Professor Francisco Jord a Cerda Foundation and authorized by the cultural authorities of Andalucía. The bivalve study was conducted under the research project Estudio gicos procedentes de las excavaciones de los restos malacolo ticas en la Sala del Vestíbulo de la Cueva de gicas sistema arqueolo ~ as de 1983, 1984, 1985, 1986 y 1987 (A study of the Nerja, campan malacological remains recovered during the systematic archaeological excavations in the Vestíbulo chamber of Nerja Cave, campaigns of 1983, 1984, 1985, 1986 and 1987) supported by the Nerja Cave Foundation in 1996. We want to thank Nur Ferrante for revision of the English text.

References  ndez, E., 2010. Una de cal y otra de arena: Primeras evidencias de Alvarez-Fern a n de moluscos marinos en la Península Ibe rica, in I Reunio n Científica explotacio rica (Leo  n, 2010). Fe rvedes 6, 95e103. de Arqueomalacología de la Península Ibe  ndez, E., 2015. Marine resources exploitation during the Middle and Alvarez-Fern a Early Upper Palaeolithic in Europe: overview of available evidence. P@lethnologie 7, 189e205.  ndez, E., Carriol, R.-P., Jorda , J.F., Aura, J.E., Avezuela, B., Badald, E., Alvarez-Fern a n, Y., García-Guinea, J., Maestro, A., Morales, J.V., Pe rez, G., Pe rezCarrio Ripoll, M., Rodrigo, M.J., Scarffh, J.E., Villalba, M.P., Wood, R., 2014. Occurrence of whale barnacles in Nerja Cave (M alaga, southern Spain): indirect evidence of whale consumption by humans in the Upper Magdalenian. Quaternary International 337, 163e169.   Pardo, J.F., Alvarez-Fern  rez Ripoll, M., Rodrigo Aura Tortosa, J.E., Jorda andez, E., Pe García, Mª.J., Marlasca, R., Alcover, J.A., Avezuela, B., Morales, J.V., Salazar n, P., Pe rez Herrero, C.I., Pardo Gordo  , S., Maestro, A., Villalba García, D.C., Jardo Curr as, M.P., 2014. Palaeolithic e Epipalaeolithic sea People of the southern iberian coast (Spain): a regional overview. C. Dupont and G. Marchand (Coords.). ologie des chasseurs-cueilleurs maritimes: de la fonction des habitats  In: Arche a ance de la Socie te  Pre historique Française e l'organisation de l'espace littoral. Se Rennes 10e11 avril 2014. Pre-Actes SEAPEOPLE 2014, 18. , J.F., Pe rez Ripoll, M., Badal, E., Tiffagom, M., Morales, J.V., y Aura, J.E., Jorda Avezuela, B., 2013. Concheros del sur de Iberia en el límite Pleistoceno-Holoceno. In: de la Rasilla, M., Javier Fortea, F. (Eds.), Universitatis Ovetensis

77

nsula Ediciones, magister. Estudios en homenaje. Universidad de Oviedo e Me Oviedo, pp. 154e179.  Pardo, J.F., Pe rez Ripoll, M., Badal, E., Morales, J.V., Avezuela, B., Aura, J.E., Jorda  n, P., 2010. Treinta an ~ os de investigacio n sobre el Paleolítico Tiffagom, M., Jardo laga, Espan ~ a). In: Mangado, X. superior de Andalucía: la Cueva de Nerja (Ma (Ed.), El Paleolítico superior peninsular. Novedades del siglo XXI. Homenaje al Profesor Javier Fortea, Monografíes, vol. 8. Seminari d'Estudis i Recerques Preriques, Universidad de Barcelona, Barcelona, pp. 149e172. histo laga). In: Aura Tortosa, J.E., Jord a Pardo, J.F., 2014. Cueva de Nerja (Maro, Nerja, Ma Sala, R. (Ed.), Pleistocene and Holocene Hunter-Gatherers in Iberia and the Gibraltar Strait: the Current Archaeological Record. Universidad de Burgos and  n Atapuerca, Burgos, pp. 442e451. Fundacio  Pardo, J.F., Rodrigo Garcia, M.J., 1993. Variaciones en la línea Aura Tortosa, J.E., Jorda  n de los recursos marinos en el límite de costa y su impacto en la explotacio laga). El Cuaternario Pleistoceno Holoceno. El ejemplo de la Cueva de Nerja (Ma ~ a y Portugal. AEQUA-ITGE, Madrid, pp. 369e377. de Espan rez Ripoll, M., Rodrigo García, M.J., Badal García, E., Aura Tortosa, J.E., Jord a Pardo, J.F., Pe Guillem Calatayud, P., 2002. The far south: the Pleistocene-Holocene transition in the nerja cave (Andalucía, Spain). Quaternary International 93e94, 19e30. rez, F.J., 2006. La Cueva de Nerja Aura Tortosa, J.E., Jord a Pardo, J.F., Fortea Pe ~ a) y los inicios del Solutrense en Andalucía. Homenaje a Fran(M alaga, Espan . Zephyrvs 59, 67e88. cisco Jord a Cerda Barton, R.N.E., 2000. Mousterian Hearths and Shellfish: late neanderthal activities on Gibraltar. In: Stringer, C.B., Barton, R.N.E., Finlayson, J.C. (Eds.), Neanderthals on the Edge. Oxbow Books, Oxford, pp. 211e220. Brown, K., Fa, D., Finlayson, G., Finlayson, C., 2011. Small Game and the Marine resource exploitation by neanderthals: the evidence from Gibraltar. In: Bicho, N., Haws, J. (Eds.), Trekking the Shore: Changing Coastlines and the Antiquity of Coastal Settlement. Interdisciplinary Contribution to Archaeology. Springer, pp. 247e271. Bruschi, A., Ceppodomo, I., Galli, C., Piani, P., 1985. Caratterizzazione ecotipologica delle coste italiane. Catalogo dei molluschi conchiferi viventi nel Mediterraneo. ENEA, Comitato Nazionale per la Ricerca e per lo Sviluppo dell'Energia Nucleare e delle Energia Alternative, Roma. €nfeld, J., Zahn, R., Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N.J., Scho 2001. Variability of the western Mediterranean Sea surface temperature during the last 25.000 years and its connection with the Northern Hemisphere climate changes. Paleoceanography 16 (1), 40e52. Cleyet-Merle, J.J., Madelaine, S., 2005. Inland evidence of human coast exploitation in Palaeolithic France. In: Fischer, A. (Ed.), Man and Sea in the Mesolithic: Coastal Settlement above and below Present Sea Level. Oxbow Books, Oxford, pp. 303e308. Colonese, A.C., Mannino, M.A., Bar-Yosef Mayer, D.E., Fa, D.A., Finlayson, J.C., Lubell, D., Stiner, M.C., 2011. Marine mollusc exploitation in Mediterranean prehistory: an overview. Quaternary International 239 (1e2), 86e103. s S  n Vallejo, M.D., Ferna ndez Domínguez, E., Gutie rrez Corte anchez, M., Simo z, C., Lozano-Francisco, M.C., Morales Mun ~ iz, A., Riquelme Cantal, J.A., Sae  Izquierdo, E., Turbo  n Borrega, D., Vera-Pela ez, J.L., 2005. Algunos Rosello ~ a). datos sobre el Paleolítico Superior de la Cueva de Nerja (Andalucía, Espan rquez Alc In: Sanchidri an Torti, J.L., Ma antara, A.M., Fullola i Pericot, J.M. nea durante el Paleolítico Superior (Eds.), La Cuenca Mediterra ~ os. Reunio n de la VIII Comisio n del Paleolítico Superior 38.000e10.000 an n Cueva de Nerja, UISPP. IV Simposio de Prehistoria Cueva de Nerja. Fundacio pp. 298e315.  s Sa nchez, M., Morales-Mun ~ iz, A., Simo n Vallejo, M.D., Bergada -Zapata, M., Corte pez-García, P., Lo pez-S Delgado-Huertas, A., Lo aez, J.A., Lozano-Francisco, M.C.,  Izquierdo, E., Sa nchez-Marco, A., Vera-Pela ez, J.L., Riquelme Cantal, J.A., Rosello 2008. Palaeoenvironmental and cultural dynamics of the coast of m alaga (Andalusia, Spain) during the upper pleistocene and early holocene. Quaternary Science Reviews 27, 2176e2193. s-Sa nchez, M., Morales-Mun ~ iz, A., Simo n-Vallejo, M., Lozano-Francisco, M.C., Corte ez, J.L., Finlayson, C., Rodríguez-Vidal, J., Delgado-Huertas, A., Jime nezVera-Pela Espejo, F., Martínez-Ruiz, F., Martínez-Aguirre, A., Pascual-Granged, A.J., pez-Sa ez, J.A., Bergad a-Zapata, M.M., Gibaja-Bao, J.F., Riquelme-Cantal, J.A., Lo Rodrígo-G amiz, M., Sakai, S., Sugisaki, S., Finlayson, G., Fa, D.A., Bicho, N.F., 2011. Earliest known use of marine resources by Neanderthals. PLoS One 6 (9), e24026. http://dx.doi.org/10.1371/journal.pone.0024026. Cox, L.R., Newell, N.D., Boyd, D.W., Branson, C.C., Casey, R., Chavan, A., Coogan, A.H., Dechaseaux, C., Fleming, C.A., Haas, F., Hertlein, L.G., Kauffman, E.G., Myra Keen, A., La Rocque, A., McAlester, A.L., Moore, R.C., Nutall, C.P., Perkins, B.F., Puri, H.S., Smith, L.A., Soot-Ryen, T., Stenzel, H.B., Trueman, E.R., Turner, R.D., Weir, J., 1969e1972. Part N: Mollusca 6, Bivalvia. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, pp. 491e952. D'Angelo, G., Gargiullo, S., 1987. Guida Alle Conchiglie Mediterranee. Conoscerle, Cercarle, Collezionarle. Fabri Editori, Milano. Davis, J.C., 1973. Statistical and Data Analysis in Geology, second ed. Wiley.  Pardo, J.F. (Ed.), La Eastham, A., 1986. The birds of the Cueva de Nerja. In: Jorda laga). Trabajos sobre la Cueva de Nerja 1. Prehistoria de la Cueva de Nerja (Ma Patronato de la Cueva de Nerja, M alaga, pp. 107e131. Erlandson, J.M., 2001. The Archaeology of aquatic adaptations: paradigms for a new Millennium. Journal of Archaeological Research 9 (4), 287e350. Finlayson, C., Blasco, R., Rodríguez-Vidal, J., Giles Pacheco, F., Finlayson, G., rrez, J.M., Jennings, R., Fa, D.A., Rosell, J., Carrio  n, J.S., S Gutie anchez Marco, A., Finlayson, S., Bernal, M.A., 2014. Gibraltar excavations with particular reference

78

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda

to Gorham's and Vanguard. In: Sala, R. (Ed.), Pleistocene and Holocene HunterGatherers in Iberia and the Gibraltar Strait: the Current Archaeological Record. n Atapuerca, Burgos, pp. 506e514. Universidad de Burgos and Fundacio Ghisotti, F., Melone, G., 1975. Catalogo ilustrato delle conchiglie marine del Mediterraneo. CONCHIGLIE, N.M.D.V.M.I., 11e12, pp. 147e208. Gofas, S., Moreno, D., Salas, C.C., 2011. Moluscos marinos de Andalucía. In: Clase Gastropoda (Heterobranchia), clase Bivalvia, clase Scaphopoda, glosario e laga, Servicio de Publicaciones e Intercambio índices, vol. II. Universidad de Ma laga. Científico, Ma n Oterino, A., 1984. Aspectos Gonzalez-Tablas Sastre, F.J., Jord a Pardo, J.F., Guille  micos, funcionales y medioambientales de los niveles paleolíticos de la econo n entre la Industria, la Malacología y la Palinología. I Cueva de Nerja: Interrelacio n Prehisto rica. Ministerio de Cultura, Jornadas de Metodología de Investigacio Soria, pp. 405e415. lisis estratigra fico de los materiales Guerra-Merch an, A., Serrano, F., 1993. Ana geno-cuaternarios de la regio n de Nerja. In: Carrasco Cantos, F. (Ed.), Geoneo logía de la Cueva de Nerja. Patronato de la Cueva de Nerja, pp. 53e90. n tectosedimentaria del Guerra-Merch an, A., Ramallo, D., Serrano, F., 1999. Evolucio entorno de la Cueva de Nerja durante el Plio-Cuaternario. In: Andreo, B., n del estudio científico de las cavidades Carrasco, F., Dur an, J.J. (Eds.), Contribucio rsticas al conocimiento geolo  gico. Patronato de la Cueva de Nerja, pp. 35e45. ka Jerardino, M.A., 1995. The Problem with density values in archaeological analysis: a case study from Tortoise cave, Western Cape, South Africa. The South African Archaeological Bulletin 50 (161), 21e27. Jerardino, M.A., 2015. Shell density as proxy for reconstructing prehistoric aquatic resource exploitation, perspectives from southern Africa. Journal of Archaeological Science: Reports. http://dx.doi.org/10.1016/j.jasrep.2015.06.005. , F., Gonza lez-Tablas Sastre, F.J., Jord Jord a Cerda a Pardo, J.F., 1987. Cambios culturales n Paleolítico-Neolítico en la Cueva de y medioambientales durante la transicio ~ a). Premie res communaute s paysannes en Mediterrane e Nerja (M alaga, Espan occidentale. CNRS, Paris, pp. 149e153. Jord a, J.F., Aura, J.E., Martín, C., Avezuela, B., 2010. Archaeomalacological remains from the upper pleistocene e early holocene record of the vestíbulo of nerja   cave (Malaga, Spain). In: Alvarez-Fern andez, E., Carvajal, D. (Eds.), Not Only Food. Marine, Terrestrial and Freshwater Molluscs in Archaeological Sites. Munibe Suplemento, vol. 31. Sociedad de Ciencias Aranzadi and ICAZ Archaen-Donostia, pp. 78e87. omalacology Working Group, San Sebastia Jord a, J.F., Avezuela, B., Aura, J.E., Martín-Escorza, C., 2011. The gastropod fauna of the Epipalaeolithic shell midden in the Vestibulo chamber of Nerja Cave (M alaga, southern Spain). Quaternary International 244 (1), 27e36. Jord a Pardo, J.F., 1981. La malacofauna de la Cueva de Nerja (I). Zephyrvs 32e33, 87e99. Jord a Pardo, J.F., 1982. La Cueva de Nerja (II): los elementos ornamentales. Zephyrus 34e35, 89e98. gica de la Cueva de Nerja (Ma laga). Jord a Pardo, J.F., 1983. La secuencia malacolo  xico de Laxe 5, 55e71. Excavaciones de 1982. Cadernos Laboratorio Xeolo Jord a Pardo, J.F., 1986a. In: La Prehistoria de la Cueva de Nerja. Patronato de la Cueva de Nerja, M alaga. gica de la Cueva de Nerja. In: Jord Jord a Pardo, J.F., 1986b. La fauna malacolo a Pardo, J.F. (Ed.), La Prehistoria de la Cueva de Nerja. Patronato de la Cueva de laga, pp. 145e177. Nerja, Ma gico y paleogeogr Jord a Pardo, J.F., 2004. An alisis geomorfolo afico de la Costa del Sol laga, Sur de Espan ~ a). In: Baquedano, E., Oriental en los alrededores de Nerja (Ma nea en homenaje a Emiliano Aguirre. Zona Rubio Jara, S. (Eds.), Miscela  gica, 4, vol. I, pp. 52e71. Geología. Arqueolo Jord a Pardo, J.F., Aura Tortosa, J.E., 2006. Radiocarbono, cronoestratigrafía y episodios ocupacionales en el Pleistoceno superior y Holoceno de la Cueva de ~ a). In: Maíllo, J.M., Baquedano, E. (Eds.), MisNerja (M alaga, Andalucía, Espan gica, vol. 7(1), cel anea en homenaje a Victoria Cabrera. Zona Arqueolo pp. 578e597. n crítica Jord a Pardo, J.F., Aura Tortosa, J.E., 2008. 70 fechas para una cueva. Revisio de 70 dataciones C14 del Pleistoceno superior y Holoceno de la Cueva de Nerja ~ a). In: Ripoll Lo pez, S. (Ed.), Homenaje Al Profesor (M alaga, Andalucía, Espan  . Espacio, Tiempo Y Forma. Serie I. Nueva Epoca. Eduardo Ripoll Perello Prehistoria Y Arqueología, vol. 1, pp. 239e256. Jord a Pardo, J.F., Aura Tortosa, J.E., 2009. El Límite Pleistoceno-Holoceno en el gico de la Cueva de Nerja: nuevas aportaciones cronoesyacimiento arqueolo ticas. Geogaceta 46, 95e98. tratigr aficas y paleoclima ~ os de investigaciones preJord a Pardo, J.F., Aura Tortosa, J.E., 2010. Treinta dos an ricas en la Cueva de Nerja (Ma laga, Espan ~ a): resultados de las excavaciones histo  gicas (1979-1987) del profesor Francisco Jorda  Cerda . In: Dur arqueolo an, J.J., Carrasco, F. (Eds.), Cuevas: Patrimonio, Naturaleza, Cultura Y Turismo.  n de Cuevas Turísticas de Espan ~ a, Madrid, pp. 405e418. Asociacio rez Ripoll, M., Badal Jord a Pardo, J.F., Aura Tortosa, J.E., Rodrigo García, M.J., Pe gico cuaternario del yacimiento García, E., 2003. El registro paleobiolo  gico de la Cueva de Nerja. Boletín de la Real Sociedad Espan ~ ola de arqueolo Historia Natural 98 (1e4), 73e89.  lez, A., Aura Tortosa, J.E., Alvarez Ferna ndez, E., Jord a Pardo, J.F., Maestro Gonza rez, J.V., Pe rez Ripoll, M., Villalba Avezuela Aristu, B., Badal García, E., Morales Pe n paleogeogra fica, paleoclima tica y paleoambiental Curr as, M.P., 2011. Evolucio rica durante el Pleistoceno superior. El de la costa meridional de la Península Ibe ~ a). Boletín de la Real caso de la Cueva de Nerja (M alaga, Andalucía, Espan ~ ola de Historia Natural 105 (1e4), 137e147. Sociedad Espan Lindner, G., 2000. Moluscos y caracoles de los mares del mundo. Omega, Barcelona.

ez, J.L., Simo  n Vallejo, M.D., Corte  s Sa nchez, M., Lozano-Francisco, M.C., Vera Pela  pica de los moluscos e inver2003. Taxonomía, autoecología y actividad antro laga, Sur de tebrados marinos de la Sala del Vestíbulo (Cueva de Nerja, Ma ~ a). Plioce nica 3, 74e87. Espan  n Vallejo, M.D., Corte  s Sa nchez, M., Lozano-Francisco, M.C., Vera Pel aez, J.L., Simo  gico del Pleistoceno Superior2004. Nuevos datos sobre el registro malacolo ~ a). Revista de la Sociedad EspaHoloceno de la Cueva de Nerja (M alaga, Espan ~ ola de Paleontología 19 (2), 215e228. n Malatesta, A., 1963. Memoria per servire alla descrizione della carta geologica d'Italia. Roma. Malatesta, A., 1974. Memoria per servire alla descrizione della carta geologica d'Italia. Roma. Marean, C.W., 2014. The origins and significance of coastal resource use in Africa and Western Eurasia. Journal of Human Evolution 77, 17e40. Martínez Andreu, M., 1989. El Magdaleniense Superior en la costa de Murcia. n Documentos 2. Consejería de Cultura, Educacio n y Turismo, Murcia. Coleccio n, J.L., 2012. Otro punto de luz. Medina, M.A., Cristo, A., Romero, A., Sanchidria  n esta tica en los “santuarios” paleolíticos: el ejemplo de la Cueva de Iluminacio ~ a). In: Clottes, J. (Ed.), L'art ple istoce ne dans le monde/ Nerja (M alaga, Espan s Pleistocene art of the world/Arte pleistoceno en el mundo, Actes du Congre IFRAO, Symposium: Pleistocene art in Europe (Pre-Acts), pp. 105e121 (IFRAO). Mexía Unzurrunzaga, F., 2000. Conchas marinas de Asturias. Cajastur, Oviedo. €ischen Meeresmuscheln (Bivalvia). Gustav Fischer, Nordsieck, E., 1969. Die Europa Stuttgart.  Pardo, J.F., 1984e85. La malacofauna de la Cueva de Nerja (III). Evolucio n Jorda cnicas de marisqueo. Zephyrvs 37, 143e154. medioambiental y te Parenzan, P., 1976. Carta d'identita delle conchiglie del Mediterraneo. Bios Taras, Taranto. rez Ripoll, M., Raga, J.A., 1998. Los mamíferos marinos en la vida y en el arte de la Pe n Torti, J.L., Simo n Vallejo, M.D. Prehistoria de la Cueva de Nerja. In: Sanchidria (Eds.), Las culturas del Pleistoceno Superior en Andalucía. Homenaje al profesor Francisco Jord a Cerd a. Patronato de la Cueva de Nerja, M alaga, pp. 251e275.  (Gandía): Excavaciones del Servicio de Pericot García, L., 1942. La cueva del Parpallo  n prehisto rica de la Excma. Instituto Diego Vela zquez, CSIC and Serinvestigacio  n Prehisto  rica, Diputacio n provincial de Valencia, Madrid. vicio de Investigacio Poppe, G.T., Goto, Y., 1993. European Seashells II (Scaphopoda, Bivalbia, Cephalopoda). Verlag Christa Hemmen, Wiesbaden. R Development Core Team, 2013. R: a Language and Environment for Statistical Computing. R Foundation 498 for Statistical Computing, Viena, Austria. http:// www.R-project.org. Ramos, J., Cantillo, J.J., 2009. Los recursos litorales en el Pleistoceno y Holoceno. Un  n por las sociedades cazadoras-recolectoras, tribales balance de su explotacio n del Estrecho de Gibraltar. In: comunitarias y clasistas iniciales en la regio Bernal, D. (Ed.), Arqueología de la pesca en Estrecho de Gibraltar. De la Prediz, pp. 17e79. historia al fin del mundo antiguo. Universidad de C adiz, Ca ndez, J., Corte  s S  pez, R., Lozano Francisco, M.C., Ramos Ferna anchez, M., Aguilera Lo ez, J.L., Simo n Vallejo, M.D., Ramos Ferna ndez, R., 2006. El MagdaleVera Pela ~ a, Ma laga). niense y Epipaleolítico del Abrigo 6 del Complejo del Humo (La Aran rquez Alc In: Sanchidri an Torti, J.L., Ma antara, A.M., Fullola Pericot, J.M. (Eds.), IV nea durante el Simposio de Prehistoria Cueva de Nerja. La Cuenca Mediterra ~ os (Nerja, 2004). Fundacio n Cueva de Paleolítico superior. 38.000-10.000 an laga, pp. 326e341. Nerja, Ma Rencher, A.C., 2002. Methods of Multivariate Analysis, second ed. Wiley. neo. Omega, Barcelona. Riedl, R., 1986. Fauna y Flora del Mar Mediterra Rodrigo García, M.J., 1991. Remains of Melanogrammus aeglefinus (Linnaeus, 1758) in laga, Spain). Schriften the Pleistocene-Holocene Passage of the cave of nerja (Ma aus der Arch€ aeologist-Zoologishen Arbeistsgruppe Schleswig 5, 348e351.  n en el entorno de la Cueva de Nerja. In: Sanz de Galdeano, C., 1993. La fracturacio Carrasco Cantos, F. (Ed.), Geología de la Cueva de Nerja. Patronato de la Cueva de Nerja, pp. 93e114. n, A., 1995. Serrano, F., Lozano Francisco, M.C., Vera Pel aez, J.L., Guerra-Mercha ricos de la Cueva de Nerja. In: Pellicer Malacofauna en yacimientos prehisto ~ iz, A. (Eds.), Fauna de la Cueva de Nerja I. Patronato de Catal an, M., Morales Mun la Cueva de Nerja, pp. 297e373. n, A., Lozano Francisco, M.C., Vera Pela ez, J.L., 1997. Serrano, F., Guerra-Mercha Multivariate analysis of remains of molluscan foods consumed by latest Pleislaga, Spain). Quaternary tocene and Holocene humans in Nerja Cave (Ma Research 48 (2), 215e227. n, A., Lozano-Francisco, M.C., Vera-Pela ez, J.L., 1998. Los Serrano, F., Guerra-Mercha restos alimentarios de malacofauna de los homínidos del Pleistoceno Final y ~ a). In: Sanchidria n Torti, J.L., Simo n Holoceno de la Cueva de Nerja (M alaga, Espan Vallejo, M.D. (Eds.), Las Culturas del Pleistoceno Superior en Andalucía. Homenaje  Cerda . Patronato de la Cueva de Nerja, pp. 359e380. al profesor Francisco Jorda laga). Such, M., 1920. Avance al estudio de la caverna del Hoyo de la Mina (Ma ~ a de Ciencias, M Boletín de la Sociedad Malaguen alaga. n Vallejo, M.D., 2003. Relevancia del Vera Pel aez, J.L., Lozano Francisco, M.C., Simo ricos, un caso bien docestudio de los moluscos en yacimientos prehisto ~ a). Plioce nica 3, 88e106. umentado: la Cueva de Nerja (M alaga, Sur de Espan s, M.P., Jorda  Pardo, J.F., Aura Tortosa, J.E., 2007. Los equínidos del Villalba Curra gico de la Cueva de Nerja Pleistoceno Superior y Holoceno del registro arqueolo laga, Espan ~ a). Cuaternario y Geomorfología 21 (3e4), 133e148. (Ma gicas preliminares para la conservacio n de las especies de VV. AA, 2012. Bases ecolo s comunitario en Espan ~ a: Invertebrados. Ministerio de Agricultura, intere n y Medio Ambiente, Madrid. Alimentacio

 Pardo et al. / Quaternary International 407 (2016) 59e79 J.F. Jorda Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236e244. Wishart, D., 1969. An algorithm for hierarchical classifications. Biometrics 25, 165e170.

Web references CLEMAM. Check list of European Marine Mollusca [web application]. An authoritative database of the Marine Mollusca of Europe and surrounding areas. http://www.somali.asso.fr/clemam/index.clemam.html (accessed 29.12.14.).

79

rica. Fauna Ibe rica IX (CGL2007-66786-C8) [web page]. Museo Nacional de Fauna Ibe Ciencias Naturales (CSIC). Departamento de Biodiversidad y Biología Evolutiva. http://www.fauna-iberica.mncn.csic.es/proyecto/ (accessed 29.12.14.). GEBCO, 2003. General bathymetric Chart of the Oceans, Digital Edition [on line]. Iho-unesco. www.ngdc.noaa.gov/mgg/gebco (accessed 20.11.11.). NatureServe, 2014. NatureServe Explorer: an Online Encyclopedia of Life [web Application]. Version 7.1. NatureServe, Arlington, Virginia. Available: http:// explorer.natureserve.org (accessed 29.12.14.). Tabla de Mareascom: Tabla de mareas y tablas solunares 2015 para planificar tu jornada de pesc http://www.tablademareas.com/es/malaga/nerja (accessed 29.12.14.).