Copyright © IFAC Computer Aided Control Systems Design. Gent. Belgium. 1997
CACSD-FRAME FOR ROBUST LOW-COMPLEXITY CONTROL LAW DESIGN Georg Griibel DLR Institute of Robotics and System Dynamics, Control Design Engineering Group Obe rpfafJenhofen, D-8223.j WessIing, Germany
Contents. Robust low-complexity control laws design is the ultimate goal which Computer-Aided Control System Design (CACSD) aims for. We recognize seven classes of services CACSD tools and environments have to support w.r.t. this view: physical system modelling with modelling uncertainty descriptions; mathematical system modelling with suited uncertainty models; system model analysis in state space, time- and frequency domain; control law synthesis; multiobjective (multicriteria and multimodel) synthesis-parameter tuning; nonlinear assessment via simulation; control code generation. We deal with state of the art aspects of such services and their integration within an interactively controlled automatic design feedback loop. This is illustrated by experience gained during the two-years GARTEURa design challenge project on Robust Aircraft Flight Control, where 12 teams from 6 European countries demonstrated 11 different CACSD synthesis methods to design a landing-approach autopilot controller based on a Beluga-type aircraft model from Airbus Industries . 4Group for Aeronautics Research and Technology in Europe
DESIGN GOALS
PHYSICAL PLANT
Oeulsche FOlSchungsonsloU fUr luN - und Roumloh.' a .V.
At the 1994 IEEE/IFAC Joint Symposium on Computer-Aided Control System Design, Prof. H. A. Barker proposed a reference model for a CACSD-software framework.
, ,,
In such a software framework, you may distinguish 7 classes of services to be supported within an open envlronme t: • • • • • •
process communication user Interaction application task control function tool control numerical algorithms model definition engineering data repository
~~
Deuflch. Fo.schunOlanslolf fur luN- und Roumlohrt a .V.
Here, I propose a reference model for DESIGN GOALS
a CACSD-task frame with 7 classes of services to be supported by tools:
ItliM.r)
.yn.htlSiS Incid.ll
simulation experimenting [~.r ~~~.~ !y~~~ _~ii! HIW·tn·u,. loop
ALGOR . CONTROLLER
PHYSICAL PLANT
Oeulsche fo.schungsanslalllur Lull - und Roumlahr' a .V.
CACSD services in the narrow sense (2) mathematical system modelling (3) linear system analysis (4) linear system synthesis
CACSD control (4 synthesis )
(2) plant analysis
[~near syntheSis . model I
2
Oeul$che FOllchungson$lolllur lull - und Roumlohrf a.V.
CACSD services in the narrow sense Remember: very first CACSD package ASP by Kalman & Englar, 1996; first software-engineered CACSD package VASP by White & Lee (NASA), 1971 direct VASP derivative: RASP (RUB, DLR), 1972 - now
Deulsche Forschungsonsloll tiir lufl- und Roumlohrf e.v.
CACSD services in the wide sense = CACSD with links to real world
DESIGN GOALS
,,
CACSD
I(linear)
,,
,, ,, ,, ,,
synthesis ~
simulation experimenting nonlinear dosed-loo rapid pro to typing
s- slem-mo(je;~
physical system- & uncert~i~ty. !110d~~_g
,,
'HIW-in-Ihe loop
ALGOR. CONTROLLER
PHYSICAL PLANT
3
DESIGN GOALS
H/W-In-Ihe loop
rapid prololyplng
PHYSICAL PLANT
ALGOR. CONTROLLER
Deut,che FOfschungsanslaU fUr
lun- und Raumtohrt a .V.
7 CACSD services for supporting: (1) physical system modelling with uncertainty descriptions (2) mathematical system modelling with uncertainty models (3) linear system analysis in state-, time- & frequency domain (4) control law synthesis (5) multiobjective synthesis parameter tuning (6) nonlinear assessment via simulation ~
(7) automatic control code generation
Oeulsche Forschungsanslall tur lull- und Raumfahrl a.V.
Lecture Notes i n Contro l and Informatio n Sc i ences 224 Spr i nger 1997
Aircraft (real world) example GARTEUR Design Challenge on Robust Flight Control
• robust, low-complexity • autopilot for landing approach scenario: ~
mass c.o.g. (x) ~ c.o.g. (z) ~ 'r (EFCS) ~ air speed enqine failure (1) L\
I
g1
~
Tu
Trajeclory lor Re AM evaluation
150
1000
~
t--r-"' " ~r~RlJIlWay :l
) --_
<-:-. -
---;J --/~--C----
-__________
-~
-t0
..
V' poslllon (-YE) (km(
WIIIU
~.------"'" 5
.-----.--- 10 _______ - 15
---- 15 _
-20
-25
-20 x-position (XE)
4
0
(km!
Deulsche forschungsanslolt tur lull - und Raumfahrl a.v.
(1) Physical system modelling Need for a unified representation of hybrid systems: causal as well as acausal models
• causal models: ~
signal flow e.g. control block diagrams
• acausal models: energy flow ~ interconnected physical objects
Deulsche Forschungsansfall ,jjr luH - und Raumlahrl a V.
System modelling: aircraft example (1) Controlled aircraft
plant sensor
aircraft
. r{~})Qf ;~
_ t~j
·1
WPA~ ·~i .1
.\ ~~~: ;r \t I .. : .:
~. ,.;,:,~;, .~:
I I!!!!I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! This is a hybrid model
Oeulsche forschungsansloll fOr lull - und Roum'ohrt a.v.
(1) Physical system modelling Object-oriented system modelling is part of the solution. Engineering systems can be modelled • graphically ('pick & drag') by • domain-specific icons & • component object diagrams.
10
5
ut
System modelling: aircraft example (2) Flight dynamics
body6DOF
,
COG
Deulsche Forschungsonslolf fur lutl· und Roumlohtl a V .
Object-oriented modelling: Component class libraries for e.g. block diagrams, basic electrical components, drive train components, multi body mechanical systems, aircraft flight dynamics, finite state machines & petri nets, etc. (hltp:llwww.op .dlr.de/FF-DR-ERI)
" '"[Ne
[411
..II- ~
.-I I .-. .-. .-. -v-.c' .... •
6
Oeulsche Fouchungsansloll tur lull- und Roumlahrt e .V.
Object-oriented modelling: Local object encapsulation of data & equations makes generic know how easily reusable in application-specific system aggregations of different kind. multi-disciplinary computer-processable model documentation
IJ
Oeulsche Forsc:hungsonslall fUr lull- und Roumlohrt a .V.
Modelica
Object-oriented symbolic modelling language a European initiative supported as EUROSIM Techn. Committee, combines & extends the goodies of Oymola, Omola, NMF/IOA, gPROMS, SlOOPS, 20SIM, ALLAN, Smile release with compilers in September 1997 http://www.dynasim.se/Modelica/
Oeutsche Forschungsonsloll H.ir lun- und Roumlohfl e .V.
(1) Physical system modelling ~ (2) Mathematical system modelling Object-oriented symbolic modelling is the solution: + Symbolic models can be parameterized w.r.t. parameter-uncertainty bounds. + Symbolic processing concurrently of differential, algebraic & boolean equations. + Symbolic reduction of big, sparse DAE systems to state equations or index-l DAEs, ~
which can be efficiently simulated, linearized, standardized (e.g. lFT)
7
Oeulsche Forschungsanslall fUlluft· und Raumlahrf e.V.
System modelling: aircraft example (4)
LFT model for 11 analysis perturbations
~~ v
plant
parameter bounds: /1 mass /1 c.o.g. (x) t,. c.o.g. (z) t,. delay t,. complex perturbation
controller
I.
Computer-aided LFT generation from parameterized symbolic model
pk~Sie ...L \tiUJ
Deulsche fOflchunglonlloU 'Ut lutl- und loumlahrt aV.
Physical/mathematical system modelling & code generation
MaUab I Slmullnk S funclion (erne..:)
neulral OSbtock Simulation
model
Fortran, C Code
lFT
model
automatIcally generated
~M_ _ _ __ ,...4,
8
z
Oeulsche ForschungsonstaU fijr lull- und Raumlah,l a .V.
(3) Linear system analysis in state-, time- & frequency domain Needs for: • well conditioned methods • stable & efficient numerical algorithms • robust, portable software implementation This requires a coordinated effort (WGS) ---7 NICONET
20
Oaulsche forschungsansJalt 'ur lun- und Roumlohrt aV.
NICONET (WGS) Network for performant numerical software development in Control Engineering (OLR) based on RASP Library SLlCOT Library (NAG) et a!.
see paper by S. van Huflel and A: van den Boom this conference
21
Deutsche FOfSchungsonslalJ 'Uf luN- und Roumlohrt e V.
Linear system analysis: aircraft example (1)
e.g. 11 stability-robustness analysis
"B=;] H~
i .-"'-' -
..
I~- I
10' k 'qu.q \flClJ
i
0$075
'classic'
1" 1~-' 22
9
10'
Deulscile fOlSchungso(UloIl tU. Lwt· unci .oum/ohrt 8.V.
Linear system analysis: alrcralt example (2) comparison: 12 final results by 9 methods
v.. ...."i.'
VA - VA _ •• u.bl.4.llo:
MO· 16
Il
Ol)
.....lIl.411.10:
0:31
O.il
MM · 1l
9
Oll
0.78
O.U
[1. ·22
9
0.l9
O. U
022
MS 11
62
049
·0.00 0.0.
...
·0.2' 0 .17
0.05
0.15
·00.
·0 .10 ·0.0' ·0 .11
~)(nIIO.4.
00' Tdel I1
O.ll
0. 1•
'frp.; FL :: run}, Locic, MM ... W04&J MyJli·Modcl S},ol.ui., WO EA ...
E"~I"I,u(hlll
wors,
A••"nm .. l, CC _ CI ... inJ Co.I,oI.
MS", ,,-S},llloul', loll" _ Model U.u,l";n
,,,,.meler.
fuUo.,.,. III -
" . , LY - L,6,1III0¥ (Ill; dth i del.; Tdd i VA )
1'1100, O.IS, 0.21; 0 I; to OJ ·'(1)0;OJI ; 0.21 ;0 1;1I11 "floo, 01), 021;01;5'21
p"umclu ",Ju•• I",dm, 101.,,,,'''1101},:
Oeullche Forschungsonsloll fur lull- und Roumlohrt B.V.
(4) Control law synthesis 3 different ways of control law synthesis: • develop a domain-specific control structure with controller tuning parameters T • choose an analytic synthesis method with' method tuning parameters T • specify control by linguistic rules (fuzzy-logic) with method tuning parameters T.
" Deubche fOfSChunglOnllol1 '(11 WI'I' un
Control law synthesis: aircraft example
._~_ T longitudinal controller ::
_. .......• t¥: ., .~
...
..::.,
-
.nalytlc synthesis (LOA) slate feedback
T= {Q.R}
lateral controller
-~. '_1 .. _ L.
,,-~ --
-
(....
-~
. ':'
".
~~
--
0; -'__ _
u
10
domaln·speclflc (flight mechanics) control structure
T= {a, .b,}
Deulsche Forschungsanslolt fUr luft· und Roumlohrt e .V.
(5) Synthesis-parameter tuning
=
structural synthesis P T analytical synthesis P = I (T, synthesis model) -t problem 01 "nominal" synthesis model
2.
Deullche FOflchunglO"IloU tur lull- und Roumtohrt e .V.
(5) Multiobjective synthesis-parameter tuning
multiobjective:
---7 ---7
multi criteria multi models
21
Deul5che FOflchungsonstoll fur LuU· und Raumlohrt a.V.
Interactive multicriteria compromising evaluation criteria c, > 0 ideal point: c, = 0 pareto-optimal solution set
die
Vector Optimization (T)
c,
model 1
c,
miD (m •• -'-) T I dj
r-
-7 MOPS -7
i c;(T
V
model 2
methods: Pattern Search ... sap
2tI
11
-
1
)
OeulJche for.chungsan.'aU 'ur lufl· und Raumlahrt e .V.
multicriteria: aircraft example
Specifications
~
Multi-Criteria
step: zero steady state error settling time< 45 5
min
Handling qualities: 0.28 < CAP < 3.6
<3.6
Control rate: <25
Oeutsche ForschungsonslalllUr lull- und Roum'ahrl e.v. fJ. ••
Interactive search in criteria space
~
Multicriteria visualization
Parallel Coordinates make high dimensional criteria vectors visible
~
n-dimensional criteria point
~
best compromise solution
O-t---+---+---Iconflict
concurrency
JO
Oeutache FOfSchungsansta&t fu.. luft- und Roum'ahf1 a .v.
Multimodel robust design: 1) discretize system dynamics continuum due to parameter uncertainties by 'worst-case' design models 2) find a common controller simultaneously for all 'worst-case' design models ~
model-concatenated multicriteria problem
31
12
Oeulsche FOfSchungsonlloll fUr lull· und Raumfahrt a .V.
Synthesis-parameter tuning: aircraft example
:'lif ... . • • . ••
I .n
..I
..I
..I
"H.
It~
t l2
Oeulsche ForlchungsonslaU fUr luft· und Roumfohrf a .V.
Synthesis I Design Methods GARTEUR Design Challenge on Robust Flight Control
Industrial Evaluation ENo,1
R.....'ks
2 .6
3.4
2.8
high-order controller,
FuzzV Logic Conlrol
3.0 2.9 3.9 3.7
3:3 3.5
inle,.sling paI.nlial nonline., feedback dillicull design erile,l. lormulallon
Classical Conlrol Model Following
3 .3 3 .1 3.0 3.4
3.9
'rel.rence' design clear cut conlrofter structure;
MOPS
3.6
4 .6
4.3
easy formulation
Modal Conlrol
-
Appllcabllllv Compl.xllv
H _ • Il-Synlhesis
~.O
slraiQhl deslon sl,alouy
at desjgn criteria
groal potonllal 10' .ulomalion
2 unsatisfactory. 3 acceptabfe. 4 favourabfe. 5 highfy favourabfe
~
3J
Oeulsche Fonchungsonslolt fu, lull - und Roulnlo/lI/
tt
V
(6) Nonlinear assessment via simulation
13
Doutsche FOlschungsonstolllUllult - und Roumfohll 0 V.
Oeutsche forschungsanslolt tUr lurf- und Roumlohrt e .V.
(7) Automatic control code generation
(6) Nonlinear assessment via simulation
lateral controller
~
lUI'-' r-
(ouler loop)
code generation " Oeulsche ForschungsanslalllUr lull - und Roumfohr1 a.V.
(7) Automatic control code generation
-- Pr~d~~t-6bj~~tiv~~ - -I 1 & Design Variables ----J fSpecilicalion ~~ 1_
Multidisciplinary Control/Dynamics Engineering & Simulation
~S.Control-Unit Engineering~r-
I
& Development --- ----------
I
.
hardware-software co-design with certification
Deulsche Forschungsanslall rur lufl- und Raumrahrl 8 .V.
Concluding Remarks Cost-efficient engineering solutions aim at performant, robust, low-complexity controllers. This requires CA-support of complex control engineering design processes by CACSD services in the 'wide sense', i.e .... & • physical/mathematical modelling with uncertainty engineering • multiobjective goal attainment with requirements engineering • nonlinear, mission oriented evaluation with ass9ssment engineering • certified control code generation with H/W-S/W Co-design
14