Cacao—Theobroma cacao

Cacao—Theobroma cacao

Cacao—Theobroma cacao Pahlevi A. de Souza1, Lunian F. Moreira1, Dio´genes H.A. Sarmento2 and Franciscleudo B. da Costa3 1 Federal Institute of Educat...

1MB Sizes 4 Downloads 716 Views

Cacao—Theobroma cacao Pahlevi A. de Souza1, Lunian F. Moreira1, Dio´genes H.A. Sarmento2 and Franciscleudo B. da Costa3 1

Federal Institute of Education, Science and Technology of Ceara´, Limoeiro do Norte, Brazil, 2UNIVALE, Limoeiro do Norte, Brazil

3

UFCG/CCTA, Pombal, Brazil

Chapter Outline Origin and Botanical Aspects Harvest and Potential of Industrialization Cocoa Beans Processing

69 72 72

Chemical Composition and Nutritional Value References

72 75

ORIGIN AND BOTANICAL ASPECTS Cocoa (Theobroma cacao L.), known worldwide for being the raw material of chocolate, belongs to the class Magnoliopsida, order Malvales, family Malvaceae, genus Theobroma and species Cacao, being the main fruit of the genus cultivated, due to the value and importance of the seeds (Argout et al., 2001; CEPLAC, 2001; Alexandre et al., 2015; Kongor et al., 2016). The cacao tree originates from rainforest regions of tropical America, where until today, is found in the wild state, from Peru to Mexico. Charles de L’Ecluse was the first to cite the cacao in the botanical literature as Cacao fructus. Later (1737), Linneu described it as Theobroma fructus. However, in 1753, the same Linneu proposed the specific name of Theobroma cacao, which remains to this day. Botanists believe that cocoa originates from the headwaters of the Amazon River, and it has expanded in two main directions, originating into two important groups: Criollo and Forastero (Pires, 2003). According to Beckett (1994), these terms were initially used in Venezuela to distinguish the native material of the region (Criollo) from the introduced material (Forastero). The Criollo, which spread northward to the Orinoco River, penetrating central America and southern Mexico, produces large fruits with a wrinkled, thin or thick surface, which presents red or green color (Tucci et al., 1996) (Fig. 1). In addition, its seeds are large, with a white or pale violet interior. It was the type of cacao cultivated by the Aztec and Mayan Indians. The Forastero has spread through the Amazon basin towards the Guianas. It is the true Brazilian cacao, which presents intensely pigmented seeds, with dark violet or blackish interior, green fruits when immature and yellow when ripe, ovoid shaped, smooth surface, imperceptibly furrowed or wrinkled (Beckett, 1994; CEPLAC, 2001) (Fig. 2). According to Batalha (2009) the cocoa plant develops in the hot and humid climate in a geographic range comprised between the 20oN and 20oS parallels. Its cultivation extends from Venezuela, passing through Colombia, Central % America and Mexico. When% dispersing along the Amazon River, it also reaches the Guianas. However, about 70% of world production comes from West Africa, mainly from Ivory Coast (40%), Ghana (20%), Nigeria (5%), and Cameroon (5%). Brazil, before the introduction of the witch-broom disease (Moniliophtora perniciosa) in 1989, was the world’s second largest cocoa producer, falling to the fourth position, accounting for only 4% after this disease (Leite, 2012). According to data from CEPLAC (2001), the cocoa plant can be described as follows. Height: it can reach 5 8 m of height and 4 6 m of diameter of the crown. However, it can reach up to 20 m under forest condition, due to competition for light with other species.

Exotic Fruits Reference Guide. DOI: http://dx.doi.org/10.1016/B978-0-12-803138-4.00010-1 © 2018 Elsevier Inc. All rights reserved.

69

70

Exotic Fruits Reference Guide

FIGURE 1 Aspect of the plant of the cacao tree.

FIGURE 2 Aspect of the plant and fruit of the cacao tree.

Cacao—Theobroma cacao

71

Root system: consists of a pivoting root that has its length and shape varying according to the structure, texture, and consistency of the soil. In deep soils with good aeration it can have a growth of the pivoting root of up to 2 m. The secondary roots are responsible for the plant nutrition, and generally 70% 90% of these are in the first 30 cm of the soil. Stem: it is erect, and with 2-years aged, the growth of the terminal yolk is stopped with 1.0 1.5 m of height. Afterwards, the first crowns appearing, composed of 3 5 main branches, that multiply in other lateral and secondary branches. In the first years, the cacao tree presents smooth stems bark. Later, due to development of flowers cushions, it becomes rough and rugged. Leaves: the leaves are oblong, acuminate, and glabas with prominent central rib. When new, depending on the clone or cultivar, they have a color ranging from green (more or less rosy) to violet, depending on the amount of anthocyanin present. When old, the leaves lose their pigmentation, becoming pale green, and finally, dark green and stiff. Flowers: cacao flowers appear in floral cushions on the trunk or woody branches, from buds that develop in the armpits of old leaves. The flowers are hermaphroditic and have the following constitution: five sepals, five petals, five estaminodes, five stamens and one pistil whose ovary has five ovules. The cacao flowers have structural characteristics that limit their pollination exclusively by insects. The main pollinating agents of cacao are a small group of insects belonging to the Ceratopogonidae family, genus Forcipomya. In the Amazon Region, the cacao tree has two flowering peaks: a minor that coincides with the beginning of the less rainy period and a main one that occurs at the end of the dry season and the beginning of the rainy season. Annually, an adult cacao tree can produce more than 100,000 flowers, but only about 0.1% turn into fruit. The unpollinated flowers fall within 48 h. On the other hand, the pollinated and fertilized flowers remain fixed on the peduncle, and they develop the fruit. Fruit: it presents a fleshy pericarp composed of three distinct parts: the epicarp, which is fleshy and thick, whose outer epidermal extract may be pigmented. The mesocarp, which is thin and hard, but not very lignified, and the endocarp, which is fleshy and not very thick. Usually the fruit when immature is green, and yellow when ripe. Others are purple (red-wine) in the development phase and orange in the ripening period. The period between pollination and fruit ripening varies from 140 to 205 days, with an average of 167 days. The fruit index (number of fruits required to obtain 1 kg of commercial cocoa) is generally from 15 to 31 fruits (Fig. 3). Seed: the shape varies from ellipsoid to ovoid with 2 3 cm in length. It is covered by white mucilaginous pulp that has an acid-sweet taste. The embryo has two cotyledons with colors ranging from white to violet. Cocoa’s seeds are very sensitive to temperature changes and die in a short time when suffer from dehydration.

FIGURE 3 Aspect of fruit of the cacao tree.

72

Exotic Fruits Reference Guide

HARVEST AND POTENTIAL OF INDUSTRIALIZATION Harvest starts from the second year. From the second to the fourth year, the fruits can be harvested practically throughout the year. From the fifth year, harvest occurs in two periods: harvest season, November to February, and off-season, April to August (CEPLAC, 2001). In practice, the change in color of the bark, from green to yellow or red depending on the variety, indicates the harvest point of the cocoa fruit (EFRAIM, 2009). According to Verı´ssimo (2012), the pulp has an exotic flavor and is pleasing to the palate like other fruits, such as soursop (Annona muricata) or cupuac¸u (Theobroma grandiflorum). The main product of cocoa is chocolate (Santos, 2012), but other products such as cosmetics, fine drink, juice and icecream use this fruit as raw material. Sousa (2015) states that the taste and aroma of chocolate are unique to Theobroma cacao and no one, until 2015, had been able to synthesize this artificially. Chocolate industries use cocoa fruits from three groups: Criollo, Forastero and Trinitario (Alexandre et al., 2015). In addition, the chocolate industry uses another 2-categories classification: regular cocoa and fine-flavor cocoa. ´ lvarez et al. (2007), the Criollo variety produces the best chocolate due to the sweet taste of its According to A seeds, which are less bitter and more aromatic than the other two varieties. Its use as raw material for chocolate varies from 5% to 10% only. Trinita´rio is a hybrid variety from Criollo and Forastero, and its use ranges 10% 15% of the world production of chocolate. These two varieties belong to the fine-flavor category, being used in products with more delicate flavors and aromas (Verı´ssimo, 2012). Forastero, classified as regular, is the cheapest variety and, therefore, its use in the industry is around 80%, especially in products with high concentration of chocolate (Rusconi and Conti, 2010).

COCOA BEANS PROCESSING After harvest, the fruits should been opened in order to separate the bark and the placenta (80%) from the seeds and pulp (20%) (Sousa, 2015; Santos et al., 2013; Pires et al., 2005). Seeds are separated from the pulp by a fermentation process (Guilloteau et al., 2005). In this fermentation process, the enzymatic and microorganism action on polyphenols, proteins, and carbohydrates (Elwers et al., 2009; Maˆcedo, 2014) induces the development of precursors and numerous compounds responsible for the taste and aroma of chocolate (Oetterer, 2006), as well as other products made from cocoa (Lagunes Ga´lvez et al., 2007). Industrially, this process turns the seeds into cocoa beans. After fermentation, the cocoa beans are dried and toasted until reaching a moisture content of 7%, and many reactions initiated in the fermentation process continue in the drying and roasting step, such as the oxidation reactions that reduce the acidity (Beckett, 1994) and phenolic compounds that are responsible for bitterness and astringency of cocoa (Fellows, 2006). Cocoa beans can be dried in the sun (Pontillon, 2009) or in dryers (Cruz, 2002). However, in the latter method, the increase in temperature may lead to a hardening of the cotyledons with eventual loss of quality (Beckett, 2009). Thus, the genotype (Luna et al., 2002) and the harvesting, drying (Rocha et al., 2014) and fermentation stages (Hue et al., 2016; Loureiro, 2014) directly influence the quality of cocoa, mainly when seeds of different cocoa genotypes are mixed in the fermentation process (Ioanonne et al., 2015; Menezes et al., 2016). After drying, the beans should be stored, avoiding high volume conditions in high humidity and low air circulation, as the beans are hygroscopic and moisture gain may lead to the development of fungi and other undesirable microorganisms (Beckett, 1994). However, the processing generates significant amounts of byproducts, such as bark, pulp, and ‘cocoa honey’ (Santos et al., 2014). The ‘cocoa honey’ is a Brazilian name for the transparent liquid extracted from the pulp prior to fermentation, consisting of water, fermentable sugars (10% 18%), nonvolatile acids (0.77% 1.52%), pectin (0.9% 2.5%), and fibers (0.7%). The bark can be destined for animal feeding, such as ruminants, fuel, or for application in the soil (CEPLAC, 2001; Silva et al., 2005; Carvalho, 2007), replacing or in association with chemical compounds used in soil fertilization, because it is rich in K, Ca, P, and Mg (Chepote, 2003).

CHEMICAL COMPOSITION AND NUTRITIONAL VALUE Cacao-based products are classified as highly energetic, stimulating (Lopes, 2008) and antioxidants (Nasrollahzadeh ´ lvarez et al., 2007; Rusconi and Conti, 2010), and bioactive et al., 2015), due to the high fat content of 40% 50% (A

Cacao—Theobroma cacao

73

compounds (Santos et al., 2015) such as polyphenols (Ioanonne et al., 2015). The main phenolic compounds found in cocoa are within the group of tannins and flavonoids (Efraim et al., 2011). Flavonoids have an antiinflammatory action against cardiovascular diseases and cholesterol oxidation prevention (Santos et al., 2015), preventing or delaying the accumulation of fats in the walls of blood vessels (Silva et al., 2013). Herewith we display tables that show the physicochemical composition of the pulp (Table 1), physical characteristics of the fruits and seeds (Table 2), chemical composition of the seeds (Table 3), centesimal composition of the fermented and dried cocoa beans (Table 4), and chemical composition of the cocoa bark (Table 5).

TABLE 1 Physicochemical Composition of the Cocoa Pulp Characteristics

Unit

Values

pH

3.19

Titratable acidity

% of citric acid

Soluble solids



Vitamin C Protein Lipids Water content

Source

3.45

Alexandre et al. (2015)

1.57

2.12

Alexandre et al. (2015)

12.97

16.55

Alexandre et al. (2015)

mg 100 g

3.30

7.60

Penha and Matta (1998)

21

0.73

1.13

Penha and Matta (1998)

21

0.12

0.65

Penha and Matta (1998)

21

75.33

80.06

Penha and Matta (1998)

Brix 21

g 100 g g 100 g g 100 g

Activity of water

0.90

0.94

Penha and Matta (1998)

Fibers

21

g 100 g

0.29

0.35

Penha and Matta (1998)

Starch

g 100 g21

3.65

4.58

Penha and Matta (1998)

21

6.62

8.22

Penha and Matta (1998)

21

3.72

5.29

Penha and Matta (1998)

21

4.41

5.95

Penha and Matta (1998)

Sucrose Glucose Fructose

g 100 g

g 100 g g 100 g

TABLE 2 Physical Characteristics of Cocoa Fruits and Seeds Characteristics

Unit

Total fruit mass

g

491.50

Values 1,124.27

Source Alexandre et al. (2015)

Total bark mass

g

362.92

912.04

Alexandre et al. (2015)

Percentage of pulp

%

18.67

31.64

Alexandre et al. (2015)

Transversal diameter of the fruit

cm

8.46

11.14

Penha and Matta (1998)

Longitudinal diameter of the fruit

cm

13.89

23.23

Penha and Matta (1998)

Number of seeds

average

24.30

39.90

Penha and Matta (1998)

Seed width

mm

11.86

14.45

Penha and Matta (1998)

Seed thickness

mm

6.19

9.85

Penha and Matta (1998)

Seed mass

g

0.68

1.93

Loureiro (2012)

TABLE 3 Chemical Composition of Cocoa Seeds Characteristics

Unit

Values

pH Titratable acidity Water content

21

meq NaOH 100 g 21

g 100 g

Activity of water Sucrose Glucose

5.25

Efraim (2009)

2.17

3.93

Efraim (2009)

52.95

58.15

Efraim (2009)

0.97

0.99

Efraim (2009)

21

7.37

11.84

Efraim (2009)

21

21.09

61.94

Efraim (2009)

mg g

mg g

21

Fructose

mg g

Phenolic compounds

mg 100 g21

Total nitrogen

Source

4.66

21

g 100 g

16.82

66.43

Efraim (2009)

129.04

168.83

Efraim (2009)

24.05

29.13

Efraim (2009)

TABLE 4 Centesimal Composition of the Fermented and Dried Cocoa Beans Characteristics

Unit

Values

Source

Water content

%

35.00

Koblitz (2011)

Lipids

%

31.30

Koblitz (2011)

Protein

%

8.40

Koblitz (2011)

Theobromine

%

2.40

Koblitz (2011)

Caffeine

%

0.80

Koblitz (2011)

Polyphenols (tannins)

%

5.20

Koblitz (2011)

Carbohydrates, acids, and fibers

%

13.70

Koblitz (2011)

Ashes

%

3.20

Koblitz (2011)

Total

%

100.00

TABLE 5 Chemical Composition of the Cocoa Bark Characteristics

Unit

Values

Source

Water content

%

8.50

Vriesmann et al. (2011)

Ashes

%

6.70

Vriesmann et al. (2011)

Protein

%

8.60

Vriesmann et al. (2011)

Lipids

%

1.50

Vriesmann et al. (2011)

Total carbohydrates

%

32.30

Vriesmann et al. (2011)

Low molecular weight carbohydrates

%

19.20

Vriesmann et al. (2011)

Lignin

%

21.40

Vriesmann et al. (2011)

Insoluble fibers

%

27.00

Vriesmann et al. (2011)

Soluble fibers

%

9.60

Vriesmann et al. (2011)

Total fibers

%

36.60

Vriesmann et al. (2011)

Ca

%

0.254

Vriesmann et al. (2011)

K

%

2.768

Vriesmann et al. (2011)

Mg

%

0.1109

Vriesmann et al. (2011)

Fe

%

0.0058

Vriesmann et al. (2011)

Na

%

0.0105

Vriesmann et al. (2011)

Cacao—Theobroma cacao

75

REFERENCES Alexandre, R.S., Chagas, K., Marques, H.I.P., Costa, P.R., Filho, J.C., 2015. Caracterizac¸a˜o de frutos de clones de cacaueiros na regia˜o litoraˆnea de Sa˜o Mateus, ES. Revista Brasileira de Engenharia Agrı´cola e Ambiental. 19 (8), 785 790. Argout, X., et al., 2001. The genome of Theobroma cacao. Nat. Genet. 43, 101 109. ´ lvarez, C., Pe´rez, E., Lares, M.C., 2007. Physical-chemical characterization of fermented, dried and roasted cocoa beans cultivated In the region of A cuyagua, aragua state. Agronomı´a Tropical. 57 (4), 249 256. Batalha, P.G., 2009. Caracterizac¸a˜o do cacau catongo de Sa˜o Tome´ e Prı´ncipe. Mestrado (Mestre em Engenharia de Alimentos Tecnologia de Produtos vegetais) Universidade Te´cnica de Lisboa. Instituto Superior de Agronomia, Lisboa Portugal. Beckett, J.R., 1994. Industrial chocolate manufacture and use. second ed. Black Academic & Professional, London, 407p. Beckett, S.T., 2009. In: Beckett, Stephen T. (Ed.), Industrial chocolate manufacture and use, fourth ed. Blackwell Publishing Ltd, London, 732p. Carvalho, G.G.P., Garcia, R., Pires, A.J.V., Preira, O.G., Azevedo, J.A.G., Carvalho, B.M.A., et al., 2007. Valor nutritivo de silagens de capim-elefante emurchecido ou com adic¸a˜o de farelo de cacau. Revista Brasileira de Zootecnia. 36 (5), 1495 1501. CEPLAC, 2001. Sistema de produc¸a˜o de cacau para a Amazo´nia brasileira. CEPLAC, Bele´m, 125p. Chepote, R.E., 2003. Efeito do composto da casca do fruto de cacau no crescimento e produc¸a˜o do cacaueiro. Revista Agrotro´pica. 15 (1), 8. Cruz, C.L.C.V., 2002. Melhoramento do sabor de ameˆndoas de cacau atrave´s de tratamento te´rmico em forno convencional e de microondas. Dissertac¸a˜o (Mestre em Tecnologia de Alimentos). Faculdade de Engenharia de Alimentos. Universidade Estadual de Campinas. Campinas SP, 101p. Efraim, P., 2009. Contribuic¸a˜o a` melhoria de qualidade de produtos de cacau no Brasil, por meio da caracterizac¸a˜o de derivados de cultivares resistente a Vassoura de Bruxa e de sementes danificadas pelo fungo. Tese (Doutorado em Tecnologia em Alimentos). Universidade Estadual de Campinas, Campinas, Sa˜o Paulo, p. 208f. Efraim, P., Alves, A.B., Jardim, D.C.P., 2011. Polifeno´is em cacau e derivados: teores, fatores de variac¸a˜o e efeito na sau´de. Braz. J. Food Technol. 14 (3), 181 201. Elwers, S., Zambrano, A., Rohsius, C.H., Lieberei, R., 2009. Differences between the content of phenolic compounds in criollo, forastero and trinitario cocoa seed (Theobroma cacao L.). Eur. Food Res. Technol. 229 (6), 937 948. Fellows, P.J., 2006. Tecnologia do processamento de alimentos. Princı´pios e pra´tica. 2 Edic¸a˜o. Ed Artmed, pp. 183 205, 602. Guilloteau, M., Lalaoi, M., Michaux, S., Bucheli, P., McCarthy, J., 2005. Identification and characterization of the majoraspartic proteinase activity in Theobroma cacao seeds. J. Sci. Food Agric. 85, 549 562. Hue, C., Gunata, Z., Breysse, A., Davrieux, F., Boulanger, R., Sauvage, F.X., 2016. Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chem. 192, 958 964. Ioanonne, F., Mattia, C.D., Gregorio, M., Sergi, M., Serafini, M., Sacchetti, G., 2015. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 174, 256 262. Koblitz, M.G.B., 2011. Mate´rias-primas alimentı´cias: composic¸a˜o e controle de qualidade. Guanabara Koogan, Rio de Janeiro (RJ), 301 p. Kongor, J.E., Hinneh, M., Walle, D.V., Afoakwa, E.O., Boeckx, P., Dewettinck, K., 2016. Factors influencing quality variation in cocoa (Theobroma cacao L.) bean flavour profile—a review. Food Res. Int. 82, 44 52. Lagunes Ga´lvez, S., Loiseau, G., Paredes, J.L., Barel, M., Guiraud, J.P., 2007. Study on the microflora and biochemistry of cocoa fermentation in the Dominican Republic. Int. J. Food Microbiol. 114, 124 130. Leite, P.B., 2012. Caracterizac¸a˜o de chocolates provenientes de variedades de cacau Theobroma cacao L. resistentes a vassoura de bruxa. Mestrado (Mestre em Cieˆncia dos Alimentos) Universidade de Farma´cia da Universidade Federal da Bahia. Lopes, A.S., Pezoa-Garcı´a, N.H., Amaya-Farfa´n, J., 2008. Qualidade nutricional das proteı´nas de cupuac¸u e de cacau. Cieˆncia e Tecnologia de Alimentos. 28 (2), 263 268. Loureiro, G.A.H.A., 2012. Atributos qualitativos de solo e ameˆndoas de cacau comum: revisa˜o, ana´lises e interpretac¸a˜o de relac¸o˜es. Monografia (Bacharelado em Engenharia Agronoˆmica). Universidade Estadual de Santa Cruz, Ilhe´us, Bahia, p. 87f. Loureiro, G.A.H.A., 2014. Qualidade de solo e qualidade de cacau. Dissertac¸a˜o. Programa de Po´s-Graduac¸a˜o em Produc¸a˜o vegetal. Universidade Estadual de Santa Cruz, Ilhe´us Bahia, p. 236f. Luna, F., Crouzillat, D., Cirou, L., Bucheli, P., 2002. Chemial composition and flavor of Ecuadorian cocoa liquor. J. Agric. Food Chem. Easton. 50, 3527 3532. Maceˆdo, A.S.L., 2014. Caracterizac¸a˜o de enzimas em dois cultivares de cacau Theobroma cacao L. Dissertac¸a˜o. Programa de Po´s-Graduac¸a˜o em Cieˆncia de Alimentos. Universidade Federal da Bahia Salvador, p. 89f. Menezes, A.G.T., Batista, N.N., Ramos, C.L., Silva, A.R.A., Efraim, P., Pinheiro, A.C.M., et al., 2016. Investigation of chocolate produced from four different Brazilian varieties of cocoa (Theobroma cacao L.) inoculated with Saccharomyces cerevisiae. Food Res. Int. 81, 83 90. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Bagherzadeh, M., 2015. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J. Colloid Interface Sci. 448 (15), 106 113. Oetterer, M., 2006. Tecnologias de obtenc¸a˜o de cacau, produtos do cacau e do chocolate. In: Oetterer, M., Regitano d’Arce, A., Spoto (Org.), M.H.F. (Eds.), Fundamentos de Cieˆncia e Tecnologia de Alimentos, vol. 1. Manole, Barueri, Sa˜o Paulo. Penha, E., Matta, M., Caracterı´sticas, V.M., 1998. fı´sico-quı´micas e microbiolo´gicas da polpa de cacau. Pesquisa Agropecua´ria Brasileira. 33 (11), 1945 1949.

76

Exotic Fruits Reference Guide

Pires, J.L., 2003. Avaliac¸a˜o quantitativa e molecular de germoplasma para o melhoramento do cacaueiro com eˆnfase na produtividade, qualidade de frutos e resisteˆncia a doenc¸as. 2003. 220p. Tese Doutorado. Universidade Federal de Vic¸osa, Vic¸osa, MG. Pires, A.J.V., Vieira, V.F., Silva, F.F., Veloso, C.M., Souza, A.L., Oliveira, T.N., et al., 2005. Nı´veis de Farelo de Cacau (Theobroma cacao L.) na alimentac¸a˜o de bovinos. Revista Electro´nica de Veterinaria. 6 (2), 1 10. Pontillon, J., 2009. Do cacao ao tablete. A Cieˆncia na cozinha, Sa˜o Paulo, v. 1, pp. 62 71. Rocha, I.S., Miranda, A.L., Amorim, F.L., Silveira, P.T.S., Soares, S.E., 2014. Prospecc¸a˜o tecnolo´gica com o enfoque na produc¸a˜o e preprac¸a˜o de alimentos com aroma e sabor de cafe´ e cacau. RevistaGEINTEC. 4 (4), 1418 1425. Rusconi, M., Conti, A., 2010. Theobroma cacao L., the food of the gods: A scientific approach beyond myths and claims. Pharmacol. Res. 61 (1), 5 13. Santos, C.O., 2012. Aproveitamento industrial de ‘mel’ de cacau (Theobroma cacao L.) na produc¸a˜o de gele´ia sem adic¸a˜o de ac¸u´car. Dissertac¸a˜o (Mestrado em Cieˆncia dos Alimentos). Universidade Federal da Bahia, Salvador, Bahia, p. 92f. Santos, T.C., Rocha, T.J.O., Oliveira, A.C., Filho, G.A., Franco, M., 2013. Aspergellus niger como produtor de enzimas celuloliticas a partir farelo de cacau (Theobroma cacao L.). Arquivos do Instituto Biolo´gico. 80 (1), 65 71. Santos, C.O., Bispo, E.S., Santana, L.R.R., Carvalho, R.D.S., 2014. Use of ‘cocoa honey’ (Theobroma cacao L.) for diet jelly preparation: an alternative technology. Revista Brasileira de Fruticultura, Jaboticabal. 36 (3), 640 648. Santos, A.T., Uchoa, F.N.M., Lima, M.S., Uchoa, N.M., Foschetti, D.A., Daniele, T.M.C., et al., 2015. Ana´lise sensorial de um biscoito funcional a base de cacau e aveia. Revista Intertox-EcoAdvisor de Toxicologia Risco Ambiental e Sociedade. 8 (3), 79 89. Silva, H.G.O., Pires, A.J.V., Silva, F.F., Veloso, C.M., Carvalho, G.G.P., Ceza´rio, A.S., et al., 2005. Farelo de Cacau (Theobroma cacao L.) e Torta de Dendeˆ (Elaeis guineensis, Jacq) na Alimentac¸a˜o de Cabras em Lactac¸a˜o: Consumo e Produc¸a˜o de Leite. Revista Brasileira de Zootecnia. 34 (5), 1786 1794. Silva, S.A.M., Valarini, M.F.C., Chorilli, M., Venturini, A., Leonardi, G.R., 2013. Atividade antioxidante do extrato seco do cacau (Theobroma cacao L.) Estudo de estabilidade e teste de aceitac¸a˜o de cremes acrescidos deste extrato. Revista de Cieˆncias Farmaceˆuticas Ba´sica e Aplicada. 34 (4), 493 501. Sousa, L.S., 2015. Atividade enzima´tica das proteases e suas isoenzimas no processamento de fermentac¸a˜o de dois cultivares de cacau (Theobroma cacao L.) produzido no sul da Bahia, Brasil. Dissertac¸a˜o (Mestrado em Cieˆncia dos Alimentos). Universidade Federal da Bahia, Salvador, Bahia, p. 85f. Tucci, M.L.S., Abreu, M.F., Coral, F.J., Futino, A.M., Alfonsi, R.R., Saes, L.A., 1996. Teores de gordura e a´cidos graxos de clones de cacau nas condic¸o˜es do Vale do Ribeira (SP). Bragantia. 55, 207 213. Verı´ssimo, A.J.M., 2012. Efeito da origem do cacau na sua qualidade comercial, funcional e sensorial. O caso do cacau catongo de Sa˜o Tome´ e Prı´ncipe e do Brasil. Dissertac¸a˜o. Instituto Superior de Agronomia, Universidade de Lisboa, p. 87f. Vriesmann, L.C., Amboni, R.D.M.C., Petrowicz, C.L.O., 2011. Cacao pod husks (Theobroma cacao L.) composition and hot water soluble pectins. Ind. Crops Product. 34, 1173 1181.