Carbon-carbon coupling constants: A compilation of data and a practical guide

Carbon-carbon coupling constants: A compilation of data and a practical guide

Progress in NMR Specmscupy~ Vol. 13. pp. 177-256 0 Pcrpmon Press Ltd.. 1979. Great Britain CARBON-CARBON COMPILATION COUPLING OF DATA AND CONSTAN...

3MB Sizes 0 Downloads 31 Views

Progress in NMR Specmscupy~ Vol. 13. pp. 177-256 0 Pcrpmon Press Ltd.. 1979. Great Britain

CARBON-CARBON COMPILATION

COUPLING

OF DATA

AND

CONSTANTS:

A

A PRACTICAL

GUIDE VICTOR WRAY Gesellschaft Mr Biotechnologische Forschung mbH, D-3300 Braunschweig, West Germany (Received6 June 1979)

CONTENTS INTRODUCTION

178

2.

THE EXPERIMENTAL METHOD

178

3.

SIGNS OF COUPLINGS

179

‘1.

4.

3.1. Experimental Determination

179

3.2. Results of Sign Determinations

181

USE OF CARBON-CARBON COUPLING CONSTANTS

182

4.1.

Signal Assignments

182

4.2.

Structural Information

184

4.2.1. One Bond Carbon-carbon Couplings

184

4.2.2. 4.3.

185

Longer Range Couplings

186

Biosynthetic Applications 4.3.1. Correlation in the Enrichment of the Interacting Nuclei in the Substrate with that in the Product

186

4.3.2. Quantitative Analysis of Multiplet Patterns Caused by Carbon188

carbon Coupling 4.3.3. pX Values of Amino Acids and Peptides

5.

188

REFERENCES

189

APPENDIX

191

I.P.H.M.R.S.

Tables A to I

192

Appendix References

253

1313-A

177

Victor

178

Wray

1. INTRODUCTION

The aim of the present on carbon-carbon referenced dealing

tables

spin-spin

to warrant

aspects

is to collect constants, Although

in the appendix.

with various

available

review

coupling

together

several

The recent

them in the form of cross-

reviews have appeared over the years

of Jcc it is only recently

such a collection.

all the data in the literature

JCC, and to present

that sufficient

data have become

increase in the volume of data,

particularly from biochemical applications, arises from the use of high performance, commercial, Fourier transform spectrometers, together with the increasing availability and decreasing cost of C-13 enriched materials. l-3 concentrated on one-bond coupling constants while more recently Early reviews 4-6 . The latter have been -longer-rangecoupling constants have also received attention particularly well served by the paper of Hansen' who has surveyed all couplings greater than one bond for the period up to the middle of 1977. Conformational aspects of JCC in enriched amino acids and their derived peptides have been considered by Bystrov7. Theoretical calculations, up to the end of 1975, have been covered in the comprehensive survey of Kowalewski*, while more recent work on long-range couplings is reviewed elsewhere6. In order to compliment the tabulated data the measurement and application of JCC will be reviewed in the following sections.

2. THE EXPERIMENTAL METHOD

The determination of JCC requires the presence in the molecule of two

13 C isotopes,

in natural abundance these molecules are usually present as 1 in lo4 molecules, thus sensitivity is a major problem.

In normal proton-decoupled spectra the signals from these

species appear as weak doublets around the signals of molecules incorporating only one 13C isotope. Thus their observation requires a high signal-to-noise ratio and a good line shape. The latter is necessary in order to prevent the peaks being obscured by the intense central peak.

This, in fact, provides the main drawback of the technique in that couplings of,*7 Hz

cannot be detected, with only one-bond and the larger long-range couplings being observable. 9-12 have been performed on natural abundance samples and all Several investigations modern Fourier transform instruments make such observations possible. For these the molecule under study must be at high concentration in a suitable solvent, usually at concentrations of 70% or higher if excessive accumulation times are to be avoided. Increased sensitivity, achieved by using larger sample tubes, quadrature detection and higher magnetic fields, may make future observations easier. Pulse widths can often be longer than those 13 normally used as the presence of an additional C isotope increases the relaxation rate of 13 quaternary carbons . The addition of small amounts of the shiftless paramagnetic relax14, 15 ation reagents , such as chromium tris(acetylacetonate1facilitates the observation 16 of the couplings to quaternary carbons without significantly broadening the resonances. Interference from spinning side,bands can be minimised by using high, variable spinning speeds with the appropriate vortex suppression. The vast majority of J values have been determined by the use of singly or even more 13 CC highly labelled species. C enrichment is necessary if small couplings are to be observed although preparation of these compounds can be both expensive and time consuming. In most cases 90% enrichment is optimal as the signals of the coupled carbons now appear as doublets in the spectrum with

a small, almost central peak corresponding to the unenriched material.

Carbon-carbon coupling constants

179

The observation of the latter may be helpful in complex overlapping spectra as the complete analysis of the AB (or Ax) spin system is not possible with small couplings, because the lines around the enriched carbon signal are unobservable. In such cases it is advisable to check the data by recording the spectra at two different spectrometer frequencies. 13 12 C isotope shifts are observable and are of the order of -0.002 to -0.027 ppm for directly bonded carbons and less for non-directly bonded carbons. This can often be used as a useful check and implies that for one bond couplings, where only the inner lines of an AB (AX) system are available, the chemical shifts of the unenriched material cannot be used.

Often in such cases, where the carbons have similar environments, the isotope shift

can be taken as the difference between the centre of the two lines of the unenriched material and the centre of the two inner AB lines. Lower incorporation levels result in higher central peaks for the unenriched material which make the observation of smaller couplings correspondingly more difficult. Multiple incorporation of "C

labels results in more complex spectra which may require statistical 17 techniques to allow quantitative analysis . Although the possibility of measuring small couplings in natural abundance remains 18, 19 a problem, the recent developments in two dimensional Fourier transform spectroscopy suggest ways in which this may be done.

Application of this technique to spin-echo methods

affords significant improvement in resolution as the effects of spatial inhomogeneity of the magnetic field are mostly circumvented. Preliminary measurements of carbon couplings in 20 enriched materials have been reported . The intrusion of the signals of non-enriched compound occurs and would be a particular problem at natural abundance. These problems can be overcome by instrumental modifications, such as the use of filters. Greater promise may lie in the concurrent use of these methods with those of Fourier difference 21 spectroscopy . Inherent in these methods, however, is the significant'loss in sensitivity 22 compared with one-dimensional Fourier spectroscopy , a factor that will make natural abundance work difficult. The precision of the literature data often depends upon the experimental method used. Thus in the early CW methods, with signal averaging, this was governed by instrumental instabilities while that from the current use of ET-methods, with internal locking, is often governed by digitisation, an improved accuracy being obtained by the use of small spectral widths and centroid interpolation routines.

3. SIGNS OF COUPLINGS

3.1 Experimental Determination The difficulties of observing Jcc often preclude the determination of the sign of the coupling. In all the cases studied signs have heen determined by the use of enriched materials. Perhaps the simplest experiment is the use of heteronuclear double resonance on doubly-enriched compounds using selective proton irradiation. In this experiment the signs of Jcc are related to the known signs of JcS.

This method has been used to determine the 1 1 1 23 in acetorie and of 2Jcc relative to sign of Jcc relative to JcH in acetic acid JCH 24 and dimethyl mercury . The drawback of this method is the necessity of having a specifically double-labelled compound for each sign determination. An alternative technique,

that requires only single-labelled materials and uses information gained from off-resonance 25, 26 for the determination of the proton decoupling, was first described by Jakobsen

Victor Wray

180

In this method use is made of the difference observed for the relative signs of Jpc. 13 13 r CH couplings in the reduced splittings, JCX, due to the direct C spectrum of the Jcc doublet.

Initially the proton decoupling frequency is found that gives the best doublet for

a particular carbon doublet. The proton decoupling frequency is then changed slightly from this value and it will be noted that one of the peaks of the doublet will be affected more than the other as J&

= ~RAVJ&

K-l2for the two peaks is different with one of the proton

sub-spectra corresponding to a particular carbon spin state being more affected than the other.

Thus the sign of JCC can be determined from the knowledge of the sign of the offset

from the optimum decoupling frequency and the sign of JCX. This method has been used in 4 3 13 methyl a- C-bensoate to show that 2JC2Ca x 0 and 3JC3Ca x JCaH3>0 (i.e. 2JC2Ca JCan2> 27 and 3J are both positive) . It can also be used in multiply-labelled situations as c3ca

.has been shown in the bicyclobutane derivative, diethyl l-methyl-13C-3-phenylbicyclo[1.1.0]13 butane-1,3- C2-exo,exo-2,4-dicarboxylate,where the first experimental observation of a 28 1 negative Jcc between the two enriched bridgehead carbons was determined . An experimental limitation of the technique occurs when the enriched carbon has directly bonded protons. In this case a triple-resonance experiment is necessary in which two proton frequencies are used. The first of these decouples the protons directly attached to the label and the second is used as before in an off-resonance capacity. As well as proving difficult experimentally, 29

Block-Siegert shifts caused by the first proton frequency need to be taken into account , 30 reported of the use of this method. The implementconsequently, there is only one case ation of the method in non-aromatic systems may require more proton decoupling frequencies with their ensuing instrumental difficulties. Homonuclear double resonance methods can be used to give relative signs in multiplylabelled compounds. Thus an adiabatic rapid passage homonuclear double resonance experiment with and without simultaneous proton-noise decoupling has been used to determine the relative signs in triply-labelled methyl tetrolate (C!E3.C%.C02CH3)31. The experiment in its original form32 was used to determine connected energy levels in simple AB systems in order to make signal assignments where conventional selective proton decoupling was inconclusive. Although doubly-labelled compounds could in principle be used instrumental requirements make the method restrictive. In some cases spectral analysis of the completely coupled proton and carbon spectrum is sufficient to furnish the relatiye signs in doubly-labelled compounds. Thus complete 1 3 1 analysis of doubly-labelled 1,2-dibromoethaneshowed that JHH>O implying that Jcc Jcc x 33 is positive . A simple method of determining the relative signs in doubly-labelled compounds in which the labelled carbons have the same or nearly the same chemical shift has been demonstrated3" 34' 35_

In such cases the natural abundance, proton-noise decoupled spectra

of a third I3C nucleus appears as either the X part of an ABX system or the C part of an ABC system. Observation of the spectrum of the doubly-labelled compound in the presence of both singly-labelled compounds allows the relative signs of AX and BX for the ABX spectrum, and AC and BC for the ABC spectrum to be determined by simple spectral analysis. The necessity of multiple labelling can often be circumvented by the use of the 36, 37 selective population transfer technique . This method is particularly useful in those cases where both the proton and carbon spectra are first order and it requires only a monolabelled compound. A selective 180~ radiofrequency pulse is applied at a proton transition which inverts the populations of the respective energy levels. This is immediately followed 13 by a non-selective 90° pulse applied in the usual way to the C nuclei. Fourier transform

181

Carbon-carbon coupling constants

of the resulting FID gives spectra showing peaks with reduced and enhanced intensities relative to the normal spectrum depending on whether the irradiated and observed lines were connected regressively or progressively. The technique has been elegantly demonstrated for 27 the sign determination in mono-labelled methyl tetrolate for which the same signs of JCC 31 4 1 or JcH were deduced earlier using a triply-labelled compound . In cases relative to J CR where weak signals hidden under the strong signal of the enriched carbon have to be observed 38 a modified pulse sequence which incorporates the SPT method and difference spectroscopy can be used27. A Torrey oscillation experiment has been used to determine the negative sign of

2 Jcc

in CH3.0.COC13'.

3.2. Results of Sign Determinations The actual signs determined for carbons in various hybridisation states are sunsaarised in Table 1.

.

Table 1. Signs of Coupling Constants

Hybridisation

1 Jcc

3 3 sP -sp

+

3 2 sP 'SP

+

Ref.

33

3 JCC

Ref.

2J cc

c.x.c x = Co Rg 0

+ +

Ref.

a

+

24 24 24

30

31

a

3 sP -sp 2 2 sP -sp

+

31

+

a

+

+

6

6

6

30,34

8 + 2 sP 'SP

+

sP -sp

+

Others

27

*

6,27,35

c

+

6,27.35

27,31,34

a 28,a

28

Footnotes: a) See discussion in text, b) Sign depends upon the.substituents although values of magnitude greater than 0.3 Hz are negative.

Victor Wray

182

Theoretical calculations for one bond couplings* are in agreement with experiment in that a positive sign is predicted for all normal single, double and triple bonds with the magnitude of the coupling increasing along the series. A notable exception, predicted 40-42 theoretically , is the case of the highly strained bicyclobutane ring system noted 28 above where a high degree of E-character of the bridgehead-bridgeheadbond is observed. 43 Other molecules with similar features are predicted to have unusually low couplings . Although the sign of three-bond couplings in saturated systems has not been determined 44-46 in predicting the experimentally the success of the extensive theoretical calculations magnitude of and substituent effects upon these, suggest that they are positive. 6, 30, 35, 47 There is a small amount of data for couplings over more than three bonds -but as these couplings are small in magnitude the signs are of limited use.

A discussion

of these and the two- and three-bond couplings are found in the appropriate papers.

4.

USE OF CARBON-CARBON COUPLING CONSTANTS

An attempt is made in this section to familiarise the reader with the uses that have been made of carbon-carbon coupling constants.

4.1.

Signal Assignments

1 The large variation of JCC values of -17.5 (bicyclobutanes)to +176 Hz (acetylenes) is due mainly to the hybridisation state of the interacting carbons with smaller variations, for particular hybridisation states, being due to substituent effects. Thus, these results offer plenty of scope for use in signal assignments. As the coupling constant appears twice in a spectrum, comp,rison of splittings allows irmuediateidentification of adjacent carbons. Confirmatory evidence may often be gained from the line intensities as these will be unequal in the case of AB systems. In the case of natural abundance observations the knowledge of a single assignment may be sufficient to allow complete assignment in simple molecules provided the couplings can be measured 48-58 12 with sufficient accuracy (eg. substituted benzenes and cycloalkanes 1. In the case where the magnitudes of the couplings are similar the use of homonuclear double resonance techniques are necessary to identify coupled carbons. Thus in the case of l-substituted 4-methylbicyclob.2.2]octanes (A) distinction was made between C2 and C3 by pairing C2 with Cl and C3 with C4.

In more complex molecules experimental difficulties make the observation of natural abundance spectra impossible. Synthetic, as opposed to biosynthetic, incorporation of a 13 single C nucleus at a specific site in a molecule has the advantage of allowing the observation of longer range couplings which also have the same diagnostic capabilities. 13 Thus in order to assign the C signals of the almost symmetrical molecule, mesobiliverdin-IXa dimethyl ester (21, several singly enriched compounds were synthesised51 . For the C4 enriched compound the observation of one-bond couplings allowed the assignment of C3 and identified C5 (from Cl0 and C15).

Long-range couplings distinguished Cl from Cl9

and the observation and magnitudes of the couplings identified C6 and C7.

Long-range

coupling to the methyl group on C2 and the methylene of the ethyl group at C3 distinguished

183

Carbon-carbon coupling constants

these from the corresponding groups at Cl7 and C18, respectively.

(

2 =

P = CH,CH2C02CH3

P

10

P

Single labelling has been particularly useful in the assignment of the signals of monosaccharides and their derivatives, and a detailed reassessment of earlier assignments 52 has been given . Here labelling at the anomeric carbon Cl allowed immediate identification of C2 from the large one bond coupling. Small characteristic long-range couplings were also 2 of value in the assignments. A Jcc to C3 (4 Hz) is found only in the panomers while C5 is coupled to Cl only in the aanomers (2 Hz).

A coupling to C6 is present in both anomers

while C4 shows no coupling to Cl in any of the sugars examined. Thus the 13 C-silver 53 cyanide, was shown to be 2 and not 4, and a possible reaction mechanism was proposed .

The synthetic incorporation of multiple labels also has its advantages.

structure of a trimer of bensoyl isocyanide, prepared from bensoyl bromide and

The central atoms of the ring give the expected AMX system while none of the three carbons arising from the bensoyl carbonyl carbons show a large one-bond coupling but only longI

range couplings (J 64 Hz).

Many multiply-labelled compounds have been produced in the course of biosynthetic

J

studies, most of which have used singly and doubly labelled acetate as precursors. A pre-requisite of such studies is an assignment of the product signals. In most cases the organism incorporates one molecule of substrate per molecule of product with the consequence that the determination of the magnitudes of the couplings of matching pairs of signals 54 (distinguishedin large molecules by homonuclear double resonance 1, together with chemical shift considerations and SFORD spectra, allows signal assignments to be made.

At the same

time the specific labelling pattern is obtained and this often allows biomechanistic information to be deduced (see below). An example is the assignment in dihydrolatumcidin QS5.

Shift and SFORD considerations do not allow a distinction to be made between C6, C7

and C8, between C4 and C7a or between C2 and C3.

Biosynthesis with doubly-labelled acetate

identified the signals of the first two groups since couplings of different magnitude are present between C8 and C9, and between C7 and C7a.

Biosynthesis with a 1:l mixture of the

two mono-labelled acetates distinguished C2 from C3 because a coupling of C3 with C4 is

Victor nray

184

3

2

observed. Biosynthesis with a high incorporation of enriched carbon in single molecules has the -disadvantageof a large number of coupling interactions. Highly enriched chlorophylls 5 and & have been produced by growing green algae on 90% 13CO2 and although the spectra were particularly complex several assignments were possible by matching one bond couplings56, 57 .

4.2.

Structural Information

4.2.1. One Bond Carbon-carbon Couplings One-bond couplings are a function of hybridisation, substitution, ring size and substituent orientation as seen in Table 2.

In their simplest form such data may be used

to determine the structural elements in a particular molecule.

Table 2.

Examples of

1 JCC as a function of hybridisation, substitution, ring size and

substituent orientation taken from Tables in the Appendix.

Hybridisation CH3-CH3 J

CH2XH2

C6H6 57.0

34.6

CBXH

67.6

170.6

Substitution X= CH3CH2X

0

X

0

F

Cl

Br

I

38.2

36.1

36.0

35.8

B02 35.7

70.92

65.17

63.62

61.02

67.32

1

2

3

4

(l-2) 29.5

37.3

37.9

38.0

(2-3) 29.0

34.4

30.3

32.1

OH 37.7

RH2 35.8

65.60

61.07

Ring size

n= (a-0 3

2

1

Orientation

C&OH o

‘i0-H

OH

} ,“:::;;I;-,” .

1

3

CH,

CH3

,+ N

‘OH

(l-2) 49.3 (2-3) 41.4

Carbon-carbon coupling constants

The relationship between the magnitude of

185

1 JCC and the hybridization (s=character)

of the coupled carbons has received considerable attention both theoretically and experimentally (for reviews see references 1 and 5).

It appears that such a relationship

can be expected for closely related series of ccmpounds provided there are no changes in electronegative substituents attached to the coupled carbon atoms. This relationship has been used to show that the magnitudes of a large number of couplings for various enriched 51 bile pigments reflect the bona lengths expected in the solid state . Consequently the bond delocalisation and bond character of the four pyrrole rings has been deduced for these in solution. Only a limited amount of data exists for the effect of substituents directly attached to the coupled fragment. The maynitudes of the changes are rather small in saturated systems but increase for unsaturated systems. Results for the benzenes suggest that substituent effects over longer distances are difficult to detect. Orientational effects of substituents are not well documented but appear to be small, except in certain cases.

4.2.2. Long Range Couplings These have been reviewed recently6 and only their use will be illustrated here. Empirical observations mentioned above (4.1) for the geminal couplings in mono13 58 and appear to saccharides52 are also found in the l- C enriched 2-amino-2-deoq sugars offer a viable method for configuration determination in these ccenpounas. 3 Although Jcc has been investigated at considerable length theoretically and 44 experimentally in model systems , the actual use of their values in larger systems is somewhat limited. The conformation of the pyrrolidine ring in proline and thyrotropin releasing factor (TRF, 2,
The values of these of nearly zero and 3.9 Hz for TRP correspond to angles (CO,CQ,C@,CY) aa

(ca,c$,cY,ti)of

about

9o”

and + 3o", using the theoretical curves for 2-butanol and

butanoic acidjo. These define a q-end0 puckered pyrrolidine ring and agree with the In contrast the value of 3J for free COCY proline of 1.5 Hz is in complete agreement with the known existence of an equilibrium of c crystal structures of peptides containing proline.

rapidly interconverting puckered forms. These results must be treated with caution, however, as no account was taken of the contribution of alternative coupling paths through the 61, 62 . Values of 3Jcc nitrogen of the ring. Similar problems are found in other studies 63 in the open-chain amino acids, asparic and glutamic acids , show strong conformational dependences. Comparisons were attempted with INDO MO calculations, but only reasonable correlations were found with the fully protonated species. Using these, however, values of the rotamer populations were predicted in agreement with those based upon 3JHH and 3JcH values.

The results do show that large substituent effects are operative and must be

taken into account before reliable conformational predictions on the basis of 3Jcc can be made.

Thus a set of values for gauche and anti 3Jcc are not generally applicable in the

amino acids.

Victor Wray

186

3JCC

is found in an attempt to assess the conformation 64 about the glycosidic bond in various disaccharides using 3JCH and 3JCC values . Here the 3 requirement of a dihedral angle dependence of JCC across oxygen is less secure. A further example of the use of

The possibility of using long-range couplings to determine side-chain conformation in sterically-hindered aromatic compounds seems quite promising. Two- and three-bond couplings have been shown to reflect the orientation of the carbonyl group in various 65 hindered aromatic carbonyl compounds . The results for various benzene, naphthalene and pyrene derivatives are shown in Table 3 with the nomenclature referring to the two possible planar conformations shown.

Table 3.

Two- and three-bond coupling trends in hindered aromatic carbonyl compounds.

b

a

a *J b c *J d 3

‘J;;-;‘~)

B

c\ d

Ketones and aldehydes

*J 3J

Acids and derivatives

4.3. The use of

‘-

(s-U J(t,s-t)

C

2J

(s-t)

)

> tt,s-t)

*.J (s-c) 3J

ctrs-c) 2 J(s-t)

(s-c) ) 3 J no regularity

Biosynthetic Applications

13 C-enriched precursors has become increasingly important as it is usually

possible to determine the positions of their incorporation in biosynthesised materials by 13 C NMB spectroscopy. AS such, this technique is largely replacing the time-consuming degradations required in 14C- labelling experiments.

4.3.1. Correlations in the Enrichment of the Interacting Nuclei in the Substrate with that in the Product From a knowledge of the enrichment pattern in the substrate and by establishing the 13 C enrichment of the product, by the recognition of one bond and in 13 some cases long-range couplings in the C spectrum, information can often be obtained correlation in the

about the intermediate steps in a biosynthetic pathway. Labelled acetate has been used most often as it gives information about polyketide biosynthesis and can be applied in more complex systems, such as steroids and terpenes, where biosynthesis occurs from acetate via mevalonate. Doubly-labelled acetate gives information of the incorporation of intact units, while mono-labelled material relates the nature of incorporation of adjacent units. An example of such an approach is the incorporation of doubly-and mixed singly-labelled acetate into dihydrolatumcidin55 described above (4.1). Here the data in Table 4 indicate a head-to-tail incorporation of five acetate units into the product as shown.

187

Carbon-carbon coupling constants

Table

4.

Data and biosynthetic pathway for the incorporation of acetate into dihydrolatumcidin

Coupled nuclei from incorporation of labelled

\_J .. CH3’C02H

%

acetate: Double

Single (1:l mix) 3-4

_. &

4a-7a

O=F 4\

5-8

-0

3

2

l-7a

6-7

8-9

4a-5

In doubly-labelled acetate experiments it is usual to dilute the labelled precursor with unlabelled material so that only one molecule of enriched substrate is incorporated per molecule of product. This keeps the resulting product spectrum simple and can have diagnostic capabilities where an acetate unit is cleaved during a biosynthesis. Thus the spectrum of a pyrone metabolite, 2, showed a two-bond coupling between Cl and C7 and a labelling pattern as shown when diluted doubly-labelled acetate was used as substrate, 66, 67 . This establishing that Cl and C7 of the product were derived from the samemolecule labelling pattern together with those from the incorporation of mono-labelled acetates 0 CH3.C02H) and enrichment level measurements indicated that this acetate was &3'C02H, initially incorporated into a linear pentaketide precursor which undergoes rearrangement during biosynthesis as shown.

7 =

R02CJgY Biosynthetic pathway to aspyrone, 2

Victor Way

188

Further examples of the incorporation of labelled acetate are found in the accompanying Tables with the Appendix references 41, 46, 47, 52-55, 59-63, 67-69, 71, 81 and 85-87. The use of other labelled substrates has been more limited as these are often more 70, 71 68, 69 and phenylalanine costly and have to be synthesised. Doubly-labelled propionate I 69 72 have been employed along similar ane L[Me-l3C]methionine and singly-labelled pyruvate lines to the above. Incorporation of two differently labelled mevalonates into cholesterol and the resulting coupling patterns confirmed the biosynthetic pathway and provided additional evidence for a 1:2 methyl shift, from position 14 to 13, during the cyclisation of squalene 73 oxide to lanosterol . These results also gave unambiguous proof of the assignments of the 13 C signals for 16 of the 27 carbon atoms in cholesterol. 80 has involved the incorporation of 13C-enriched The elegant work of Battersby -et al. substrates at various intermediate stages, and the observation of carbon-c&bon couplings, has provided vital evidence of the biosynthetic pathway to protoporphyrin-IX. This and 74, 80 . related work on vitamin-B12 has been reviewed authoritatively recently

4.3.2. Quantitative Analysis of Multiplet Patterns Caused by,Carbon-carbon Coupling The occurrence of carbon-carbon coupling allows the amount of each enriched species of a particular substance to be determined from the quantitative analysis of the multiplet patterns of the various carbon signals in the mixture.

In the simplest cases of mono-

and di-Labelled compounds the integration of the pattern of adjacent carbons will give 57 immediately the degree of enrichment , provided differences in relaxation rates13, 75 and 76 nuclear Overhauser enhancements between the different species can be neglected. In complex cases of multiply-labelled compounds a statistical analysis of the multiplet patterns is necessary17. Such analyses can give useful information about biosynthetic pathways. An example 17 of this is the formation of lactate by glycolysis . Lactate produced by fermentation of an equimolar mixture of uniformly-labelled glucose to a 71% level and unlabelled material has 13 been examined by both mass spectrometry and C NMR spectroscopy. The former showed that 13 36.2% of the carbon atoms were C while the latter technique indicated that the lactate was uniformly labelled to 73% 13C. The difference between the two techniques indicated 13 that the C distribution was non-uniform with the lactate being an equimolecular mixture of unlabelled and 71% uniformly labelled material. This is consistent with a glycolysis pathway in which lactate is formed by direct breakdown of the glucose into two three carbon fragments. Alternative pathways such as breakdown into one carbon units and re-assembly into lactate would require both techniques to show 36% uniform enrichment. Other systems 17 have been studied in this way . Although the incorporation of labelled acetate has elicited numerous studies, detailed 77, 17, 67, 69 quantitative analyses giving biomechanistic information are rare . 4.3.3. pK Values of Amino Acids and Peptides values involving the carbonyl carbon of the carboxylate group of amino 79 acids63:J?:, 79 and the C-terminal residue of small peptides vary by 5 to 6 Hz on changing 1 the pH and reflect the pK of the carboxylate group. Other Jcc values vary by less than 1 Hz. For glycine, proline, alanine, valine, leucine and isoleucine 1JcOCa values of 53.5 and 59.5 +_0.5 Hz correspond to the C02- and CO H states respectively78. Consequently l2 the pK1 value of each amino acid corresponds to a J value of 56.5 Hz. coca

189

Carbon-carbon coupling constants

REFERENCES

1.

J.B. Stothers, "Carbon-13 NNR Spectroscopy," Academic Press, New York (1972).

2.

J-R. Llinas, E-J. Vincent, and G. Peiffer, Bull. Sot. chim. Fr., 2,

3.

G.E. Maciel in "Nuclear Magnetic Resonance Spectroscopy of Nuclei other the Protons,"

3209 (1973).

ed. by T. Axenrod and G.A. Webb, Wiley-Interscience,New York (1974). 4.

J.L. Marshall, D.E. Miiller, S.A. Conn, R. Seiwell, and A.M. Ihrig, Accounts Chem.

5.

R.E. Wasylishen, Ann. Rep. NMR, 1, 245 (1977).

Research, 1, 333 (1974).

6.

P.E. Hansen, Org. Magn. Resonance, 2,

7.

V.F. Bystrov, Prog. Nucl. Mag. Res. Spectroscopy, lo, 41 (1976).

215 (1978).

8.

J. Kowalewski, Prog. Nucl. Mag. Res. Spectroscopy, 2,

9.

F.J. Weigert and J.D. Roberts, J. Amer. Chem. Sot., as, 5962 (19671.

1 (19771.

10. R.D. Bertrand, D.M. Grant, E.L. Allred, J.C. Hinshaw, and A.B. Strong, J. Amer. Chem. sot., 94, 997 (1972). 11. K.D. Summerhays and G.E. Maciel, J. Amer. Chem. Sot., 94, 8348 (1972). 12.

J. Jokisaari, Org. Magn. Resonance, 2,

13.

C.G. Moreland and F.I. Carrol, J. Magn. Resonance, 11, 596 (19741.

14.

G.C. Levy and J.D. Cargioli, J. Magn. Resonance, lo, 231 (1973).

157 (19781.

15.

G.C. Levy and R.A. Komoroski, J. Amer. Chem. Sot., 96, 678 (19741.

16.

V. Wray, unpublished results.

17.

R.E. London, V.H. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., 97, 3565 (1975).

18.

K. Nagayama, P. Bachmann, K. Wuethrich, and R.R. Ernst, J. Magn. Resonance, 2,

133

(1978) and references therein. 19.

G. Bodenhausen, R. Freeman, G.A. Morris, and D.L. Turner, J. Magn. Resonance, 2,

75

(1978) and references therein. 20.

R. Niedermeyer and R. Freeman, J. Magn. Resonance, 0,

21.

R.R. Ernst, J. Magn. Resonance, 4_, 280 (1971).

22.

W.P. Aue, P. Bachmann, A. Wokaun, and R.R. Ersnt, J. Magn. Resonance, 2,

617 (1978).

523 (1978).

23.

D.M. Grant, J. Amer. Chem. Sot., E,

24.

H. Dreeskamp, K. Hildenbrand, and G. Phisterer, Mol. Phys., 11, 429 (1969).

2228 (19671.

25.

H.J. Jakobsen, T. Bundgaard, and R.S. Hansen, Mol. Phys., 11, 197 (1972).

26.

S. Sorensen, R.S. Hansen, and H.J. Jakobsen; J. Amer. Chem. Sot., 95, 5080 (1973).

27.

S.Aa. Linde and H.J. Jakobsen, J. Amer. Chem. Sot., 98, 1041 (1976).

28.

M.

29.

H.J. Jakobsen, T. Liptaj, T. Bundgaard, and S. Sorensen, J. Magn. Resonance, 26, 71

30.

P.E. Hansen, O.K. Paulsen, and A. Berg, Org. Magn. Resonance, i, 632 (19761.

31.

J.L. Marshall, D.E. Miiller, H.C. Dorn, and G.E. Maciel, J. Amer. Chem. S0c.1 97, 460

32.

B.C. Dorn and G.E. Maciel, J. Phys. Chem., 76, 2972 (1972).

33.

R.E. Carhart and J.D. Roberts, Org. Magn. Resonance, 2, 139 (1971).

Pomerantz, R. Fink, and G.A. Gray, J. Amer. Chem. SoC., 98, 291 (1976). c

(19771.

(1975)

34.

P.E. Hansen, O.K. Poulsen, and A Berg, Org. Magn. Resonance, L, 405 (1975).

35.

P.E. Hansen and A.Berg, Org. Magn. Resonance, a, 591 (1976).

36.

S. Sorensen, R.S. Hansen, and H.J. Jakobsen, J. Magn. Resonance, 14, 243 (1974).

37.

K.G.R. Pachler and P.L. Wessels, J. Magn. Resonance, 12, 337 (1973).

38.

T. Bundgaard and H.J. Jakobsen, J. Magn. Resonance, la, 209 (1975).

39.

D. Ziessow, J. Chem. Phys., z,

984 (1971).

Victor wray

190

40.

M.D. Newton, J.M. Schulman, and M.M. Manus, J. Amer. them. Sot., 96, 17 (1974).

41.

J.M. Schulman and M.D. Newton, J. Amer. Chem. SOC., 96, 6295 (1974).

42.

J.M. Schulman and T.J. Venanzi, Tetrahedron Letters, 1461 (1976).

43.

J.M. Schulman and T.J. Venanzi, J. Amer. Chem. Sec., 96, 4739 (1974).

44.

M. Barfield, S.A. Conn, J.L. Marshall, and D.E. Miiller, J. Amer. Chem. SoC., 98, 6253

45.

V. Wray, J. Amer. Chem. Sot., 100, 768 (19781 and references therein.

46.

M. Barfield, J.L. Marshall, E.D. Canada, and M.R. Willcott, J. Amer. Chem. S0c.1 -100,

(1976) and references therein.

7075 (19781. 47.

P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, 2, 649 (1977).

48.

F.J. Weigert and J.D. Roberts, J. Amer. Chem. Sot., 94, 6021 (1972).

49’.

F.W. Wehrli and T. Wirthlin,"Interpretationof Carbon-13 NMR Spectra," Heyden, London

30.

V. Wray and L. Ernst, unpublished results.

51.

V. Wray, A. Gossauer, B. Gruening, G. Reifenstahl, and H. Zilch, J.C.S. Perkin II,

52.

T.E. Walker, R.E. London, T.W. Whaley, R. Barker and N.A. Matwiyoff, J. Amer. Chem. SoC.,

(1976).

in press.

98, 5807 (1976). 53. 54.

G. Hoefle, Tetrahedron Letters, 347 (1974). P.L. Canham, L.C. Vining, A.G. McInnes, J.A. Walter, and J.L.C. Wright, Can. J. Chem., 55, 2450 (1977).

55.

H. Seto, T. Sato, and H. Yonehara, J. Amer. Chem. Sot., 2,

8461 (1973).

56.

C.E. Strouse, V.H. Kollman, and N.A. Matwiyoff, Biochem. Biophys. Res. Commun., 5, 328 (1972).

57.

N.A. Matwiyoff and B.F. Burnham, Ann. N. Y. Acad. Sci., 206, 365 (1973).

58.

T.E. Walker, R.E. London, R. Barker, and N.A. Matwiyoff, Carbohydrate Res., 60, 9 (1978).

59.

W. Haar, S. Fermandjian, J. Vicar, K. Blaha, and P. Fromageot, Proc. Nat. Acad. Sci. USA, 72, 4948 (1975). Barfield, I. Burfitt, and D. Doddrell, J. Amer. Chem. Sot., 97, 2631 (1975).

60.

M.

61.

S. Tran-Dinb, S. Fermandjian, E. Sala, R. Mermet-Bouvier, and P. Fromageot, J. Amer. Chem. Sot., 97, 1267 (1975).

62.

R.C. Long and J.H. Goldstein, J. Magn. Resonance, 16, 228 (1974).

63.

R.E. London, T.E. Walker, V.H. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., -100, 3723 (1978).

64.

D.Y. Gagnaire, R. Nardin, F.R. Taravel, and M.R. Vignon, Nouveau J. Chim., I,

65.

P.E. Hansen,

66.

T.J. Simpson and J.S.E. Holker, Tetrahedron Letters, 4693 (1975).

67.

M.

O.K.

423

(1977).

Poulsen, and A. Berg, Org. Magn. Resonance, 2, 649 (1977).

Tanabe, M. Uramoto, T. Hamaski, and L. Cary, Heterocycles, 2, 355 (1976).

68.

H. Seto, Y. Miyazaki, K. Fujita, and N. Otake, Tetrahedron Letters, 2417 (1977).

69.

T.C. Feline, R.B. Jones, G. Mellows, and L. Phillips, J.C.S. Perkin I, 309 (1977).

70.

E. Leete, N. Kowanko, and R. A. Newmark, J. Amer. Chem. Sot., 91, 6826 (1975).

71.

E. Leete, N. Kowanko, and R.A. Newmark, Tetrahedron Letters, 4103 (1975).

72.

A.M. Nadzan and K.L. Rinehart, J. Amer. Chem. Sot., 98, 5012 (1976).

73.

G. Popjak, J. Edmond, F.A.L. Anet, and N.R. Easton, J. Amer. Chem. Sot., 2,

74.

D.G. Buckley, Ann. Reports Chem. Sot., E,

75.

R.E. London, N.A. Matwiyoff, and D.D. Mueller, J. Chem. Phys., 63, 4442 (19751.

931 (1977).

392 (1977).

Carbon-carbon coupling constants

76.

R.E. London, N.A. Matwiyoff, V.H. Kollman, and D.D. Mueller, J. Magn. Resonance, 18,

77.

A.G. McInnes, D.G. Smith, J.A. Walter, L.C. Vining, and J.L.C. Wright, J.C.S. Chem.

191

555 (19751.

commun., 282 (1974). 78.

S. Tran-Dinh, S. Fermandjian, E. Sala, R. Mermet-Bouvier, M. Cohen, and P. Fromageot, J. Amer. Chem. Sot., 96, 1484 (1974).

79.

S. Fermandjian, S. Tran-Dinh, J. Savrda, E. Sala, R. Rennet-Bouvier, E. Bricas, and P. Fromageot, Biochim. Biophys. Acta, 399, 313 (19751.

80.

A.P. Battersby and E. McDonald, Accounts Chem. Res., 12, 14 (1979). APPENDIX The following tables comprise a comprehensive list of carbon-carbon spin-spin coupling

constants in a wide variety of compounds abstracted from the literature. The data have been compiled from the author's own records and from the literature found by CA Selects: Nuclear Magnetic Resonance (Chemical Aspects), which is produced by computer search of the Chemical Abstracts Information Base.

Most of the available data, up to the end of 1978, is tabulated.

The tables have been divided according to the formal hybridisation of the coupled carbons. Each table is arranged according to an index of molecular formulae and the conventional priority of elements has been adopted. Each table consists of (11 the entry serial number, with cross reference serial numbers in parentheses, (2) a literature reference number, (3) the molecular formula of the compound, (4) the structure of the compound, and 1 (5) a series of columns corresponding to the coupling.constants classified as to J (directly 2 bonded), J (geminal),nJ (vicinal and longer range). Although no attempt has been made to indicate the error in the reported values, early CW data are usually accurate to about + 1 Hz while with more modern data it is probably better than + 0.2 Hz, with the exception that in most biosynthetic studies, in which large spectral widths are used, digitisation limits the accuracy to 2 1 Hz.

LIST

OF

TABLE.5

A.

Both coupled carbons formally with sp3 hybridisation.

B.

One coupled carbon formally with sp3 hybridisation and the other with sp2 hybridisation.

C.

One coupled carbon formally with sp' hybridisation and the other is a carbon of a

D. E.

One coupled carbon formally with sp' hybridisation and the other with sp hybridisation. c) Both coupled carbons formally with sp' hybridisation (other than aromatic and carbonyl,

F.

Both coupled carbons formally with sp2 hybridisation (both aromatic or aromatic and

carbonyl function.

carbons).

olefinic carbons). G.

Both coupled carbons formally with sp2 hybridisation, one of which is a carbonyl

H.

One coupled carbon formally with sp2 hybridisation and the other with sp hybridisation.

I.

Both coupled carbons formally with sp hybridisation.

function.

victor

192

Table

A.

Serial NO.

Both coupled

Ref. No.

carbons

formally

Molecular formula

Wray

with sp3 hybridisation.

Structure

15

1

1

CH2Br.CH2Br

2

2

CH3.CH2Br

36.0

3

2

CH3.CH2C1

36.1

4

2

CH3.CH2F

38.2

5

2

CH3.CH21

35.8

6

2

CH3.CH2N02

35.7

7

2

CH3.CH20N0

38.1

8

3

9

4

CH3CH3 CH3.Hg.CH3

10

2

CH3.CH20H

=J

+38.9

34.6 +22.4 37.7

5 11

4

12

CH3.0.CH3

(-1 2.4

6

'2'6' C2H6Se

CH3.Se.CH3

0.8

13

6

C2H6Te

CH3.Te.CH3

0.2

14

2

C2H7N

CH3.CH2NH2

15

5

'jH4'12

7 16

5

18

5

5

C3H5Hr

C3H5C1

C3H51

7 19

8

20

'9

16.55

DC

Cl

7 17

35.0

Cl

C3H5N C3H503Zn

D

13.3 Br

13.9

D

Cl

D

I

12.9

CH3.CH2CN

33.0

CH3.cHOEI.C02Zn

37.6

bi2.CH2.CH2C)

29.54

(305) 21

10

4 t3;+, 2 24

10

25

11

'JH6'

C3H60 '3'6'2 '3'BS C3H7N02

CH3.C0.CH3 CH3.CH2C02H

34.8

kH2.CH2.CH2S

31.52

CH3.CH(NH2)C02H

(307)

26

2

CH3.CH2.CH3

27

5

CH3.CH2.CH20H

28

5

29

5

(3) (2) (1)

(422)

+16.1

CH .CHOH.CH3 (2? (1) CN

D

pH 1.2

34.1

6.4

34.9

11.1

35.2 33 +2 1,2

37.0

2,3

34.2 38.4

1,2

10.9

"J

Carbon-carbon

Table A.

(contd.)

Serial No.

Ref. No.

30

12

31

10

Molecular formula

couplAng

193

constants

2 J

lJ

Structure

nJ

(1)

0 d

=4H6

'qH6'

(309)

32

(2)

1,2

21.0

1,2

29.03

(2) (1)

13

'qH6'

As

above

As

above

29.11

(308) 33

5

34

5

D

(310) 35

10

28.5

(2)

(1)

(3) (2) (1) 5

C4H7Br

37

10

C4H7Cl

38

14

As above

rn$qYqYGHCl

C02H.CH2 .CHWH2)

29.91

2,3

26.82

1,2

29.6

2,3

27.1

1,2

30.10 27.10

1,2

36.5

pH 6.5 1,2

36.6

I,2

44.0

1,2

33.0

C02H pH 7

(1) (2)

(313) 39

1,2

2,3

(3) (2) (1) C4H7N04

10.05

C02H

C4H7Br

36

1,2

15

C4H7N04

As above

(314) 40

5

D3 (2)

'qH8

7 41

5

42

5

43

13

e

'4"s'

'4'8'

(1) (2) CH3.CH2.C0.CH3 (3) (2)

'qH8'

1,2

15.2

1,2

15.22

(1) 2,3

As above

35.84

(315) 44

2

'4'8'2

38.6

CH3.CH2CC0.CH3

(317) 45

16

C4HgBr

40.2

46

16

C4HgCl

40.0

17 47

18

C4H9F

(2) 48

13

(212)

C4HgN0

(1)

(1) (2) CH3$.CH2.CH3 N\OH (1) (2) CH3$.CH2.CH3 HONN

J.P.N.M.R.+

13/3--B

1,2

CH3.CH2.CH2.CH2F

1,2

33.54

1,2

34.24

.

4.3

194

Victor Way

Table A. Serial No.

(contd.) Ref. No.

49

Molecular formula

Structure

CH3.CHOH.CH(NH2).C02H

(319)

(1) (2)

50

(3)

CH3.CH2.CH2.CH20H

lJ

1,2

37.5

2,3

36.3

1,2

38.0

2J

1,3

CO.5

nJ

1,4

4.6

1,2

4.7

(4) (3) (2) (1) 51

16

52

2

53

16

.54

20

(CH3) 3COH'

39.5 -+1

CH3.CH2.0.CH2.CH3

38.9

(CH313CNH2

37.1 -+1

(3)

1,2

22

1,3

16

55

1,2

29.3

(322)

2,3

32.5

1,2

36.7

1,3

16.0

1,2

20.2

1,2

34.4

1,2

34.61

21 CN (1)

(2)

56

12

(2) (1) 57

12

Da (1)

58

5

(2)

o= 0

(323)

(2)

(1)

59

13

As above

(324) 60

18

61

13

CH3.CH2.CH2.CH2CN

(1)

(2)

(2) 62

o=

/OH

22

(326)

33.34

1,2

32.4

(1)

(3) (4)

(2)

(x

N H

63

1,2

N

(215)

pH 6.3

(1) CO28

23

OH (1)

2,3

30.7

3,4

33.0

1,2

39.6

(2) 64

14

(327) 65

C02H.CH2XH2.CElWIi2~.C02H (1) (2) (3)

15

As above

(328) 66

5

67

5

1,2

34.7

PH 7

2,3

34.2

pH 0.9

1,2

35.9

2,3

33.6

1,2

36.0

2,3

32.6

(3) 12) (1) OH 0 CH3.CH2.C0.CH2.CH3

35.7

(329) 68 (330)

13

As above

35.77

Carbon-carbon

Serial No.

Ref.

No.

69

11

(333)

15

70

16

Molecular formula

C5HllN02

'5'12

coupling

195

constants

(3)CH 3yH.CHm2LC021i (4)CH3 (2)(I)

2

lJ

Structure

rpH 1,2

0.9

6.9

32.1

33.2

.n J

J

11.1' 33.6

2,3

34.9

33.2

35.1

,2,4

34.6

34.0

35.2,

36.9 +1

m3)4c

24 71

5

72

25

'SH12'

CH3.CH2.CHOH.C!H2XH3 (1) (2) (3)

'gH12'

26 73

12

74 (21EQ (33W (450) 75

15

(CH3)2.CCfLCH2.CH3 (I)

c6sY~oN202

OH

37.9

I,2

38.5

I,2

18.2

I,2

34.6

f,2

32.3

I,3

2.4

I,4

1.9

13

I,4

3.88

1,4

2.37

(2)

.?,2 3Q.30

C6Bl~D

(3381

78

2,3

..N HO (1)

77

35.0

(2) (3) (4)

C6H8

(22CI

7(6

I,2

27

13

=6"10°3

C6H11No

2,3

32.97

2,3

36.5

3,4

37.3

3.6

40

I,2

31.6

I,2

34.67

I,2

38.8

I,2

35.8

3,5

2.1

(221) 79

13

'gH12

(222)

(451) 80

19

81

5

82

13

'sH12'

C6H120

'gH12'

(2) (I) As above

(6) 83

23

'6'12'5

I,2

36.45

2,3

32.20

3,4

32.8

I,3 co.5

0 I,2 45.8

1.5

2.3

1.6

3.5

p I,2

1,3

4.1

I,6

3.5

46.0

.-

Victor Wray

196

Table A. (COntd.) Serial

NO.

Ref. NO.

Molecular formula

"J

*J

lJ

Structure

(6) 84

28 H:O~(l)H (3) OH As

85

,

86

87

]

above

28 HO (31 OH CH20H

88

H:Ox(l,H) (3) M12LXl OH 89

90

11

(341)

C6H13N02

(3)(2) (1) CH3:CH.CH2.CH(NH2)C02H cB_

(4) (3) (2) (1) cH3-cH2~CELCH(NH2~C02H

91 (342)

CH3 (5)

92

1,s ~1.8

46.0

1,3 M3.5

al.2

46.3

1,3

0

1,6

3.3

5,6

43.1

1,s

1.9

3,6

3.7

p1,2

46.0

1,3

4.5

1,6

3.5 5.3

5.6

43.3

1,5

0

3,6

4.4

al,2

46.8

1,5

1.7

p 1,2 42.4

1,3

4.3

al,2

46.6

1,5

2.1

81,2

46.0

1,3

3.7

a 1,2

44.3

1,5

1.5

j31,2

43.8

1,3

2.4

al,2

44.7

1,s

1.7

$1,2

41.3

1,3

1.8

,PA

1.1 32.9

6.5 34.3

11.2 34.6

L 1,2 2,3

31.7

31.3

31.7

3,4

31.2

31.4

31.3

,3,5 c PH

35.3

34.9

34.7

1.0

6.9

1,2

32.5

33.7

34.0

2,3

34.5

34.0

34.1

3,4

34.2

35.2

35.1

,3,5

34.4

34.9

35.6

(5) (4) (3) (2) (1) PH 7.0

93

1,2 34.2

1,4 4.3

2,)

34.5

2,5

3,4

34.0

4,s

35.4

NH=C(NH2hH.CH2.CH2.CH2.CH@JH2)C02H (4) (3) (2) (1) l,2 33.7

(223) (344)

PH 7.6

94

2,3

34.1

3,4

35.8 39.9

m3)*CH.0.CHKx3)* 32

ll.l-

t

NH2.CH2.CH2.CH2.CH2.CH(NE2)C02H

(343)

95

46.0

p1,2

OH

H;om(l)H t

28

al,2

1,2

12.6

1,7 41.5

4.7

1,4 4.8

Carbon-carbon Table A. Serial NO.

coupling

197

constants

(contd.) Ref. NO.

Molecular formula

2J

lJ

Structure

"J

(7) 96

32

(4) (3)

I*7

40.4

3,4

29.8

(1) CB 3',4 3 to

97

k5

(234)

(1)

(346)

0

5

(4) 3',4 4.4

! d

(235)

r: (4) (3) (2) (1) HN.CH

99

.CO.NwH.CO

(348) pH 7.4

c?iiq

100 (349)

1,2

35.1

2,3

30.9

3,4

33.4

1,2

10.2

I,2

33.4

1,3

32.5

1,2

33.3 +i

3,4

34.2

(2) (3) 32

la (1)

(237)

(3)

(454)

(2) 0

103

22

(2)

(4

13

(l) (4) (3) (2) (1) NH2.CH2.C0.N.CH2CH2.CH2.CH(C02H) Tram

(350)

pH 6.6

104

34

105

13

(351)

106

CiS

1,2

32.2

2,3

30.5

3,4

33.2

1,2

32.4

2,3

30.3

3,4

33.7

As above (3) 0

(2)

(1) 0

13 7) 4) (5) (6) 4

(3)

(1)

2',4

3.0

3",4 Cl

(41

.(347)

102

3.5

2',4 cl

H

98

101

2',4

(2) OH

1,2

32.11

2,3

34.02

1,2

35.76

1,7

30.73

1,6

32.81

2,3

35.97

3,4

32.62

4,5

32.54

5,6

31.27

1,4

3.8

1,4

4.4

Wray

Victor

198

Table A.

(contd..)

Serial NO.

Ref. No.

107

13

Molecular formula

C7Hl 2’

(2)

108

35

(4)

C7H14

(7) a

109

36

110

13

CH3

As Above

35.7

1,7

31.35

1,6

32.35

2,3

34.1

3,4

31.85

4,s

32.40

5,6

31.70

4,7

30.9 33.5 32.9

3,4

30 210

1,7

36.0

1,2

36.0

(3)

35.19

(5)@ki:_

1,2

38.3

(2)

or

1,2

34.80

*J

or 35.3

2,3

1,2

(1) 19

1,2

2,3

(CH3.CH2.CH2)2C0

(353) 111

(1)

2 J

1J

Structure

35.05

I,3

(0.5

1,4

4.3

lr4

4.2

1,5 co.5

(3)

112

37

CH

c7H140 (5)

113

114

28

28

115

38

116

39

117

13

RF

d (4)

1,2

39.9

2,3

37.4

2,4

1.7

2,5

1.5

(3)

a 1,2

46.4

1,5 l-1.7

1,6

3.2

@ 1,2

46.8

1,3 w4.1

1,6

4.3

a 1,2

47.0

1,s

2.3

1,6

3.0

p 1,2

43.8

1,3

3.4

1,6

4.0

1,3

-17.49

23.06

1,s

0.51

2,5

40.3

1,6

2.88

2,6

46.9

7,8

40.9

2,8

1.04

6,8

4.15

C7H1406

'7'14'6

'gHZD12

(3) CH3.CH2.C6H5

34 +1

above

As

33.83

(242) (540) 118

39

119

38

1,3

(5) (6)

120

19

38.1

CH3.CHOH.C6H5

CA3

CH3

CH3

cH3 (3)

(8)

1,8 eO.5

'gH14'

(6)

(2)

Carbon-carbon

Table A.

coupling

199

constants

(contd.)

Serial No.

Ref. No.

121

25

Molecular formula

Structure

*J

2,8

'8?4'

41.1

26

nJ

2J

I,8

2.7

4,8

0.9

3,8

1.5

6,8

1.8

7,8CO.35 5,8<0.35 122

123

124

125

40

40

12

22

'sH14'

'8'14'

C8H16

(2)

(1)

pH 6.7 o 41

(609)

CH3 41

(5) (4)

A? 0

O

C9Hlo04

(610) CH3 42

1.0

2,s

2.4

2,6

1.9

2,8

2.4

2,7

0.7

3,6

0.4

5,6

35.6

1,6

1.7

6,7

36.3

4,6

2.2

6,8

6.1

1,2

29.8

3,4

36.0

(3) (4,s) 1,2

34.5

2,3

33.0

3,4

35.2

3,s

34.7

4,s

32.2

4,s

32.2

I,2

33

1,2

33.0

(4) (5)

o\

(246)

128

2,4

34.7

0

C9Hlo04

(245)

127

36.0

C8H16N203

(367)

126

I,2 2,3

c9HllNo2

z?

0 C6H5.CH2.CH(NH2)C02H (1) (2)

(247) (371) (611) 129

15

c9HllNo3

~R0.C6H4.CH2.CHWi2)C02H (1) (2)

(372) (544) 130

41

(373)

131

CgHIINa05

cH3==Jyc Ni

5

3,4

37.0

34.5

13

(248) (545) HP 132

43

(375) (376) (459) (460)

44 (5) O

(9) 4,s

41

8,9

44

Victor Way

200

Table A. Serial No.

133

(contd.) Ref.

Molecular

45

lJ

Structure

formula

NO.

H

(249)

2,3

35.4

3,4

43.3

“J

*J

4,da 30.7 da,?a 46.0 134

19

1,8
4,0 (0.5

5,8 co.5

7,8

4.5

8,9

4.57

(9) cH3 (81

135

CH_OH 2 Tram (6)

NH2.CH2C0.N (4)3 (5) ~0.NH.CH2C02H Cis pH 1.0

(3783

136

(7)

22

40

4,5

31.8

5,6

30.6

6,7 4,s

33.1 31.3

5,6

30.3

6,7

33.6

4,7

4.3

1,2

36.7

2,4

1.2

2‘5

1.7

2,3

35.4

2,6

1.7

2,8

1.8

2,9

40.2

1,2

36.4

1,3

1.8

1,4

1.7

1,lO 0.7

1,8

1.3

(61

137

2

138

46

2,3

37.5

(250) (379) (553) (612)

47

3.4

37.5

139

13

H (41 . ~. KS3)3C.C6H5

35.54

(251)

(554) 140

44

(382)

141

48

4,5

41.0

8.9

44.2

1,2

34.5

1,9 co.5 142

48

As 141 above with OH

1,2

33.9

replaced by NH2

1,3

1.5

1,4

1.6

1,10*0.5

1,8

1.3

1,9 co.5 143

48

As 141 above with OH

1,2

31.0

replaced by NH2.HC1

1,3

1.3

1,lO eO.5

1,4

1.6

1,8

1.5

1,9 *0.5 144 (383)

13

(4)

=10~1,3~ (CH3) C (8) ?71=

(6) 2,3

30.76

2.7

3.69

3,4 4,7 7,a

36.1 35.04 35.75

2,5 e2.4

201

Carbon-carbon coupling constants

Table A.

(contd.)

Serial No.

Ref. No.

145

22

Molecular formula

C10n19N304

~,.~~~,.CO.NR;$;~~.CB(C~~)~

2,3

34.4

C0.NH.CB2.C02H

3,4

32.8

pH 1.0

4,5

34.1

4.6

34.6

(384)

146

l3

2J

lJ

Structure

c1oH2o

147

49

C10H22

KH3.CH2.CH213CH

148

48

'llH16'2

As

(4) (3) (2)

1,2

33.95

7,8

35.18

1,3 0.8

1,4

3.8

1,3

1,4

1.4

(1)

141 above with OH

1,2

32.1

1.2

1,lo co.5

replaced by C02H

(3971

"J

1,8 CO.5 1,9 co.5

149

18

150

18

C11H17C1

As

149 above with Cl

1,4

3.4

1,4

3.7

1,4

3.2

1.4

3.27

repLaced by I 151

13

38.5

(255) (5551 152

AS 149 above with Cl

18

replaced by H 153

AS 149 above with Cl

18

replaced by OH 154

19

2,lO 41.4

1

25

1,lO 1.4

4,lo 0.8

3,lO 0.8

6,lO 0.9 7,lO 50.4

26

8,lO 5.4 6

155

25 26

(CH3) 3C

50 156

(393) (6281 (257)

HtH3 1CH

26 50

157

lo,11 2.6

51

1,2

41.6

1,3

2.25

1,2

40.5

1,3

2.2

5,?

35.02

KH3j3C_Oi

C12H12N203

(7)

1,4

3.2

.

Victor

202

Table

A.

(contd.1

NO.

Ref. No.

Molecular formula

157a

124

'12"12'5

Serial

Wray

Structure

lJ

"J

2J

8,ll 40

(257a) (393a) (461b) (628a) 158

18

C12H17N

replaced 159

77

I,4

AS 149 above with Cl by CN 7,a

28.1

7,8

32.6

1,2

37

'14"12'

i262)

160

77

C14H14

(263)

161

52

'14"22'2

(264) rm

(462)

162

4,14 7,8 36 32

53

(267) (572)

-~

11m,

163

54

(268)

0

(404) (463) 0

164

$ 0 8

C15H1804

55

=15"20'3

H

1

7,a

37.5

9,lO

35.5

lo

9

11.15

2,lO

35

39.7

(270)

3,ll

15.3

(464)

6,7

36.6

7,15

35.1

3,ll

15.3

7,15

35.1

As 165 above with CH3(15)

2,10

38.1

replaced

3,ll

13.7

7,15

36.6

4,14

36

(273)

5,6

33

(467)

7,8

32

165

55

'15"20'3 15

(271) (465)

166

55

'15"20'4

(466)

167

(648)

52

by CE120H

'15'22'

3.4

Carbon-carbon

Table A.

Ref. NO.

168

29

Molecular formula

171

52

52

52

(405)

52

(472)

173

174

52

52

15

2

(473) HOW@

::

47

1,s

2

1,6

3.5

p1.2

48.8

1,3

4.6

1,6

3.1

37

5,6

36

7,0

33

1,2

36

4,14

36

5.6

35

7,8

33

4,14

37

5,6

35

7,8

32

lo,15

38

1,2

36

4,14

38

5,6

36

7,0

33

5,6

41

7,8

34

IO,15

38

11,12

40

4,14

45

1,2

37

4,14

37

5,6

35

lo,15 52

‘15’26’2

(474) HO MI

176

29

C16H22011

36

4.14

7.8

175

"J

2J

al,2

1,2

CHO

(470)

172

I,

Structure

(468)

170

203

constants

(contd.)

Serial NO.

169

coupling

33 38

1,2

37

4,14

37

5,6

35

7,8

33

lo,15

38

Q 1,2

46.7

3,6

3.3

5,6

45.1

1,6

3.8

1,6

4.3

3,6

3.8

p 1,2

49.4

5,6

44.5

1,3

5.2

204 Table A.

Victor Wray (contd.)

Serial NO.

Ref. No.

176a (405a)

34

Molecular formula

1j

Structure

2j

C16H23N604 ~Glu-His-Pr°-NIt2r)Proline residue .

1,2 (30.5)

©

2,3 3,4

30.1 33.6

1,2

31.5

1,4 % /

177 (476) (653) (406) (577)

56

C17H17CIO 6

2,3

30.2

3,4

33.2

1,2

33 +i

3.9

0 CH30 C1

178

2O 57

C17H2oO 4

ICH3 1,5 +53.2

~ 3 CH3CH202C ~

CO2CH2CH3

H 179

48

C17H21NO

180

52

C17H2604

1,3

-5.4

1,2

33.3

3,5 -2.4

H

C6H 5 As 141 above with OH

1,3

1.5

replaced by NH.CO.C6H 5 4,14

44

7,8

34

IS

. ~ ~ ''""~ 1 ~ ~ 181

58

C17H2804

.~OCO'CH3 12 0

10,15 38 11,1240 6,7 7,8

33.6 35.1

CH3CO.O 182 (280)

59

C22H2oO10 OO

(408) (481)

OCH 3

Mo % HO ~

(660)

7

2,8

35

2,3

34

4,5

39

6,7

32

3,4

34

. "r-"3;" PhCO

183

60

c23.2605

(282)

(4o9)

Q

0

~

(482) (661)

nj

~ 2 0 O

1

"

~"3_ ~ 3 L' 15,16 36 IA ~"3 35 ~ -~ ; 6 14,1s

18,20 12

1,4

1.4

Carbon-carbon

Table A. Serial NO.

184

coupling

205

constants

(contd.) Ref. NO.

Molecular formula

Structure

lJ

61

6',7'

2J

nJ

34.4 34.7

(284) (484)

185

62

4,14

40.5

(285)

5,6

(410)

8,12

36.5

(663)

186

77

C26H200

34

9,ll

34.5

lo,13

38.5

1',2'

36

7,8

28.1

7.8

33.8

7.8

41.3

(286)

187 (287)

188

77

'26'22'2

(288) C(OH)Ph.C(OH)Ph (8)

189

63

CH3

'27'42'7

(289) ='2"3

(486) (664)

190 (290) (411) (665)

191

64 9 V2CH3

2v3 4,16

37

5,6

35

9,18

34

10,19

36

13,14

39

37

5,6

41.1

7,8

35.9

9,10

44.3

11,12

44.0

13,14

38.9

12,17

34.4

8,16

34.9

3',4'

34.6

12,16 ~4

Victor

206

Table A. Serial No.

192

Wray

(contd.) Ref. NO.

Molecular

29

lJ

Structure

formula

c28E38019

a1*,2'

Ac&%$jOAcPll,2f

29

46.7

1',5'

1.5 1',6'

3.3

49.2

1;;x;

;.,

:::

C__H__O._

a1*,2'

46.4

1',5'

1.5 1',6'

3

1.5

I',5

2

1',6'

3

1',5

1

I',4 pl',Z'

49.2

1',3'

4

11,s' 1.5 1',4 194

IS,16

86

40.0

(291) (412) (487) CH3C02

0CH3 195

66

37

C29H4

(292)

37

(488)

35

(666)

34 36 39 R2° 14 -G-IO R2;H

Rl Rl = B 196

67

I R2 = CHOJ

Same values

=30*48'3

(413)

.

(489)

for both

:_

2,3

37 21

r-l

4,24

38 +2

5,6

35.5

8,26

37.5 22

9,11

36 22

lo,25

38 22

14.27

37 22

24

197

6

=3#48'4

"J

::::

OAc

OAc 193

*J

As 196 above with 2oOH

(415)

and 3oOH, methyl

(491)

at 19 migrated

group

to 20 29 n 20l *

2,3

37.5

4.24

35.5 +2

5,6

34.5 52

lo,25 9,ll 8,26

35.5+2 34.5 36

14,27

35.5

20,30

36

1.5

Carbon-carbon

Table A. Serial No.

198

coupling

(contd.) Ref. No.

Molecular formula

67

'3OH48'4

2,3

As 196 above with 2aOH

(414) (490)

5.6

38 36 22 36

8,26

37 22

9,ll

36 +2

lo,25

36.5 22

14,27

36 +2 37

2,3

199 (492)

69

nJ

2J

15

Structure

4,24

200

207

constants

9.11

34.5

10,19

32.5

20,21

32

23,24

35.5

5,lO

39.7

;IL 3" I-

(493)

6P11

_@j&$&j2

36

(584) (667) OH 201

70

(296)

71

CH30C0

C42H70011

'

b 3,4

35.8 23‘24

34.8

5,6

32.9 25,26

36.9

(416)

. 201a

119

4,4'

34

(296a) (416a) (498a) (670a)

120

8,30

46

R

(!-R2)3CHKH3).(CH2)3.CH(CH3) 2olb (269b) (416b) (49833)

119 120

C55H72MgN405

As above but with R = CH 3

. 0x2)

3

.CH (CH3,1 2

4,4'

34

8,30

46

Victor Wray

208

Table

B.

One coupled carbon formally with sp3 hybridisation and the other with sp2 hybridisation.

No.

Ref. No.

203

13

Serial

Molecular formula

lJ

Structure

C2H5N0

48.42 N-OH 40.51

CH3. /H f .-N HO 204

I

72

C3H5C1

205

72

C3H6

1,2

48.5

As 204 above with Cl

1,2 41.9

replaced by H

(436) 206

CH3.CC1=CH2 (1) (2)

(435)

13

C3H7N0

(1) (2) (3) CH3.C/=H3 II

1,2 49.3 2,3

41.4

&OH 207

72

C4HsN

200

72

'qH6'2

72

C4H7N0

As 204 above with Cl

1,2 45.0

As 204 above with Cl

1,2 43.8

replaced by CONH2

(443) 210

1,2 44.9

replaced by C02H

(442) 209

As 204 above with Cl replaced by CN

(440)

72

'qH8

As 204 above with Cl

1,2

41.8

replaced by CH3

(444) 211

17

212

13

=qn9+ C4HgN0

(48)

25.1

KH3j3C+ (1) (2)(3) CHfC/CH2CH3 II HdN CH3*i/CH2CH3

1,2 41.5 2,3

48.2

1,2 48.8 +1 2,3

40.6

%H 213

72

?3HE02

214

72

(447) 215

As 204 above with Cl

1.2 44.6

replaced by C02CH3

(446) C5H802

As 204 above with Cl

1,2

51.2

1,2

38.9

replaced by 0COCA3 13

0

51 2

(61)

1,5 45.7

q OH

216 (448)

13

(1)CH3 (2)(3)CH3(4)

1,2 42.6

>--/ (5)CH3

3,4

44.3

2.5

43.2

2J

"J

Carbon-carbon

Table B.

209

constants

(contd.)

Serial No.

Ref. No.

217

72

Molecular formula

Structure

15

*J

nJ

As 204 above with Cl replaced

(449) 218

coupling

by 0CH2.CH3

15 3,4

(74) (336)

51.0

3,5

5.9

pH 0.8

(450) 218a

219

122

As above

PH 1

3,6

2.1

PH 8

3,6

4.3

13

1,2

40.1

OH

220

13

(75)

221

05 *-OH

13

6 21

(78)

NPH

1,2

39.02

1,6

47.95

1,2

30.7

1,6

46.2

(4) (5) 222

13

'gH12

(79) (451) 223

15

C6H14N402

(93)

1,2

42.5

3,4

43.3

2,6

43.1

NH=C(NH2)~.~2.C~2.~~2.~~(~2)~ (6) (3)

3,6 ~0.5

H

(344) 224

225

73

C7H7C1

13

;H2Cl

1,2

AS 224 above with Cl

5 (I 0

(525) 226

o,'d2

replaced 74

by

401 3 2

47.10

1,3

3.69

74

228

74

1,7

46.85

6,-l 3.48

:H3

I

1,7

43.55

by NO2

1,2

43.45

NO

229

13

(527)

I.P.Z.M.R.S.

13 3-c

C7H7N02

As above

0.69

3,7

2.42

5,7

3.55

4,7

0.66

F

AS 226 above with replaced

4.23

1,s 49.3

I 227

l,4

43.65

2,7rrl.o

3,7

1.53

6,7

2.20

5,7

3.60

4,7

0.50

1,3

3.46

lr4

3.87

.

Victor

210

Table

B.

(contd.) Ref. NO.

Molecular formula

230 (529)

74 73

'7'8

(530)

39 49 13 75

231

73

Serial No.

1,2

0

C7H80

4

J

233

5

77 74

74

1,2

44.19

1,3

47.72

3.10

1,4

3.84

1,5

0.86

1‘4

3.95

1,s

0.73

2,7 ~1.0

3,7

1.64

6,7

5,7

3.87

4.7

0.62

1,4

4.19

1.3 +3.45

3

o2

nJ

*J

lJ

Structure

76

232

Wray

k20H

1,7

45.00

C7H9N

1,2

45.91

1,3

2.47

3.17

C7H9N 1,s so.56

234

33

3.4

37.5

2,4 *l

3,4

37.6

2,4

1.1

C7H10N0

(97) (346) 235

33

c7H10N0

(98)

4

0

ti

(347)

ii

236

49

C7H12

o3

4

5

237

13

'7'12

As

above

7

1 6

(102) (454)

238

239

13

74

C7H13No

0

2 1

/OH

13

(117) (540)

13

2.40

6,7

5,7

3.87

4.7

0.73

2.0

3 1,7

41.4 21

1,6

39.7

2,3

41.1

1,2

39.45

1.7

47.09

1,7

43.82

1

43.30 CHO 1,2

42.5

'EH9*

(539)

242

3,7

0.8

1,s

C8H80 "3

13

2,7 ~0.8

1,3

40.1

C8H7N

(537)

241

5.8

44.8

(426)

240

1,4

1,7 1,6

45.5 'EHIO

2.83

Carbon-carbon

Table B. Serial NO.

coupling

211

constants

(contd.) Ref. NO.

243

13

244

72

245

Molecular formula

2J

lJ

Structure

nJ

44.2

l,2

42.9

41

2.3

38.1

41

2.3

37.1

42

1',3

43.6

CH3.C(C6H5)=CH2 (1) (2)

(126) (609)

246 (127) (610)

247

2',3

2.5

3',3

3.5

4',3 Cl

(128) (371) (611) 248

43.27

13 (CH3j2CH

(131) (545) 249

45

(133)

250

46

(138)

47

4a,5

57.9

7,7a

43.6

8.9

44.8

4,4a

40

(379) HO

(553)

OH

(612) 251

43.2

13

(139)

KH313C

(554) 252

49

(8) (9) (10)

(1) (2) 253

78

4,5

41.6

2,4

0

4,8

43.0

4,6 4,9

I,4

4.0

2.0

4,7

3.6

2.3

4,lO

3.8

(5) (6) (7) 1,ll

44.73

2,ll

3.15 3,ll

4.00

g,ll

2.12 8,ll

3.63

lo,11

2.48

4,ll

1.00

5,ll 0.35 6,ll ~0 7.11 0.40

Victor

212

Table

B.

Serial No.

254

Wray

(contd.) Ref. No.

70

Molecular formula

CllHIOo

As

1,ll

253 above with CH3

replaced

2J

IJ

Structure

47.60

by CH20H

"J

2,ll

2.75 3,ll

4.29

9,ll

3.54 8,ll

2.99

IO,11

2.55

4,ll

0.87

5,ll NO 6,ll e0 7,ll MO

0

254a

7,8

123

42

(461a) (62la)

255

42.8

13

(151) (555)

256

79

257

51

I,2

I',5

40.46

5,2'

2.91

2.1

5,3' Cl.0

(157) (393) (628) 257a

124 13,14

(157a) (393a) (461b) (628a)

258

80

1,6

78

9,ll

42

40.11

2,6 3.97

3,6

3.00

3.75

(55eo 259

260

261

42.25 9,lO

4.50

9,2

9,1

3.12

9,4

2.50

9,3

0.50

1,3

4.52

1,4

1.02

I,2

78

3,ll

81

3.21

42.1

n

(563)

K??iF C14H120 H

3

(641)

262 (159)

77

@$f2+@ s line widths

I,7 +56.6

I,8 -1.1

2,8 +l.S

2,7 +3.8

3,7

4.15 0.6 § 0.8 §

Carbon-carbon

Table

B.

coupling

213

constants

(contd.)

Serial No.

Ref. No.

263

77

Molecular formula

Structure

lJ

1,7 +43.5

C14H14

(160)

2J

nJ

1,8 -1.9

2,8 +2.2

2,7 +2.5

3.7

3.2

3,8

1.1' 0.8'

5 line widths 264

52

5,6

C14H2202

42

(161) (462)

265

82

1,ll

C15H12

44.6

(568)

266

82

C15H120

replaced

(570) 267

11CH3 As 265 above with CH3

53

1,ll

2.2

by CCH3

C15H15D9

1"sI

OH

435.

(162) (572) bH 268

54

1,2

C15H180

51.5

(163) (404) (463)

269

83

270

55

2,ll

4,13

(164)

44.25

5,6

47.3

5,6

45.7

(464)

271

55

(165)

4.13

44.25

2,2'

46.7

(465)

272

33

13

C15H21N05 CH2.CH2.C02CH3 2 CCH b

C02C,(CH3) 3 H

273 (167) (467) (648)

52

C15H220

lo,15

42

2.4

Victor Wray

214

Table

B.

Serial NO.

274

(contd.) Ref. NO.

Molecular formula

1,2

82

"J

2J

15

Structure

2.0

(575)

275

5,6

04

34.0

(652) ,

276

3’,4

33

3.1

2’,4

4.1

2” , 4 (1

(477) (654)

p = CH2.CH2.C02CH3

ly

277 (478)

3’,4

3.1

2'

4

p = CH2.CH2.C02CH3 278 C6H5CH2.C02

4,4’

50.0

7,7’

40.6

A 279

85

(578) (658)

280 (182) (408) (481) (660)

HO

281

33

282

60

(183) (409) (482) (661)

7'

‘22”30NZo5

C23H2605

4.8

3” I 4 Cl

(655 1

(479)

2’,4

r 8

4

3

2

0

14 13

2,3 13,14

42 44

4,6

14

215

Carbon-carbon coupling constants

Table B. Serial NO.

283

(contd.) Ref. No.

61

Molecular formula

Structure

lJ

I',2

C23H30C1N305

2J

"J

47.6

(483) S'

284

61

As above with C9' detached

C23H32C1N305

from pyrro&e ring

(184) (484)

5

P 5

285

62

*

c25H3006

(185)

HOI*

(410) (663)

0 286

17

(186)

77

-. z

5’

(’

5',6'

37

0

0

s line 287

1',2 47.5

1,l +57.8

1,8 -0.5

2,8 +1.25

2.7 +2.5

3,l

3.9

3,8

0.6'

4r7 1.2

widths

4.83

1,l +43.1

'26'22

(181)

1,8 -0.6

2,8 +2.0

2,l +2.2

3.7

@HPh.FPh+)

4,7

5 line widths 288

77

C26H2202

AS 287 above with H's on

0.75§

4.83

1,7 +48.5

Cl and C8 replaced by OH

(188)

3.3

3,8 0.55'

I,8 +0.3

2.8 +0.9

2,l +1.8

3,7

3.2

groups

3,8

O.l=

5 line widths

4,83

4n7 1.09 289

63

C27B4201

(189) (486) (664)

290 (190)

64 C27~460*02~~~3

(411)

(665)

OH

6',9'

52

Victor

216

Table

B.

Serial NO.

Wray

Icontd.) Ref. No.

Molecular formula

"J

2J

lJ

Structure HO/

291

86

(194) (412)

7,8

50.3

9.10

44.8

13,14

49.2

6',9'

52

(487)

292

66

(195) (488)

Rl =CHO

(666)

293

R1 =H

R

2

= H

R2=CH0

Same value I forboth.

07

(585) (666) =R

m

cH3

H

CCH3 OH

294

7',7'

33

47.5

3',4

2.4

16 , 17' 0 to 3

(494) (669)

2',4

4.3

3",4

cl

16,18' 4.1 16 ,18" Cl

P = CH2.CH2.C02CH3

295

33

7,7'

48.2

P

(416)

2',4

71

4.5

3" ,4 (2 16,18'

(670)

(201)

3.4

16,17' N3

(495)

296

3',4

C35H44N406

c42H70011

=

CH2.CH2.C02CH3

See serial No. 201 for

17,18

50.1

structure

19,20

44.6

3.7

217

Carbon-carbon coupling constants

Table B. Serial No.

296a

(contd.) Ref. No.

119

(201a) (416a) (498a) (67Oa)

120

29633

119

Molecular formula

'55H70"gN4'6

2J

Structure

See serial no. 201a for

C55H72MgN405

= adjacent ring carbon

See serial no. 201b for

Cr = adjacent ring carbon

Table C.

4,C,

42

23,24

50

3,C,

45

1,c, 44

structure

(201b) 120 (416b) (498333

l,C, 44 5,c, 44

structure 'r

3

5,c,

44

4,Cr

42

23.24

50

One coupled carbon formally with sp3 hybridisation and the other is a carbon of a carbonyl function.

Serial NO.

Ref. NO.

Molecular formula

lJ

Structure

297

88

C2H3Br0

CH3.COBr

54.1

298

88

C2H3C10

cH3.ccxx

56.1

299

89

C2H3C102

CH3.CCOC1

300

88

C2H310

CH3 .COI

46.5

301

88

C2H3Na02

CH3.CO; Na+

51.6

302

88

CH3.CH0

39.4

303

88

C2H40 C2H402

2J

-2.8

+56.7

CH3.C02H

118 304

22

305

9

pH 6.4

53.6

C2H5N02

CH2WH2)C02H

C3H503Zn

CH3.CHOH.C02Zn

55.8

CH3.C0.CH3

40.44

(20) 306

5

(22)

13

C3H60

88 307 (25)

11

CH3.CH(NH2)C02H

76

308

5

(32)

13

309

10

(31)

C3H7N02

0 'qH6'

=qH6'

Iis

pH 1.2

59.2

6.4

54.1

11.1

52.7

1.6

cl+

29.7

9.5

above

29.52

9.66

"J

Victor

218

Table Serial NO.

310

C.

(contd.) Ref. No.

5

Molecular formula

78

72.5

D-

C02H

'4'6'2

(588)

7.30

H

CH3

'qH6'2

nJ

2J

lJ

Structure

(34) 311

Wray

H *

C02H

(1) 312

90

C4H7N02S

(2)

, 313

14

C4H7N04

(38) 314

15

C4H7N04

6.1

2.4

8.3

4.75

C02H.CH2.CH(NH2)C02H (1) pH 7

(3) (2)

(4)

As above

pH 6.5

(39) 315

88

(43)

13

316

37

'4H8'

CH3.C0.CH2.CH3

(1) (2) (3) '4H8'2

1,2 1.4

pH 1.3

O2H f-Y

1,2

53.6

3,4

50.4

1,2

53.8

3,4

50.6

1,2

40.4

2,3

39.3

CH3.CH2.CH2.C02H

55.4

CH3.C02.CH2.CH3

58.8

52.2

2,4

1.3

1.8

3.6

91 317

88

'4H8'2

(44) 318

88

CH3.C0.N(CH312

319

15

CH3.CHOH.CH(NH2)C02H

(49) 320

58.8

2.3

pH 0.7 92

'5H6'2

+1.84

CH3.C=C.C02CH3

(424) (671) 321

93

'5'6'2

21.90

As above

(424) (672) 322

15

pH 1.0

C5H7N03

(55)

0

x-3 N

2 1

1,2

59.9

4.5

45.0

2.5

7.5

1,4

1.1

1,2

7.50

1,3

1.54

C02H

H

323

5

c=

'5H8'

(58)

324

13

'5H8'

37.2

0

As

above

37.29

(59) 325 (589)

78

'5H8'2

(2)Qi3%H

(3)CH3

C02H

(1)

Carbon-cqrbon

Table Serial NO.

326

C.

219

constants

(contd.) Ref. NO.

Molecular formula

Structure

34 22

lJ

pH 6.3

CL 1

(62)

coupling

nJ

*J

1,2

53.5

1,2

53.4

1,4

1.5(1-I

4,5

50.7 pH 7 I

2,5

3.0(1-j

2,5

4.4(2-j

1,4

1.5

1

N

OqH

H 327

14

(64)

328

C02H.CH2.CH2.CHWH2)C02H (5)

15

(4) (3) 12)

As above

(1)

pH 0.9

(65) 329

5

1,2

59.6

1,4

1.5

4.5

53.8

2,s

3.4

1,4

3.5

CH3.CH2.C0.CH2.CH3

39.7

(67) 330

13

AS above

3.91

39.27

(68) 331

91

CH3.CH2.CH2.CH2.C02H

1,2

55.3

1,3

1.7

1,5 co.3

(5) (4) (3) (2) (1) 332

78

333

11

(69)

15

334

78

1.5 KH3)2CE.CH(NH2)C02H

pH 0.9

59.5

6.9

53.5

11.1

53.1

3.31

2.4,l.O

CH30C0.~C.CCCCH3

2.31

(674) 335

13

38.29

336

15

59.8

(74) (218) (450) 337

5

338

13

o= 0

As

37.3

above

37.9

(76) 339

37

340

91

o-

56.5

CO2H

1.2

CH3.CH2.CH2.C02.CH2.CH3

57.9

(4) (3) (2) (1) (5) (6) 341 (90)

11

(CH3)2CH.CH2.CHWi2)C02H pH 1.1

59.5

6.5

53.6

11.2

52.6

0.6

2.7

1,3

1.9

1,4

3.5

1,5

2.5

1.6

2.3

Victor

220

Table C.

(contd.)

Serial No.

Ref. No.

342

11

Molecular formula

15

lJ

Structure

CH3-CH2\CH .CH(NH CH3/

(91)

343

Wray

)co H pH l-O 2

2

(93) f223) 345

59.0

6.9

53.5

11.1

53.4

NH2CH2.CH2.CH2.CH2.CHWH2)C02H pH 7.0

(92) 344

15

nJ

2J

53.6

MO.6

53.4

l-o.5

NH=C(NH2)NH.CH2.G-12.CH2.~~(NH2)C02H pH 7.6

55.5

94 02H

346

33

(97)

8

(234)

1

1,4

6.4

1,4

6.8

4

H 347

33

(98)

4 ti

(235) 348

N H

22 HNCH2.Co.N~&I.C0

(99)

(4) (3) (2) (1) pH 7.4 349

1,2

52.5

1.4

3.5

I,4

4.0

54.0

5

(loo)

350

22

(2) (1) H2NCH2.c0.~.cH2.cH2.c~2_~~.c02H

(103) pH 1.0

1,2

55.1

6.6

,55.5

10.6

351

13

c31,2

37

55.7

54.0 ,

34.80

13

354

39

(598)

95

355

13

1,3

0

1.5 rJo.5

(110)

(536)

53.9

38.0

m:02H

353

Cis '

0

(105)

352

'Trans 59.8

cH3 .C0.C6H5

43.3

As above

42.69

Carbon-carbon

Table C. Serial NO.

coupling

221

constants

(contd.) Ref. No.

356

73

(538)

96

Molecular formula

'8'8'2

2J

lJ

Structure

“J

2.63

CH30C0.C6H5

95 357

95

358

40

0.71 'EHE02

1,2

C8H11C10

2,3

359

360

361

362

363

40

40

40

40

40

C8HllC10

C8H11C10

C8HllC10

365

40

37

37

(125)

22

2,s

1.4

2,6

1.1

2,8

2.4

2,l

2.0

1,2

39.4

2,4

1.6

2,s

1.8

35.6

2,6

2.7

2.8

2.7

2,7

1.8

5,6

35.0

1,6

2.2

6,7

36.7

6,8

3.9

-I,8 52.9

1,8

1.9

1,2

38.6

2,4

1.5

2,3

34.6

2,6

1.7

'EH12'

5.6

37.4

1,6

2.3

6,l

35.6

4,6

2.0

6.8

4.4

2.8

3.9

6,8

4.0

2,s

2.2

3.6

0.7

7

55.1

2,8

3.4

6,8

2.6

2,8

0

5,8

5.6

'EH12'2

0

59.2 'EH12'2

2,8

56.1

1,8

1.0

4,8 ~0.5

3,8

1.8

6,8

4.9

7,8

2.4

'8*12'2

:02H

367

1.2

'EH12'

7 366

35.5

2,4

2,3

7,8 364

36.5

C8H16N203

5,8 do.6

H2NCH2.C0.NH.CH(C02H)CH2.CH(CH3)2 pH 6.7

54.4

.-

Victor

222

Table Serial

C.

Wray

(contd.) Ref.

NO.

NO.

368

35

Molecular

nJ

2J

IJ

Structure

formula 0.91

42.0

Q-

co.cH3

(607)

CH3

369

95

1,2

0.75

I,2

2.4

CH 23

(608)

$02CH3 0

370

13

671

42

42.8

co.5

53

C6H5.CH2CH(NH2)C02H

(128) (247) (611) 372

pH 11.3

15 HO

(129)

53.2

CH2.CH(NH2)C02H

(544) 373

41

(130)

374

37

375

43

1,7

6.2

I,7

6

(132) (4591 376

As above

44

(132) .

(460) 377

1

2,8

37

58.5

1,8 1~0.4 3,8

6C02H 378

(1) (2)

(135)

H2NCH2.C0.

6,8 MO.5 8,9

1.9

7,8

5.2.

5,8 HO.3

cis & trans

22

rro

4,8 ~10.5

I,2

52.4

pH 6

8,9

53.7

trans

3.4

53.5

3,7

3.8

cis 3.4

52.7

3.7

3.8

PR 1 (3) CONH.CH2.C02H (8) (9)

PH 1 379 (138) (250) (553) (612)

46

OH CloHloo4

0

1,2

40

Carbon-carbon coupling constants

Table C. Serial No. 380

223

(contd.) Ref. No. 97

Molecular formula

Structure

CIoHIoO4

Ij

2j

~CO.OCH

nj

2.5

~CO.0CH33 381

48

CIOH140

382

44

C IoH1406S

~

35.9

1.1

2.0

I,7 6 70 CH3S03~ / ~ /

(140)

-

~u~ 10 38.22

383 (144)

13

CIOH180

384 (145)

22

CIoHI9N304 H2NCH2.CO.NH.~H.CH2.CH(CH3)2 ~CO.NttC~-I2.CO2H pH 1.0

385 (621)

94

CIIHIoO2

386

37

C11H1602

2

~

2

1,2 52.7

54.7

H

0.8

1,11 56.8 2,11 1.8 3,11 3.6 4,11 0.6 ~ O 2 H

387 (148)

37

C11H1602 I

$

388 (623)

51

389 (624)

78

C12H80

39O (625)

95

C12HI00

~

2

g

2,11 54.4 1,11 ~O.4 4,11 ~0.5 8,11 4.2 5,11 ~0 6,11 0.4 7,11 ~0 4,5 48.21

CIIHI8N203

CH3 .CH2 CH (CH3)CH2 .CH2 .CH3

40.'72

0

42.4 CO.CH3

2,5 1.O7

Victor

224

Table

C.

Wray

(contd.) Molecular formula

Serial No.

Ref. NO.

391

95

2.48

95

2.50

nJ

2J

lJ

Structure

(626) 392 (627) 393

51

4,5

120

9,lo

2,s

47.82

1.10

(157) c-257) (628) 393a

42.5

(153a) (257a) (461a) (628a)

394

95

40.74

0.37

0.35

39.6

0

1.33

39.24

2.65

41.02

2.13

(629) C0.C(CH3)3

CH3 395

95

(631)

396

78

0

(634)

397

78

(633)

398

s-cis

95

s-trans

(637)

399

3.07 0.2

3.28

108

(639)

400

4,5

51

46.64

(644)

401 (645)

94

54.8 '1SH12'2

2,5

1.43

Carbon-carbon

Table C.

225

ConStaMS

(contd.)

Serial No.

Ref. No.

402

95

Molecular formula

2J

J

Structure

(cH3)

c0.c

39.7

3

0

2.69

95

(647)

404

54

12,13

52

1,2

34

residue

37.5

(163) (268) (463) 405

38

(171) (470)

405a (176a)

50.8 52.2

406

7,8

56

41

(177) (476)

m30mo

(653) 407

98

41.8

63 0

59

0

c22H20010

(182) (280) (481) (660)

409

I

Cl

C18HlS0

(656)

400

“J

00 03

(646)

403

coupling

0

1,3

cCCH3 0CH3

0

60

(1831 (282) (482) (661)

,.P.P(.M.R.S.13.3-D

17,18

48

19,20

44

4,s

42

18,19

40

'23'26'5

3

1.60

Victor Wray

226

Table

C.

Serial No.

410

(contd.) Ref. No.

62

Molecular formula

1J

Structure

3',4' 40 '2SH3006

(185) (285) (663)

411

64

=27”46’9

(190) (290) -(665)

412

86 17.18 37.8

(194) (291) (412) (487)

413

67

17,28 5621

=3dI48O3

(196) (489)

414

67

'30H48'4

As 413 above with 2aOH

17,28 56

As 413 above with 2CIOH,

17,28 55

(198) (490) 415

67

'30'48'4

(197)

3aOH and Cl9 CH3 migrated

(491)

to c20

416

71

C42H70011

See serial no. 201 for structure

(201)

1,2

55.8

11,12 38.8

(296) 416a

119

C55H70MgN405 See serial no. 201a for

lo,11 58

(201al (296a) (498a) (67Oa)

120

structure

21,22 55

416b

119

C55H72MgN405 See serial no. 201b for

lo,11 58

(201b) (296b)

120

structure

21,22 55

(498b)

2 J

nJ

227

Carbon-carbon coupling constants

Table

D.

One coupled carbon formally with sp3 hybridisation and the other with sp hybridisation.

Serial No.

418

Ref. NO.

99

Molecular formula

C2H3N

lJ

Structure

CH3.CN

56.40

CH3.CBO+

45.94

CH3.CZCH

67.4

CH3.CH2.CN

55.24

2J

nJ

39

419

99

420

5

C2H30+ C3H4

11.8

99

100

421 422

99

5

D

(29)

77.9

CN 54.8

423

99

KH3)2CH.CN

424

92

CH3.CX.C02CH3

(320)

+65.15

93

(321) (671) 425

99

426

74

52.0

(CH3) 3C.cN

N2.0

(239) 427

39

428

23

C9H8

C9H13N04

Table E.

NC.CH(0.COCH3).CH2.CH2.C02CH2.CH3 (2)

(5)(4)

(677)

68.6

C6H5.CIC.CH3

4,5

2,5

66.0

3.0

Both coupled carbons formally with sp2 hybridisation (other than aromatic and carbonyl carbons).

Serial No.

Ref. No.

Molecular formula

'1J

Structure

429

3

'2'4

CH2=CH2

67.6

430

5

C3H3N

CH2=CH.CN

70.6

431

13

C3H3N0

432

13

4 5

433

8

434

13

1,2

67.34

2,3

48.54

4,5

61.35

0 s

98.7

CH2=CICH2 3,4

58.29

2J

nJ

Victor Way

228

Table

E.

Serial NO.

435

(contd.) Ref. No.

72

Molecular formula

C3H5C1

lJ

Structure

CH2=CCl.CH3

80.8

CH2=CR.CSi3

10.0

nJ

2J

(204) 436

72

C3H6

(205)

2 437

5

=4H4O

438 ,

5

439

5

=4HqS

C4H5N

1,2

69.1

1,2

64.2

1

0 0

As 437 above with

0

replaced by S

Only inner AB lines observed

As 437 above with 0

1,2

65.6

replaced bs NH 440

72

C4H5N

442

101

72

'4H6

=qH6'2

72

C4H7N0

444

72

'4'8

445

5

446

72

68.8 53.7

As 435 above with Cl

As 435 above with Cl

72.6

by CH3

As 435 above with Cl

'5'8'2

(214) =sH1O

70.8

by C02CH3

As 435 above with Cl replaced

13

70.6

by CONH2

As 435 above with Cl

replaced 72

70.5

by C02H

99.5

(2131

448

1,2 2.3

replaced

(210)

447

cH2=CH.cH=cH2

replaced

(209)

73.8

by CN

(1) (2) (3) (4)

replaced

(208) 443

435 above with Cl

replaced

(207) 441

As

84.2

by 0.CCCH3 74.1

KH3)2c=cH.cH3

(216) 449

72

C5Hloo

replaced

(217) 450

As 435 above with Cl

60

C6H8N302

(74) (218)

c:

9

80.9

by OCH2.CH3 4,5

74.5

,cH2.cHmH2)C02H

(336) 451

13

'gH12

(a31 2C-CH.CH2 .CH3

75.45.7

(79) (222) 452

102

C7H6Fe03

2

1 1,2

e

FeKO)

3

43.9

1,3 *1

1,4

9.05

Carbon-carbon

Table E.

coupling

229

constants

(contd.)

Serial No.

Ref. No.

453

112

Molecular formula

lJ

Structure

C7H9N02

2.3

HOCH2

64.6

OcH3 2 QI$ H

454

13

(102) (237) 455

39

456

102

457

13

%=8

72.56

CY.

'7Hl2

7w_3

C6H5.CH=cH2

C8H8Fe03

1,2

43.3

2,3

43.5

3,4

61.78

1,2

42.9

'9H6'2

(542) (605) 458

102

CgH8Fe03

1

2 Fe(CO)g

459

43

68 C9H1204

(132) (375)

460

44

C9H1204

AS

67.5

(132) (376) 461

103

461a

123

C10H12LiN0

7,8

88

3,4

67

5,6

63.5

4,5

62

6,12

64

c11H1005-

(254a) (621a)

461b

124

C12H1205

(157a) (257a) (628a) 461~

77

c14H12

C6H6.CH=CH.C6H5

72.9

trans

(564) 462 (161) (264)

52

C

H 0 14 22 2

11,12

72

2J

nJ

230 Table E.

Victor Wray (contd.)

Serial No.

Ref. No.

Molecular formula

463 (163) (268)

54

C15H1804

Structure

4,5 44

O~ 0 ~

(404) 464 (164) (270)

55

465 (165)

55

C15H2oO3

55

C15H2004

1j

4

S

C15H2003

8,9 68.1

.HOL~iI J ~S 8,9 65.7

O ~

(271)

466 (166)

HO U l h

467 (167) (273) (648)

52

C15H220

468 (169)

52

C15H2402

9 ~

CH2OH

11,12 72

11,12 72

.~,,cr~o HO "

469

8,9 65.7

O

52

~

, 11,12 72

C15H2402 HO 0

~

~ •

470 (171) (405)

52

471

103

11

C . H2OH

C15H2402

7,8 104.5

C15H2402Si

~ 472 (172)

52

11,12 72

OCH3 OSi (CH2 .CH3) 3 11,12 72

C15H2403 t,CHO

2j

nj

Carbon-carbon

Table E.

RcRf.

wfs.Le.C~L~~

No.

No.

formula

_#

=15-"26-"2

.m2c= <*-

HO 1w00 52

1

Structure

(174)

474

231

constants

(contd.)

SEvkL

4x-o

coqling

22

II,12

72

n

%,

.

c15ft2602

22, A?

nJ

=J

J

k

12

(1751 HOm

7,8

97.4

56

5,6

75

33

3,4

55.2

4,5

81.9

3,4

54.9

4,5

81.8

475

103

476

C16K27NOSi

(177) (406) (!Xl) (653) 477 (276)

4,6

2.8

4,7

6.0

4,6

2.5

4,7

5.5

2,5

7.1

(654)

P = CH2.cE12.co2Cti3 478

33

(277) (655)

P = CH2.CH2.C02CH3 479

33

(278)

480

111

59

69.4 54.1

4,s

66.4

4,5

62

11,12

61

C21H23N05 OH

481

2,3 3.4

c18H21N04

C22H20010

(182) (280) (408) (660)

H

0

232 Table E.

Victor Wray (contd.)

Serial No.

Ref. No.

Molecular formula

482 (183)

60

C23H2605 ~O

Structure

,,~ ~ S ~

61

C23H3oCIN305 $~ A ' ~ , . . ~ 3~( ~~w~ 3 ~ "

484 (184) (284)

61

485 (579)

113

C24H15N303

PhCON O ~ i

487 (194) (291) (412) 488 (195) (292) (666)

h~N~ P 63

C27H4207

66

75.4 61.7 69.5 54.5

A2,B5 A4,A5 B3,B4 C3,C4

76~i 60.3 68.5 54.9 7,9 6.5

II CO2CH3

~

8,17 72 2' ,3' 89

5,6 53.4

C29H4208

8,17 72 2' ,3' 89

CH30~

R I = CHO .R2 = H~ Same for R2 H R I = CHO both R2oR 1

489 (196) (413)

nj

~Ph CH30 ~ U

C29H39NO9

A2 ,B5 A4,A5 B3,B4 C3,C4

7,8 95 8,9 69

~

86

3'

C23H32ClN305 As above with chain detached at C9'

(662) 486 (189) (289) (664)

~ ' ~HN, ~

2j

1,2 78 6,7 N72 8,9 .972 9,10 69 IO,ii 70 11,12 56 12,13 70

10

(282) (409) (661)

483 (283)

ij

67

C3OH4802%

HO

~

~

~ ~/~

12,13 71.5 EO2H

Carbon-carbon

Table Serial

E.

coupling

233

constants

(contd.) Ref.

NO.

No.

490

67

Molecular formula

'30'48'4

2 .J

Structure

AS 489 above with 2aOH

12,13

73+1

As 489 above with

12,13

72.5

“J

(198) (414) 491

67

'30H48'4

ZOOI$

(197)

3aOH and 19CH3 migrated

(415)

to c20

492

68

5,6

71

C31H5202

(199)

5 6

cH3c02 0?F+ 493

69

C32H30014

8,8a

70.9

3.4

53.1

1

(200) (584) (667)

2

494

33

4,6

2.5 13,16

4.0 4.9

(294)

4,s

79.4

4,7

4.2

(669)

15,16 16,17 6,7

78.4 54.0 57.5

14,16

2.4

5.7

5.0

7,8

62.4

4,6

2.5

P = CH2'CH2.C02CH3 495

33

8,9

58.7

9,lO

70.5

3,4

54.9

4,s

81.0 14,16

4,7

16,17#54.7

(670)

15,16

P = CH2.Cli2.C02CH3

55.1

8,9

68.2

9,lo

50.2

15,16

83

9,ll

2.8 13,[email protected] 4.7

9,12 C4.3

81.2

7,8

72

5.9 4,20

114

10,14

P = CH2.cn2.co2cH3 P 497

115

C40H46N408

P

H

20 H @ P 15 P = Cn2.CB2.C02CH3

,.P.N.M.I.S 13/?-D'

5.9s.2

C35H44N406

(295)

496

9,12

15,16

72

19,Zo

72

5 5 5.5

Victor Wray

234

Table E. Serial NO.

(contd.) Ref. No.

Molecular formula P _

s _

P

NH

20

114

A

"J

2J

A __

A B

83

498

lJ

Structure

N

N H

4,s

72

5,9

10

5

IO,14 5.5

A

P = CH2.CH2.C02CH3 A = CH2.C02CH3 498a

119

See serial

(201a) (296a)

120

structure

no. 201a for

'r

(201b)

75

b,C

70

= adjacent ring carbon b,Cr

119

See serial no. 201b for

120

structure

2,2' 68

Q,C

r p,c,

(416b) 'r 116

= adjacent ring carbon 6,Cr

C63H90CoN14014P

70

70

24,25 75

(296b)

499

68

r p,c,

(416a) (670a)

49833

2,2' 24,25

/r:

70 70 70

4,5

loo

9,lO

111

15,16

100

14,15

123

Vitamin B12

Table

F.

Both coupled carbons formally with sp2 hybridisation (both aromatic or aromatic and olefinic carbons).

Serial No.

Ref.

No.

500

13

501

13

502

5

503

504

13

13

Molecular formula

2J

Structure

I,2

52.78

'qHqN2

2,3

50.39

C5H5N

2,3

53.8

3,4

53.5

2,3

54.27

3.4

53.74

'qHqN2

=gHgN

C6H5Br

As above

nJ

2,5

13.95

2.5

13.90

I,2 63.62

1,4

10.71

2,3

54.90

2,5

8.15

3,4

56.39

Carbon-carbon coupling constants

Table

F.

Serial NO.

505

506

235

(contd.) Ref. NO.

13

13

Molecular formula

C6H5C1

C6H5C13Si

structure

lJ

As 504 above with Br

1,2 65.19

replaced by Cl

2,3

55.86

3,4

56.14

As 504 above with Br

2J

1,2

51.4s

replaced by SiC13

2,3

55.66

§ Only AB inner lines

3,4

55.41

As 504 above with Br

1,2

70.92

1,3

replaced by F

2,3

56.63

2,4 44.3

3,4

56.30

nJ

1,4

10.70

2,5

7.81

observed. 507

13

508

5

'gH5=

'6*5'

As 504 above with Br

_l,2 60.4

replaced by I

2,3

53.4

5 Only AB inner lines

3,4

58.05

3.81

1,4

10.43

2.5

6.51

2.5

8.6

observed. 509

13

510

5

'6'5'

C6H5N02

1,2 61.02

1,3

2.3

54.35

2.4 M3.7

3,4

56.15

As 504 above with Br

1,2

55.42

replaced by NO2

2,3

56.3

# Value must be in error

3,4

55.8

As 504 above with Br replaced by I

3.85

1,4

10.75

2,5

8.64

2,5

7.6

1,4

9.55

2r5

7.12

see below.

511

512

13

104

c6H5N02

C6H6

As 504 above with Br

1,2 67.32

replaced by NO2

2,3

56.01

3,4

55.32

As 504 above with Br

57.0

replaced by H 513

514

515

516

105

13

I

1,6 61

C6H6BrN

c6H60

2,3

67

3,4

56

4,5

56.5

5,6

59.5

As 504 above with Br

1,2 65.60

replaced by OH

2,3

51.61

3,4

56.10

As 504 above with Br

1,2 60.1

replaced by SH

3,4

55.99

AS 504 above with Br

1,2 61.3

replaced by NH2

2,3

58.1

3,4

56.2

1,3

3.71

Victor Wray

236

Table

F.

Serial

(contd.)

NO.

Ref. No.

517

13

518

519

13

13

Molecular formula

C6H7N

C6H8Si

C7H5m

Structure

13

C7HsN

(675)

521

522

523

13

13

13

C7H5N0

C7H5NS

'7=6'

2J

"J

As 504 above with Br

1,2

61.07

1,4 9.24

replaced by NH2

2,3

58.60

2,5

3,4

56.00

7.89

As 504 above with Br

1,2

49.69

1,4 9.40

replaced by SiH3

2,3

55.34

2,s

3,4

55.92

11.05

1,2

59.19

2,3

56.4

3‘4

55.21

As 504 above with Br

I,2

60.05

replaced by CN

2,3

56.47

3,4

55.15

As 504 above with Br

1,2

65.86

1,4

11.00

replaced by

2,3

57.00

2,5

7.87

3,4

55.81

As 504 above with Br replaced by COF

520

1J

NC0

As 504 above with Br

1,2 66.01

replaced by NCS

2,3

56.98

3,4

56.57

As 504 above with Br

1,2

57.87

1,4

8.88

replaced by CHO

3,4

55.22

2.5

8.765

As 504 above with Br

2,3

57.45

replaced by C02H

3,4

55.1

1,2

57.9+1

5 Only AH inner lines observed. 524

13

'7'6'2

S Only AH inner lines observed. 525

13

As 504 above with Br replaced by CH2F

(225) 526

13

As 504 above with Br

1,2

58.08

1,4 9.60

replaced by CH=NOH

2,3

57.2s

2,s

3,4

54.75

(7)

5 Only AH inner lines

8.92

1,7 62.8

observed. 527

13

C7H7N02 (X3 1

(229)

6

17

C7H70+

(230)

49

75

'7'8

56.26

2.3

56.82

3.4 67.44

0 0

529

1,2

5

0 528

NO2

1

74.0

1,2

57.3

$(OH)2

As 504 above with Br

replaced by CH3

1,7

1,3 0.8

1,4 9.4

Carbon-carbon coupling constants

Table F.

(contd.)

Serial Ref. No. No.

530

237

Molecular formula

AS 504

13

(230)

lJ

Structure

above with Br

2J

%

1,2

57.00

1,4 9.55

replaced by CR3

2,3

56.65

2,5

5 Only AB inner lines

3,4

55.95

8.98

observed. 531

532

533

534

13

5

13

13

As 504 above with Br

1,2 62.73

replaced by NIiNii2

2,3

58.60

3,4

55.91

As 504 above with Br

2,3

58.2

replaced by 0CH3

3,4

56.0

As 504 above with Br

1,2 67.09

1,4 9.14

replaced by CCH3

2,3

57.81

2,5

7.19

3,4

56.15

As 504 above with Br

1,2 59.79

1,4

10.0s

replaced by S03CIi3

2,3

56.15

2,5

8.75

5 Only AB inner lines

3,4

55.21

observed. 535

13

C7H9N

As 504 above with Br

1,2 61.67

I,4

8.65

replaced by NIi(CH3)

2,3

59.14

2.5

7.91

S Only AB inner lines

3.4

56.15

As 504 above with Br

1,2

57.80

replaced by C0.CH3

3,4

55.16 1,4

8.31

observed. 536

13

Can80

(355) 537

13

1,2

56.28

3,4

57.91

As 504 above with Br

1,2

58.35

replaced by C02CH3

2,3

56.35

§ Only AH inner lines

3,4

55.39

As 504 above with Br

1,2

58.58

replaced by C(CE3)=NOX (7)

2,3

56.66

As 504 above with Br

1,2

57.07

replaced by CR2.CH3

3,4

55.98

C8H80

(240)

CH3

,

0”

oC 538

13

'8'8'2

(356)

HO

5

1,4 9.38

observed. 539

13

(291)

540

13

(117)

C8HgN0

1,7 42.54 1,4 9.2

(242) 541

13

As 504 above with Br

1,2 62.95

1,4 8.1

replaced by N(C!H312

2,3

59.00

2,5

3,4

56.14

7.99

Victor Wray

238

Table Serial NO.

F.

(contd.) Ref. NO.

Molecular formula

Structure

542

4,10

(457)

5,lO

(605)

5,6

57.68

6,7

54.71

7,8

57.75

8,9

70.13

0

-543

13 CH30

544

*

15

(129)

CH2.CH(NH2)C02H

(372) 545

13

As 504 above with Br replaced

(131)

by

CH

(CH3J2

(248) 546

13

co q;:

4

13

As 546 above with replaced

548

106

As-546

above with I

replaced

549

78

58.60

3,4

66.23

1,2

57.5

2,3

58.0

3,4

60.5

1,2

1,4

7.6

57.35

1,4

8.93

2,3

56.60

2,5

9.12

3,4

55.94

1,2

65.720.3

2,3

51.25.3

3,4

60.220.5

4,lO

56.320.3

5,lO

56.5

5,6

60.4

6,7

51.1

7,8

59.9

8,9

59.1 i60.1~0.5

13

by H

As 546 above with replaced

1,2

71+2

3,4

58.9

5,6

60.0

5,lO

56.2

6,7

53.521

7,8

59.9

8,9

5822

1,2

60.3

by H

As 546 above with I replaced

550

I

by No2

59.4

2,3

1,9 547

52.2

by H

I

1,2

60.3

189

55.87

1,2

60.32

1,9

55.52

+1

2,4

2.43

2,8

5.45

2,9

1.69 2,10

7.97

2,5

1.47

2.43

1,7

5.45

0.2

1,6

1.47

1,3 1,lo

Carbon-carbon

Table F. Serial NED.

552

coupling

239

constants

(contd.) Ref. %D,

79

Molecular zrorJmJ>a

C10X8”

Structure

1J

RsfSd*wi&I

I',P

IV.0

replaced

1,9

65.4

by OH

2J

"J

I',3&-.d

i,S

1,8 Co.6

1,5

3.8

I,7

4.5

1,lo

1.8

7.9

1,6 co.6 552

A%

C10B8"

al ,$

10

5!53

4.5

(1381 (2%) (379j (612)

47

CloxloQ4

LEG

020R

1',2 68.BS

2,s

2.81' 2,8

3.m

2,3

2,9

0.50

2,lO

5.77

2,5

1.46

2,6

1.25

2,7

0.49



&%,A

nv

-

=T7 c7 7,8

13

=10a14

(1391

53

cllR1703P

(1511

57.86

1,4

9.24

replaced

2,3

56.74

2,s

0-M

3.4

55.89

I,3 CO.6

1,4

a.6

1,8 CO.6

1.5

4.2

1,7

5.0

by C(CH3)3

AS 504 &cwe replaced

79

C12alo02

60

I,2

wltb ax

AS 546 above with replaced

1,2

by CR2P(0) (OCR2.M3)2

(255) 556

70.5

AS 504 above with Er

(251) 555

63

s,r;, 61

8,8a 554

55.96

I

by OCOC?13

58.1 2,3

3,4

54.9

1,2

14.0

1,9

65.5

55.1

1,lO

2.0

1,6<0.6 557

13

C12H12

S Only AB inner

lines

1,2

61.3s

2,3

52.97

3.4

58.71

4,lO

55.4s

1,2

47.20

2,3

46.58

observed. 558

80

C12S14Fe

(258)

559

78

C14Hlo

9,12 +60.5

1,3

5.42

1,9 +1.80 9,14 -0.7

2,9 +5.97 4,9 +3.13 9,lO

7.6

3,9 -1.62

Victor

240

Table F. Serial

Wray

(contd.)

NO.

Ref. No.

560

78

Molecular formula

2J

lJ

Structure

9,lO

c14H10

63.0

9,14 +53.8

9,8 +2.70

“J

9,l +5.50

9,ll -1.60 9,12

5.85

9,5 c3.0 9,7

5.35

9,2 No 9,3 NO 9,4 -1.2 9,6 n0 561

13

c14H10

'

As above

5 Only AB inner lines observed. 562

82

58.9

4,12

58.0

1,ll

56.55 53.48

11,12

56.85 1,4

8.2

1,13

3.9

0

1,9

4.6

11 lofI

1,6

0.5

1,8

0.3

1,14

1.0

5

14 p

59.25

lo,11

C14Hloo 7o13

1,2 3,4

1,2

66.8

1,ll

66.3

I,12

2.0

w

563

81

C14H1005

1,9a

564

4,4a

(461a)

77

64.1

OH

(261)

67.7

trans

C14H12

77.8+0.9

5,lOa 5,6

56.8

6,7

56.8

7,8

69.6

I,7 +57.0

78

1,8 +O.l

2,8 +5.0

2.7 +2.2

4,7I 20.6 4,8 T1.2

2,7 +2.1

2.8 +3.6 3,7

565

107

1,7 +66.0

C14H14N

1,8 +4.9

2,8 rJ1.2

2,7 nr1.8

3,7

4.47

3,8

0

4,7

1.0

4,8

0 9.0

:: (=N.NH2).: WH.NH2)

566

82

C15H9N

3.8

1,2

62.8

1,3

1.0

1,4

1,ll

52.7

1,lO

1.2

1,13

3.1

1,9

5.4

Carbon-carbon

Table F.

Ref. NO.

567

82

Molecular formula

c15Hloo

(642)

Structure

As 566 above with CN replaced

82

'lSH12

(265)

569

241

constants

(contd.)

Serial no.

568

coupling

108

1,2

60.1

2J

1,3

1.2

by CHO

As 566 above with CN replaced

1J

by CH3

82

'15'12'

571

replaced

108

c15H120

by OCH3

($$J

572

53

C15H15D9

(267)

573

CD3.CH2.CHD

106 109

'16'10

Vd 3 5 0

106

0.9 8.2

56.4

1,lO

1.5

1,13

2.7

1,9

5.0

1,14

1.1

0.5

9,2

5.95

9,4

3.13

9,lO

8.00

9,3

1.72

1,2

70.0

1,3

0.6

1,4

7.7

1,ll

67.2

1,12

2.1

1,13

3.8

1,lO

0.7

1,9

4.4

1,6

0.7

1.8

0.3

1,14

0.9

9,13

69.89

1,2

70

1,6

67

9,14

1.48

9,l

1.20

9,2

5.70

9.4

4.20

9,lO

8.00

9,3

1.92

1,12

7.71

CH2.CHD.CH2.CHD.CH2.CD3

OH

1,2 1,ll

C16Hl~o

1,14

1,ll

57

1,16 ~0.2

58.9

1,lO

1.55 1,15

3.05

1,9

5.82

78

574

4.5

1,4

u

(162)

2.9

1,9

1.7

1

0

1,13

1,3

9,14

As 566 above with CN

7.6

60.1

'15'12

(266)

1,4

1,2

9,l (Jo.3

570

nJ

As 573 above with OH on Cl

1,2 1,ll

64.5 69.0

1,3 1,lO

0.34 5.00

1,16

0

Z interchangeable

1,4

1.55

1,5

2.27

1,7

0.76

1,13

0.31

1,14

1.35

1,9 5.00 1,12 7.55 1,15 3.90 1,4 1.67 1,5 1.36 1,6 1.09+ 1,7 0.74 1,8 1.392 1,13 NO.2 1,14 1.28

~

Victor

242

Table

F.

(contd.)

Serial NO.

Ref. NO.

575

82

Molecular formula

'16'12'2

As 566 above with CN by OCOCH3

0.6

1,ll

68.8

1,12

1.4

11 ,12

85

'21H16'8

(279)

w 0

(658)

e5

CH3COO 579

1,lo

1,4

8.8

1,9

5.0

1,13

4.2

1,14

1.0

54

6a,8

4

54

6,7a

4

LO,11

56

(177) (406) (476) (653) 578

72.0

Ia,8

(650)

577

1,2

6,6a

110

nJ

2J

15

Structure

replaced

(274)

576

Wray

113

PhCON

(485)

:' b:CA'

,

4

1

75877

1,ll

73.1

4,12

71.2

5,6

70.2

7,8

56.4

3,4

66 or 78 or 80

0cocH3

5,6

(662)

580

581

78

78

3.85

1,2 +1.1

4.6

3,6 +2.3

5,6 -1.3

C26H16Br4

C26H18

9,l' +56.2 10,9

67.2

10,ll +54.3

1,lO

1.84

1',10+1.3

1,9

4.20

2,lo

4.33

2',9

2.1

4,lO Cl.4

9,ll

0.1

9,12

5.24

2',10

1.1

3',9

3.42

4,9 +1.7 582

583

78

78

1,s +1.0

1,2 +1.44

2,3 +2.64

3,4

1,4 +2.14

3.66

1,2 +3.28 3,4 +0.88 1,s

3.78

Carbon-carbon

Table F.

coupling

243

constants

(contd.)

Serial No.

Ref. No.

584

69

Molecular

Structure

'32H30'14

(200) (493)

lJ

1,2

69.3

2,3

58.6

3,4

57.2

4,4a

72.3

2J

"J

-[$Q$Ha2 (667) 3 585

87

'3ZH3Z014

See serial

no. 293 for

structure

(293) (668)

586

78

3,4

70.6

5,4a

56.5

6,7

54.5

8,8a

68.4

1',2

53.9

3',4'

54.5 2.9

C34H24

NO

2,ll lv1.9

2,8

4.08

2,lO

5.97

2,12

3.47

2,5 -1.26 Ph

2,6 ~0' 2,7 rr0

Table G.

Both coupled

carbons

formally

with

sp2 hybridisation,

one of which

is a carbonyl

function.

Serial No.

Ref. No.

587

5

588

78

Molecular formula

Structure

C02H 2.17

C5H802 :;%OH

(325) 590

1.30

(=3 +

78

39

"J

70.4

CH2=CH.C02H

(311) 589

2J

lJ

2

0P

C7H5C10

74.1 J

*Em

591

592

73

73

C7H5C10

C7H5Na02

As

As

above

590 above

replaced 593

95

C7H60

94 73

'7R6'2

with CCC1

71.87

1,3

1,3

3.53

2.54

1,2

53.2

1,3

3.98

by CHO

As 590 above with COCl replaced

1,2

74.35

by CO; Na+

As 590 above with COCl replaced

594

1,2

by C02H

1,2

71.87

1,3

2.54

1,4

5.46

1,5

1.18

1,4

4.53

1,5

0.90

1,4

4.61

1,5

1.14

1,4

4.53

1,5

0.90

Victor

244

Table G. Serial No.

595

Wray

(contd.) Ref. No.

Molecular formula

Structure

lJ

0

78

7,8

03 50’

2J

nJ

6.2

5,7 ~4.2

:

4,7 -1.0

3

0

596

97

replaced

597

78

1,7 +69.9

As 595 above with S

As

by 0

above with S

595

1,8 +2.6

3,7 +4.6

3,8 +2.0

4.8 +5.0

7,8

4,7 -1.0

5.6

2.7 +3.49

3,7 +2.5#

6,7 +4.l#

5,7 +4.5

7,8

8.8

4,7 -0.9

2,7

2.07

3,7

3.99

4,7

1.06

2

replaced

by NH

+ interchangeable

598

1,7

95

6

(354)

52.5

1

40

cOCH3

# 599

1,7

95

0

CH3 4 0

600

72.4

1.7

72.0

o* 1°zH

CH3

95

0

I,7 6

95

72.0

1

4 o*

602

603

3,7

6.7

2.50

5,7

4.29

4,7

0.86

2,7

3.20

3,7

4.75

6,7

2.38

5,7

4.38

4,7

0.97

02H CH3

1,7

74.8

2,7 +2.38

98

1,8

78

13

0.90

2.0

2,8

1.9

3,8

0.5

4,8

0.7

2,7

3.8

3,7

5.4

6,7

5.2

5,7

5.7

2.3

71.2

cc3

(542)

0

2

0

606

4,7

4,7 rrl

CH30

(457)

3.7 +4.56

i02CH3

HO

605

4.55

2.81

,.:O,H 604

4.48 0.90

2,7

93 4 01 c>

3,7 4.7

028

2

0 601

2.62

1

95

4

2,7

78

0 0

~H=CH.~O~H

0

trans

1,2

1.66

1,3

7.08

cis

1,2

0.30

I,3

2.45

Carbon-carbon

Table G.

coupling

245

constants

(contd.)

Serial NO.

Ref. NO.

607

95

Molecular formula

I,7

52.7

(368)

1,7

95

608

74.6

(369)

41

609

2J

lJ

Structure

2,3

78.1

2.3

76.2

"J

2,7

1.86

3,7

3.85

6,7

3.57

5.7

4.30

4,7

0.99

2.7

3.15

3,7

4.88

6.7

2.06

5.7

4.41

4.7

1.02

I,9

2.5

(126) (245) 610 (127) (246) 42

611 (128)

0

(247)

01

(371) 612

46

(138) (250) (379) (553)

47

613

78

CH2.CH(NH2)~02H

HO

0

0

0

1,8a

54.5

1,ll

76.40

63 7os6,

3.73 3,ll

5.23

8,ll

3.57 7,ll

3.27

9,ll

6.55

2,ll

lo,11 4.12 4,ll

1.18

6,ll

0.39

2,ll

3.44 3,ll

4.57

8,ll

6.57 7,ll

3.75

9,ll

6.87

5

614

78

C11H7No

1,7

CQ HN11

60.8

‘OS6, 5

78

615

1,ll

C11H7N04

78

4,ll

0.86

2,ll

1.62 3,ll

4.70

9,ll

3.82 8,ll

0.75

IICO,H

NO 616

72.12

lo,11 3.62

10,ll

4.01

4,ll

0.76

5,ll

0.71

2,ll

1.48 3,ll

4.67

9,ll

2.45 lo,11 3.64

2 1,ll

73.50

C11H7N04 4,ll

617

'

95

I,11 'llH8'

llCH0 ‘0 co

J.P.H.H.R.S.

153-E

s 5

b,

53.7

1.0

2,ll

5.8

3,ll

5.85

9,ll

2.5

8,ll lo,11 4,ll 5,ll 7,ll

1.46 3.20 1.1 0.3 0.4

.-

Victor

246

Table

G.

( contd.I

Serial NO.

Ref. NO.

618

95

620

621

Wray

95

97

Molecular f omula

1,ll

‘1 lHE02

2,ll

cl lH802

71.7

71.8

H Co2H

CllH1002

(385)

621a

123

0

cllHloos

1,2

nJ

2J

lJ

Structure

2,ll

1.88

3,ll

4.78

9,11

3.53

8,ll

0.86

10,ll

4.01

4,ll

1.11

1,ll

2.52

4,ll

4.1

3,ll

2.73

9,ll

4.85

5,ll

0.2

lo,11

0.85

2,ll

3.8

3,ll

3.3

9,ll

2.5

8,ll

1.2

10,ll

1.9

6,ll

0.5

80.5

(254a) (461a)

622

39

623

51

CllH1202

C6H5.CH=CH.C02CH2.CH3

C11H18N203

CH3-CH2

CH G-i3)

76.3 2,6

XH2 .CH2 .CR3

3.16

(388)

624

1,ll

78

54.63

(389)

625

95

c1 2H100

1,ll

(390)

52.9

co llCocFi_

3

2,ll

1.89

3,ll

4.08

8,ll

3.81

7,ll

4.12

9,ll

9.88

10,ll

4.10

3.64

3,ll

4.83

2.00

a,11

0.9

10,ll

1,ll

C12H1002

nco,cH,

(391)

03 ogo3 5

0.53

2,ll

5

95

1.08

5,ll

9,ll

O%,

626

4,11

75.4

2,ll

1.65

9,ll

3.74

3.09

4,ll

1.09

5,ll

0.34

7,ll

0.33

3,ll

4.94

8,ll

0.81

lo,11

4.28

4,ll

1.18

5,ll

0.54

7,ll

0.42

Carbon-carbon

T&k Serial No.

G.

coupling

247

constants

\'cmzk?.j Ref. NO.

Molecular formula

Structure

2,ll

627

75.4

s0’ CD

(392)

Z02CH3

(0

1,ll

2.34 4,ll

4.35

3,ll

2.61 9,ll

4.99

10,ll

0.88

5,ll

0.35

6,ll

0.27

7,ll

0.38

4

628

2,4

3.13

(157)

1',4

2.22

2.7

2.43

(257) (393)

628a

124

2,3

80

95

1,7

51.42

(157a) (257a) (461a) 629 (394)

'7 2 1.7

95

50.7

2,7

2.11

3.7

3.62

6.7

2.36

5.7

3.87

4.7

0.95

3,7

3.31

0.C(CH313

631

CH3

95

1,7

0

(395)

4 0" 2

632

3.76 0.98

o.CKH313

CR340 oC 630

3,7 4,7

50.6

2.7

1.47

6,7

2.30

E0.C(CH3)3

78

5,7

3.73

4,7

0.85 3.75

9,l

2.62

9,2

9,lO

7.88

9,4

3.75

9,3

0.88

2,ll

1.21 3,ll

4.06

9.11

3.05 8,ll

2.9



633

1,ll

78

51.64

0

(397)

@I 1

7FSb3

634 (396)

78

C13Hloo

1,ll

53.56

lo,11

3.62

4,ll

1.10

5,ll

0.65

7,ll

0.52

2,ll

10.99 3,ll

9,ll

2.85 8,ll

4.56 0.65

lo,11

2.58

4,ll

0.89

5,ll

0.40

7,ll

0.21

r

Victor

248

Table

G.

(contd.

Serial No.

Ref. No.

635

95

Wray

1 Molecular formula

1,7

c13Slo”

2,7

54.8

2.71

:O.C6H5

636

70

‘13’12’

c?? 1,ll

51.55

1

2,il

2.74

9,ll

1.72

lT9;j3

637

_. 95

C13H13No

1,ll

65.9

(398)

638

95

9,12

C14H802

@ib et0 9

+53.9

(399)

9

‘3

54.90

1

3,ll

3.77

8,ll

0.55

10,ll

3.00

4,ll

0.93

1.61

3,ll

4.61

8,ll

2.00

10,ll

3.30

1,9 9,ll

9,13

1.02

2.20

4,ll

1.00

5,ll

0.27

+1.2

2,9

23.65

+2.44

4,9

23.1

11 4

100

4.03

2,11

0'

639

3,7 4,7

9,li

‘2

b

“J

2J

lJ

Structure

9,tO

3.84

3,9

To.85

1,9

1.69

2,9

3.46

9,14

2.83

4,9

3.36

3,9

0.9

2,8

0.8

3,7

4.37

4,7

1.02

0,

640

641

14

107

1,7

8a,9

81

+54.5

1,s

+14.0

2,7

3.4

53.3

(261) (563) 642

54.8

82

(567) CHO

643

117

1.95

=lSH1002

C02H

@Jg

644

51

645

94

(401)

2,4

C15H1202

‘sCO_H

13,15

8.10

2.9

1,15

1.3

14,15

1.5

2,15

0.8

3,15

1.0

4,15

0.8

Carbon-carbon

Table S&?-~al NO.

646

coupling

249

constants

( contd .)

G.

*P&. No.

95

,4&k?~U~ar formula

Structure

c15H160

1,ll

50.5

(402)

647

95

1,ll

‘1SH16’2

74.4

(403)

648

52

(167) 0

(467) 649

1.92

3,ll

4.14

1.77

8,ll

1.64

lo,11

2.84

4,ll

0.94

5.11

0.23

2,11

1.56

3,ll

4.85

9,ll

3.65

8,ll

0.81

lo,11

4.21

4,ll

1.15

5,ll

0.52

7,ll

0.38

6a,4

4

7a.10

4

52

C15H220

(273)

2,ll 9,ll

R c0

82

c16H1202

3.7

0

0CH3

0 650

C@

110

rn3ea

(576)

‘la CH20H

Jcii!i@ 0

k::

651

95

C17H1002

17C02H

109 ‘0 7o r

@ 652

O

1,17

72.1

2,17

1.75

3.17

4.50

11.17

3.52

16,17

4.52

12,17

A 0” 5

84

3,6

11.4

1,4

7.8

(275)

653

56

4,5

60

(177) (406) (476) (577) 654 (276) (477)

33

0.97

13,17

0.50

15,17

20.35

Victor

250

Table

G.

Wray

(contd.)

Serial No.

Ref. No.

655

33

Molecular formula

*J

Structure

1,4

8.2

'17H22N2'3

(277) (478)

P

656

98

=

CH2.CH2.C0

CH 2 3

c1anl8o

2,ll

53.7

(407)

1,ll

1.7

4,ll

4.4

3,ll

3.9

6,ll

3.9

5,ll Cl.0 i

657

95

5gH1402

1,17

75.8

2,17 11,17

1.72 3,1X

4.63

3.63 16‘17 4.76 10,17

0.97

4,17

0.4

5,17

0.29

9,17

0.45

12,17

1.05

13,17

0.49

14,17 l-o.15 15.17 658

85

'21H16'8

(279)

9,14

54.6

lo,13

54.6

1,17

50.8

0.49

(578)

659

95

c21H180

2,17

2.2

3,17

4.0

~~CCZC~CH~)~ 11,17 0 ,o'

@ 660

59

0 5

l2

C22H20010

13,14

79

5,6

61

(280) (408) (481)

60

PhCO C23H2605

1.9

16,17

2.2

4,17

0.2

':i, 3

(182)

661

1.7 10,17

I

I

12,17

1.1

13.17

0.2

251

Carbon-carbon coupling constants

Table

G.

(contd.)

Serial Ref. No. No.

662

Molecular formula

lJ

Structure

2J

"J

I,2 66 or 78 or 80

113

(485) (579)

663

62

2,3 65.5

(185)

7',8' 73

(285) (410)

664

63

(189) (289) (486)

665

64

I.2 65.7

(190) (290) (411) 666

66

(195) (292)

2 = Ii)Same for

(488)

667

R' = H

69

C32H30014

9,9a

55.2

6',7'

74.0

R‘ = CHOj both

(200) (493) -[j12

(584) 668

87

C32H32014

(293)

3. See serial no. 293 for structure

(585) 669

33

0

C35H42N406

(294) (494)

I,4

1

16,19 8.5

a I5

5 N

&

P

7.0

I-I 10

P

P = CH2.CH2.C~2CH3

Victor Wray

252 Table

(contd.)

G.

Serial NO.

Ref. No.

33

670

Molecular formula

l,4

C35H44N406

"J

2J

lJ

Structure

7.1

(2951 (495)

P

P

P = CH2.CH2.C02CH3 670a

119

C55H70MgN405 See serial no. 201a for

(201a) 120

3,C,

50

structure

(236a)

‘r

(461a)

= adjacent ring carbon

(498a)

Table

8.

One coupled carbon formally with sp2 hybridisation and the other with sp hybridisation.

Serial Ref. NO. No.

671

92

Molecular formula

C5H602

lJ

Structure

"J

1,3 +20.33

cH3;;F;;p2CH3

(320) (424) 672

93

'SH6'2

1,3 220.28

As above

(321) (424) 673

5

674

78

'6'6'4 '6'6'4

123

cH30co.cI’c.co2cH3 As

above

18.42

(334) 675

73

(520)

39

676

17

677

23

+ C7H50

c9H13N04

(428) 678

39

80.40

C7H5N

CllH1002

81.2

NC.CH@COCH3).CH2.CH2.C02CH2.CH3 (5) (6) C6H5.CXC.C02CH2.CH3

1,2

5.6

1.5

2,8 3,7

5.56 1.76

126.8

(1)(2) 679

107

c14H10

@""@

# interchangeable

1,7 +91.1

2,7 1,8 +13.1 2.62

4‘7

1.0 P

4.8

0.752

253

Carbon-carbon coupling constants

Table I.

Both coupled carbons formally with sp hybridisation.

Serial Ref. No. No.

Molecular formula

Structure

lJ

680

121

C2H2

CHZCH

170.6

681

39

C8H6

C6H5.CECH

175.9

682

39

C9H5N

C6H5.C.X.CN (1)(2)

1.2

2J

nJ

155.8

REFERENCES

1.

R.E. Carhart and J.D. Roberts, Org. Magn. Resonance, 2, 139 (1971).

2.

V.J. Bartuska and G.E. Maciel, J. Magn. Resonance, 2, 211 (1971).

3.

R.M. Lynden-Bell and N. Sheppard, Proc. Roy. Sot. (London), A269,

4.

H. Dreeskamp, K. Hildenbrand, and G. Pfisterer, Mol. Phys., 17, 429 (1969) and

385

C. Schumann, H. Dreeskamp, and K. Hildenbrand, J. Magn. Resonance, 2, 5.

F.J.

(1962).

97 (1975).

Weigert and J.D. Roberts, J. Amer. Chem. Sot., 94, 6021 (1972).

6.

H.

7.

F.J. Weigert and J.D. Roberts, J. Amer. Chem. Sot., 89, 5962 (1967).

8.

G. Gray, Ph.D. Thesis, Univ. Of California, Davis, California (1967) quoted in

9.

R.E. London, V.E. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., 97, 3565 (1975).

10.

J. Jokisaari, Org. Magn. Resonance, 2,

11.

S. Tran-Dinh, S. Fermandjian, E. Sala, R. Mermet-Bouvier, M. Cohen, and P. Fromageot,

Dreeskamp and G. Pfisterer, Mol. Phys., 14, 295 (1968).

reference 2.

157 (1978).

J. Amer. Chem. Sot., 96, 1484 (1977). 12.

R.D. Bertrand, D.M. Grant, E.L. Allred, J.C. Hinshaw, and A.B. Strong, J. Amer. Chem. sot., 94, 998 (1972).

13.

V. Wray and L. Ernst, unpublished results.

14.

R.E. London, T.E.Walker, V.H. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., 100, 3723 (1978).

15.

S. Tran-Dinh, S. Fermandjian, E. Sala, R. Mermet-Bouvier, and P. Fromageot, U. Amer. Chem. Sot., 97_, 1267 (1975).

16.

W.M. Litchman and D.M. Grant, J. Amer. Chem. Sot., 89, 6775 (1967).

17.

G.A. Olah and P.W. Westerman, J. Amer. Chem. Sot., 96, 2229 (1974).

18,

M. Barfield, S.A. Corm, J.L. Marshall, and D.E. Miiller, J. Amer. Chem.

SOC.,

98,

6253

(1976). 19.

J.L. Marshall, S.A. Conn, and M. Barfield, Org. Magn. Resonance, 2, 404 (1977).

20.

M. Pomerantz and R. Fink, J.C.S. Chem. Comm., 430 (1975).

21.

M.

22.

S. Fermandjian, S. Tran-Dinh, J. Savrda, E. Sala, R. Mermet-Bouvier, E. Bricas, and

23.

A.R. Battersby, E. Hunt, E. McDonald, and J. Moron, J.C.S. Perkin I, 2917 (1973).

24.

F.J. Weigert, M. Winokur, and J.D. Roberts, J. Amer. Chem. Sot., 90, 1566 (1968).

25.

D. Doddrell, I. Burfitt, J.B. Grutzner, and M. Barfield, J. Amer. Chem. SOC., 96, 1241

Pomerantz and D.F. Hillenbrand, Tetrahedron, 2,

217 (1975).

P. Fromageot, Biochim. Biophys. Acta, 399, 313 (1975).

(1974)

.

Victor Wray

254

26.

M. Barfield, I. Burfitt, and D. Doddrell, J. Amer. Chem. Sot., z,

2631 (1975).

27.

A. Banerji, R.B. Jones, G. Mellows, L. Phillips, and K-Y. Sim, J.C.S. Perkin I, 2221

28.

T.E. Walker, R.E. London, T.W. Whaley, R.Barker, and N.A. Matwiyoff, J. Amer. Chem.

(1977).

sot., 98_,5807 (1976). 29.

D. Y. Gagnaire, R. Nardin, F.R. Taravel, and M.R. Vignon, Nouveau J. Chim., l_,423

30.

T.E.

31.

D. Traficante, G. Maciel, D. Ellett, and G. Kneissl, Amer. Lab., March issue (1972).

32.

J.B. Grutzner,

(1977). Walker, R.E. London, R. Barker, and N.A. Matwiyoff, Carbohydrate Res., 0,

9

(1978).

M.

Jautelat, J.B. Dence, R.A. Smith, and J.D. Roberts, J. Amer. Chem.

sot., 92, 7107 (1970). 33.

v. Wray, A. Gossauer, B. Gruening, G. Reifenstahl, and H. Zilch, J.C.S. Perkin II,

34.

W. Haar, S. Fermandjian, J. Vicar, K. Blaha, and P. Fromageot, Proc. Nat. Acad. Sci.

in press.

USA, 2,

4948 (1975).

35.

O.A. Subbotin and N.M. Sergeyev, J.C.S. Chem. Comm., 141 (1976).

36.

H. Booth and J.R. Everett, J.C.S. Chem. Comm., 278 (1976).

37.

J.L. Marshall and D.E. Miiller, J. Amer. Chem. Sot., E,

38.

8305 (1973).

39.

H. Finkelmeier and W. Luettke, J. Amer. Chem. Sot., -100, 6261 (1978). K. Frei and H.J. Bernstein, J. Chem. Phys., 2, 1216 (1968).

40.

S. Berger, J. Org. Chem., 43, 209 (1978).

41.

J.P. Jacobsen, T. Reffstrup, and P.M. Boll, Acta Chem. Stand., g,

42. 43.

E. Leete, N. Kowanko, and R.A. Newmark, J. Amer. Chem. Sot., 97, 6826 (1975). T.J. Simpson and J.S.E. Holker, Tetrahedron Letters, 4693 (1975).

44.

M. Tanabe, M. Uramoto, T. Hamasaki, and L. Cary, Heterocycles, 2, 355 (1976).

45.

H. Seto, T. Sato, and H. Yonehara, J. Amer. Chem. Sot., 95, 8461 (1973).

46.

U. Sankawa, H. Shimada, T. Sato, T. Kinoshita, and K. Yamasaki, Tetrahedron Letters,

47.

H. Seto and H. Yonehara, Tetrahedron Letters, 487 (1977).

48.

S. Berger and K-P. Zeller, J.C.S. Chem. Comm., 649 i1976).

505 (1977).

483 (1977).

49.

J.L. Marshall and D.E. Miiller, Org. Magn. Resonance, 5, 395 (1974).

50.

The couplings for these compounds should be reversed in the original; see M. Barfield, S.A. Corm, J.L. Marshall, and D.E. Miiller, 3. Amer. Chem. Sot., E,

6253 (1976).

51.

R.C. Long and J.H. Goldstein, J. Magn. Resonance, 16, 228 (1974).

52.

A. Stoessl, J.B. Stothers, and E.W.B. Ward, Can. J. Chem., 56, 645 (1978).

53.

U. Sankawa, H. Shimada, and K. Yamasaki, Tetrahedron Letters, 3375 (1978).

54.

D.E. Cane and R.B. Nachbar, J. Amer. Chem. Sot., E,

55.

A.P.W. Bradshaw, J.R. Hanson, and

56.

T.J. Simpson and J.S.E. Holker, Phytochemistry, 16, 229 (1977).

M.

3208 (1978).

Siverns, J.C.S. Chem. Comm., 303 (1978).

57.

M. Pomerantz, R. Fink, and G.A. Gray, J. Amer. Chem. Sot., E,

58,

A.P.W. Bradshaw, J.R. Hanson, and M. Siverns, J.C.S. Chem. Comm., 819 (1977).

291 (1976).

59.

H. Seto, T. Sato, S. Urano, J. Usawa, and H. Yonehara, Tetrahedron Letters, 4367

60.

H. Seto and M. Tanabe, Tetrahedron Letters, 651 (1974).

61.

N.N. Gerber, A.G. McInnes, D.G. Smith, J.A. Walker, J.L.C. Wright, and L.C. Vining,

(1976).

Can. J. Chem., 56, 1155 (1978). 62.

J.S.E. Holker and T.J. Simpson, J.C.S. Chem. Comm., 626 (1978).

Carbon-carbon coupling constants

‘255

63.

Y. Kimura, M. Gohbara, and A. Suzuki, Tetrahedron Letters, 4615 (1977).

64.

T.C. Feline, R.B. Jones, G. Mellows, and L. Phillips, J.C.S. Perkin I, 309 (1977).

65.

G. Popjak, J. Edmond, F.A.L. Anet, and N.R. Easton, J. Amer. Chem. Sot., 99, 931

66.

Y. Kimura, M. Gohbara, and A. Suzuki, Tetrahedron Letters, 3115 (1978).

67.

S. Seo, Y. Tomita, and K. Tori, J.C.S. Chem. Comm., 954 (1975).

68.

S. Seo, Y. Tomita, and K. Tori, J.C.S. Chem. Comm., 319 (1978).

(1977).

69.

I. Kurobane, L.C. Vining, A.G. McInnes, J.A. Walter, and J.L.C. Wright, Tetrahedron Letters, 1379 (1978).

70.

A. Seto, T. Yahagi, Y. Miyazaki, and N. Otake, J. Antibiot., 2,

71.

H. Seto, Y. Miyazaki,

K.

530 (1977).

Fujita, and N. Otake, Tetrahedron Letters, 2417 (1977).

72.

V.J. Bartuska and G.E. Maciel, J. Magn. Resonance, I, 36 (1972).

73.

A.M. Ihrig and J.L. Marshall, J. Amer. Chem. Sot., 2,

1756 (1972).

74.

J.L. Marshall and A.M. Ihrig, Org. Magn. Resonance, I, 235 (1973).

75.

J.L. Marshall, A.M. Ihrig, and D.E. Miiller, J. Mol. Spectroscopy, 2,

76.

R. Niedermeyer and R. Freeman, J. Magn. Resonance, 30, 617 (1978).

77.

P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, 5, 632 (1976).

78.

P.E. Hansen, Org. Magn. Resonance, 2,

323 (1972).

215 (1978).

79.

S. Berger and K-P. Zeller, J.C.S. Chem. Comm., 423 (1975).

80.

P.S. Nielsen, .;.S.Hansen, and H.J. Jakobsen, J. Organometallic Chem., 114, 145 (1976).

81.

A.J. Birch, T.J. Simpson, and P.W. Westerman, Tetrahedron Letters, 4173 (1975).

82.

S. Berger and K-P. Zeller, Org. Magn. Resonance, 11, 303 (1978).

83.

A.R. Battersby, M. Ihara, E. McDonald, J. Saunders, and R.J. Wells, J.C.S. Perkin I, 283 (1976).

84.

D.P.H. Hsieh, J.N. Seiber, C.A. Reece, D.L. Fitzell, S.L. Yang, J.I. Dalezios, G.N. La Mar, D.L. Budd, and E. Motell, Tetrahedron, 2,

85.

661 (1975).

R.C. Paulick, M.L. Casey, D.F. Hillenbrand, and H.W. Whitlock, J. Amer. Chem. Sot., 97, 5303 (1975).

86. 87.

M. Uramoto, N. Otake, L. Cary, and M. Tanabe, J. Amer. Chem. Sot., -100, 3616 (1978). P.L. Canham, L.C. Vining, A.G. McInnes, J.A. Walter, and J.L.C. Wright, Can. J. Chem., z,

2450 (1977).

88.

G.A. Gray, P.D. Ellis, D.D. Traficante, and G.E. Maciel, J. Magn. Resonance, 1, 41

89.

D. Ziessow, J. Chem. Phys., z,

90.

F. Piriou, K. Lintner, H. Lam-Thanh, F. Toma, and S. Fermandjian, Tetrahedron, 2,

(1969). 984 (1971). 553

(1978). 91.

J.L. Marshall and A.M. Ihrig, Tetrahedron Letters, 2139 (1972).

92.

J.L. Marshall, D.E. Miiller, H.C. Dorn, and G.E. Maciel, J. Amer. Chem. Sot., 97, 460

93.

S.Aa Linde and H.J. Jakobsen, J. Amer. Chem. Sot., 98. 1041 (1976).

94.

J.L. Marshall, L.G. Faehl, A.M. Ihrig, and M. Barfield, J. Amer. Chem. SOc., 98, 3406

95.

P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, 2, 649 (1977).

96.

A.M.

97.

P.E. Hansen and A. Berg, Org. Magn. Resonance, 8, 591 (1976).

98,

J.L. Marshall, L.G. Faehl, and N.D. Ledford, Spectroscopy Letters, 2, 877 (1976).

99.

G.A. Gray, G.E. Maciel, and P.D. Ellis, J. Magn. Resonance, 1, 407 (1969).

(1975).

(1976).

Ihrig and J.L. Marshall, J. Amer. Chem. Sot., 94, 3268 (1972).

r

Victor Wray

256

loo.

H. Dreeskamp, E. Sackman, and G. Stegmeier, Ber. Bunges. Phys. Chem., 67, 860 (1963).

101.

G. Becker, W. Luettke, and G. Schrumpf, Angew. Chem., E,

102.

K. Bachmann and W. von Philipsborn, Org. Magn. Resonance, 8, 648 (19761.

103.

K.M. Rapp, T. Burgemeister, and J. Daub, Tetrahedron letters, 2685 (19781.

357 (1973).

104.

H.J. Bernstein,

105.

F.W. Wehrli and T. Wirthlin, "Interpretation of Carbon-13 NMR Spectra," Heyden,

private

in reference 5.

COmmUniCatiOII

London (1976). 106. P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, L, 475 (1975). 107. P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. ReSOKanCe, I, 405 (1975). 108. J.L. Marshall, A.M. Ihrig, and D.E. Miiller, J. Magn. Resonance, la, 439 (1974). 109. P.E.Hansen, O.K. Paulsen, and A. Berg, Org. Magn. Resonance, 1, 23 (1975). l-lo.

A.M.

Nadzan and K.L. Rinehart, J. Amer. Chem. Sot., 98, 5012 (1976).

111. E. Leete, N. Kowanko, R.A. Newmark, L.C. Vining, A.G. McInnes, and J.L.C. Wright, Tetrahedron Letters, 4103 (1975). 112.

A. Gossauer and K. Suhl, Helv. Chim. Acta, z,

113.

G. Hoefle, Terahedron Letters, 347 (1974).

114.

A.R. Battersby, E. Hunt, and E. McDonald, J.C.S. Chem. Comm., 442 (1973).

115.

A.R. Battersby, C.J.R. Fookes, E. McDonald, and M.J. Meegan, J.C.S. Chem. Comm., 185

116.

A.I. Scott, C.A. Townsend, K. Okada, M. Kajiwara, R.J. Cushley, and P.J. Whitman,

1698 (1976).

(1978).

J. Amer. Chem. Sot., 96, 8069 (1974). 117. J.L. Marshall, private communication in reference 78. 118. D.M. Grant, J. Amer. Chem. Sot., 2,

2228 (19671.

119. C.E. Strouse, V.H. Kollman, and N.A. Matwiyoff, Biochem. Biophys. Res. Commun., 46, 328 (1972). 120. 121.

N.A. Matwiyoff and B.F. Burnham, Ann. N. Y. Acad. Sci., -206, 365 (1973). A.S. Perlin, Isotopes in Organic Chemistry, 2, 171 (1977).

122.

R.E. London, J.C.S. Chem. Comm., 1070 (1978).

123.

H. Seto, M. Shibamiya, and H. Yonehara, J. Antibio., 926 (1978).

124.

H. Set0 and S. Urano, Agr. Biol. Chem., 2,

915 (1975).