CAFFEINE
l c l b h a d Uppat Zubair
khmoud M.A. Hassan,
and
Ibrahim A . AZ-Meshat
1. Description 1.1 Nomenclature 1.1.1 Chemical Names 1.1.2 Generic Names 1.2 Formulae 1.2.1 Empirical 1.2.2 S t r u c t u r a l 1.2.3 S t r u c t u r a l Confirmation by Degradation 1.2.4 CAS Registry Number 1.2.5 Wiswesser Line Notation 1.3 Molecular Weight 1 . 4 Elemental Composition 1.5 Appearance, Colour, Odor and Taste 2. Physical P r o p e r t i e s 2.1 Melting Range ANALYTICAL PROFILES OF DRUG SUBSTANCES VOLUME 15
71
Copyright Q 1986 by the American Pharmaceutical Association All rights of reproduction in any form reserved.
MOHAMMAD UPPAL ZUBAIR ET AL.
72 2.2
Sublimation Density 2.4 Solubility 2.5 Crystal Structure 2.6 Spectral Properties 2.6.1 Ultraviolet Spectrum 2.6.2 Infrared Spectrum 2.6.3 Nuclear Magnetic Resonance Spectra 2.6.3.1 Proton Spectrum 2.6.3.2 l 3 C - m Spectra 2.6.4 Mass Spectrum 3. Isolation of Caffeine 3.1 From Tea Leaves 3.2 From Green Coffee 3.3 Process for the Extraction of Caffeine from Coffee beans 3.4 Isolation of Natural Caffeine from the decaffeination process. 3.5 Isolation of Caffeine from Various Sources 4. Synthesis 4.1 Route 1 4.2 Route 2 4.3 Route 3 4.4 Route 4 4.5 Route 5 4.6 Route 6 5. Biosynthesis 6. Pharmacokinetics and Metabolism 7. Methods of Analysis 7.1 Elementa1 Analysis 7.2 Identification Tests 7.3 Titrimetric 7.4 Spectrophotometric 7.4.1 Colorimetric 7.4.2 Ultraviolet 7.4.3 Infrared 7.4.4 Nuclear Magnetic Resonance 7.4.5 Mass Spectrometric 7.4.6 Photo-nephlometric 7.5 Coulometric 7.6 Polarographic 7.7 Ring Oven (Micro) 7.8 Radioactive Isotopes 7.9 Radiochemical 7.10 Chromatographic Methods 7.10.1 Paper Chromatography 7.10.2 Column Chromatography 7.10.3 Thin-Layer Chrmakxagraphy 2.3
CAFFEINE
73
7.10.4 Gas Liquid Chromatography 7.10.5 High Performance Liquid Chromatography.
8.
References
9. Acknowledgements
MOHAMMAD UPPAL ZUBAIR ET AL.
74
1. Description
1.1 Nomenclature 1.1.1 Chemical Names
a) lH-Purine-2,6-dione trimethyl.
3,7-dihydro-1 3,7-
b) 1,3,7-Trimethylxanthine.
c ) Methylt heobromine
.
d) 1,3,7-Trimethyl-2,6-dioxo-l,2,3,6-tetrahydropurine.
e) 3,7-Dihydro-l,3 ,T-trimethyl-lH-purine-2,6dione. f) 1,3,7-Trimethyl-4,6-dioxopurine. 1.1.2 Generic Names
Anhydrous caffeine; Caffeine; Coffeniwn; Coffeine; Coffeina; Cuavanine; Methyltheobromine; No-Doz; Thiene. 1.2 Formulae 1.2.1 Empirical
C8H10N402 1.2.2 Structural
CAFFEINE
75 Discovered by Robiquet i n coffee i n 1821, while searching f o r quinine which he believed t o be present. I n 1827, Oudry found an a l k a l o i d i n tea and c a l l e d it t h i e n e . I n 1838, J o b s t and Mulder proved t h e i d e n t i c a l c h a r a c t e r of t h e two p r i n c i p l e s (1).
1.2.3 S t r u c t u r a l Confirmation by Degradation ( 2,3) Fischer has reported t h a t c a f f e i n e on o x i d a t i o n gave dimethylalloxane and methyl urea, i n d i c a t i n g s i m i l a r i t y with t h e skeleton s t r u c t u r e of u r i c acid.
With t h e above information it becomes evident t h a t : t h e t h i r d methyl group i s e i t h e r a t p o s i t i o n 7 o r 9 and t h e remaining oxygen atom i s e i t h e r at p o s i t i o n 6 o r 8. P o s i t i o n of t h e methyl group; Fischer a l s o i s o l a t e d another oxidation product which on hydrolysis, gave N-methylglycine, carbondioxide and ammonia. Thus, t h i s t h i r d oxidation product must be N-methylhydantoin.
co
-
C02H
+ NH3 + C02
N-methylhydantoin Therefore, it follows t h a t c a f f e i n e contains two r i n g s t r u c t u r e s t h a t of dimethylalloxane and t h a t o f methylhydantoin. The following two skeleton
MOHAMMAD UPPAL ZUBAIR E T A L .
76
s t r u c t u r e s were proposed:
F i n a l l y Fischer i s o l a t e d f o u r t h oxidation product,
N , N ' -dimethyloxamid@ CH3NHCOCONHCK3. Examination of ( I ) and (11) showed t h a t only ( I ),
could give r i s e t o t h e formation o f t h e oxamide. Therefore ( I ) must be t h e skeleton of c a f f e i n e . P o s i t i o n of oxygen atoms: t h e following two s t r u c t u r e s were p o s s i b l e with regard t o t h e p o s i t i o n of oxygen atoms.
0
a3
">
1% 0
y3
I
N/
I
CH3
I11
IV
By analogy, it would appear t h a t t h e more l i k e l y s t r u c t u r e o f I11 would be t h a t of u r i c a c i d .
CAFFEINE
77
F i s c h e r , f u r t h e r confirmed t h e c a f f e i n e s t r u c t u r e with t h e following degradation s t u d i e s : Caffeine > - *
c12
CH30H
Chlorocaffeine
NaoH
'l
Met hoxy c a f f c i n e dilute IlCl, boil
Oxycaf feine+CII Cl
3
1.2.4 CAS Registry Number
a ) Anhydrous c a f f e i n e [ 58-08-21 b ) Monohydrat e [ 5743-12-4
I
1.2.5 Wiswesser Line Notation
T 56 BN DN FN VNVJ B F H 1 . 3 Molecular Weight Anhydrous
C8HloN4O2
Monohydrate C8HloN402.H20
=
194.19
=
212.21
1 . 4 Elemental Composition C,
49.48% ; H , 5.13%
; N , 28.85% ; 0,
16.48%.
1 . 5 Appearance, Color, Odor and Taste White powder o r white, g l i s t e n i n g n e e d l e s , u s u a l l y matted t o g e t h e r . It i s o d o r l e s s and has a b i t t e r taste. 2. Physical P r o p e r t i e s 2 . 1 Melting range Between 235' and 237.5'. f o r 4 hours.
determined a f t e r drying at 80'
Hexagonal prisms by sublimation, m.p. 238?
(4)
2.2 Sublimation Caffeine sublimes a t 178? Fast sublimation i s obtained a t 160-165' under 1 mm p r e s s u r e a t 5 mm d i s t a n c e .
MOHAMMAD UPPAL ZUBAIR ET AL.
78 2.3 Density d i 8 1.23 ( 5 ) .
2.4 S o l u b i l i t y (1) 1 gm of anhydrous c a f f e i n e dissolves i n about 50 ml water, 6 ml water at 8 0 ° , 75 m l alcohol, about 25 m l alcohol a t 6 0 ° , about 6 m l chloroform, 600 ml e t h e r , 50 m l acetone, 100 ml benzene and 22 m l b o i l i n g benzene. Freely soluble i n pyrrole; i n tetrahydrofuran containing, 4% water, a l s o soluble i n e t h y l a c e t a t e and s l i g h t l y i n petroleum e t h e r .
Being a weak base, c a f f e i n e does not form s t a b l e salts, and even i t s salts of strong a c i d s , such as t h e hydrochloride o r hydrobromide, are r e a d i l y hydrolysed by water. The s o l u b i l i t y of c a f f e i n e i n water i s increased by t h e presence o f organic a c i d s o r t h e i r a l k a l i salts, e.g., benzoates, s a l i c y l a t e s , cinnamates, o r c i t r a t e s and this i s t h e reason f o r t h e use of s e v e r a l such preparations. 2.5 Crystal S t r u c t u r e Sutor ( 6 ) has determined t h e c r y s t a l s t r u c t u r e of c a f f e i n e , 1,3,7-trimethyl-2,6-dihydroxy purine (Fig. 1). Crystallographically, it is nearly isomorphous with theophylline (Fig.. 2) (7), and a comparison of bond lengths i n t h e two has yielded information concerning t h e e f f e c t s of a s u b s t i t u e n t i n t h e imidazole r i n g on t h e purine ring. The c r y s t a l s of c a f f e i n e are monoc l i n i c , space group P21/a, w i t h a = 14.8 ? 0.01, b = 16.7 ? 0.1, C = 3.97 ? 0.03 A'; 8 = 97.0 ? 0.5'. Systematic absences are hoc with h = 2n + 1, OK0 w i t h K = 2n + 1; space group ~ 2 1 / a' q h . Its f i n a l Fourier projection i s shown i n Fig. 3. Table 1 shows t h e f r a c t i o n a l coordinates r e f e r r e d t o t h e monoclinic c r y s t a l axes. The c r y s t a l s t r u c t u r e w a s solved by an application of t h e isomorphus-replacement method and a consideration of t h e possible hydrogen bond system i n t h e c r y s t a l . Bond lengths and bond angles within t h e molecule are shown i n Fig. 4, Fig. 5 and Table 2.
79
CAFFEINE
Fig. 2:
Crystal structure of theophylline.
10
15
Fig. 1:
Caffeine, showing the numbering system used.
MOHAMMAD UPPAL ZUBAIR ET AL.
80
Fig. 3:
The f i n a l UKO Fourier projection of c a f f e i n e , contours are arbitrary but equal i n t e r v a l s ; ZUO contour broken.
81
CAFFEINE
The F r a c t i o n a l C o o r d i n a t e s Referred t o t h e Monoclinic C r y s t a l Axes.
Table 1.
c2
c4 c5 '6 '8
clo c12
1' 4 N1
N3 N 7
N9 O11
1 ' 3 1 ' 5
H1 H2
H3 H4 H5 H6 H7 H8 H9 H1O
X
Y
0.2h.6 0.1003 0.0835 0.1456 0.4798 0.2879 0.1960 0.4533 0.2193 0.1796 0.ooog 0.0407
0.2225 0.2533 0.1769 0.1151 0.2481
0.0841
0.3641 0 3950
0.1418 0.2764 0.1749 0.3008
0.3057 0.1374 0.0166 0.413 0.487
0.4790
0.435 0.395 0.263
0.437 0.363 0.362
0.228
0.396 0 * 377
0.142
0.348 0.300 0.257
0.2397 0.0404
0.239 0.438
0,100
0.033 0.060
Z
0.9002 0.1295 0.1944 0.1155 0.3638 0.8790 0.9209 0.4584
X*
Y"
0.1019 0.0841 0.1463
0.2225 0.2541 0 1759 0.1143
0.4801
0.2480
0.2891
0.0832 0.3638 0.3947 0.1415 0.2769 0.1749 0.3008
0.2414
0 * 1959
0.4536 0.2196
0.9735 0.9848
0.1801
0.3376
0.0020
0.2440
0.0403 0.3063 0.1363
0.0404
0.0184
0.4705
0.7614 0.1616 0.2705 0.474 599 0.278 0.510 0
0.857 0.105 0.783 0.772 0.022
0.676
-
-
-
0.2400
-
-
x* and y* represent t h e weighted x and y coordinates from t h e hKO and hKL projections.
MOHAMMAD UPPAL ZUBAIR ET AL.
82
Fig. 4:
Bond angles and C-H bond lengths in the caffeine molecule.
10 13
Fig. 5:
14
Bond lengths in the caffeine molecules.
83
CAFFEINE
Table 2.
Bond Lengths and t h e i r Standard Deviation Bond length ( A )
Standard deviation ( A )
C2-N1
1.42
0.014
C -N 2 3
1.35
0.016
C4-N3
1.42
0.021
c4-c5
1.32
0.014
'5-'6
1.44
0.015
C6-N1
1.36
0.021
c4 -N9
1.31
0.019
'8"g
1.34
0.019
C8-N7
1.32
0.012
C -N
1.41
0.021
C1O-N1
1.48
0.016
C12-N3
1.50
0.013
C14-N7
1.47
0.018
c2-011
1.19
0.023
'6"13
1.26
0.013
Bond
5 7
A comparison is made of t h e intramolecular d i s t a n c e s with t h o s e i n o t h e r purines and a pyrimidine,Table 3, and i n d i c a t e s t h a t s t e r i c hindrance must be allowed for, i n a t h e o r e t i c a l c a l c u l a t i o n of bond l e n g t h i n r e l a t i v e l y complicated molecule of t h i s t y p e . Evidence f o r and a g a i n s t t h e e x i s t e n c e o f a s h o r t hydrogen bond between water molecules i s given.
C r y s t a l s t r u c t u r e of 2 : l molecular complexes of c a f f e i n e w i t h hexaaquamagnesium (11) bromide and hexaaquamanganese (11) T r i i o d i d e i o d i d e c r y s t a l s t r u c t u r e s of
MOHAMMAD UPPAL ZUBAIR ET AL.
a4
Table 3.
S i g n i f i c a n t l y D i f f e r e n t Bond Lengths i n a Comparison of C a f f e i n e w i t h Theophylline, Adenine Hydrochloride and U r a c i l . Caffeine with theophylline
Bond
Si g n i f ic a n t d i f f e r e n c e (A')
Actural d i f f e r e n c e (A')
c4-c5
0.04
0.05
C -N
0.05
0.07
5
7
Caffeine with u r a c i l Bond
S i g n if i ca n t difference (Ao)
Actual d i f f e r e n c e (A')
c4 -N3
0.06
0.08
c4-c5
0.05
0.09
Caffeine w i t h adenine h y d r o c h l o r i d e Bond
Significant d i f f e r e n c e (Ao)
Actual d i f f e r e n c e (A')
C2"1
0.05
0.05
C -N 2 3
0.05
0.05
C4-N3
0.06
0.06
c4-c5
0.05
0.05
C4"g
0.05
0.05
( C ~ H ~ O N ~ O ~ ) ~ M)@r2 ~ - ( Oand H~ (C~H~ON~O~)~M~(OH,)~I.I have been determined by X-ray d i f f r a c t i o n methods (83. The c r y s t a l S t r u c t u r e s O f (C8H10N402)2Mg(OH2)6Br2 ( I ) and (C8HloN402)2Mn( OH2 161. I 3 (I1) have been determined by X-ray d i f f r a c t i o n methods; c r y s t a l s o f I are tric l i n i c , s p a c e group P1, w i t h Z = 1, i n a u n i t c e l l of dimension: a = 9 . 6 2 0 ( 7 ) , b = 1 0 . 7 7 9 ( 8 ) , c = 7.645(6) Ao, a = 1 0 7 . 0 3 ( 7 ) , 8 = 1 0 8 . 8 8 ( 7 ) , y 72.71(8)O; c r y s t a l s o f
CAFFEINE
85
II are monoclinic, s p a c e group P2 / n , w i t h Z = 4 , i n a u n i t c e l l of dimensions a = 1 2 . 4 0 k ( 8 ) , b = 2 9 . 6 5 2 ( 1 2 ) , c = 9.419(6) Ao, B = 108.39(7)O. The s t r u c t u r e s of I 3nd I1 have been s o l v e d from d i f f r a c t o m e t e r d a t a by P a t t e r s o n and F o u r i e r methods and r e f i n e d by f u l l m a t r i x l e a s t - s q u a r e s t o R = 0.046 f o r I and 0.090 f o r 11. Both compounds c o n t a i n o c t a h e d r a l hexaaquametal (11) c a t i o n s , uncoordinated c a f f e i n e molecules and bromide a n i o n s i n I and t r i i o d i d e and i o d i d e a n i o n s i n 11, h e l d t o g e t h e r by a network o f hydrogen bonds. The t r i i o d i d e a n i o n s are unsymmetrical [ 1 ( 1 ) - 1 ( 2 ) = 2.89, 1 ( 2 ) - 1 ( 3 ) = 2.95A0, = 1 7 8 O ] , a r r a n g e d i n l i n e a r systems I ( 1 ) - I ( 2 ) - I ( 3) w i t h a weak ' h e a d - t o - t a i l ' i n t e r a c t i o n , t h e d i s t a n c e being o f 3.62 A O . 2.
6 Spectral Properties 2.6.1 U l t r a v i o l e t Spectrum The W spectrum of c a f f e i n e i n methanol (Fig. 6 ) was scanned from 190 t o 440 nm, u s i n g DMS 9 0 . Varian Spectrophotometer. It e x h i b i t e d a Amax at 270 nm. Other r e p o r t e d W s p e c t r a l d a t a are shown below: Solvent
2.6.2
'max
nm
E l % , 1 cm
Ref. -
Methanol
272
Trichloroethylene
278
-
Ethanol
273
5 19
11
0.1N H C 1
272
470
11
0.1N H C 1
27 5
490
12
0.1N NaOH
275
490
12
9 10
I n f r a r e d Spectrum The I R spectrum o f c a f f e i n e as KBr d i s c ( F i g . 7 ) w a s recorded on a P e r k i n E l m e r - 580 B I n f r a r e d spectrophotometer t o which an I n f r a r e d d a t a s t a t i o n is a t t a c h e d . The s t r u c t u r a l assignments
m Q)
Fig.6 UV
Spectrum
of'
CnFFeirle in /Ye!~anbl
100
2.5
4.0
3.0
wavenumber
lob0
I
2500
5.0 MICk&’5
.
2000
zo
6.0
1
f800
f60d
1
f/oO
80
9.0
10
fOm
f2
8W 1
14
s50
MOHAMMAD UPPAL ZUBAIR ET AL.
88
have been c o r r e l a t e d with t h e following frequencies Table 4 ) . Table 4 .
I R C h a r a c t e r i s t i c s of Caffeine.
Frequency cm 3110,
-1
Assignment
2950
and
CH3
1700
c=o
1650
C = N
CH s t r e t c h
Other c h a r a c t e r i s t i c bands are: 1600, 1550, 1480, 1455, 1430, 1400, 1360, 1285, 1235, 1185, 1020, 970, 860, 760 and 745. The i n f r a r e d d a t a f o r c a f f e i n e were also reported and are a s follows: 3100, 2970, 1700, 1660, 1550, 1480, 1360, 1240, 1020, 980, 750, and 610 cm-1 ( 9 ) . P r i n c i p a l peaks are 1658, 1695 and 745 cm-I (11). Major peaks 747, 1454, 1480, 1548, 1658 and 1698 cm-1 ( 1 2 ) . The region from 19-22 p i s important f o r i d e n t i f i c a t i o n of c a f f e i n e (13). 2.6.3 Nuclear Magnetic Resonance Spectra 2.6.3.1 Proton Spectrum The PMR spectrum of caffeine i n CDCl3 (Fig. 8 ) was recorded on a Varian ~ 6 0 - A , 60 MHz NMR spectrometer using TMS ( t e t r a m e t h y l s i l a n e ) a s an i n t e r n a l reference. The following s t r u c t u r a l assignments have been made (Table 5 ) . Table 5.
PMR C h a r a c t e r i s t i c of C a f f e i n e
Chemical S h i f t ( 6 ) ppm
Croup
1-N-CH3
3.53
s
3-N -CH
3.33
s
7-N-CH3
3.98
s
7.54
s
8-H ~~
s
= singlet
c
A -
I
I
3.0
_
-
.
1
.
.
.
.
l
.
2.0
.
I
.
.
I
I
.
1.0
.
.
I
11
27,87 CH3
I
The structure o f c a f f e i n e f o r carbon c h e m i c a l s h i f t s .
53
91
CAFFEINE
O t h e r r e p o r t e d d a t a are 3 . 4 , 3 . 6 , 4.0 and
7.6 ppm (7,14). Stamm(15) has i n v e s t i -
t h e a s s o c i a t i o n o f c a f f e i n e with sodium benzoate and o t h e r compounds and r e p o r t e d a l a r g e chemical s h i f t of t h e NMR s i g n a l s o f t h e t h r e e methyl Kroups. Also metal p o r p h y r i n / c a f f e i n e complexes have been i n v e s t i g a t e d ( 1 6 ) . &ed
2.6.3.2
13C-NMR
Spectra
The n a t u r a l abundance C-13 NMFf n o i s e decoupled and s i n g l e frequency o f f resonance decoupled (SFORD) s p e c t r a ( F i g s . 9 and 1 0 ) were o b t a i n e d at 20 M l z on a Varian FT-80A, 80 MHz F o u r i e r t r a n s f o r m NMR s p e c t r o m e t e r u s i n g a broad band 1 0 mm probe. The sample w a s run a t c o n c e n t r a t i o n C a 1-2 M i n d e u t r a t e d chloroform w i t h t e t r a m e t h y l s i l a n e as an i n t e r n a l r e f e r e n c e s t a n d a r d . The chemic a l s h i f t s were measured at 5 KHz s p e c t r a l width. The carbon chemical s h i f t s are a s s i g n e d on t h e basis o f t h e t h e o r y o f chemical s h i f t and SFORD s p l i t t i n g p a t t e r n and i s shown i n Table 6. Table 6. Carbon
No.
Carbon Chemical S h i f t s o f Caffeine
.
Chemical S h i f t ( 6 ) ppm
Multipli-
151.69 148.73
S
107.55
S
155.35
S
141.53
d
C-10-CH3
29.70
9
C-11-CH3
27.87
q
C-12-CH3
33.54
9
c-2
C-4
c-5 C-6 C-8
S
s = s i n g l e t ; d = doublet; q = quartet.
1000
8d 0 EbO
1
Fly.9
'3C -NMR
Norse -decoupled Spectrum oP Cp.Lf'eine in CU c/jr
93
h
MOHAMMAD UPPAL ZUBAIR ET AL.
94
2.6.4 Mass Spectrum The mass spectrum of c a f f e i n e obtained by e l e c t ron impact i o n i z a t i o n ( E I ) i s shown i n Fig. 11. It was recorded on Finigan-Mat 1020 GC/Mass spectrometer. The spectrum w a s scanned from 40 upto 440 a.m.a. Electron energy was 70 e V . The mass s p e c t r a l data are shown i n Table 7. Table 7 .
The Most Prominent Fragments of Caffeine.
m/e
Relative i n t e n s i t y
194
I loo
109
66
82
37
67
54
55
80
Fragment Base peak (M+) C5H7N3
-
Other mass s p e c t r a l d a t a were a l s o reported ( 9 $171 19411001 67" 661 , 1091661 , 821 391 42[ 281 , 40[18] and 41[16]. A comparison of mass s p e c t r a l d a t a o f theobromine, theophylline and c a f f e i n e w a s reported by S p i t e l l e r and Friedmann (18). Dunbor and Wilson have published an isotope mass spectrum method f o r i d e n t i f i c a t i o n of t h e geograp h i c a l o r i g i n of c a f f e i n e (19).
3. I s o l a t i o n of C afPeine 3.1 From Tea Leaves : Finely powdered t e a leaves (100 g ) are e x t r a c t e d with ethanol i n a soxhlet apparatus f o r 3 h r s (20). The c a f f e i n e so e x t r a c t e d i s then adsorbed on magnesium oxide. It i s t h e n desorbed after treatment with 10% H2SO4 and i s e x t r a c t e d i n t o chloroform and i s r e c r y s t a l l i s e d .
3.2 From Green Coffee : A procedure f o r t h e e x t r a c t i o n of c a f f e i n e from green coffee has been reported ( 2 1 ) . Green c o f f e e beans were steamed f o r 2 t o 3 hours t o e q u i l i b r a t e t h e water content between 40 and 50%.
100.0
1
1- 1 55
1 I
J
50.0
67
-60
100 F i g . 11.
120
140
160
EX-fiass Spectrum of C a f f o i w .
180
-1J4-
203 I -200
- - - - .222- . 1.
220
.I
- - II 240
96
MOHAMMAD UPPAL ZUBAIR ET AL. Caffeine was then e x t r a c t e d with CHC13 and c a f f e i n e upto 95% of t h e t h e o r e t i c a l amount was recovered. 3.3 A process f o r t h e e x t r a c t i o n of c a f f e i n e from c o f f e e beans by leaching w i t h water has been developed ( 2 2 ) . The highest y i e l d o f 90.4% was obtained when t h e average c o f f e e p a r t i c l e s i z e w a s 1.4095 mm, t h e water/ coffee r a t i o of 9:1, a t 7 5 O C and t h e e x t r a c t i o n was c a r r i e d out f o r t h i r t y minutes.
3 . 4 Natural c a f f e i n e is a l s o obtained as a by-product,
from t h e d e c a f f e i n a t i o n process of coffee and t e a . Some of t h e s e method a r e summarised and presented i n Table 8.
3.5 Caffeine can a l s o be obtained from various sources.
Table 9 summarises t h e source, b o t a n i c a l c h a r a c t e r i s t i c s , occurrance and t h e caffeine/theobromine content i n each case ( 3 7 ) .
CAFFEINE
97
Table 8.
I s o l a t i o n o f C a f f e i n c by Decaf f e i n a t i o n Processes.
Material
Solvent
Ref. -
Green c o f f e e beans*
F l u o r i n a t e d hydrocarbons
23
Coffee* and t e a extracts (also o i l caffeine).
With o i l s such as corn o i l , o l i v e o i l , safflower o i l .
24
Coffee base*
Benzyl a l c o h o l
25
-
26
With supercr it carbon dioxide.
27
-
28
Green coffee*
Alcohols
29
Caffeine"
S u p e r c r i t carbon dioxide with water
30
Coffee and t e a
With s u p e r c r i t carbon dioxide.
31
Roast ed co f f ee* (aqueous extracts of)
With super c ri t carbon dioxide and recovery of aroma.
32
Raw coffee*
Superc rit carbon dioxide.
33
Coffee*
Propane and butane
34
Coffee*
Aqueous ( s o l u t i o n s )
35
Coffee"
Aqueous (steam)
36
I n s t a n t coffee Black tea* Tea waste
.
Table 9.
Plant Sources of Caffeine
Caffeine
Source Seeds (beans) of
Thdobroma cacao
Information about t h e p l a n t (theobromine) con%ent ( 4 % ) Botanical c h a r a c t e r i s t i c s Native region
0,l-0.8 (0.2-2.7)
Tree, 4-15 m i n height when growing w i l d , but pruned t o 6 m under c u l t i v a t i o n . F r u i t s furrowed l e a t h e r y pods, shaped l i k e l a r g e cucumbers and cont a i n i n g 20-25 cream coloured almond-shaped seeds.
Mexico, Central and South America
West Africa
0.8-2.4
C. arabica: Shrub o r s m a l l t r e e , 4-6 m i n height when growing wild but pruned t o 2-3 m under c u l t i v a t i o n . Fruits ellipsoidal berries ( c h e r r i e s ) , r e d t o . dark purplish, containing 2 s i l v e r y skinned seeds (Beans) within t h e pulp.
E a s t Africa
South America
(stercdiaceae )
.
Seeds (beans) of
Coffea arabica, C. Ziberica, C. excelsa or C. robusta (Rubiaceae)
Main region of c u l t i v a t i o n
Continued Table 9 .
Source
Caffeine Information about t h e p l a n t (theobromine) content ( % ) Botanical c h a r a c t e r i s t i c s Native region
Seeds (beans) of
2-6
Large, climbing o r creeping p l a n t with smooth stem. F r u i t ovoid, nut-like, about as l a r g e as a grape and u s u a l l y containing 1 seed, t h e s i z e o f a hazel-nut, with white, mealy covering.
Amazon v a l l e y of Brazil
S t a t e of Amazons, Brazil.
2.7
Extensive, woody l i a n a . Stem s t o u t , up t o 12 cm i n diameter a t t h e base, with a milkywhite a s t r i n g e n t sap.
Colombia, Equador, Peru
Not c u l t i vated.
Tree, 20-30 m i n height when growing w i l d , 4-6 m under c u l t i v a t i o n . Leaves Persist e n t a l t e r n a t e , f i n e l y toothed at t h e margin and dark green i n colour.
Large a r e a i n v a l l e y s of t h e Parana, Paraguay and Upper Uruguay r i v e r s .
Paraguay and South of Brazil
Paul linia cupana
(Sapindaceae)
Bark of Pau l linia yoco (Sapindaceae)
Leaves of 1.1-1.g I l e x paraguayensis ( Aqui f o l i a c e a e )
Main region
of c u l t i v a t i o n
Continued Table 9.
Source
Caffeine Information about t h e p l a n t (theobromine) content ( I ) B o t a n i c a l c h a r a c t e r i s t i c s n a t i v e region
Leaves and shoots of
0.1-1.6
IZex vomitoria Leaves of
3-4
(Theaceae)
1.5-3.5 Seeds ( n u t s ) of Cola n i t i a k and C. acwninata (Stercdiaceae). Most o f t h e caffeine i n kolas not derived from t h e k o l a nut but added i n t h e form o f s y n t h e t i c caffeine.
of c u l t i v a t i o n
Shrub o r s m a l l tree, c l o s e l y r e l a t e d t o I. paraguayensis
E a s t c o a s t of North America from V i r g i n i a t o Mexico.
Not c u l t ivat ed .
Shrub o r s m a l l t r e e , 9-15 m i n height when growing wild, about 1.5 m under c u l t i v a t i o n . Leaves a l t e r n a t e , e l l i p t i c a l on s h o r t s t a l k s , l e a t h e r y and w i t h t o o t h e d margins.
A s s a m , China, Japan.
S r i Lanka, I n d i a , China Jaoan .
C. acwninuta: Slender t r e e , 6-9 m t a l l , t r u n k commonly
Southern Nigeria
Xest Africa
( Aqui f o l i a c e a e )
Camellia sinensis
Kain region
branching near t h e base. Bark rough and corky, grey i n colour. F o l i a g e s p a r s e , confined t o t h e t i p s o f branches. F r u i t c o n s i s t s of up t o f i v e f o l l i c l e s borne at r i g h t angles t o t h e s t a l k or s l i g h t l y downwards. F o l l i c l e s , russ e t , rough t o t h e touch. Each f o l l i c l e c o n t a i n s up t o 14 pink o r r e d seeds, covered with white s k i n . Cotyledons 3-6.
Continued Table 9.
Source
Caffeine Information about t h e p l a n t (theobromine) Native r e g i o n content ($) Botanical c h a r a c t e r i s t i c s
I n Africa, t h e seeds a r e used
+
0,
inainly as a mssticatory , but t h e y . Kay &so
be used
f o r preparat i o n of a drink (Cola).
c. nitida:
More r o b u s t t r e e ,
9-12 m h e i g h t , t r u n k unbranched for at least 1 m.
Bark smooth w i t h f i n e l o n g i t u d i n a l cracks. Foliage dense, n o t c o n f i n e d t o t h e t i p s o f t h e branches. F r u i t c o n s i s t s o f up t o f i v e f o l l i c l e s , u s u a lly bent upwards. F o l l i c l e s g r e e n , smooth t o t h e t o u c h . Seeds up t o 1 0 i n number, w i t h 2 cotyledons and of t h e shape and s i z e of horse chestnuts
.
S i e r r a Leone, Ivory coast, Ghana
Main r e g i o n of c u l t i v a t i o n
West A f r i c a , West I n d i e s South America
MOHAMMAD UPPAL ZUBAIR ET AL.
102
4 . Synthesis 4.1 Route 1 Uric acid with methyliodide gave 1,3,7-trimethyluric acid, which was converted into 8-chloroderivative and its subsequent dehalogenation afforded caffeine
(38-40).
0
0
L% H
H N
)co
N H
Uric acid
0
C'H3 1,3,7-Trimethyluric acid
CH31 NaOH
>
CAFFEINE
103
I + . 2 Route 2
C a f f e i n e h a s a l s o been s y n t h e s i s e d from uric a c i d v i a a n o t h e r r o u t e (41-42).
0
~
~
;
>
~
~
~
0
)
;
H
;
c
H
o
-~2~~~ >L20
H
N H
H
H
0
0
NHCHo
HCOM12
0
H
hYICOFHCH0
0
0
H 0
I cH3
Caffeine
MCONHCHO
MOHAMMAD UPPAL ZUBAIR ET AL.
104 4 . 3 Route 3
A d i f f e r e n t r o u t e f o r t h e p r e p a r a t i o n of c a f f e i n e from
u r i c a c i d has been r e p o r t e d ( 4 3 ) . Uric a c i d is f i r s t c o n v e r t e d i n t o 8-methylxanthine by t h e a c t i o n o f a c e t i c anhydride (44-46), a p r o c e s s which i n v o l v e s t h e i n t e r m e d i a t e formation o f a d i a c e t y l d e r i v a t i v e . The secondary amino groups are t h e n methylated i n an a l k a l i n e s o l u t i o n t o g i v e 1,3,7,8-tetramethylxanthine. F i n a l l y , t h e methyl group o r i g i n a l l y i n t r o d u c e d i n t h e 8 - p o s i t i o n i s e l i m i n a t e d ( 47 )
.
I
H
I 0 -co*
I
CH3
Caffeine
105
CAFFEINE
4 . 4 Route 4 A l k y l a t i o n o f x a n t h i n e d e r i v a t i v e s has a l s o been c a r r i e d o u t f o r t h e s y n t h e s i s of c a f f e i n e . M e t h y l a t i o n o f theobromine g i v e s c a f f e i n e (48-50), w h i l e 1methylxanthine h a s a l s o been c o n v e r t e d t o c a f f e i n e v i a t h e o p h y l l i n e (48,49,51,52). 1,7-Dimethylanalogue ( p a r a x a n t h i n e ) on a l k y l a t i o n a f f o r d s c a f f e i n e ( 5 3 ) , w h i l e x a n t h i n e on t r e a t m e n t w i t h a n e x c e s s o f methylat i n g agent g i v e s r i s e t o a ' c a f f e i n e d e r i v a t i v e
(41,49,54,55).
4.5 Route 5 C a f f e i n e i s u s u a l l y commercially s y n t h e s i z e d by T r a u b ' s methods; ( A and B, g i v e n below: ) ( 56) (A)
o=
/N H - C H 3
HOC c + %I$ 'NH-CH~ CN'
-
~
~
CH
a
NH2
1 a3
~
Z
n
/
H
2
i i . HCOOH, A
0
CH31/E t OH
0
0
0
H C
CH3
k-.--.@ i%
NaN1i2
1h3 > N
Caffeine
S
~
MOHAMMAD UPPAL ZUBAIR ET AL.
106
(B)
In this method 4-amino-5-formamido-l,3-dimethyluracil is cyclised and methylated in one step in sodium ethoxide containing methyliodide to afford initially theophylline and subsequently caffeine (57).
0
I cH3
0
CHz
L
(33
4.6 Route 6 It involves ring closure of 5-ethoxycarbonyl-1-methyl-
4-( N-methyl) ureidoimidazole, and subsequent methylation in alkaline medium gives caffeine (58).
(33 Caffeine
CAFFEINE
107
5. B i o s y n t h e s i s It h a s been r e p o r t e d ( 5 9 - 6 2 ) t h a t b i o s y n t h e s i s o f p u r i n e r i n g system probably proceeds i n n e a r l y t h e same manner i n a l l organisms as shown i n Scheme I . I n i t i a l l y , t h i s pathway was proposed f o r micro-organisms and animals b u t r e c e n t evidence s u g g e s t s t h a t it may a l s o hold good f o r h i g h e r p l a n t s . I n o s i n e monophosphate i s t h e f i r s t compound in t h i s b i o s y n t h e t i c pathway t o c o n t a i n a complete p u r i n e r i n g system (59) and it h a s a c e n t r a l p o s i t i o n i n It can be converted t o x a n t h o s i n e t h e purine m e t a b o l i s m . monophosphate i n an " I + dependent r e a c t i o n as shown below:
OH
RIBOSE
I n o s i n e monophosphate
R I BOSE-P
Xanthosine monophosphate
Xanthine, which o r i g i n a t e s from x a n t h o s i n e monophosphate by e l i m i n a t i o n o f phosphate and r i b o s e , i s t h e s t a r t i n g material f o r formation o f c a f f e i n e and o t h e r p u r i n e s . I n t h e p l a n t Coffea arabica, t h e x a n t h i n e is c o n v e r t e d , t o theobromine and t o c a f f e i n e , e i t h e r v i a N3-methylxanthine
MOHAMMAD UPPAL ZUBAIR ET AL.
108
p-o'it=? OH
OH
5-Phosphoribosyl -- pyropkosphate
-1
H
H272 ,Cao ,!j
o=c,
NH
5-Phosphoribosyl1- amine
-
I P-Ribose a-N-Formylglycinamideribonucleotide
H:'x:) P
OH
dH
P-Ribose Glycinamide ribonucleotide
H H2r"'$ NH=C,
; .
NH
ZHN
I P-Ribose
1 : )I
-
P-Ribose
N-Formylglycinamide 5-Aminoimidazoribonucleotide le-ribonucleotide
+
I
P-Ribose
I
P-Ribose
P-Ribose
5-Aminoimidazole- 5-Aminoimidazole-44-carboxylic acid N-succinocarboxamide ribonucleotide ribonucleotide
5-Aminoimidazole-4 -carboxamide ribonucleotide OH
P-Ribose 5-Formamidoimidazole-4carboxamide-ribonucleotide Scheme I.
Inosine-5-monophosphate
Biosynthesis of inosine monophosphate.
CAFFEINE
109
o r N 7-methylxanthine Scheme 11. The methyl groups o r i g i n a t e from methionine ( 6 3 - 6 5 ) .
0
I H
0
3
N -Methylxanthine
CH3
0 H
Xanthine
CHJ
\
I The0bromin e
R
CH
I
3
I
CH3 Caffeine
N 7 -Methylxanthine Scheme 11. Formation of theobromine and c a f f i n e from xanthine.
6 . Pharmacokinetics and Metabolism The absorption of c a f f e i n e from t h e g a s t r o i n t e s t i n a l t r a c t i s r a p i d b u t i r r e g u l a r (67,68). It i s d i s t r i b u t e d i n various t i s s u e s of t h e body i n approximate proportion t o t h e i r water content ( 6 3 ) . ‘The absorption o f c a f f e i n e is pH-related, an i n c r e a s e i n pH increases i t s absorption ( 6 7 ) . Within t h e t i s s u e , c a f f e i n e i s r a p d i l y broken down (69), involving metabolite r e a c t i o n s , such as N-demethylat i o n and oxidation, and r i n g cleavage ( 6 7 ) . The drug metabolising enzymes of t h e l i v e r a r e stimulated following t h e ingestion o f l a r g e amount o f c a f f e i n e ( 6 7 ) . The degree o f c a f f e i n e degradation and degradation products excreted i n t h e u r i n e o f d i f f e r e n t species seems t o vary
4;
As pa rt ic acid
\
0 C
\
N/
C 1 Fragments
Fig. 12:
Fragments
H1-CHp-C 0 0 H Glycine
Amide N of g lut amin e Origin of various atoms in the biosynthesis of caffeine.
111
CAFFEINE
considerably ( 7 0 ) . Blood l e v e l c o n c e n t r a t i o n i n four a n i m a l s p e c i e s , followinr: o r a l a d m i n i s t r a t i o n o f 25 mg/kF: [1-C1’I] c a f f e i n e , have been reported by Burger ( T O ) , (Table 1 0 ) . The plasma h a l f - l i f e f o r humans i s between 4 t o 10 hours ( 6 7 ) . Table 1 0 .
Plasma Concentration o f [1-C D i f f e r e n t A n i m a l Species.
14
] Caffeine i n
Rat
Hamster
Rabbit
Radioactivity
5.4
3.5
11.0
19.0
Caffeine
2.8
3.1
3.7
2.8
Radioac t i v i t y
0.1
0.5
0.7
0.9
Caffeine
0.1
0.1
0.7
18
18
22
Rhesus monkey
Half-life ( h )
Absorption h a l f time ( h )
Peak plasma conc e n t r a t i o n of c a f f e i n e (pg/ml).
-
13
Caffeine metabolism i n t h e rat l i v e r s l i c e s and p o s t n a t a l developing rats has been s t u d i e d (71). Rao e t al, (1973) have proposed a b i o t r a n s f o r m a t i o n r o u t e f o r c a f f e i n e i n rats (72) (Scheme 111).
MOHAMMAD UPPAL ZUBAIR ET AL.
112
>--
Hydroxylationl
Caffeine ( unchanged, 9%)
Reduct'on
N-demet hylat ions
I.
1,3,7-Trimethyldihydrouric acid (11.4%) dehydrogenation N-demethylations
I
1,3,7-Trimet hyluric acid (trace)
I
J. Theobromine
( 5.1%)
Paraxanthine (8.a%) Theophylline (1.2%)
>
3-Methyluric acid (trace)
Oxidat ion
3,6,8-Trimethylallantoin (1.3%)
I
I I Oxidat ion
I
I
V 1,6,8-Trimethylallantoic acid
I
hydrolysis
I
J.
Glyoxylic acid Met hylur ea 1,3-Dirnethylurea
Scheme 111.
Biotransformation of caffeine in rat.
113
CAFFEINE
An i n t e r e s t i n g sulphur containinE metabolite o f c a f f e i n e was i s o l a t e d from t h e u r i n e of mouse, r a t , r a b b i t and horse ( 7 3 ) , and i s shown i n Scheme I V .
0
ru
H3Nx-3 0
n
U
Caffeine
II
“i
0
CH S-CHij 2-11
/
0’
I1 Scheme I V .
N
I I11
The sulphur metabolite of c a f f e i n e .
I n case o f humans, u s u a l l y 45% o f a dose is excreted i n u r i n e i n 48 hours as 1-methylxanthine (67) and 1-methyluric a c i d (67,74). Other breakdown products excreted i n t h e u r i n e include, t h e o p h y l l i n e , lY7-dimethylxanthine, 7-methylxanthine and 1,3-dimethyluric a c i d , along with some unchanged c a f f e i n e ( 6 7 ) , Further s t u d i e s on human metabolism of (1-methyl-14C) and (2-14C)caffeine have been reported (75,76). Radiolabelled c a f f e i n e was administered ( 7 5 ) o r a l l y a t 5 mg/kg t o a d u l t , male volunteers. Blood, s a l i v a , expired C02, u r i n e , and feces were analysed f o r t o t a l r a d i o l a b e l l e d equivalents of
MOHAMMAD UPPAL ZUBAIR ET AL.
114
c a f f e i n e and i t s metabolites. High-performance l i q u i d chromatography (HPLC) was t h e main technique used f o r t h e separation of c a f f e i n e and i t s metabolites with quantitat i o n by l i q u i d - s c i n t i l l a t i o n counting. The h a l f - l i f e of c a f f e i n e i n both serum and s a l i v a was approximately 3 h r s . , with t h e amount of c a f f e i n e i n s a l i v a samples almost 65 t o 85% of t h a t found i n serum samples. The main metabolites found i n serum and s a l i v a were t h e dimethylxanthines, paraxanthine, theophyllinc and theobromine ( 7 7 ) . It has been reported (76) t h a t demethylation of t h e 3-methyl groups seems t o be t h e most important pathway i n man, and t h e plasma concentration of t h e dimethylxanthines depend on t h e i r urinary excretions a s w e l l as t h e i r own metabolism (76). Effect of c a f f e i n e on alcohol metabolism(78), basal metabolism (75) and i t s e f f e c t on exercise performance have a l s o been s t u d i e d (79). Caffeine metabolism i n sheep h a s a l s o been studied (80-82). 7. Methods o f Analysis 7 . 1 Elemental Analysis The elemental composition of c a f f e i n e i s :
Element
(83)
% Theoretical
C
49.48 %
H
5.19 %
N
28.85
0
16.48 %
7.2 I d e n t i f i c a t i o n T e s t s 1. Addition of t a n n i c a c i d s o l u t i o n t o c a f f e i n e
s o l u t i o n gives a p r e c i p i t a t e , which dissolves on f u r t h e r addition of t h e reagent ( 8 4 ) .
2. Addition of iodine s o l u t i o n and hydrochloric a c i d t o c a f f e i n e s o l u t i o n gives a brown p r e c i p i t a t e , which n e u t r a l i s e s on addition of sodium hydroc h l o r i d e (84).
3 . Reaction of c a f f e i n e w i t h potassium c h l o r a t e i n hydrochloric a c i d , and subsequent exposure t o ammonia, gives purple colour, which disappears on addition of a s o l u t i o n of a fixed a l k a l i (85).
115
CAFFEINE
4 . Addition of gold c h l o r i d e s o l u t i o n t o c a f f e i n e s o l u t i o n a f f o r d s small rods ( 8 6 ) .
5 . Addition of mercuric c h l o r i d e s o l u t i o n t o c a f f e i n e s o l u t i o n gives long needles ( 8 6 ) .
6. Comparison of t h e i n f r a r e d spectrum of t h e c a f f e i n e sample with t h a t of a reference s t a n d a r d i s a l s o employed ( 8 5 ) .
7.3 T i t r i m e t r i c Several methods have been reported f o r t h e analyses of c a f f e i n e by acid-base t i t r a t i o n procedures , e i t h e r by using d i f f e r e n t i n d i c a t o r s (87-100) o r by potentiometric methods (101-108), f o r t h e end-point d e t e c t i o n . An iodometric t i t r a t i o n method (88) w a s developed f o r
t h e determination of c a f f e i n e . It i s mixed with H2SO4 (1:l) and I B r s o l u t i o n , and t h e mixture i s d i l u t e d t o 100 m l . After f i l t r a t i o n , t o a p o r t i o n of t h e f i l t r a t e i s added K I s o l u t i o n , and t h e equivalent amount of iodine l i b e r a t e d i s t i t r a t e d with Na2S204, using s t a r c h s o l u t i o n as i n d i c a t o r . A blank is a l s o c a r r i e d out a t t h e same t i m e . Collado e t a l . , have reported a method (87) f o r t h e determination o f c a f f e i n e , phenazone, phenacetin and phenobarbitone, i n analgesic t a b l e t s . For t h e estimat i o n of c a f f e i n e , phenazone is p r e c i p i t a t e d with p i c r i c a c i d and f i l t e r e d o f f , and c a f f e i n e i s determined i o d i m e t r i c a l l y i n a c i d s o l u t i o n . Caffeine can be determined i o d i m e t r i c a l l y from icecream and cocoa admixtures (109,110). 40 g of t h e sample is heated with 1 0 m l o f water, and 1 ml of 15% aqueous NaOH, on a b o i l i n g water bath f o r 30 minutes. The mixture i s cooled and 3 m l of 30% Pb(N03)2 i s added. It i s d i l u t e d t o 100 m l with water and i s f i l t e r e d . 1 0 M l o f t h i s sample i s used t o determine c a f f e i n e t i t r imet ri c a l l y
.
The U.S. Pharmacopoeia1 method (108) c o n s i s t s i n dissolving about 400 m g of f i n e l y powdered c a f f e i n e i n 40 m l of a c e t i c anhydride. After mixing with 80 m l of benzene it i s t i t r a t e d with 0.1N p e r c h l o r i c a c i d , determining t h e end-point potentiometrically.
MOHAMMAD UPPAL ZUBAIR ET AL.
116
Caffeine has been assayed f o r another non-aqueous t i t r a t i o n procedure ( 9 3 ) . It is dissolved i n w a r m benzene and a f t e r cooling, couple o f drops of a s u i t able i n d i c a t o r , such as Sudan I V o r Nile b l u e A , are added before t i t r a t i o n with 0.1N HCL04 i n g l a c i a l a c e t i c acid. Caffeine i n cacao s h e l l s has a l s o been determined (100) by non-aqueous t i t r i m e t r i c method. About 2 g of t h e ground and de-fatted sample i s mixed with magnesium oxide and water. The mixture i s heated on a water bath f o r 30 minutes and then it i s e x t r a c t e d i n t o chloroform i n a soxhlet apparatus. The chloroform e x t r a c t is d r i e d at lO5'C f o r 25 minutes and t h e r e s i d u e is first t i t r a t e d f o r t o t a l theobromine and c a f f e i n e , and t h e n f o r theobromine only.
7.4 Spectrophotometric 7.4.1 Colorimetric A sample containing 100 mg i s dissolved i n 100 m l o f water and i s f i l t e r e d (111). A n a l i q u o t o f 5 m l i s d i l u t e d t o 25 m l and 1 ml of d i l u t e hydrochloric a c i d , and 1 m l of 10% molybdophos-
phoric a c i d are added t o it. The mixture after heating on a water b a t h i s c h i l l e d i n i c e and centrifuged. The p r e c i p i t a t e is washed and dissolved i n 25 ml o f acetone and t h e e x t i n c t i o n is measured a t 440 mu. The r e s u l t s with compounded tablets show recoveries o f c a f f e i n e , 100.2% o f t h e o r e t i c a l amount. C o r t e ' s method (112,113) c o n s i s t s i n l i b e r a t i n g c a f f e i n e w i t h concentrated H2SO4, followed by e x t r a c t i o n w i t h CHC13. It i s then estimated by a modified c o l o r i m e t r i c method involving formation o f i t s periodide ( 1 1 4 ) .
I n another method (115) c a f f e i n e (110 t o 400 pg) i s dissolved i n a f r e s h l y prepared s o l u t i o n of 0.5 m l of acetylacetone and 5 m l o f 2N NaOH. T h i s mixture i s heated at 80°C, and a f t e r cooling, a s o l u t i o n o f p-dimethylaminobenzaldehyde and 20 m l o f conc. H C 1 are added. The mixture i s f u r t h e r heated at 8OoC, and after cooling, 10 m l o f water i s added and e x t i n c t i o n of t h e r e s u l t i n g blue s o l u t i o n i s measured a t 615 mu.
117
CAFFEINE
E f f o r t s t o optimise conditions (116) have r e s u l t e d i n a n improved colorimetric method (117) f o r t h e estimation of c a f f e i n e . A small amount of c a f f e i n e is dissolved i n a mixture of 3% aqueous a c e t i c a c i d s o l u t i o n , and 10% aqueous pyridine s o l u t i o n . The mixture i s then made up t o 18 m l with water and 2 ml of N a O C l s o l u t i o n i s added. Add 2 m l of 0.1N Na2S203, followed by 3 m l of 1 N N a O H , s o l u t i o n and d i l u t e t o 50 ml with water. The e x t i n c t i o n , i n 4 cm c e l l i s measured a t 460 mp.
Iodine has a l s o been employed as a c o l o r i m e t r i c reagent f o r t h e determination of c a f f e i n e (118). 3N i o d i n e (1 ml) s o l u t i o n i s mixed with 1% s o l u t i o n of c a f f e i n e ( 5 m l ) followed by 50% H2SO4 ( 0 . 5 m l ) and i s set a s i d e f o r 1 0 minutes. The p r e c i p i t a t e i s f i l t e r e d and washed before dissolving it i n acetone. Its e x t i n c t i o n i s measured a t 525 mp. A colorimetric method f o r t h e determination of c a f f e i n e i n pharmaceutical preparations has been developed (119-121). The t e s t s o l u t i o n i s t r e a t e d with an equal volume of 10N NaOH a t 12OoC t o convert c a f f e i n e i n t o c a f f e i d i n e . It i s t h e n coupled with d i a z o t i s e d s u l p h a n i l i c a c i d and t h e e x t i n c t i o n is measured a t 451 mp. Other drugs present i n usual c a f f e i n e pharmaceutical preparat i o n s do not i n t e r f e r e .
Caffeine present i n beverages can a l s o be estimated c o l o r i m e t r i c a l l y (121-122). It i s e x t r a c t e d from t h e beverage by t h e known (123) method and is t r e a t e d with 296 s o l u t i o n o f malonic a c i d i n a c e t i c anhydride. The mixture i s heated a t 90°C, and a f t e r cooling it i s made up t o 25 m l with methanol. The e x t i n c t i o n of t h e r e s u l t i n g greenish-yellow s o l u t i o n i s measured a t 430 nm.
7. 4.2 U l t r a v i o l e t Spectrophotometric methods f o r t h e estimation of c a f f e i n e i n pharmaceutical preparations and i t s mixtures with o t h e r drugs and compounds have been developed (124-129). These i n v a r i a b l y involve
MOHAMMAD UPPAL ZUBAIR ET AL.
118
preliminary separation of c a f f e i n e , before i t s spectrophotometric estimation. An i n d i r e c t spectrophotometric method f o r t h e
determination of c a f f e i n e i n quaternary mixtures such as NaOBz, p-EtoC6H)+NHAc, aminopyrine and c a f f e i n e has been reported (1.29). The percentage of these components can be estimated by a compact c a l c u l a t i o n scheme a f t e r determination of e x t i n c t i o n c o e f f i c i e n t s a t t h e given wavelengths.
Several u l t r a v i o l e t spectrophotometric methods have been developed f o r t h e estimation of c a f f e i n e i n coffee and decoffeinated coffee ( 130-136), t e a ( 137-141) and beverages (142-146). Caffeine can a l s o be determined i n b i o l o g i c a l f l u i d s spectrophotometrically (147). O.1N-NaOH i s used t o e x t r a c t c a f f e i n e , and a mixture of s o l i d N a C l and Na2SOb is added t o enhance t h e e x t r a c t i o n o f c a f f e i n e i n t o ether-chloroform. The c a f f e i n e i s then t r a n s f e r r e d t o an aqueous a c i d i c s o l u t i o n , t h e s o l u t i o n i n t h e reference c e l l i s made strongly a c i d , and t h e contents of t h e sample c e l l are adjusted t o pH 1.3.
7.4.3 Infrared I n f r a r e d spectrophotometric method has been used (148,149) f o r t h e a n a l y s i s of caffeine. A procedure f o r t h e determination of c a f f e i n e i n pharmaceutical preparation containing aminopyrine and phenacetin has been reported (148), and t h e region 650 t o 400 cm-l o f t h e spectrum, i n KBr d i s c , w a s used f o r r a p i d and simultaneous determination of t h e t h r e e components.
7.4.4 Nuclear Magnetic Resonance A simultaneous q u a n t i t a t i v e
NMR method f o r t h e a n a l y s i s of a s p i r i n , phenacetin and c a f f e i n e i n pharmaceutical preparations has been reported (150). The method involves comparing t h e i n t e g r a l s of t h e CH2-signal ( a t 6 ppm) of piperonaldehyde, used as an i n t e r n a l standard, w i t h t h o s e of a s p i r i n methyl s i n g l e t (2.3 ppm) ,
119
CAFFEINE
phenacetin, e t h y l t r i p l e t ( a t 1 . 3 ppm) and c a f f e i n e methyl s i n g l e t ( a t 3.4 ppm). The average percent recoveries and standard deviations were 95.61 f 0.37, 96.34 k 0.47 and 101.26 -+ 1.46 f o r a s p i r i n , phenacet i n and c a f f e i n e respectively. MMR-shift technique i n forensic chemistry f o r t h e analyses of mixed samples of c a f f e i n e has been reported (151). NMR s t u d i e s o f metal porphyrin c a f f e i n e complexes (151) and associat i o n o f c a f f e i n e with sodium benzoate have a l s o been reported (152,153).
7.4.5 Mass Spectrometric A new and simple a n a l y t i c a l method using d i r e c t -
i n l e t chemical i o n i s a t ion mass spectrometry, has been reported (154) f o r simultaneous determinat i o n of c a f f e i n e and o t h e r components of a n a n t i cold drug. These components were detected as quasimolecular i o n s , and were q u a n t i t a t e d by using an accumulation program. 2
I n another method (155) B E = constant, l i n k e d scan has been used as a t o o l f o r q u a n t i f i c a t i o n s with reversed-geometry mass spectrometers. Dl a b e l l e d analogs may be used as i n t e r n a l standards, t h u s providing very simple clean-up procedures. The method i s applicable t o c a f f e i n e present i n beverages.
Caffeine w a s analysed together with o t h e r drugs l i k e a c e t y l s a l i c y l i c a c i d and phenacetin by mass spectrometry (156).
7.4.6 Photo-nephlometric Caffeine can be estimated i n t e a by using photonephlometer (157). . A c a l i b r a t i o n curve i s obtained by mixing 2 ml o f 0.01M sodium tungstophosphate, 4 m l of 2.5M HNO3 and 0.5 t o 2.5 m l of 0.001M c a f f e i n e s o l u t i o n . It i s t h e n d i l u t e d . t o 50 m l and examined i n a photo-nephlometer. Other compounds present i n tea do not cause any i n t e r f e r e n c e . With some modifications, t h i s
MOHAMMAD UPPAL ZUBAIR ET AL.
120
procedure can be used f o r t h e determination of c a f f e i n e i n presence of various d r u g s .
7.5 Coulometric Kalinowska has used coulometric technique f o r t h e of estimation of c a f f e i n e (158-162). About 0.05 c a f f e i n e i s dissolved i n hot water, and then mixed w i t h 6 m l o f 30% KOH. The mixture i s f u r t h e r heated i n a b o i l i n g water b a t h , a f t e r cooling and d i l u t i o n w i t h water, it i s n e u t r a l i s e d with hydrochloric a c i d . About 1 m l o f t h i s s o l u t i o n i s used f o r t h e determinat i o n o f c a f f e i n e with coulometrically generated c h l o r i n e , with a c u r r e n t o f 5 mA. The end-point i s determined by t h e dead-stop end method. The c o e f f i c i e n t o f v a r i a t i o n w a s about 0.5%. 7.6 Polarographic Caffeine, although not reducible a t dropping-mercury e l e c t rode can be determined polarographically a f t e r i t s oxidation w i t h bromine ( 1 6 3 ) . The wave h e i g h t s of t h e r e s u l t i n g s u b s t i t u t e d parabanic a c i d s are then evaluated. This method i s q u i t e s e n s i t i v e and t h e results obtained are within +- 3%. B a r b i t u r a t e s , a c e t y l s a l i c y l i c a c i d , ephedrine, codeine, papaverine and d i g i t o x i n do not i n t e r f e r e ; however, phenazone, phenacetin and amidopyrine should be removed b e f o r e t h e reaction. In another method (164), t h e c a f f e i n e i s analysed by anodic d i f f e r e n t i a l phase voltametry a t a glassy C e l e c t r o d e , t h e a e t e c t i o n l i m i t i s 0.5 ppm at pH 1.2. Oxidation products o f c a f f e i n e are i d e n t i f i e d by cathodic d i f f e r e n t i a l pulse polarography.
7.7 Ring-Oven
(Micro)
A r e l a t i v e l y s p e c i f i c colour r e a c t ion between chloro-
form e x t r a c t o f c a f f e i n e , a l k a l i n e acetylacetone s o l u t i o n and a c i d p-dimethyl aminobenzaldehyde solut i o n , has been used for t h e micro determination o f air-borne p a r t i c l e s of c a f f e i n e . It i s possible t o determine 0.5 pg of c a f f e i n e by t h i s method with a mean e r r o r of -+ 3% (165).
Table 11. Parameters Used f o r Paper Chromatography of Caffeine
No.
support
Developing Solvent
Detection
Ref.
1.
S & S. 2043
Consisted of s a l i c y l i c a c i d ( 0 . 3 g) dissolved i n butanol ( 30 m l ) ; t h e solut i o n being t r e a t e d dropwise with H20, t o t h e f i r s t turbidity.
Chromatogram immersed i n 1% AgNO3 d r i e d and immersed i n 0.5% aqueous K 2 C r 2 0 p .
169
2.
Whatman DE20 Anion-exchange paper.
Develop with 0.2N-aq. ammonia f o r 105 minutes.
W light
170
3.
Whatman No. 4 paper
Mobile phase w a s a xylenetetralin-n-amyl alcohol mixture and t h e s t a t i o n a r y phase w a s water a c i d i f i e d t o pH 3.2.
--
171
Paper impregnated with ethanolic s a l i c y l i c acid ( 0 . 3 g i n 30 ml) and dried.
MOHAMMAD UPPAL ZUBAIR ET AL.
122
7.8 Radioactive Isotopes Caffeine can be estimated (166) by means of isotoped i l u t i o n a n a l y s i s with [1-14C] c a f f e i n e . It i s prepared by methylation o f theobromine with [ C14]methyliodide. About 1 0 mg o f t h e p u r i f i e d sample is subjected t o combustion i n Baker's apparatus, using t h e Van Slyke-Folch reagent. The l i b e r a t e d C02 i s absorbed i n 0.25N-NaOH and 1.88% BaC12 s o l u t i o n is added. The p r e c i p i t a t e d Ba2CO3 i s f i l t e r e d o f f and i t s s p e c i f i c r a d i o a c t i v i t y i s measured with a Geiger-Muller tube. 30-80 Mg o f c a f f e i n e , even i n presence of a c e t y l s a l i c y l i c a c i d , theobromine, aminophenazone o r phenacetin give s a t i s f a c t o r y r e s u l t s . Noakes has reported (167) another radiocarbon measurement method f o r t h e estimation of natural-product p u r i t y i n case of c a f f e i n e .
7.9 Radiochemical Caffeine was a l s o analysed by using r a d i o a c t i v e t r a c e r techniques (168). It i s p r e c i p i t a t e d from t h e s o l u t i o n of t h e sample i n hydrochloric a c i d with P3*-labelled phosphomolybdic a c i d , and after f i l t r a t i o n , t h e t r a c e r I-phosphomolybdate i s dissolved i n acetone and c o l l e c t e d i n a sample g l a s s holder. The a c t i v i t y of each p r e c i p i t a t e i s determined and t h e amount calcul a t e d from a standard curve. The method i s simple and gives reproducible results with s m a l l amount of samples. 7.10 Chromatographic Methods
7.10.1 Paper Chromatoaraphy Some paper chromatographic systems used f o r t h e determination o f ' c a f f e i n e have been summarised i n Table 11. 7.10.2 Column Chromatography Various column chromatographic systems used (175-182) f o r t h e determination o f c a f f e i n e are presented i n Table 12. I n another method (182) column chromatographic technique has been employed i n i t i a l l y f o r t h e
Table 12.
Summary of Conditions Used f o r t h e Column Chromatography of Caffeine ~
support I.
Eluent
Celite 545 and 4 N &SO4 covered by a l a y e r of a mixture of c e l i t e 545 and N aq. NaHCO3.
11. Basic aluminuim oxide
111.
IV.
~~
~~
-~
Detect ion
~~
Sample
Ref.
Pharmaceuticals and c o f f e e
173
( i ) Extinction o f t h e e l u e n t i n C H C l measured a t 257, 27? and 297 m u . ( i i ) For determination i n aqueous s o l u t i o n t h e e x t i n c t i o n i s measured a t 250, 273, and 296 mu.
Coffee and i t s mixtures
174
276 mu
Beverage and tablets.
175
-
Mixture o f C H C 1 3 and diethyl ether.
Alumina (previousl y a c t i v a t e d at 800°C f o r 6 h r s . ) i n a 100 m l burett e
( i ) CHC13
( i ) Celite and ( i i )Column of c e l i t e containi n g 4N-H2S04.
( i ) Etyyl ether ( i i )CHC13
.
~~
( i i ) H20
-
Continued Table 1 2 .
V.
VI. VII.
VIII. I-
N l h
support
Eluent
Detection
Mgo-Celite 545 (l:l,w/w)
H2°
272
Celite 545
CHC13
276.5 my
Dowex 50W-X2
40% aqueous methanol
273
Multiple column containing segment s , ( a ) C e l i t e 545 ( 3 g) and 1% tartaric acid soh. (b) Celite 545 ( 3 g) and 12% H2SO4 s o l n . ( 3 ml), ( c ) C e l i t e 545 ( 2 g) and 8.4% NaHCO3 s o l n . ( 2 ml) and
Elute phenacetin with ether-CHClg (8:l) 50 m l . Dismantle t h e column e l u t e a s p i r i n from segment ( c ) and determine caffeine
(a)
Celite 545 ( 3 g) and 22.1% K3P04 soln. ( 3 m l ).
.
--
my
my
Sample
Ref.
Caffeine-containing and caffeine-free coffee
176
Coffee and decaffeinated c o f f e e
177
Pharmaceuticals
178
Pharmaceutical combin a t i o n of a s p i r i n , phenacetin, and caffeine
179
Continued Table 12.
IX.
support
Eluent
Detection
Sample
Ref.
Polyamide (0.5 g)
A f t e r passing perculate, t h e caffeine i s washed w i t h H20, 2 x 3 10 ml.
272 nm
Tea
180
H20-methanol (19:l)
254 nm
S o f t d r i n k s and food
181
x
X.
S i l i c a gel (partic l e s i z e 0.04 to 0.063 mm) i n
column (30 cm X 1 cm)
126
MOHAMMAD UPPAL ZUBAIR ET AL.
i s o l a t i o n of c a f f e i n e from a sample of decaffeinated c o f f e e , followed by i t s t i t r a t i o n w i t h 0.01M H C l O 4 using methyl v i o l e t as indicator. 7.10.3 Thin-Layer Chromatography A summary of some of t h e TLC systems i n v e s t i -
gated f o r t h e a n a l y s i s of c a f f e i n e a r e given colorimetric/speci n Table 13. Combined TLC trophotometric methods f o r t h e determination of c a f f e i n e i n pharmaceutical preparations and beverages, have been reported (183,184). The method i s based on t h e spectrophotometric estimation of t h e q u a n t i t a t i v e l y e l u t e d c a f f e i n e from TLC p l a t e s a f t e r separation from accompanying substances. TLC and high-performance TLC (1985) followed by densitometry has a l s o been employed f o r t h e determination of c a f f e i n e i n drugs ( 186,187 ) , beverages (185,188,189) and c o l a seeds (189). The s o l u t i o n from the aspirin-phenacetin-caffeine t a b l e t s i s chromatographed on Whatman chemically bonded K C 1 8 reversed-phase p l a t e s containing fluorescent phosphor and using 1:l MeOH-O.5M N a C l system (186). Caffeine w a s then determined by using a densitometer.
-
7 .lo.4 Gas Liquid Chromatography Gas l i q u i d chromatographic methods have been employed f o r t h e estimation of c a f f e i n e , and v a r i a b l e parameters used f o r some o f these a r e summarised i n Table 1 4 .
7.10.5 High Performance Liquid Chromatography High pressure l i q u i d chromatography HPLC method has wide a p p l i c a t i o n f o r t h e estimation o f c a f f e i n e i n host o f d i f f e r e n t samples. A summary o f v a r i a b l e parameters i n a few cases is given i n Table 15.
Table 13. Summary of Conditions Used f o r t h e TLC o f Caffeine -
support
Mobile phase
Detection
Sample
Ref.
Siluf ol
W 254 nm
Drugs
190
K i e s e l g e l 60F254 ( l a y e r t h i c k n e s s 0.2 mm) or C e l l d o s e Fpj4 ( l a y e r t h i c k n e s s 0.1 mm)
Spect rophotometrica l l y
Caffeine
191
Coffee
192
-
K i e s e l g e l GF 2 54
CHC13-cyclohexanea c e t i c a c i d (8:2:1)
Silica gel G
Spray w i t h 2% HgC12 s o l u t i o n containing 1 0 mg of methyl r e d p e r 100 m l . or
W 254 nm
193
Sprayed w i t h 2% HgC12 s o l u t i o n d r i e d and sprayed w i t h K I s o l u t i o n . K i e s e l g e l 60
Chloroform-acetone (9:l)
Chromatograms evalua t e d by remission dens i t o m e t r y at 273 nm w i t h a double beam
Blood
194
Continued Table 13 support
Mobile phase
Detect ion
Sample
Ref.
Cyclohexane-acet one
Determined by t h e i r quenching e f f e c t on t h e background fluorescence.
Drugs
195
Drugs
196
~
Kieselgel F
254
Silica gel G
(4:5)
--
(powders)
Table 1 4 .
Column
support
31,
Chromosorb W
OV-17 Tenax GC o r
c
Summary of Conditions Employed f o r t h e GLC o f Caffeine
5% OV17
Chromosorb WHP
SE-30
Chromosorb G
Varaport 30
Chromosorb W
3% Dexsil
300
3.5% s i l i cone SE-30
Mesh
-
Length
-
Temp. 210oc
Flow (ml/min) C a r r i e r gas
Sample
Ref.
197
Argon Flavor a n a l y s i s and beverages
198
N2(30 ml/min) (flame ionisation detector).
Drug
199
2.0m
280Oc o r N2(16 ml/min) (flame ( 310°C ionisation detector). i f sample contains papaverine)
Drug
200
1.5 glass
190°C
Drug b i o l o g i c a l material
201
0.3 m
25OoC
1.0 m
2 0 0 ~ ~
80-100
2.0 m
180Oc
-
N2(55 ml/min) H-flame i o n i s a t ion
0
(u
rl I 0
0 rl
L-
I
d
i3 m
bp
m
0 N
I
u
0
0 a3 rl
I
I
130
Table 15.
~
W,
Summary o f HPLC Conditions f o r t h e Determination o f Caffeine
Column
Mobile phase
Flow (ml/min)
Partisif 10 SCX
Aqueous s o l u t i o n of 15 mM potassium c i t r a t e , pH 3.0 and 10% (v/v) methanol
1.1 d m i n
lJ Bondapak C18, 1 0 pm
MeOH+Wat er+HOAc ( 20+79+1)
Bondapak
MeOH-O.lM, pH 7:0, citratephosphate b u f f e r (20 :80)
2a h i n
Corasil I or C o r a s i l I1
Hept ane+ethanol
Cl8 ( R a d i a l Pak A ) c a r t ridge
Wat er+MeOH+HOAc (74 :25: 1)
particle size
C18
(10:l).
Retent i o n time (m,in)
Detect i o n
Sample
Ref.
U.V.
Tea and c o f f e e
204
U.V.
Cocoa and chocolate products
205
U.V. (254 nm)
B 1ack t e a infusion
206
300 p . s . i .
U.V.
(270 nm)
Purine alkaloids
207
3.0 ml/min
U.V.
Animal d i e t s
208
-
(280 nm)
10
(280 nm)
Continued Table 15.
Mobile phase
Bondapak
0.025 M NaH2P04 i n MeOH+wat e r (2:3) t o PH 7 using NaOH
2 mUmin
Spherosil XOA 600 and XOA 800
Iso-octane+diisopropyloxide+MeOH+ t r ie thylamine+ water (34.93+49.51+ 14.58+0.20+0.78)
1d/min
Silica gel (M&N Nucleosil 50-5.5 IJM)
Methylene chloride: ethanol : water
50ml h-l
PhenylfCoras i l and C o r a s i l I1
Acetonitrile-water; 1,4 dioxan-wat er ; methanol-water; 1-4-dioxan-ac e t on i t r i l e - w a t e r and various mixtures of chloroform with methanol
C18
+,
Flow (ml/min)
Column
to 0
Retention time (min)
Detect ion
Sample
Ref.
0.48
U.V.
Drugs
209
Drugs
210
Caffeine
211
Drugs
212
(254 and
280 nm) Aprox 4 min
-
(936:47:17)
-
-
.
-
U.V.
(280 nm)
-
Continued Table l>.
Colunln
Mobile phase
Zipax SCX
O . O M HNO
--
~
0 0
5% G l a c i a l a c e t i c acid Chloroform
1.1 Bondapak
Methanol-vat er
Bondapak
c18
(30:70)
MeCN-Water
(8:92)
SpherisorbODS w i t h gradiant elution 10-pM P a r t i s i l ODS-2
Retention time (min)
4 d/min
3
Bond e l u t , C 1 8 bonded silica
c18
Flow ( d / m i n )
MeCN-H20 ( 3 0 : 7 0 )
Detection
Sample
Ref.
U.V.
Coffee
213
(254 nm)
-
-
u-Y.
Beverages
214
-
-
-
Beverages
215
1.0 d / m i n
-
Plasma
216
-
-
Beverages
217
U.V.
(273 nm)
-
-
U.V.
Decaffeinated , i n s t an t coffee and o t h e r beverages
218
-
U.V.
Appetite/suppr e s s a n t formulations
219
(272 nm)
(254 nm)
Continued Table 15. Sample
Ref.
U.V.
Drugs
220
-
U.V.
-
221
15ml/hour
U.V.
-
222
Mobile phase
Flow (ml/min)
YWGCH200x
50% s o h . of MeOH i n 0.002M K2HPO4 a d j u s t e d t o pH 8.0
1.0 ml/min
5mm
Retention time (min)
Detection
Column
(254 nm)
by H3P04. Hypersil +
x
5% Isopropanol dichloromethane
Ion 25% aqueous e t h a n o l exchange r e s i n , DowexAG 50w-x8( H+)
(280 nm) (254 nm)
Nucleosil-
MeCN-H20-HOAc ( 13:87 :1)
223
Finepak
MeOH-NH4OH ( 99 :1 and MeCN-NH40H ( 99 :1)
224
5 C18
gel-110 or Finepak SIL-CIS
Continued Table 15.
Column
Mobile phase
Bondapak C18/corasil and LI Bondapak
0.01M sod. acetate buffer, pH 5.0-MeOHt et r ahydro f u r an
Radial-Pak C 1 8 reversed phase column
Acetonitrile i n 0.1 mol/L potassium phosphate b u f f e r , pH 4.0 (9.5/90.5 by vol. )
C18
c
Flow ( d / m i n )
3 mUmin
Retention time (min)
-
Detection
Sample
Ref.
U.V.
Umbil i c a 1 cord plasma
225
Biological fluids ( neonates )
226
Various drugs sample s including caffeine
227
(254 nm)
(95:h:l)
-
.
Containing H20, acet o n i t r i l e H3PO4 and NaOH with o r without 5C8RAC ( Radial-PAK LI hexylamine Bondapak C 1 8 cartridge, HS/5C18 o r HS/3C18 o r partisil 1O-ODS- 3 Part i s i l 50DS-3RAC o r
-
-
Continued Table 15. Column
Mobile phase
Shodex
Aqueous 70% methanol at 4OoC.
D-814
(50 cm X
Flow (ml/min)
Retention time (min)
-
8 mm)
Radial-
PAK C18
0.M-phosphat e b u f f e r (pH 4) acetonitrile
Detection
p Bondapak C 1 8 (30 cm x 3.9 cm) with Bondapak C18/ Corasil guard column
-
1 0 m M-Na a c e t a t e buffer o f pH 5 methanol-t e t rahydrofuran
(95:h:l).
-
3
Ref.
270 nm Horse u r i n e and by d i f ferent i a l refr a c t ometr y
228
254 nm
Caffeine and t heophylline r eonat e s
229
U.V.
Caffeine , a s p i r i n and phenacet i n
230
254 nm
Metabolites i n Umbilical cord plasma o f bovine
2 31
(181:19).
Micro packed fused-silica, used 1 0 and 5 cm columns were used.
Sample
137
CAFFEINE
8.
References
1.
Remingtons Pharmaceutical S c i e n c e s , Managing E d i t o r , J . E . Hoover, 1 5 t h Ed. Mack P u b l i s h i n g Co., Easton, Penn. 18042, U.S.A. (1975) p . 1068.
2.
Organic Chemistry, I . L . F i n a r , Longman Group L t d . , 5 t h ed. (19751, P. 805.
Val. 2 ,
215,
3.
E . F i s c h e r , Annalen.,
257 ( 1 8 8 2 ) .
4.
The United S t a t e s Pharmacopoeia X I X , Mack P u b l i s h i n g Company, Easton, PA, ( 1 9 7 5 ) , p. 59.
5.
The Merck Index, Ed., M. Windholz, 9 t h E d i t i o n , Merck & Co., I n c ; Rahawya, N . J . , U.S.A. (1976) p . 1625.
6.
D. S u t o r , Acta C r y s t . ,
7.
G.S. P a r r y , Acta
8.
M.B. Gingi, A.M. Manott, I a n F r e d i c and A. T i n i p i c c h i o , I n o r g a n i c a Chemica Acta, 52, 237 (1981).
9.
Atlas o f S p e c t r a l Data and P h y s i c a l Constants f o r Organic Compounds, J . C . Crasselli and W.M. R i t c h e y , 2nd e d . , Vol. I1 CRC P r e s s I n c . Cleveland, Ohio, (1975) p. 1.
11,453 (1958). C r y s t . , 1,313 (1954).
10. Methods d ' a n a l y s e e t composition chemique, T.L. F a z z i n a , COLLOQ. INST. CHIM. CAFES VERTS, TORREFIES LEURS V E R I V . , b t h , (19701, P. 97.
11. I s o l a t i o n and I d e n t i f i c a t i o n o f Drugs, E.G.C. C l a r k e (Ed. ) , Vol. I , The Pharmaceutical P r e s s , London (1974) , p. 234. 12.
The Pharmaceutical Codex , 1 1 t h E d i t i o n , The Pharmaceutical P r e s s (19791, p. 119.
13*
S. Loafer, Z. Anal. Chem.,
14.
F. Bergmann, D. Lichtenberg and Z . Neimon, J. Chem. SOC. C (10) , 1939 (1971).
15.
H. S t a m , Arch. Pharm. (Weinheim), 302 ( 3 1 , 174 (1969).
181,481
(1961).
MOHAMMAD UPPAL ZUBAIR ET AL.
138
16.
C.D.
SOC.
, Barry,
H.A.O.,
London, Sec.
H i l l and P . S a d l e r , Proc. Roy.
, A . 334,
1599 (1973)
17. R. Saferstein and J . Chao, J . Ass. O f f . A n a l . Chern., 56, 1234 (1973).
93, 632 (1962).
18.
G. S p i t e l l e r and M.S. Friedmann, Monatsh,
19.
J. Dunbor and A.T. Wilson, J . Anal. Chem.,
20.
Phytochemical Methods, J. Harborne, Chapman and Hall, London, (1973) P. 203.
21.
C , Natarajan, S. Kannur and T. P h i l i p ; Indian J. Technol. m, 225 (1965) C. Jorge, G. Raul and A. Leonardo; Rev. Ion, m,63 (1983) -
22.
( 1982
.
54,
590
23.
U.S. Patent No. 3769033.
CA: 86(11) 70422~.
24.
German Patent, DE 2721765.
25.
Anon, Res. Di s c l ,
26.
Japanese Patent, J P 77134054.
27.
U.S.
28.
M. Uttamchand, T. Degaleesan and G. Laddha,
29.
Canadian Patent:
30.
European Patent Appl. EP 10636, U.S. Patent 957821, CA: 93(9) 93876~.
31.
U.S. Patent : 957822.
CA : 93(9) 93875~.
32.
U.S. Patent : 4246291.
CA : 94(15) 119789~.
33.
U.S. Patent : 4260639, German DE 2005293, CA 95(9) 78780K.
CA:
a,73 (1978).
Patent 4167589.
88(13) 879025. CA: 88(23)168658M.
CA:
88(25 1 188512n.
91(23) 191719~.
CA:
Tech., l.+J(lO), 365 (1979). 1070550.
CA:
Indian J .
93(11 6368t.
139
CAFFEINE P a t e n t 4276315, CA 95(11) 95801K.
34 *
U.S.
35.
European P a t . Appl; EP 49357 AL, CA 9 7 ( 3 ) 2 2 4 3 3 ~ .
36.
U.S. P a t e n t 4352829A, CA 97(25)21.
37
-
C a f f e i n e and Chromosomes, B.A. Kihlman; E l s e v i e r S c i e n t i f i c P u b l i s h i n g Company, 1977, p . 37.
38.
Organic Chemistry, I . L . F i n a r , Longman Group L t d . , Vol. 2 , (1975) P. 805.
39.
H e t e r o c y c l i c Compounds, Fused Pyrimidines, D . J . Brown, John Wiley and Sons, I n c . , 1971, P a r t I I . , p. 157.
40.
H. F i s c h e r , Ber.
41.
, 1899, 32,
H. Bredereck, H.G. 201 (1950)
83,
267.
von Schub and A. M a r t i n i , Chem. Ber.
92,
42.
H. Bredereck, G. Kupsch and H . Wieland, Chem. Ber., 566 (1959).
43.
B e n t l e y s and Driver's Textbook o f Pharmaceutical Chemistry, J . E . D r i v e r , Oxford U n i v e r s i t y P r e s s , 1960, P. 677.
44.
Boehringer, Ger P a t . , 1182.
45.
H. B i l t z and W. Schmidt, Annalen,
46.
V.I.
47.
M.
48.
P.A.W. ( 1931I
49.
B. Frydman and A. Troparesky. 79 (1957). Argentina,
50 *
V. Rodionov, B u l l . SOC. Chim. France
121,224
(1900) ; F r d l . 1900,
431,
Khmelevski, Zhur. Obschei Khim. Gomberg, Amer. J . Chem. S e l f and W.R.
45,
17,403
6;
70 ( 1 9 2 3 ) .
2,3123
(1961).
(1895).
Rankin, Quart. J . Pharmacol
k,
h a l e s . Asoc. Quim
39, 305
(1926).
346
MOHAMMAD UPPAL ZUBAIR ET AL.
140 51
-
G.F. Galatina; Chem. Zentr. 1,1076 (1916). CA 11, 3317 (1917).
B. Gepner and L. Krebs. Zhur. Obshchci Khim.
(1946).
16,179
53. H. Fischer, Ber. 30, 2400 (1897).
54. E.S. Golovchinskaya, Zhur. Priklad. Khim. 30, 1374 (1957).
55. H. Biltz and A. Beck. J. Prakt. Chem.
118,198 (1928).
56. W. Traub, Ber. 33, 1371 (1900). 57. W. Traub, Ber. 33, 3035 (1901).
58.
A . H . Cook and G.H.
Thomas. J. Chem. SOC. 1884 (1950).
59. Secondary Metabolism in Plants and Animals, M. Luckner; Chapman and H a l l , London (1972) p. 210.
60. The Biochemistry of Plants, P. Stumpf and E. Conn, Academic Press, 1, 1981, p. 391. 61. L. Anderson and M. Gibbs, J. of Biol. Chem., 237, 1941 (1962) 62. E. Preussen and G. Sarenhov, Biokhimya, 28, 857 (1963).
63. T. Inove and F. Adachi, Chem. Pharm. Bull.; 10,121 (1962).
64. T.
Suzuki and E. Takahashi, J. Biochem.,
146,87 (1975).
65. D. Ogutuga and D. Northcote, J. Biochem., 117,715 (1970).
66. Pharmacognosy, V. Tylor, L. Brady, J. Robbers; Lea Febriger, Philadelphia, U.S.A., (1981), p. 257.
&
Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry,R.F. Doerge (Ed.), Eighth Edition, J.B. Lippincott Co., Toronto, (1982), p. 385.
68. Caffeine and Chromosomes, B. Kihlman, Elsevier Scientific Publishing Co., (1977) p . 22. 69
R. Goth and J. Cleaver; Matai. Res.
36, 105 (1976).
141
CAFFEINE A.
Burger, Drug Metabolism,
k,
199 (1975).
D. Warszawski ; Biochem. Pharmacol. (England) 3145 (1981).
72. 73.
x(231,
C. Rao, K. Khanna and H . Cornish, Experimentia (1973).
3,953
K. K a m e i , M. Matsuda and A. Momose; Chem. Pharm. B u l l .
23, 683 (1975).
228,
74.
H. Cornish and A. Christman; J. Biol. Chem.,
75.
N. Womach, Proceedings of t h e S o c i e t y f o r Experimental Biology and Medicine, 31, 1248 (1934).
76.
Microsomes; Drug Oxidations, and Chemical Carcinogenesis, M. Arnaud, C. Welsch, M. Coon, A. Conney, R. Estabrook, H. Gelbain, J. G i l l e t t e , and P. Obrien ( E d s . ) Vol. 2 , Academic P r e s s , 1980, New York
(1957).
315
.
77
M. Callahan, Paper Presented a t t h e I n t e r n a t i o n a l S c i e n t i f i c Colloqnumi on Coffee, g t h , London, June 1980.
78
G. Pawan, Biochemical J o u r n a l ,
79.
D. C o s t i l l , Medicine and Science i n S p o r t s , E ( 3 ) , ( 1978
80.
M. Kreisner and Zinat H. Aly; Zbl. V e t . Med. A, 28, 692
81.
Z i n a t H. Aly, Zbl. V e t . Med. A.
82.
Idem, ibidem A,
83.
The Merck Index, M. Windholz ( E d . ) , 8 t h e d i t i o n , Merck & Co., I n c . Rahawy, N.J., U.S.A. (1968) p. 188.
84.
B r i t i s h Pharmacopoeia, London Her Majesty's S t a t i o n a r y O f f i c e , Vol. 1, (1980) p. 68.
85.
The United S t a t e s Pharmacopeia, XX Revision, United S t a t e s Pharmacopeial Convention, Inc Rockville, Md. , (1980) p . 105.
86.
Martindale, The Extra Pharmacopoeia, 28th E d i t i o n , A. Wade (General E d i t o r ) , The Pharmaceutical P r e s s , London (1982) p . 340.
106,19
(1968).
155
(1981)
28,
28, 701
(1981).
711 (1981).
.
MOHAMMAD UPPAL ZUBAIR ET AL.
142
87.
88.
M. Collado and J. Ortega; i(1963).
An. Farm. Hosp.; 5(11-12),
A. Gengrinovich and I. Dozorova; Uzbek. Khim. Zh.,
3, 19 (1966).
89.
0. Kalejs; Aptechnoe Delo ( R i g a ) , 1 ( 3 ) , 63(1958) Chem. Abst. 53, 18728f (1959).
90.
H. E l l e r t , T. J a s i n s h i , and I. Powelezak; Acta Polon. 1182d (1960). Pharm., 235 (1959). Chem. Abst.
91.
M. Rink, R. Lux; Dent. Apotheker-Ztg., Chem. Abst. 56, 13013b (1962).
92.
F. D’Angeli and L. J u s t i n - A t t i ist veneto s c i . l e t t e r e ed a r t i , c l a s s e s c i . mat. n a t . 123 (1958). Chem. Abst. 6032g (1960).
54,
16,
99, 1051, (1959)
116,
54,
101,
93.
M. Rink and R. Lux; Deut. Apotheker-Ztg., 911(1961); Chem. Abst. 55, 2 5 1 6 7 ~(1961).
94.
M. Rink; Pharmazie, ii705d, (1962).
95.
S . Mayanna and B. Jayaram; Analyst (London)
96.
E. Posgay-kovaces;
97.
2, 519
(1960); Chem. Abst.
(1981)
56,
106,729
Gyogyszereszet , 6, 336 (1962).
E. Konstantinova and K. Boichinov; Farmatsiya ( S o f i a ) , 30(1963); Chem. Abst. 60, 2721e (1964).
13(4),
a(1), 25,
98.
J. Krepinsky and J. Stiborova; Cesk Farm., (1966); Chem. Abst. 17355e, (1966).
99.
C. Claudio, F. Luciano; J. I n t . Collog. Chem. 3rd, 257 (1968).
64,
100.
W. Wisniewski and E. Klepaczcwska-Saluda;
101.
J. Subert ; Farmaceuticky Obz.,
102.
Tun. Tao and Hsing-Yun Yu; Yao Hsueh Hsueh Pao, 206(1960). Chem. Abst. 56 7427s. (1962).
Pharm.;
%(6), 643 (1971).
41(4),
Coffee
Acta. Pol.
123 (1972).
&,
143
CAFFEINE 103.
A. Shkodin and L. Karkuzaki; Zhur Anal. Khim, 15, 676 ( 1 9 6 0 ) ; Chem. A b s t . 55, 18422e ( 1 9 6 1 ) .
104.
E. Pogya; Pharm. Z e n t r a l h a l l e , I&, 471 ( 1 9 6 2 ) ; Chem. Abst. 58, 6649b ( 1 9 6 3 ) .
105.
V. Georgievs, k i i , N. Dzyuba and N . Ismailov;
106.
R . P a u l , K . Malhotra, and K . Khana; I n d i a n G. Chem., 3 ( 2 ) , 63(1965); Chem. Abst. 63, 66h (1965).
107.
S. L i n and M. Blake; Anal. Chem., Abst. 15676b (1966).
108.
United S t a t e s Pharmacopoeia X I X , United S t a t e s Pharmacopoeia1 Convention, I n c . , R o c k v i l l e , Md. 20852, U.S.A. (1980) p. 59, 19.
109.
K. Laskowsi; Razniki I n s t . Przem. Ml'ec;
110.
F a r m a t s e r t . Zh., g ( 4 ) , 2 7 ( 1 9 6 3 ) ; Chern. Abst., 4156d (1964).
64,
38(4)
61,
649(1966); Chem.
9(1), 83 (1965).
E. Malini and M. Shankaranarayana; I n d i a n Food I n d . ,
2 ( 3 ) , 116 (1983).
111. R. Pankratz and F. Bandelin, J . h e r . Pharm. A s s . , Ed., 45(6), 364 (1956).
112.
F.F. C o r t e ; Rev. SOC. B r a s i l . Chim.
113.
F.F. C o r t e ; Z. Lebensmittuntersuch,
114.
J. R i c h t e r ;
115.
&,
Sci.
1 0 5 (1933).
74,1 0 6 ( 1 9 3 7 ) .
Z. Lebensmittuntersuch, 98, 107 (1954).
H. Wachsmuth and L. van Koeckhoven, J . Pharm. Belg.,
14,
79 (1959).
116. G.E.P. Box; A n a l y s t , 77, 879 (1952).
2 (4-5),
117.
R . Bontemps, Pharm. Acta Helv.,
118.
G. Cardner and S. Dean; D r u g S t a n d a r d s , 2 8 ( 2 ) , 50 (1960).
119.
M. Paz C a s t r o and R . Rey Mandoza; I n f . Quim. A n a l . , ( 5 ) 124 (1961).
120.
V. Waarst; Arch. Pharm. Chemi.; =(15),
128 (1960).
555 (1966).
15
MOHAMMAD UPPAL ZUBAIR ET AL.
144
Anal. L e t t . 1 7 ( B l ) ,
121.
M. Karawya, A . Diub
122.
K . Jayaraman, S. Ramanujam, and P. Vitayaraghavan; Indian J . Technol; 3(10) 337 (1965)
77 (1984).
and 2. Swelem;
a
Washington, 1955,
123.
O f f i c i a l Methods of Analysis A . O . A . C . , p . 238.
124.
C. Machek, S c i . Pharm.; 29(2), 73 (1961).
125.
J.H.
126.
F. Namigohar and J . Khorrami; Annals. pharm. f r . ; 34(11-12) 457 (1976).
127.
B. Mattoo, P. P a i , and R . Krishnamurthy; Indian J. Chem. ; S e c t . A , 1 5 ( 2 ) , 1 4 1 (1977).
128.
H. Raber; S c i Pharm.; 3 2 ( 2 ) , 122 (1964)’. (C.A. 59,
129.
G. Machek and F. Lorenz; S c i . Pharm.; 34(3r, 213
130.
G. Mannelli and P. Mancini; J. Ass. Off. Agri. Chem.;
131.
F. Albanese;
132.
R. Smith and D. Rees; Analyst,
133.
R . Smith; Analyst,
134.
H. Hadorn and K. Zurcher; M i t t . Ceb u. Wg.; 56(1), 17 (1965).
135.
H . Hadorn and K. Zurcher; Analyst. Abst
103
Zwaving and J. Dikhoff; Pharm. Weekble. Ned, (491, 1309 (1968).
1441g).
(1966).
4 4 ( 3 ) , 554 (1961). (1963).
Z. Lebensmitt-Untersuch, 12O(5 ) , 364
89, 146
88, 310
(1963).
(1964). Lebensmittelunters,
. 13,984
(1966).
136. J . Newton, J . Assoc. Off. Anal. Chem., 6 2 ( 4 ) , 705 (1979) 137.
T. Fazzina, J. Colloq. I n s t . Chim. T o r r e f i e s Leurs Deriv. 97, (1970).
Cafes Verts.,
145
CAFFEINE
138.
L. P o l z e l l a ; B o l l . L a b o r a t o r i Chim.
Prov.,
485 (1968).
139. J. Newton; J. ( 1969) .
A s s . O f f . Analyst. Chem.
19(4),
, 52(6), 1133
140. Sheng Wu Hua Hsuch Yu; Sheng Wuwuli Hsueh Pao, 225 (1976). 141. D. C r o i s s e r ; Am. J . C l i n . Nutr.
31(10),
142. L. P o l z e l l a ; B o l l . L a b o r a t o r i Chim.
1727 (1978).
Prov.
871 (1968).
80,
19(6),
143. G. S c h u e t z , A. P r i n s e n and A . P a t e r ; Rev. I n t . Choe.;
25(1), 7 ( 1 9 7 0 ) .
144. C.
Ruick and M; Schmidt; L e b e n s m i t t e l .
131 (1976).
145.
- Ind.
H. Conacher and D. Rees; A n a l y s t , Lond.,
146. J.
Miles; Dissert. Abst.,
89, 806 (1964).
14(2), 247 (1954).
147. J.
Routh, N. Shane, E. Arredondo and W. P a u l ; Chem. 15(8), 661 (1969).
148.
23(3),
N . O i and E. I n a b a ; Yakugaku Zassbi;
Clin.
87(6), 743 (1967).
149. V. Dragun; Massoobmena W a d . Nauk. B e l o r u s s ; SSR, 109,
(1971) (Pub. 1973).
150. A.A. Al-Badr and S.E. Ibrahim; Zbl. Pharm.; 120, h e f t 12, 1251 (19811.
151. Y . Nakahara and T. Niwayuchi; Kagaku Keisatsu Kenkyusho Hokoku, 31( 4) , 267 ( 1978)
.
152. C. Barry, H. H i l l , J . S a d l e r and R . W a l l i a m s ; Proc, Roy. SOC. London, S e r . A,
334 (15991,493 (1973).
153. D.P. Hollis; Analyst. Chem., Washington;
154.
35, 1682 (1963).
H. Kanamori; Hiroshima-ken E i s e i Kenkyusho Kenkyo Hokoku, 30, 1 5 (19831.'
155. H. Walther, P. Schlunegger and F. F r i e d l i ; Org. Mass Spectrom. , 18(.12) , 572 (1983).
MOHAMMAD UPPAL ZUBAIR ET AL.
146
156. A. Tatermatsu and T. Coto, J . Pharm. SOC. of Japan, 624 (1965).
5,
157. V. B e r n s h t e i n ; Zhur. Anal. K h i m ; 12(6), 744 (1957). 158. Z . Kalinowska; Acta. Polon. Pharm., 159.
Idem, I b i d ,
11,113,
(1954)
20(1), 69 (1963).
160. Idem, I b i d ,
21(4), 365 (1964).
161. Idem, I b i d ,
ll, 741 (1964).
162. Idem, I b i d ,
21(4), 373 (1964).
163. G. Dusinsky and T. Cavanak; Ceskosl-Farm., (1958)
7(9), 511
164. K. K r a l ; D i s s e r t a t i o n Abst. I n t e r n . , C , 43(3), 564 (1982). 165. F. Ordoveza and P. West; Anal. Chim., Acta, 30(3), 227 (1964). 166. Y. Nagase and S. Baba; J. Pharm. SOC. Japan, 81(5), 619 (1961). 167. G. Noakes and P. Hoffman; J. L i g . S c i n t i l l . Counting, 2, 457 (1980). 168. D.M. F o n t e s , Anais Fac. Farm., Univ. Recife; (1961)
4,39
169. B. Bohinc, Acta Pharm. Jugosl., (1511, 3 (1965). 170. H. S t r e e t and S. Niyogi; J. Pharm. S c i . , 51(7), 666 (19621
.
171. A. Waksmundzki, and J ' Gross; Ann. Univ. Mariae Carie-Sktodowska, S e c t . Aa., 21, 1 (1966). 172. J. Levine, J. h e r . Pharm. A s s . S c i . Ed., 46(11), 687 (1957). 173. K. Pf'andl;
Dtsch Apoth. Ztg.,
99, 141 (1959).
174. K. Lee; Analyst, 86, 825 (1961).
CAFFEINE
147
175.
J . Levine; J. Ass. Off. A g r i . Chem.; 4 5 ( 2 ) 254 ( 1 9 6 2 ) .
176.
C . Barbera; 2. Lebensmitt Unterseuch, 1 1 7 ( 6 ) , 483 (1962).
177.
A . V e r c i l l o and A . Manzone; R . C .
178.
H. S i o n , J . Pharm. Belg.
179.
574 ( 1 9 6 2 ) .
1st Sup. S a n i t . ,
25
, Q( 5-6) , 265 (1964).
Heuermann, J . A s s . Off. A g r i . Chem.
43 243
(1960).
180.
G. Lebmann and M. Mosan; Z . Lebensmittelun t e s s . U.F a r r c h 281, 147 (1971).
181.
F. Beenhard and F. E r n e s t i n e ; Z. L e b e n s m i t t e l u n t e s s , U.Forsch; 295, 258 (1975).
182.
L. F a v r e t t o and L. Gabrielli; Rass Chim., 2 0 ( 3 ) 111
183.
S. Khafagy, S. Metwally, A. G i r g i s and N. R o f a e l ; J. Drug Res.; 75 (1974).
184.
S. Zadeczky, D. K u t t e l and M. S z i g e t v a r y ; Acta. Pharm. Hung. 4 2 ( 1 ) , 7 ( 1 9 7 2 ) .
185.
J. Sherma and R. Miller; Am. Lab. ( F a i r f i e l d 1 6 ( 2 ) , 126 (1984).
(1968).
6,
,
Conn.),
186. J. Sherma and M. Bum; J . High Resolut-Chromatogr. Chromatogr. Commun. A( 6 ) , 309 (1978). 187.
J. J a r z e b i n s k i , M. Ciszewska-Jedrasik and 0. Mank; Acta P o l . Pharm. , 40( 4 ) . 455 (1983).
188.
P. Sengupta, A. Mondal, A. Sena and B. Roy; I n t . Flavours Food Addit. , 5(6), 340 (1975).
189.
T. Malingre and S. Batterman; Pharm. Weekly, 112( 51) , 1305 (1977)
190.
K. S o v i o r , E. Dunckova and 0 . Moravkova; Farm. Obz. 4 6 ( 1 0 ) , 4 4 1 (1977).
MOHAMMAD UPPAL ZUBAIR ET AL.
148
191.
H. Krueger, J. Kurzidin and R . Mueller; Chromatographia,
9 ( 5 ) , 211 (1976) *
192.
J . Washuettl, E. Bancher and P. Riederer; 2 . Lebensmittelunters, U. Forch., 143f41, 253 (1973).
193.
M. Petkovic; Arh. Farm., 26( 5-6), 435 (1976).
194. F. Walter, R . Ernst Hartmut and S. Gernot-Rainer; 2 . Lebensm. Unters. Forsch; 1 6 5 ( 4 ) , 204 (1977). 195.
W. Messers Chmidt and W. Wisser; G . Chromot; 3 8 ( 1 ) ,
196.
K. Marcinkowska, I . Powelezak and K . Weclawska; Farmaaja pol. 2 7 ( 9 ) , 683 (1971).
156 (1968).
Erndt , K. Cosik, A. Krajewska and T. S e i b o r ; Chem. Anal., 2 3 ( 5 ) , 811 (1978).
197. A.
198. A. Humphrey, J . Prog. Flavour Res., (Proc. Weurman Flavour Res. Symp.) Ed. D. Land and H. Nurston, (19791, p . 99.
49,
317
199.
M. Qesch and M. S a h l i ; Pharm. Acta Helv., ( 1974
200.
B. Aaroe, J. Remme and B. Salvesen; Meddr norsk farm Selsk, 3 7 ( 4 ) , 274 (1975).
201.
T. KOZU, T. Kanda, Y. Yanagisawa; E i s e i Kagaku Hyg. Chem. &(2), 110 (1975).
202.
F. Gral and J. R e i n s t e i n ; J . Pharm. S c i . ;
203.
S. Khayyal and M. Ayad, Anal. L e t t . , & ( B l g ) , (1983 1
204.
J-vonDuijnand G. van d e r stegen; J . Chromato, =(1),
205. 206.
.
(1968)
=(lo),
J. 1703
1525
199 (1979)
W . K r e i s e r and R . Martin; J . o f Assoc. Off Anal. Chem.
61(6) , 1424 (1978).
.
Hoefler and P. Coggon; J . Chromatogr. A ( 1976)
.
129,
460
CAFFEINE
149
, 1499,
207.
Cheng-Yi Wu and Sidney SiiTgia, Anal. Chem. (1972).
208.
W . Hurst and R . Martin, J r ; J . Liq. Chromatogr., 5 ( 3 ) , 585 (1982).
209.
&( 8) ,
J . Baker, R. S k e l t o n and M. Cheng-Yu, J . Chromat.,
168(2),
417 (1979).
210.
C. Guillemin, J. Thomas, S . T h i a u l t and J . Bounine; J . Chromatogr. , 321 (1977).
211.
W . Wildanger; D t . Lebensmitt Rdsch.
212.
W. T r i n l e r , D. Reuland and T. H i a t t ; J . Forens, S c i . SOC., 1 6 ( 2 ) , 133 (1976).
213. 214. 215.
142,
, 72( 5 ) , 160 (1976).
. L.
Madison, J . Kozarek, and P. C e c i l l i a , J . Ass. Off Analyst Chem., 2, 1258 (1976).
D. Smyly, B. Woodward and E. Conrad; J . Assoc. Off. Anal. Chem. , 59, 1 4 (1976).
s.
Reid, J. Good and S Thomas, J . Agri. and Food Chem. 775 ( 1 9 8 2 ) .
30(4),
, 7 3 ( 7 ),
216.
S. 0 ' Connell and F. Zurzola; J . Pharm. S c i e n . 1009 (1984).
217.
J. Blauch, and S. Tarka; J. Food S c i . , 4 8 ( 3 ) , 745 (1983).
218.
C. Trugo, R. Macrac and J. Dick; J . S c i . Food A g r i . ;
219.
H. Tan and C. S a l v a d o r , J . Chromatogr.
220.
Y . S h i and N. L i ; Nanjing Yaoxueyuon Xuebao; 2 0 ( 3 ) , 23 (1982) , CA 99:93845m.
221.
R . Smith; J . Food Chem.,
222.
H. Tong-Jung, L. Chi-Chow and C . Mei-Yun; J . Chinese Chem. SOC. 25, 153 (1978).
223.
M. Nishizawa, T. Chonan, I . S e k i j o and T. S u g i i ,
34(3), 300 (1983).
(1983).
7, 4 1
, g(1 ,) 111
(1981).
Hokkaidoritsu E i s e i Kenkyushoho , 32, 7 ( 1 9 8 2 ) .
150
224. 225. 226. 227.
MOHAMMAD UPPAL ZUBAIR E T A L .
S. Kikuchi and T. Ohata; Iwate-ken Eisei Kenkyusho Nenpo; 25, 1 3 (1982).
R . Hartley, J . Cookman and I. Smith, J . Chromatogr.
306,
i g i (1984).
Ching Nan Ou and Vicki Frowley, Clin. Chem., =(11),
1934 (1983).
I.S. Lurie and S.M. Carr;
1617 (1983).
J. Liq. Chromatogr.;
6(9),
228.
I. Matsue, Y. Matsumoto, T. Matsumoto and Momose; Yakugaku Zasshi, =( 71, 800 (1983).
229.
C.N.
230.
T. Takeuchi, D. Ishii and A. Nakanishi; 285(10, 97 (1984).
231.
R . Hartley, J . R . Chromatogr ,
9.
Ou and V.L.
(1983).
Frawley;
C l i n . Chem., =(11), 1934
Cookman and I.J. Smith;
. s,191 (1984).
J. Chromatogr., J.
Acknowledgements The authors would l i k e t o thank M r . Mohammad Saleem Mian of t h e Pharm. Chem. Dept., f o r h i s a s s i s t a n c e i n t h e l i t e r a t u r e review and Mr. Khalid N.K. Lodhi of t h e Central Laboratory of t h e College of Pharmacy, King Saud University f o r h i s t e c h n i c a l a s s i s t a n c e .