Progress in NMR Specmscupy~ Vol. 13. pp. 177-256 0 Pcrpmon Press Ltd.. 1979. Great Britain
CARBON-CARBON COMPILATION
COUPLING
OF DATA
AND
CONSTANTS:
A
A PRACTICAL
GUIDE VICTOR WRAY Gesellschaft Mr Biotechnologische Forschung mbH, D-3300 Braunschweig, West Germany (Received6 June 1979)
CONTENTS INTRODUCTION
178
2.
THE EXPERIMENTAL METHOD
178
3.
SIGNS OF COUPLINGS
179
‘1.
4.
3.1. Experimental Determination
179
3.2. Results of Sign Determinations
181
USE OF CARBON-CARBON COUPLING CONSTANTS
182
4.1.
Signal Assignments
182
4.2.
Structural Information
184
4.2.1. One Bond Carbon-carbon Couplings
184
4.2.2. 4.3.
185
Longer Range Couplings
186
Biosynthetic Applications 4.3.1. Correlation in the Enrichment of the Interacting Nuclei in the Substrate with that in the Product
186
4.3.2. Quantitative Analysis of Multiplet Patterns Caused by Carbon188
carbon Coupling 4.3.3. pX Values of Amino Acids and Peptides
5.
188
REFERENCES
189
APPENDIX
191
I.P.H.M.R.S.
Tables A to I
192
Appendix References
253
1313-A
177
Victor
178
Wray
1. INTRODUCTION
The aim of the present on carbon-carbon referenced dealing
tables
spin-spin
to warrant
aspects
is to collect constants, Although
in the appendix.
with various
available
review
coupling
together
several
The recent
them in the form of cross-
reviews have appeared over the years
of Jcc it is only recently
such a collection.
all the data in the literature
JCC, and to present
that sufficient
data have become
increase in the volume of data,
particularly from biochemical applications, arises from the use of high performance, commercial, Fourier transform spectrometers, together with the increasing availability and decreasing cost of C-13 enriched materials. l-3 concentrated on one-bond coupling constants while more recently Early reviews 4-6 . The latter have been -longer-rangecoupling constants have also received attention particularly well served by the paper of Hansen' who has surveyed all couplings greater than one bond for the period up to the middle of 1977. Conformational aspects of JCC in enriched amino acids and their derived peptides have been considered by Bystrov7. Theoretical calculations, up to the end of 1975, have been covered in the comprehensive survey of Kowalewski*, while more recent work on long-range couplings is reviewed elsewhere6. In order to compliment the tabulated data the measurement and application of JCC will be reviewed in the following sections.
2. THE EXPERIMENTAL METHOD
The determination of JCC requires the presence in the molecule of two
13 C isotopes,
in natural abundance these molecules are usually present as 1 in lo4 molecules, thus sensitivity is a major problem.
In normal proton-decoupled spectra the signals from these
species appear as weak doublets around the signals of molecules incorporating only one 13C isotope. Thus their observation requires a high signal-to-noise ratio and a good line shape. The latter is necessary in order to prevent the peaks being obscured by the intense central peak.
This, in fact, provides the main drawback of the technique in that couplings of,*7 Hz
cannot be detected, with only one-bond and the larger long-range couplings being observable. 9-12 have been performed on natural abundance samples and all Several investigations modern Fourier transform instruments make such observations possible. For these the molecule under study must be at high concentration in a suitable solvent, usually at concentrations of 70% or higher if excessive accumulation times are to be avoided. Increased sensitivity, achieved by using larger sample tubes, quadrature detection and higher magnetic fields, may make future observations easier. Pulse widths can often be longer than those 13 normally used as the presence of an additional C isotope increases the relaxation rate of 13 quaternary carbons . The addition of small amounts of the shiftless paramagnetic relax14, 15 ation reagents , such as chromium tris(acetylacetonate1facilitates the observation 16 of the couplings to quaternary carbons without significantly broadening the resonances. Interference from spinning side,bands can be minimised by using high, variable spinning speeds with the appropriate vortex suppression. The vast majority of J values have been determined by the use of singly or even more 13 CC highly labelled species. C enrichment is necessary if small couplings are to be observed although preparation of these compounds can be both expensive and time consuming. In most cases 90% enrichment is optimal as the signals of the coupled carbons now appear as doublets in the spectrum with
a small, almost central peak corresponding to the unenriched material.
Carbon-carbon coupling constants
179
The observation of the latter may be helpful in complex overlapping spectra as the complete analysis of the AB (or Ax) spin system is not possible with small couplings, because the lines around the enriched carbon signal are unobservable. In such cases it is advisable to check the data by recording the spectra at two different spectrometer frequencies. 13 12 C isotope shifts are observable and are of the order of -0.002 to -0.027 ppm for directly bonded carbons and less for non-directly bonded carbons. This can often be used as a useful check and implies that for one bond couplings, where only the inner lines of an AB (AX) system are available, the chemical shifts of the unenriched material cannot be used.
Often in such cases, where the carbons have similar environments, the isotope shift
can be taken as the difference between the centre of the two lines of the unenriched material and the centre of the two inner AB lines. Lower incorporation levels result in higher central peaks for the unenriched material which make the observation of smaller couplings correspondingly more difficult. Multiple incorporation of "C
labels results in more complex spectra which may require statistical 17 techniques to allow quantitative analysis . Although the possibility of measuring small couplings in natural abundance remains 18, 19 a problem, the recent developments in two dimensional Fourier transform spectroscopy suggest ways in which this may be done.
Application of this technique to spin-echo methods
affords significant improvement in resolution as the effects of spatial inhomogeneity of the magnetic field are mostly circumvented. Preliminary measurements of carbon couplings in 20 enriched materials have been reported . The intrusion of the signals of non-enriched compound occurs and would be a particular problem at natural abundance. These problems can be overcome by instrumental modifications, such as the use of filters. Greater promise may lie in the concurrent use of these methods with those of Fourier difference 21 spectroscopy . Inherent in these methods, however, is the significant'loss in sensitivity 22 compared with one-dimensional Fourier spectroscopy , a factor that will make natural abundance work difficult. The precision of the literature data often depends upon the experimental method used. Thus in the early CW methods, with signal averaging, this was governed by instrumental instabilities while that from the current use of ET-methods, with internal locking, is often governed by digitisation, an improved accuracy being obtained by the use of small spectral widths and centroid interpolation routines.
3. SIGNS OF COUPLINGS
3.1 Experimental Determination The difficulties of observing Jcc often preclude the determination of the sign of the coupling. In all the cases studied signs have heen determined by the use of enriched materials. Perhaps the simplest experiment is the use of heteronuclear double resonance on doubly-enriched compounds using selective proton irradiation. In this experiment the signs of Jcc are related to the known signs of JcS.
This method has been used to determine the 1 1 1 23 in acetorie and of 2Jcc relative to sign of Jcc relative to JcH in acetic acid JCH 24 and dimethyl mercury . The drawback of this method is the necessity of having a specifically double-labelled compound for each sign determination. An alternative technique,
that requires only single-labelled materials and uses information gained from off-resonance 25, 26 for the determination of the proton decoupling, was first described by Jakobsen
Victor Wray
180
In this method use is made of the difference observed for the relative signs of Jpc. 13 13 r CH couplings in the reduced splittings, JCX, due to the direct C spectrum of the Jcc doublet.
Initially the proton decoupling frequency is found that gives the best doublet for
a particular carbon doublet. The proton decoupling frequency is then changed slightly from this value and it will be noted that one of the peaks of the doublet will be affected more than the other as J&
= ~RAVJ&
K-l2for the two peaks is different with one of the proton
sub-spectra corresponding to a particular carbon spin state being more affected than the other.
Thus the sign of JCC can be determined from the knowledge of the sign of the offset
from the optimum decoupling frequency and the sign of JCX. This method has been used in 4 3 13 methyl a- C-bensoate to show that 2JC2Ca x 0 and 3JC3Ca x JCaH3>0 (i.e. 2JC2Ca JCan2> 27 and 3J are both positive) . It can also be used in multiply-labelled situations as c3ca
.has been shown in the bicyclobutane derivative, diethyl l-methyl-13C-3-phenylbicyclo[1.1.0]13 butane-1,3- C2-exo,exo-2,4-dicarboxylate,where the first experimental observation of a 28 1 negative Jcc between the two enriched bridgehead carbons was determined . An experimental limitation of the technique occurs when the enriched carbon has directly bonded protons. In this case a triple-resonance experiment is necessary in which two proton frequencies are used. The first of these decouples the protons directly attached to the label and the second is used as before in an off-resonance capacity. As well as proving difficult experimentally, 29
Block-Siegert shifts caused by the first proton frequency need to be taken into account , 30 reported of the use of this method. The implementconsequently, there is only one case ation of the method in non-aromatic systems may require more proton decoupling frequencies with their ensuing instrumental difficulties. Homonuclear double resonance methods can be used to give relative signs in multiplylabelled compounds. Thus an adiabatic rapid passage homonuclear double resonance experiment with and without simultaneous proton-noise decoupling has been used to determine the relative signs in triply-labelled methyl tetrolate (C!E3.C%.C02CH3)31. The experiment in its original form32 was used to determine connected energy levels in simple AB systems in order to make signal assignments where conventional selective proton decoupling was inconclusive. Although doubly-labelled compounds could in principle be used instrumental requirements make the method restrictive. In some cases spectral analysis of the completely coupled proton and carbon spectrum is sufficient to furnish the relatiye signs in doubly-labelled compounds. Thus complete 1 3 1 analysis of doubly-labelled 1,2-dibromoethaneshowed that JHH>O implying that Jcc Jcc x 33 is positive . A simple method of determining the relative signs in doubly-labelled compounds in which the labelled carbons have the same or nearly the same chemical shift has been demonstrated3" 34' 35_
In such cases the natural abundance, proton-noise decoupled spectra
of a third I3C nucleus appears as either the X part of an ABX system or the C part of an ABC system. Observation of the spectrum of the doubly-labelled compound in the presence of both singly-labelled compounds allows the relative signs of AX and BX for the ABX spectrum, and AC and BC for the ABC spectrum to be determined by simple spectral analysis. The necessity of multiple labelling can often be circumvented by the use of the 36, 37 selective population transfer technique . This method is particularly useful in those cases where both the proton and carbon spectra are first order and it requires only a monolabelled compound. A selective 180~ radiofrequency pulse is applied at a proton transition which inverts the populations of the respective energy levels. This is immediately followed 13 by a non-selective 90° pulse applied in the usual way to the C nuclei. Fourier transform
181
Carbon-carbon coupling constants
of the resulting FID gives spectra showing peaks with reduced and enhanced intensities relative to the normal spectrum depending on whether the irradiated and observed lines were connected regressively or progressively. The technique has been elegantly demonstrated for 27 the sign determination in mono-labelled methyl tetrolate for which the same signs of JCC 31 4 1 or JcH were deduced earlier using a triply-labelled compound . In cases relative to J CR where weak signals hidden under the strong signal of the enriched carbon have to be observed 38 a modified pulse sequence which incorporates the SPT method and difference spectroscopy can be used27. A Torrey oscillation experiment has been used to determine the negative sign of
2 Jcc
in CH3.0.COC13'.
3.2. Results of Sign Determinations The actual signs determined for carbons in various hybridisation states are sunsaarised in Table 1.
.
Table 1. Signs of Coupling Constants
Hybridisation
1 Jcc
3 3 sP -sp
+
3 2 sP 'SP
+
Ref.
33
3 JCC
Ref.
2J cc
c.x.c x = Co Rg 0
+ +
Ref.
a
+
24 24 24
30
31
a
3 sP -sp 2 2 sP -sp
+
31
+
a
+
+
6
6
6
30,34
8 + 2 sP 'SP
+
sP -sp
+
Others
27
*
6,27,35
c
+
6,27.35
27,31,34
a 28,a
28
Footnotes: a) See discussion in text, b) Sign depends upon the.substituents although values of magnitude greater than 0.3 Hz are negative.
Victor Wray
182
Theoretical calculations for one bond couplings* are in agreement with experiment in that a positive sign is predicted for all normal single, double and triple bonds with the magnitude of the coupling increasing along the series. A notable exception, predicted 40-42 theoretically , is the case of the highly strained bicyclobutane ring system noted 28 above where a high degree of E-character of the bridgehead-bridgeheadbond is observed. 43 Other molecules with similar features are predicted to have unusually low couplings . Although the sign of three-bond couplings in saturated systems has not been determined 44-46 in predicting the experimentally the success of the extensive theoretical calculations magnitude of and substituent effects upon these, suggest that they are positive. 6, 30, 35, 47 There is a small amount of data for couplings over more than three bonds -but as these couplings are small in magnitude the signs are of limited use.
A discussion
of these and the two- and three-bond couplings are found in the appropriate papers.
4.
USE OF CARBON-CARBON COUPLING CONSTANTS
An attempt is made in this section to familiarise the reader with the uses that have been made of carbon-carbon coupling constants.
4.1.
Signal Assignments
1 The large variation of JCC values of -17.5 (bicyclobutanes)to +176 Hz (acetylenes) is due mainly to the hybridisation state of the interacting carbons with smaller variations, for particular hybridisation states, being due to substituent effects. Thus, these results offer plenty of scope for use in signal assignments. As the coupling constant appears twice in a spectrum, comp,rison of splittings allows irmuediateidentification of adjacent carbons. Confirmatory evidence may often be gained from the line intensities as these will be unequal in the case of AB systems. In the case of natural abundance observations the knowledge of a single assignment may be sufficient to allow complete assignment in simple molecules provided the couplings can be measured 48-58 12 with sufficient accuracy (eg. substituted benzenes and cycloalkanes 1. In the case where the magnitudes of the couplings are similar the use of homonuclear double resonance techniques are necessary to identify coupled carbons. Thus in the case of l-substituted 4-methylbicyclob.2.2]octanes (A) distinction was made between C2 and C3 by pairing C2 with Cl and C3 with C4.
In more complex molecules experimental difficulties make the observation of natural abundance spectra impossible. Synthetic, as opposed to biosynthetic, incorporation of a 13 single C nucleus at a specific site in a molecule has the advantage of allowing the observation of longer range couplings which also have the same diagnostic capabilities. 13 Thus in order to assign the C signals of the almost symmetrical molecule, mesobiliverdin-IXa dimethyl ester (21, several singly enriched compounds were synthesised51 . For the C4 enriched compound the observation of one-bond couplings allowed the assignment of C3 and identified C5 (from Cl0 and C15).
Long-range couplings distinguished Cl from Cl9
and the observation and magnitudes of the couplings identified C6 and C7.
Long-range
coupling to the methyl group on C2 and the methylene of the ethyl group at C3 distinguished
183
Carbon-carbon coupling constants
these from the corresponding groups at Cl7 and C18, respectively.
(
2 =
P = CH,CH2C02CH3
P
10
P
Single labelling has been particularly useful in the assignment of the signals of monosaccharides and their derivatives, and a detailed reassessment of earlier assignments 52 has been given . Here labelling at the anomeric carbon Cl allowed immediate identification of C2 from the large one bond coupling. Small characteristic long-range couplings were also 2 of value in the assignments. A Jcc to C3 (4 Hz) is found only in the panomers while C5 is coupled to Cl only in the aanomers (2 Hz).
A coupling to C6 is present in both anomers
while C4 shows no coupling to Cl in any of the sugars examined. Thus the 13 C-silver 53 cyanide, was shown to be 2 and not 4, and a possible reaction mechanism was proposed .
The synthetic incorporation of multiple labels also has its advantages.
structure of a trimer of bensoyl isocyanide, prepared from bensoyl bromide and
The central atoms of the ring give the expected AMX system while none of the three carbons arising from the bensoyl carbonyl carbons show a large one-bond coupling but only longI
range couplings (J 64 Hz).
Many multiply-labelled compounds have been produced in the course of biosynthetic
J
studies, most of which have used singly and doubly labelled acetate as precursors. A pre-requisite of such studies is an assignment of the product signals. In most cases the organism incorporates one molecule of substrate per molecule of product with the consequence that the determination of the magnitudes of the couplings of matching pairs of signals 54 (distinguishedin large molecules by homonuclear double resonance 1, together with chemical shift considerations and SFORD spectra, allows signal assignments to be made.
At the same
time the specific labelling pattern is obtained and this often allows biomechanistic information to be deduced (see below). An example is the assignment in dihydrolatumcidin QS5.
Shift and SFORD considerations do not allow a distinction to be made between C6, C7
and C8, between C4 and C7a or between C2 and C3.
Biosynthesis with doubly-labelled acetate
identified the signals of the first two groups since couplings of different magnitude are present between C8 and C9, and between C7 and C7a.
Biosynthesis with a 1:l mixture of the
two mono-labelled acetates distinguished C2 from C3 because a coupling of C3 with C4 is
Victor nray
184
3
2
observed. Biosynthesis with a high incorporation of enriched carbon in single molecules has the -disadvantageof a large number of coupling interactions. Highly enriched chlorophylls 5 and & have been produced by growing green algae on 90% 13CO2 and although the spectra were particularly complex several assignments were possible by matching one bond couplings56, 57 .
4.2.
Structural Information
4.2.1. One Bond Carbon-carbon Couplings One-bond couplings are a function of hybridisation, substitution, ring size and substituent orientation as seen in Table 2.
In their simplest form such data may be used
to determine the structural elements in a particular molecule.
Table 2.
Examples of
1 JCC as a function of hybridisation, substitution, ring size and
substituent orientation taken from Tables in the Appendix.
Hybridisation CH3-CH3 J
CH2XH2
C6H6 57.0
34.6
CBXH
67.6
170.6
Substitution X= CH3CH2X
0
X
0
F
Cl
Br
I
38.2
36.1
36.0
35.8
B02 35.7
70.92
65.17
63.62
61.02
67.32
1
2
3
4
(l-2) 29.5
37.3
37.9
38.0
(2-3) 29.0
34.4
30.3
32.1
OH 37.7
RH2 35.8
65.60
61.07
Ring size
n= (a-0 3
2
1
Orientation
C&OH o
‘i0-H
OH
} ,“:::;;I;-,” .
1
3
CH,
CH3
,+ N
‘OH
(l-2) 49.3 (2-3) 41.4
Carbon-carbon coupling constants
The relationship between the magnitude of
185
1 JCC and the hybridization (s=character)
of the coupled carbons has received considerable attention both theoretically and experimentally (for reviews see references 1 and 5).
It appears that such a relationship
can be expected for closely related series of ccmpounds provided there are no changes in electronegative substituents attached to the coupled carbon atoms. This relationship has been used to show that the magnitudes of a large number of couplings for various enriched 51 bile pigments reflect the bona lengths expected in the solid state . Consequently the bond delocalisation and bond character of the four pyrrole rings has been deduced for these in solution. Only a limited amount of data exists for the effect of substituents directly attached to the coupled fragment. The maynitudes of the changes are rather small in saturated systems but increase for unsaturated systems. Results for the benzenes suggest that substituent effects over longer distances are difficult to detect. Orientational effects of substituents are not well documented but appear to be small, except in certain cases.
4.2.2. Long Range Couplings These have been reviewed recently6 and only their use will be illustrated here. Empirical observations mentioned above (4.1) for the geminal couplings in mono13 58 and appear to saccharides52 are also found in the l- C enriched 2-amino-2-deoq sugars offer a viable method for configuration determination in these ccenpounas. 3 Although Jcc has been investigated at considerable length theoretically and 44 experimentally in model systems , the actual use of their values in larger systems is somewhat limited. The conformation of the pyrrolidine ring in proline and thyrotropin releasing factor (TRF, 2,
The values of these of nearly zero and 3.9 Hz for TRP correspond to angles (CO,CQ,C@,CY) aa
(ca,c$,cY,ti)of
about
9o”
and + 3o", using the theoretical curves for 2-butanol and
butanoic acidjo. These define a q-end0 puckered pyrrolidine ring and agree with the In contrast the value of 3J for free COCY proline of 1.5 Hz is in complete agreement with the known existence of an equilibrium of c crystal structures of peptides containing proline.
rapidly interconverting puckered forms. These results must be treated with caution, however, as no account was taken of the contribution of alternative coupling paths through the 61, 62 . Values of 3Jcc nitrogen of the ring. Similar problems are found in other studies 63 in the open-chain amino acids, asparic and glutamic acids , show strong conformational dependences. Comparisons were attempted with INDO MO calculations, but only reasonable correlations were found with the fully protonated species. Using these, however, values of the rotamer populations were predicted in agreement with those based upon 3JHH and 3JcH values.
The results do show that large substituent effects are operative and must be
taken into account before reliable conformational predictions on the basis of 3Jcc can be made.
Thus a set of values for gauche and anti 3Jcc are not generally applicable in the
amino acids.
Victor Wray
186
3JCC
is found in an attempt to assess the conformation 64 about the glycosidic bond in various disaccharides using 3JCH and 3JCC values . Here the 3 requirement of a dihedral angle dependence of JCC across oxygen is less secure. A further example of the use of
The possibility of using long-range couplings to determine side-chain conformation in sterically-hindered aromatic compounds seems quite promising. Two- and three-bond couplings have been shown to reflect the orientation of the carbonyl group in various 65 hindered aromatic carbonyl compounds . The results for various benzene, naphthalene and pyrene derivatives are shown in Table 3 with the nomenclature referring to the two possible planar conformations shown.
Table 3.
Two- and three-bond coupling trends in hindered aromatic carbonyl compounds.
b
a
a *J b c *J d 3
‘J;;-;‘~)
B
c\ d
Ketones and aldehydes
*J 3J
Acids and derivatives
4.3. The use of
‘-
(s-U J(t,s-t)
C
2J
(s-t)
)
> tt,s-t)
*.J (s-c) 3J
ctrs-c) 2 J(s-t)
(s-c) ) 3 J no regularity
Biosynthetic Applications
13 C-enriched precursors has become increasingly important as it is usually
possible to determine the positions of their incorporation in biosynthesised materials by 13 C NMB spectroscopy. AS such, this technique is largely replacing the time-consuming degradations required in 14C- labelling experiments.
4.3.1. Correlations in the Enrichment of the Interacting Nuclei in the Substrate with that in the Product From a knowledge of the enrichment pattern in the substrate and by establishing the 13 C enrichment of the product, by the recognition of one bond and in 13 some cases long-range couplings in the C spectrum, information can often be obtained correlation in the
about the intermediate steps in a biosynthetic pathway. Labelled acetate has been used most often as it gives information about polyketide biosynthesis and can be applied in more complex systems, such as steroids and terpenes, where biosynthesis occurs from acetate via mevalonate. Doubly-labelled acetate gives information of the incorporation of intact units, while mono-labelled material relates the nature of incorporation of adjacent units. An example of such an approach is the incorporation of doubly-and mixed singly-labelled acetate into dihydrolatumcidin55 described above (4.1). Here the data in Table 4 indicate a head-to-tail incorporation of five acetate units into the product as shown.
187
Carbon-carbon coupling constants
Table
4.
Data and biosynthetic pathway for the incorporation of acetate into dihydrolatumcidin
Coupled nuclei from incorporation of labelled
\_J .. CH3’C02H
%
acetate: Double
Single (1:l mix) 3-4
_. &
4a-7a
O=F 4\
5-8
-0
3
2
l-7a
6-7
8-9
4a-5
In doubly-labelled acetate experiments it is usual to dilute the labelled precursor with unlabelled material so that only one molecule of enriched substrate is incorporated per molecule of product. This keeps the resulting product spectrum simple and can have diagnostic capabilities where an acetate unit is cleaved during a biosynthesis. Thus the spectrum of a pyrone metabolite, 2, showed a two-bond coupling between Cl and C7 and a labelling pattern as shown when diluted doubly-labelled acetate was used as substrate, 66, 67 . This establishing that Cl and C7 of the product were derived from the samemolecule labelling pattern together with those from the incorporation of mono-labelled acetates 0 CH3.C02H) and enrichment level measurements indicated that this acetate was &3'C02H, initially incorporated into a linear pentaketide precursor which undergoes rearrangement during biosynthesis as shown.
7 =
R02CJgY Biosynthetic pathway to aspyrone, 2
Victor Way
188
Further examples of the incorporation of labelled acetate are found in the accompanying Tables with the Appendix references 41, 46, 47, 52-55, 59-63, 67-69, 71, 81 and 85-87. The use of other labelled substrates has been more limited as these are often more 70, 71 68, 69 and phenylalanine costly and have to be synthesised. Doubly-labelled propionate I 69 72 have been employed along similar ane L[Me-l3C]methionine and singly-labelled pyruvate lines to the above. Incorporation of two differently labelled mevalonates into cholesterol and the resulting coupling patterns confirmed the biosynthetic pathway and provided additional evidence for a 1:2 methyl shift, from position 14 to 13, during the cyclisation of squalene 73 oxide to lanosterol . These results also gave unambiguous proof of the assignments of the 13 C signals for 16 of the 27 carbon atoms in cholesterol. 80 has involved the incorporation of 13C-enriched The elegant work of Battersby -et al. substrates at various intermediate stages, and the observation of carbon-c&bon couplings, has provided vital evidence of the biosynthetic pathway to protoporphyrin-IX. This and 74, 80 . related work on vitamin-B12 has been reviewed authoritatively recently
4.3.2. Quantitative Analysis of Multiplet Patterns Caused by,Carbon-carbon Coupling The occurrence of carbon-carbon coupling allows the amount of each enriched species of a particular substance to be determined from the quantitative analysis of the multiplet patterns of the various carbon signals in the mixture.
In the simplest cases of mono-
and di-Labelled compounds the integration of the pattern of adjacent carbons will give 57 immediately the degree of enrichment , provided differences in relaxation rates13, 75 and 76 nuclear Overhauser enhancements between the different species can be neglected. In complex cases of multiply-labelled compounds a statistical analysis of the multiplet patterns is necessary17. Such analyses can give useful information about biosynthetic pathways. An example 17 of this is the formation of lactate by glycolysis . Lactate produced by fermentation of an equimolar mixture of uniformly-labelled glucose to a 71% level and unlabelled material has 13 been examined by both mass spectrometry and C NMR spectroscopy. The former showed that 13 36.2% of the carbon atoms were C while the latter technique indicated that the lactate was uniformly labelled to 73% 13C. The difference between the two techniques indicated 13 that the C distribution was non-uniform with the lactate being an equimolecular mixture of unlabelled and 71% uniformly labelled material. This is consistent with a glycolysis pathway in which lactate is formed by direct breakdown of the glucose into two three carbon fragments. Alternative pathways such as breakdown into one carbon units and re-assembly into lactate would require both techniques to show 36% uniform enrichment. Other systems 17 have been studied in this way . Although the incorporation of labelled acetate has elicited numerous studies, detailed 77, 17, 67, 69 quantitative analyses giving biomechanistic information are rare . 4.3.3. pK Values of Amino Acids and Peptides values involving the carbonyl carbon of the carboxylate group of amino 79 acids63:J?:, 79 and the C-terminal residue of small peptides vary by 5 to 6 Hz on changing 1 the pH and reflect the pK of the carboxylate group. Other Jcc values vary by less than 1 Hz. For glycine, proline, alanine, valine, leucine and isoleucine 1JcOCa values of 53.5 and 59.5 +_0.5 Hz correspond to the C02- and CO H states respectively78. Consequently l2 the pK1 value of each amino acid corresponds to a J value of 56.5 Hz. coca
189
Carbon-carbon coupling constants
REFERENCES
1.
J.B. Stothers, "Carbon-13 NNR Spectroscopy," Academic Press, New York (1972).
2.
J-R. Llinas, E-J. Vincent, and G. Peiffer, Bull. Sot. chim. Fr., 2,
3.
G.E. Maciel in "Nuclear Magnetic Resonance Spectroscopy of Nuclei other the Protons,"
3209 (1973).
ed. by T. Axenrod and G.A. Webb, Wiley-Interscience,New York (1974). 4.
J.L. Marshall, D.E. Miiller, S.A. Conn, R. Seiwell, and A.M. Ihrig, Accounts Chem.
5.
R.E. Wasylishen, Ann. Rep. NMR, 1, 245 (1977).
Research, 1, 333 (1974).
6.
P.E. Hansen, Org. Magn. Resonance, 2,
7.
V.F. Bystrov, Prog. Nucl. Mag. Res. Spectroscopy, lo, 41 (1976).
215 (1978).
8.
J. Kowalewski, Prog. Nucl. Mag. Res. Spectroscopy, 2,
9.
F.J. Weigert and J.D. Roberts, J. Amer. Chem. Sot., as, 5962 (19671.
1 (19771.
10. R.D. Bertrand, D.M. Grant, E.L. Allred, J.C. Hinshaw, and A.B. Strong, J. Amer. Chem. sot., 94, 997 (1972). 11. K.D. Summerhays and G.E. Maciel, J. Amer. Chem. Sot., 94, 8348 (1972). 12.
J. Jokisaari, Org. Magn. Resonance, 2,
13.
C.G. Moreland and F.I. Carrol, J. Magn. Resonance, 11, 596 (19741.
14.
G.C. Levy and J.D. Cargioli, J. Magn. Resonance, lo, 231 (1973).
157 (19781.
15.
G.C. Levy and R.A. Komoroski, J. Amer. Chem. Sot., 96, 678 (19741.
16.
V. Wray, unpublished results.
17.
R.E. London, V.H. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., 97, 3565 (1975).
18.
K. Nagayama, P. Bachmann, K. Wuethrich, and R.R. Ernst, J. Magn. Resonance, 2,
133
(1978) and references therein. 19.
G. Bodenhausen, R. Freeman, G.A. Morris, and D.L. Turner, J. Magn. Resonance, 2,
75
(1978) and references therein. 20.
R. Niedermeyer and R. Freeman, J. Magn. Resonance, 0,
21.
R.R. Ernst, J. Magn. Resonance, 4_, 280 (1971).
22.
W.P. Aue, P. Bachmann, A. Wokaun, and R.R. Ersnt, J. Magn. Resonance, 2,
617 (1978).
523 (1978).
23.
D.M. Grant, J. Amer. Chem. Sot., E,
24.
H. Dreeskamp, K. Hildenbrand, and G. Phisterer, Mol. Phys., 11, 429 (1969).
2228 (19671.
25.
H.J. Jakobsen, T. Bundgaard, and R.S. Hansen, Mol. Phys., 11, 197 (1972).
26.
S. Sorensen, R.S. Hansen, and H.J. Jakobsen; J. Amer. Chem. Sot., 95, 5080 (1973).
27.
S.Aa. Linde and H.J. Jakobsen, J. Amer. Chem. Sot., 98, 1041 (1976).
28.
M.
29.
H.J. Jakobsen, T. Liptaj, T. Bundgaard, and S. Sorensen, J. Magn. Resonance, 26, 71
30.
P.E. Hansen, O.K. Paulsen, and A. Berg, Org. Magn. Resonance, i, 632 (19761.
31.
J.L. Marshall, D.E. Miiller, H.C. Dorn, and G.E. Maciel, J. Amer. Chem. S0c.1 97, 460
32.
B.C. Dorn and G.E. Maciel, J. Phys. Chem., 76, 2972 (1972).
33.
R.E. Carhart and J.D. Roberts, Org. Magn. Resonance, 2, 139 (1971).
Pomerantz, R. Fink, and G.A. Gray, J. Amer. Chem. SoC., 98, 291 (1976). c
(19771.
(1975)
34.
P.E. Hansen, O.K. Poulsen, and A Berg, Org. Magn. Resonance, L, 405 (1975).
35.
P.E. Hansen and A.Berg, Org. Magn. Resonance, a, 591 (1976).
36.
S. Sorensen, R.S. Hansen, and H.J. Jakobsen, J. Magn. Resonance, 14, 243 (1974).
37.
K.G.R. Pachler and P.L. Wessels, J. Magn. Resonance, 12, 337 (1973).
38.
T. Bundgaard and H.J. Jakobsen, J. Magn. Resonance, la, 209 (1975).
39.
D. Ziessow, J. Chem. Phys., z,
984 (1971).
Victor wray
190
40.
M.D. Newton, J.M. Schulman, and M.M. Manus, J. Amer. them. Sot., 96, 17 (1974).
41.
J.M. Schulman and M.D. Newton, J. Amer. Chem. SOC., 96, 6295 (1974).
42.
J.M. Schulman and T.J. Venanzi, Tetrahedron Letters, 1461 (1976).
43.
J.M. Schulman and T.J. Venanzi, J. Amer. Chem. Sec., 96, 4739 (1974).
44.
M. Barfield, S.A. Conn, J.L. Marshall, and D.E. Miiller, J. Amer. Chem. SoC., 98, 6253
45.
V. Wray, J. Amer. Chem. Sot., 100, 768 (19781 and references therein.
46.
M. Barfield, J.L. Marshall, E.D. Canada, and M.R. Willcott, J. Amer. Chem. S0c.1 -100,
(1976) and references therein.
7075 (19781. 47.
P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, 2, 649 (1977).
48.
F.J. Weigert and J.D. Roberts, J. Amer. Chem. Sot., 94, 6021 (1972).
49’.
F.W. Wehrli and T. Wirthlin,"Interpretationof Carbon-13 NMR Spectra," Heyden, London
30.
V. Wray and L. Ernst, unpublished results.
51.
V. Wray, A. Gossauer, B. Gruening, G. Reifenstahl, and H. Zilch, J.C.S. Perkin II,
52.
T.E. Walker, R.E. London, T.W. Whaley, R. Barker and N.A. Matwiyoff, J. Amer. Chem. SoC.,
(1976).
in press.
98, 5807 (1976). 53. 54.
G. Hoefle, Tetrahedron Letters, 347 (1974). P.L. Canham, L.C. Vining, A.G. McInnes, J.A. Walter, and J.L.C. Wright, Can. J. Chem., 55, 2450 (1977).
55.
H. Seto, T. Sato, and H. Yonehara, J. Amer. Chem. Sot., 2,
8461 (1973).
56.
C.E. Strouse, V.H. Kollman, and N.A. Matwiyoff, Biochem. Biophys. Res. Commun., 5, 328 (1972).
57.
N.A. Matwiyoff and B.F. Burnham, Ann. N. Y. Acad. Sci., 206, 365 (1973).
58.
T.E. Walker, R.E. London, R. Barker, and N.A. Matwiyoff, Carbohydrate Res., 60, 9 (1978).
59.
W. Haar, S. Fermandjian, J. Vicar, K. Blaha, and P. Fromageot, Proc. Nat. Acad. Sci. USA, 72, 4948 (1975). Barfield, I. Burfitt, and D. Doddrell, J. Amer. Chem. Sot., 97, 2631 (1975).
60.
M.
61.
S. Tran-Dinb, S. Fermandjian, E. Sala, R. Mermet-Bouvier, and P. Fromageot, J. Amer. Chem. Sot., 97, 1267 (1975).
62.
R.C. Long and J.H. Goldstein, J. Magn. Resonance, 16, 228 (1974).
63.
R.E. London, T.E. Walker, V.H. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., -100, 3723 (1978).
64.
D.Y. Gagnaire, R. Nardin, F.R. Taravel, and M.R. Vignon, Nouveau J. Chim., I,
65.
P.E. Hansen,
66.
T.J. Simpson and J.S.E. Holker, Tetrahedron Letters, 4693 (1975).
67.
M.
O.K.
423
(1977).
Poulsen, and A. Berg, Org. Magn. Resonance, 2, 649 (1977).
Tanabe, M. Uramoto, T. Hamaski, and L. Cary, Heterocycles, 2, 355 (1976).
68.
H. Seto, Y. Miyazaki, K. Fujita, and N. Otake, Tetrahedron Letters, 2417 (1977).
69.
T.C. Feline, R.B. Jones, G. Mellows, and L. Phillips, J.C.S. Perkin I, 309 (1977).
70.
E. Leete, N. Kowanko, and R. A. Newmark, J. Amer. Chem. Sot., 91, 6826 (1975).
71.
E. Leete, N. Kowanko, and R.A. Newmark, Tetrahedron Letters, 4103 (1975).
72.
A.M. Nadzan and K.L. Rinehart, J. Amer. Chem. Sot., 98, 5012 (1976).
73.
G. Popjak, J. Edmond, F.A.L. Anet, and N.R. Easton, J. Amer. Chem. Sot., 2,
74.
D.G. Buckley, Ann. Reports Chem. Sot., E,
75.
R.E. London, N.A. Matwiyoff, and D.D. Mueller, J. Chem. Phys., 63, 4442 (19751.
931 (1977).
392 (1977).
Carbon-carbon coupling constants
76.
R.E. London, N.A. Matwiyoff, V.H. Kollman, and D.D. Mueller, J. Magn. Resonance, 18,
77.
A.G. McInnes, D.G. Smith, J.A. Walter, L.C. Vining, and J.L.C. Wright, J.C.S. Chem.
191
555 (19751.
commun., 282 (1974). 78.
S. Tran-Dinh, S. Fermandjian, E. Sala, R. Mermet-Bouvier, M. Cohen, and P. Fromageot, J. Amer. Chem. Sot., 96, 1484 (1974).
79.
S. Fermandjian, S. Tran-Dinh, J. Savrda, E. Sala, R. Rennet-Bouvier, E. Bricas, and P. Fromageot, Biochim. Biophys. Acta, 399, 313 (19751.
80.
A.P. Battersby and E. McDonald, Accounts Chem. Res., 12, 14 (1979). APPENDIX The following tables comprise a comprehensive list of carbon-carbon spin-spin coupling
constants in a wide variety of compounds abstracted from the literature. The data have been compiled from the author's own records and from the literature found by CA Selects: Nuclear Magnetic Resonance (Chemical Aspects), which is produced by computer search of the Chemical Abstracts Information Base.
Most of the available data, up to the end of 1978, is tabulated.
The tables have been divided according to the formal hybridisation of the coupled carbons. Each table is arranged according to an index of molecular formulae and the conventional priority of elements has been adopted. Each table consists of (11 the entry serial number, with cross reference serial numbers in parentheses, (2) a literature reference number, (3) the molecular formula of the compound, (4) the structure of the compound, and 1 (5) a series of columns corresponding to the coupling.constants classified as to J (directly 2 bonded), J (geminal),nJ (vicinal and longer range). Although no attempt has been made to indicate the error in the reported values, early CW data are usually accurate to about + 1 Hz while with more modern data it is probably better than + 0.2 Hz, with the exception that in most biosynthetic studies, in which large spectral widths are used, digitisation limits the accuracy to 2 1 Hz.
LIST
OF
TABLE.5
A.
Both coupled carbons formally with sp3 hybridisation.
B.
One coupled carbon formally with sp3 hybridisation and the other with sp2 hybridisation.
C.
One coupled carbon formally with sp' hybridisation and the other is a carbon of a
D. E.
One coupled carbon formally with sp' hybridisation and the other with sp hybridisation. c) Both coupled carbons formally with sp' hybridisation (other than aromatic and carbonyl,
F.
Both coupled carbons formally with sp2 hybridisation (both aromatic or aromatic and
carbonyl function.
carbons).
olefinic carbons). G.
Both coupled carbons formally with sp2 hybridisation, one of which is a carbonyl
H.
One coupled carbon formally with sp2 hybridisation and the other with sp hybridisation.
I.
Both coupled carbons formally with sp hybridisation.
function.
victor
192
Table
A.
Serial NO.
Both coupled
Ref. No.
carbons
formally
Molecular formula
Wray
with sp3 hybridisation.
Structure
15
1
1
CH2Br.CH2Br
2
2
CH3.CH2Br
36.0
3
2
CH3.CH2C1
36.1
4
2
CH3.CH2F
38.2
5
2
CH3.CH21
35.8
6
2
CH3.CH2N02
35.7
7
2
CH3.CH20N0
38.1
8
3
9
4
CH3CH3 CH3.Hg.CH3
10
2
CH3.CH20H
=J
+38.9
34.6 +22.4 37.7
5 11
4
12
CH3.0.CH3
(-1 2.4
6
'2'6' C2H6Se
CH3.Se.CH3
0.8
13
6
C2H6Te
CH3.Te.CH3
0.2
14
2
C2H7N
CH3.CH2NH2
15
5
'jH4'12
7 16
5
18
5
5
C3H5Hr
C3H5C1
C3H51
7 19
8
20
'9
16.55
DC
Cl
7 17
35.0
Cl
C3H5N C3H503Zn
D
13.3 Br
13.9
D
Cl
D
I
12.9
CH3.CH2CN
33.0
CH3.cHOEI.C02Zn
37.6
bi2.CH2.CH2C)
29.54
(305) 21
10
4 t3;+, 2 24
10
25
11
'JH6'
C3H60 '3'6'2 '3'BS C3H7N02
CH3.C0.CH3 CH3.CH2C02H
34.8
kH2.CH2.CH2S
31.52
CH3.CH(NH2)C02H
(307)
26
2
CH3.CH2.CH3
27
5
CH3.CH2.CH20H
28
5
29
5
(3) (2) (1)
(422)
+16.1
CH .CHOH.CH3 (2? (1) CN
D
pH 1.2
34.1
6.4
34.9
11.1
35.2 33 +2 1,2
37.0
2,3
34.2 38.4
1,2
10.9
"J
Carbon-carbon
Table A.
(contd.)
Serial No.
Ref. No.
30
12
31
10
Molecular formula
couplAng
193
constants
2 J
lJ
Structure
nJ
(1)
0 d
=4H6
'qH6'
(309)
32
(2)
1,2
21.0
1,2
29.03
(2) (1)
13
'qH6'
As
above
As
above
29.11
(308) 33
5
34
5
D
(310) 35
10
28.5
(2)
(1)
(3) (2) (1) 5
C4H7Br
37
10
C4H7Cl
38
14
As above
rn$qYqYGHCl
C02H.CH2 .CHWH2)
29.91
2,3
26.82
1,2
29.6
2,3
27.1
1,2
30.10 27.10
1,2
36.5
pH 6.5 1,2
36.6
I,2
44.0
1,2
33.0
C02H pH 7
(1) (2)
(313) 39
1,2
2,3
(3) (2) (1) C4H7N04
10.05
C02H
C4H7Br
36
1,2
15
C4H7N04
As above
(314) 40
5
D3 (2)
'qH8
7 41
5
42
5
43
13
e
'4"s'
'4'8'
(1) (2) CH3.CH2.C0.CH3 (3) (2)
'qH8'
1,2
15.2
1,2
15.22
(1) 2,3
As above
35.84
(315) 44
2
'4'8'2
38.6
CH3.CH2CC0.CH3
(317) 45
16
C4HgBr
40.2
46
16
C4HgCl
40.0
17 47
18
C4H9F
(2) 48
13
(212)
C4HgN0
(1)
(1) (2) CH3$.CH2.CH3 N\OH (1) (2) CH3$.CH2.CH3 HONN
J.P.N.M.R.+
13/3--B
1,2
CH3.CH2.CH2.CH2F
1,2
33.54
1,2
34.24
.
4.3
194
Victor Way
Table A. Serial No.
(contd.) Ref. No.
49
Molecular formula
Structure
CH3.CHOH.CH(NH2).C02H
(319)
(1) (2)
50
(3)
CH3.CH2.CH2.CH20H
lJ
1,2
37.5
2,3
36.3
1,2
38.0
2J
1,3
CO.5
nJ
1,4
4.6
1,2
4.7
(4) (3) (2) (1) 51
16
52
2
53
16
.54
20
(CH3) 3COH'
39.5 -+1
CH3.CH2.0.CH2.CH3
38.9
(CH313CNH2
37.1 -+1
(3)
1,2
22
1,3
16
55
1,2
29.3
(322)
2,3
32.5
1,2
36.7
1,3
16.0
1,2
20.2
1,2
34.4
1,2
34.61
21 CN (1)
(2)
56
12
(2) (1) 57
12
Da (1)
58
5
(2)
o= 0
(323)
(2)
(1)
59
13
As above
(324) 60
18
61
13
CH3.CH2.CH2.CH2CN
(1)
(2)
(2) 62
o=
/OH
22
(326)
33.34
1,2
32.4
(1)
(3) (4)
(2)
(x
N H
63
1,2
N
(215)
pH 6.3
(1) CO28
23
OH (1)
2,3
30.7
3,4
33.0
1,2
39.6
(2) 64
14
(327) 65
C02H.CH2XH2.CElWIi2~.C02H (1) (2) (3)
15
As above
(328) 66
5
67
5
1,2
34.7
PH 7
2,3
34.2
pH 0.9
1,2
35.9
2,3
33.6
1,2
36.0
2,3
32.6
(3) 12) (1) OH 0 CH3.CH2.C0.CH2.CH3
35.7
(329) 68 (330)
13
As above
35.77
Carbon-carbon
Serial No.
Ref.
No.
69
11
(333)
15
70
16
Molecular formula
C5HllN02
'5'12
coupling
195
constants
(3)CH 3yH.CHm2LC021i (4)CH3 (2)(I)
2
lJ
Structure
rpH 1,2
0.9
6.9
32.1
33.2
.n J
J
11.1' 33.6
2,3
34.9
33.2
35.1
,2,4
34.6
34.0
35.2,
36.9 +1
m3)4c
24 71
5
72
25
'SH12'
CH3.CH2.CHOH.C!H2XH3 (1) (2) (3)
'gH12'
26 73
12
74 (21EQ (33W (450) 75
15
(CH3)2.CCfLCH2.CH3 (I)
c6sY~oN202
OH
37.9
I,2
38.5
I,2
18.2
I,2
34.6
f,2
32.3
I,3
2.4
I,4
1.9
13
I,4
3.88
1,4
2.37
(2)
.?,2 3Q.30
C6Bl~D
(3381
78
2,3
..N HO (1)
77
35.0
(2) (3) (4)
C6H8
(22CI
7(6
I,2
27
13
=6"10°3
C6H11No
2,3
32.97
2,3
36.5
3,4
37.3
3.6
40
I,2
31.6
I,2
34.67
I,2
38.8
I,2
35.8
3,5
2.1
(221) 79
13
'gH12
(222)
(451) 80
19
81
5
82
13
'sH12'
C6H120
'gH12'
(2) (I) As above
(6) 83
23
'6'12'5
I,2
36.45
2,3
32.20
3,4
32.8
I,3 co.5
0 I,2 45.8
1.5
2.3
1.6
3.5
p I,2
1,3
4.1
I,6
3.5
46.0
.-
Victor Wray
196
Table A. (COntd.) Serial
NO.
Ref. NO.
Molecular formula
"J
*J
lJ
Structure
(6) 84
28 H:O~(l)H (3) OH As
85
,
86
87
]
above
28 HO (31 OH CH20H
88
H:Ox(l,H) (3) M12LXl OH 89
90
11
(341)
C6H13N02
(3)(2) (1) CH3:CH.CH2.CH(NH2)C02H cB_
(4) (3) (2) (1) cH3-cH2~CELCH(NH2~C02H
91 (342)
CH3 (5)
92
1,s ~1.8
46.0
1,3 M3.5
al.2
46.3
1,3
0
1,6
3.3
5,6
43.1
1,s
1.9
3,6
3.7
p1,2
46.0
1,3
4.5
1,6
3.5 5.3
5.6
43.3
1,5
0
3,6
4.4
al,2
46.8
1,5
1.7
p 1,2 42.4
1,3
4.3
al,2
46.6
1,5
2.1
81,2
46.0
1,3
3.7
a 1,2
44.3
1,5
1.5
j31,2
43.8
1,3
2.4
al,2
44.7
1,s
1.7
$1,2
41.3
1,3
1.8
,PA
1.1 32.9
6.5 34.3
11.2 34.6
L 1,2 2,3
31.7
31.3
31.7
3,4
31.2
31.4
31.3
,3,5 c PH
35.3
34.9
34.7
1.0
6.9
1,2
32.5
33.7
34.0
2,3
34.5
34.0
34.1
3,4
34.2
35.2
35.1
,3,5
34.4
34.9
35.6
(5) (4) (3) (2) (1) PH 7.0
93
1,2 34.2
1,4 4.3
2,)
34.5
2,5
3,4
34.0
4,s
35.4
NH=C(NH2hH.CH2.CH2.CH2.CH@JH2)C02H (4) (3) (2) (1) l,2 33.7
(223) (344)
PH 7.6
94
2,3
34.1
3,4
35.8 39.9
m3)*CH.0.CHKx3)* 32
ll.l-
t
NH2.CH2.CH2.CH2.CH2.CH(NE2)C02H
(343)
95
46.0
p1,2
OH
H;om(l)H t
28
al,2
1,2
12.6
1,7 41.5
4.7
1,4 4.8
Carbon-carbon Table A. Serial NO.
coupling
197
constants
(contd.) Ref. NO.
Molecular formula
2J
lJ
Structure
"J
(7) 96
32
(4) (3)
I*7
40.4
3,4
29.8
(1) CB 3',4 3 to
97
k5
(234)
(1)
(346)
0
5
(4) 3',4 4.4
! d
(235)
r: (4) (3) (2) (1) HN.CH
99
.CO.NwH.CO
(348) pH 7.4
c?iiq
100 (349)
1,2
35.1
2,3
30.9
3,4
33.4
1,2
10.2
I,2
33.4
1,3
32.5
1,2
33.3 +i
3,4
34.2
(2) (3) 32
la (1)
(237)
(3)
(454)
(2) 0
103
22
(2)
(4
13
(l) (4) (3) (2) (1) NH2.CH2.C0.N.CH2CH2.CH2.CH(C02H) Tram
(350)
pH 6.6
104
34
105
13
(351)
106
CiS
1,2
32.2
2,3
30.5
3,4
33.2
1,2
32.4
2,3
30.3
3,4
33.7
As above (3) 0
(2)
(1) 0
13 7) 4) (5) (6) 4
(3)
(1)
2',4
3.0
3",4 Cl
(41
.(347)
102
3.5
2',4 cl
H
98
101
2',4
(2) OH
1,2
32.11
2,3
34.02
1,2
35.76
1,7
30.73
1,6
32.81
2,3
35.97
3,4
32.62
4,5
32.54
5,6
31.27
1,4
3.8
1,4
4.4
Wray
Victor
198
Table A.
(contd..)
Serial NO.
Ref. No.
107
13
Molecular formula
C7Hl 2’
(2)
108
35
(4)
C7H14
(7) a
109
36
110
13
CH3
As Above
35.7
1,7
31.35
1,6
32.35
2,3
34.1
3,4
31.85
4,s
32.40
5,6
31.70
4,7
30.9 33.5 32.9
3,4
30 210
1,7
36.0
1,2
36.0
(3)
35.19
(5)@ki:_
1,2
38.3
(2)
or
1,2
34.80
*J
or 35.3
2,3
1,2
(1) 19
1,2
2,3
(CH3.CH2.CH2)2C0
(353) 111
(1)
2 J
1J
Structure
35.05
I,3
(0.5
1,4
4.3
lr4
4.2
1,5 co.5
(3)
112
37
CH
c7H140 (5)
113
114
28
28
115
38
116
39
117
13
RF
d (4)
1,2
39.9
2,3
37.4
2,4
1.7
2,5
1.5
(3)
a 1,2
46.4
1,5 l-1.7
1,6
3.2
@ 1,2
46.8
1,3 w4.1
1,6
4.3
a 1,2
47.0
1,s
2.3
1,6
3.0
p 1,2
43.8
1,3
3.4
1,6
4.0
1,3
-17.49
23.06
1,s
0.51
2,5
40.3
1,6
2.88
2,6
46.9
7,8
40.9
2,8
1.04
6,8
4.15
C7H1406
'7'14'6
'gHZD12
(3) CH3.CH2.C6H5
34 +1
above
As
33.83
(242) (540) 118
39
119
38
1,3
(5) (6)
120
19
38.1
CH3.CHOH.C6H5
CA3
CH3
CH3
cH3 (3)
(8)
1,8 eO.5
'gH14'
(6)
(2)
Carbon-carbon
Table A.
coupling
199
constants
(contd.)
Serial No.
Ref. No.
121
25
Molecular formula
Structure
*J
2,8
'8?4'
41.1
26
nJ
2J
I,8
2.7
4,8
0.9
3,8
1.5
6,8
1.8
7,8CO.35 5,8<0.35 122
123
124
125
40
40
12
22
'sH14'
'8'14'
C8H16
(2)
(1)
pH 6.7 o 41
(609)
CH3 41
(5) (4)
A? 0
O
C9Hlo04
(610) CH3 42
1.0
2,s
2.4
2,6
1.9
2,8
2.4
2,7
0.7
3,6
0.4
5,6
35.6
1,6
1.7
6,7
36.3
4,6
2.2
6,8
6.1
1,2
29.8
3,4
36.0
(3) (4,s) 1,2
34.5
2,3
33.0
3,4
35.2
3,s
34.7
4,s
32.2
4,s
32.2
I,2
33
1,2
33.0
(4) (5)
o\
(246)
128
2,4
34.7
0
C9Hlo04
(245)
127
36.0
C8H16N203
(367)
126
I,2 2,3
c9HllNo2
z?
0 C6H5.CH2.CH(NH2)C02H (1) (2)
(247) (371) (611) 129
15
c9HllNo3
~R0.C6H4.CH2.CHWi2)C02H (1) (2)
(372) (544) 130
41
(373)
131
CgHIINa05
cH3==Jyc Ni
5
3,4
37.0
34.5
13
(248) (545) HP 132
43
(375) (376) (459) (460)
44 (5) O
(9) 4,s
41
8,9
44
Victor Way
200
Table A. Serial No.
133
(contd.) Ref.
Molecular
45
lJ
Structure
formula
NO.
H
(249)
2,3
35.4
3,4
43.3
“J
*J
4,da 30.7 da,?a 46.0 134
19
1,8
4,0 (0.5
5,8 co.5
7,8
4.5
8,9
4.57
(9) cH3 (81
135
CH_OH 2 Tram (6)
NH2.CH2C0.N (4)3 (5) ~0.NH.CH2C02H Cis pH 1.0
(3783
136
(7)
22
40
4,5
31.8
5,6
30.6
6,7 4,s
33.1 31.3
5,6
30.3
6,7
33.6
4,7
4.3
1,2
36.7
2,4
1.2
2‘5
1.7
2,3
35.4
2,6
1.7
2,8
1.8
2,9
40.2
1,2
36.4
1,3
1.8
1,4
1.7
1,lO 0.7
1,8
1.3
(61
137
2
138
46
2,3
37.5
(250) (379) (553) (612)
47
3.4
37.5
139
13
H (41 . ~. KS3)3C.C6H5
35.54
(251)
(554) 140
44
(382)
141
48
4,5
41.0
8.9
44.2
1,2
34.5
1,9 co.5 142
48
As 141 above with OH
1,2
33.9
replaced by NH2
1,3
1.5
1,4
1.6
1,10*0.5
1,8
1.3
1,9 co.5 143
48
As 141 above with OH
1,2
31.0
replaced by NH2.HC1
1,3
1.3
1,lO eO.5
1,4
1.6
1,8
1.5
1,9 *0.5 144 (383)
13
(4)
=10~1,3~ (CH3) C (8) ?71=
(6) 2,3
30.76
2.7
3.69
3,4 4,7 7,a
36.1 35.04 35.75
2,5 e2.4
201
Carbon-carbon coupling constants
Table A.
(contd.)
Serial No.
Ref. No.
145
22
Molecular formula
C10n19N304
~,.~~~,.CO.NR;$;~~.CB(C~~)~
2,3
34.4
C0.NH.CB2.C02H
3,4
32.8
pH 1.0
4,5
34.1
4.6
34.6
(384)
146
l3
2J
lJ
Structure
c1oH2o
147
49
C10H22
KH3.CH2.CH213CH
148
48
'llH16'2
As
(4) (3) (2)
1,2
33.95
7,8
35.18
1,3 0.8
1,4
3.8
1,3
1,4
1.4
(1)
141 above with OH
1,2
32.1
1.2
1,lo co.5
replaced by C02H
(3971
"J
1,8 CO.5 1,9 co.5
149
18
150
18
C11H17C1
As
149 above with Cl
1,4
3.4
1,4
3.7
1,4
3.2
1.4
3.27
repLaced by I 151
13
38.5
(255) (5551 152
AS 149 above with Cl
18
replaced by H 153
AS 149 above with Cl
18
replaced by OH 154
19
2,lO 41.4
1
25
1,lO 1.4
4,lo 0.8
3,lO 0.8
6,lO 0.9 7,lO 50.4
26
8,lO 5.4 6
155
25 26
(CH3) 3C
50 156
(393) (6281 (257)
HtH3 1CH
26 50
157
lo,11 2.6
51
1,2
41.6
1,3
2.25
1,2
40.5
1,3
2.2
5,?
35.02
KH3j3C_Oi
C12H12N203
(7)
1,4
3.2
.
Victor
202
Table
A.
(contd.1
NO.
Ref. No.
Molecular formula
157a
124
'12"12'5
Serial
Wray
Structure
lJ
"J
2J
8,ll 40
(257a) (393a) (461b) (628a) 158
18
C12H17N
replaced 159
77
I,4
AS 149 above with Cl by CN 7,a
28.1
7,8
32.6
1,2
37
'14"12'
i262)
160
77
C14H14
(263)
161
52
'14"22'2
(264) rm
(462)
162
4,14 7,8 36 32
53
(267) (572)
-~
11m,
163
54
(268)
0
(404) (463) 0
164
$ 0 8
C15H1804
55
=15"20'3
H
1
7,a
37.5
9,lO
35.5
lo
9
11.15
2,lO
35
39.7
(270)
3,ll
15.3
(464)
6,7
36.6
7,15
35.1
3,ll
15.3
7,15
35.1
As 165 above with CH3(15)
2,10
38.1
replaced
3,ll
13.7
7,15
36.6
4,14
36
(273)
5,6
33
(467)
7,8
32
165
55
'15"20'3 15
(271) (465)
166
55
'15"20'4
(466)
167
(648)
52
by CE120H
'15'22'
3.4
Carbon-carbon
Table A.
Ref. NO.
168
29
Molecular formula
171
52
52
52
(405)
52
(472)
173
174
52
52
15
2
(473) HOW@
::
47
1,s
2
1,6
3.5
p1.2
48.8
1,3
4.6
1,6
3.1
37
5,6
36
7,0
33
1,2
36
4,14
36
5.6
35
7,8
33
4,14
37
5,6
35
7,8
32
lo,15
38
1,2
36
4,14
38
5,6
36
7,0
33
5,6
41
7,8
34
IO,15
38
11,12
40
4,14
45
1,2
37
4,14
37
5,6
35
lo,15 52
‘15’26’2
(474) HO MI
176
29
C16H22011
36
4.14
7.8
175
"J
2J
al,2
1,2
CHO
(470)
172
I,
Structure
(468)
170
203
constants
(contd.)
Serial NO.
169
coupling
33 38
1,2
37
4,14
37
5,6
35
7,8
33
lo,15
38
Q 1,2
46.7
3,6
3.3
5,6
45.1
1,6
3.8
1,6
4.3
3,6
3.8
p 1,2
49.4
5,6
44.5
1,3
5.2
204 Table A.
Victor Wray (contd.)
Serial NO.
Ref. No.
176a (405a)
34
Molecular formula
1j
Structure
2j
C16H23N604 ~Glu-His-Pr°-NIt2r)Proline residue .
1,2 (30.5)
©
2,3 3,4
30.1 33.6
1,2
31.5
1,4 % /
177 (476) (653) (406) (577)
56
C17H17CIO 6
2,3
30.2
3,4
33.2
1,2
33 +i
3.9
0 CH30 C1
178
2O 57
C17H2oO 4
ICH3 1,5 +53.2
~ 3 CH3CH202C ~
CO2CH2CH3
H 179
48
C17H21NO
180
52
C17H2604
1,3
-5.4
1,2
33.3
3,5 -2.4
H
C6H 5 As 141 above with OH
1,3
1.5
replaced by NH.CO.C6H 5 4,14
44
7,8
34
IS
. ~ ~ ''""~ 1 ~ ~ 181
58
C17H2804
.~OCO'CH3 12 0
10,15 38 11,1240 6,7 7,8
33.6 35.1
CH3CO.O 182 (280)
59
C22H2oO10 OO
(408) (481)
OCH 3
Mo % HO ~
(660)
7
2,8
35
2,3
34
4,5
39
6,7
32
3,4
34
. "r-"3;" PhCO
183
60
c23.2605
(282)
(4o9)
Q
0
~
(482) (661)
nj
~ 2 0 O
1
"
~"3_ ~ 3 L' 15,16 36 IA ~"3 35 ~ -~ ; 6 14,1s
18,20 12
1,4
1.4
Carbon-carbon
Table A. Serial NO.
184
coupling
205
constants
(contd.) Ref. NO.
Molecular formula
Structure
lJ
61
6',7'
2J
nJ
34.4 34.7
(284) (484)
185
62
4,14
40.5
(285)
5,6
(410)
8,12
36.5
(663)
186
77
C26H200
34
9,ll
34.5
lo,13
38.5
1',2'
36
7,8
28.1
7.8
33.8
7.8
41.3
(286)
187 (287)
188
77
'26'22'2
(288) C(OH)Ph.C(OH)Ph (8)
189
63
CH3
'27'42'7
(289) ='2"3
(486) (664)
190 (290) (411) (665)
191
64 9 V2CH3
2v3 4,16
37
5,6
35
9,18
34
10,19
36
13,14
39
37
5,6
41.1
7,8
35.9
9,10
44.3
11,12
44.0
13,14
38.9
12,17
34.4
8,16
34.9
3',4'
34.6
12,16 ~4
Victor
206
Table A. Serial No.
192
Wray
(contd.) Ref. NO.
Molecular
29
lJ
Structure
formula
c28E38019
a1*,2'
Ac&%$jOAcPll,2f
29
46.7
1',5'
1.5 1',6'
3.3
49.2
1;;x;
;.,
:::
C__H__O._
a1*,2'
46.4
1',5'
1.5 1',6'
3
1.5
I',5
2
1',6'
3
1',5
1
I',4 pl',Z'
49.2
1',3'
4
11,s' 1.5 1',4 194
IS,16
86
40.0
(291) (412) (487) CH3C02
0CH3 195
66
37
C29H4
(292)
37
(488)
35
(666)
34 36 39 R2° 14 -G-IO R2;H
Rl Rl = B 196
67
I R2 = CHOJ
Same values
=30*48'3
(413)
.
(489)
for both
:_
2,3
37 21
r-l
4,24
38 +2
5,6
35.5
8,26
37.5 22
9,11
36 22
lo,25
38 22
14.27
37 22
24
197
6
=3#48'4
"J
::::
OAc
OAc 193
*J
As 196 above with 2oOH
(415)
and 3oOH, methyl
(491)
at 19 migrated
group
to 20 29 n 20l *
2,3
37.5
4.24
35.5 +2
5,6
34.5 52
lo,25 9,ll 8,26
35.5+2 34.5 36
14,27
35.5
20,30
36
1.5
Carbon-carbon
Table A. Serial No.
198
coupling
(contd.) Ref. No.
Molecular formula
67
'3OH48'4
2,3
As 196 above with 2aOH
(414) (490)
5.6
38 36 22 36
8,26
37 22
9,ll
36 +2
lo,25
36.5 22
14,27
36 +2 37
2,3
199 (492)
69
nJ
2J
15
Structure
4,24
200
207
constants
9.11
34.5
10,19
32.5
20,21
32
23,24
35.5
5,lO
39.7
;IL 3" I-
(493)
6P11
_@j&$&j2
36
(584) (667) OH 201
70
(296)
71
CH30C0
C42H70011
'
b 3,4
35.8 23‘24
34.8
5,6
32.9 25,26
36.9
(416)
. 201a
119
4,4'
34
(296a) (416a) (498a) (670a)
120
8,30
46
R
(!-R2)3CHKH3).(CH2)3.CH(CH3) 2olb (269b) (416b) (49833)
119 120
C55H72MgN405
As above but with R = CH 3
. 0x2)
3
.CH (CH3,1 2
4,4'
34
8,30
46
Victor Wray
208
Table
B.
One coupled carbon formally with sp3 hybridisation and the other with sp2 hybridisation.
No.
Ref. No.
203
13
Serial
Molecular formula
lJ
Structure
C2H5N0
48.42 N-OH 40.51
CH3. /H f .-N HO 204
I
72
C3H5C1
205
72
C3H6
1,2
48.5
As 204 above with Cl
1,2 41.9
replaced by H
(436) 206
CH3.CC1=CH2 (1) (2)
(435)
13
C3H7N0
(1) (2) (3) CH3.C/=H3 II
1,2 49.3 2,3
41.4
&OH 207
72
C4HsN
200
72
'qH6'2
72
C4H7N0
As 204 above with Cl
1,2 45.0
As 204 above with Cl
1,2 43.8
replaced by CONH2
(443) 210
1,2 44.9
replaced by C02H
(442) 209
As 204 above with Cl replaced by CN
(440)
72
'qH8
As 204 above with Cl
1,2
41.8
replaced by CH3
(444) 211
17
212
13
=qn9+ C4HgN0
(48)
25.1
KH3j3C+ (1) (2)(3) CHfC/CH2CH3 II HdN CH3*i/CH2CH3
1,2 41.5 2,3
48.2
1,2 48.8 +1 2,3
40.6
%H 213
72
?3HE02
214
72
(447) 215
As 204 above with Cl
1.2 44.6
replaced by C02CH3
(446) C5H802
As 204 above with Cl
1,2
51.2
1,2
38.9
replaced by 0COCA3 13
0
51 2
(61)
1,5 45.7
q OH
216 (448)
13
(1)CH3 (2)(3)CH3(4)
1,2 42.6
>--/ (5)CH3
3,4
44.3
2.5
43.2
2J
"J
Carbon-carbon
Table B.
209
constants
(contd.)
Serial No.
Ref. No.
217
72
Molecular formula
Structure
15
*J
nJ
As 204 above with Cl replaced
(449) 218
coupling
by 0CH2.CH3
15 3,4
(74) (336)
51.0
3,5
5.9
pH 0.8
(450) 218a
219
122
As above
PH 1
3,6
2.1
PH 8
3,6
4.3
13
1,2
40.1
OH
220
13
(75)
221
05 *-OH
13
6 21
(78)
NPH
1,2
39.02
1,6
47.95
1,2
30.7
1,6
46.2
(4) (5) 222
13
'gH12
(79) (451) 223
15
C6H14N402
(93)
1,2
42.5
3,4
43.3
2,6
43.1
NH=C(NH2)~.~2.C~2.~~2.~~(~2)~ (6) (3)
3,6 ~0.5
H
(344) 224
225
73
C7H7C1
13
;H2Cl
1,2
AS 224 above with Cl
5 (I 0
(525) 226
o,'d2
replaced 74
by
401 3 2
47.10
1,3
3.69
74
228
74
1,7
46.85
6,-l 3.48
:H3
I
1,7
43.55
by NO2
1,2
43.45
NO
229
13
(527)
I.P.Z.M.R.S.
13 3-c
C7H7N02
As above
0.69
3,7
2.42
5,7
3.55
4,7
0.66
F
AS 226 above with replaced
4.23
1,s 49.3
I 227
l,4
43.65
2,7rrl.o
3,7
1.53
6,7
2.20
5,7
3.60
4,7
0.50
1,3
3.46
lr4
3.87
.
Victor
210
Table
B.
(contd.) Ref. NO.
Molecular formula
230 (529)
74 73
'7'8
(530)
39 49 13 75
231
73
Serial No.
1,2
0
C7H80
4
J
233
5
77 74
74
1,2
44.19
1,3
47.72
3.10
1,4
3.84
1,5
0.86
1‘4
3.95
1,s
0.73
2,7 ~1.0
3,7
1.64
6,7
5,7
3.87
4.7
0.62
1,4
4.19
1.3 +3.45
3
o2
nJ
*J
lJ
Structure
76
232
Wray
k20H
1,7
45.00
C7H9N
1,2
45.91
1,3
2.47
3.17
C7H9N 1,s so.56
234
33
3.4
37.5
2,4 *l
3,4
37.6
2,4
1.1
C7H10N0
(97) (346) 235
33
c7H10N0
(98)
4
0
ti
(347)
ii
236
49
C7H12
o3
4
5
237
13
'7'12
As
above
7
1 6
(102) (454)
238
239
13
74
C7H13No
0
2 1
/OH
13
(117) (540)
13
2.40
6,7
5,7
3.87
4.7
0.73
2.0
3 1,7
41.4 21
1,6
39.7
2,3
41.1
1,2
39.45
1.7
47.09
1,7
43.82
1
43.30 CHO 1,2
42.5
'EH9*
(539)
242
3,7
0.8
1,s
C8H80 "3
13
2,7 ~0.8
1,3
40.1
C8H7N
(537)
241
5.8
44.8
(426)
240
1,4
1,7 1,6
45.5 'EHIO
2.83
Carbon-carbon
Table B. Serial NO.
coupling
211
constants
(contd.) Ref. NO.
243
13
244
72
245
Molecular formula
2J
lJ
Structure
nJ
44.2
l,2
42.9
41
2.3
38.1
41
2.3
37.1
42
1',3
43.6
CH3.C(C6H5)=CH2 (1) (2)
(126) (609)
246 (127) (610)
247
2',3
2.5
3',3
3.5
4',3 Cl
(128) (371) (611) 248
43.27
13 (CH3j2CH
(131) (545) 249
45
(133)
250
46
(138)
47
4a,5
57.9
7,7a
43.6
8.9
44.8
4,4a
40
(379) HO
(553)
OH
(612) 251
43.2
13
(139)
KH313C
(554) 252
49
(8) (9) (10)
(1) (2) 253
78
4,5
41.6
2,4
0
4,8
43.0
4,6 4,9
I,4
4.0
2.0
4,7
3.6
2.3
4,lO
3.8
(5) (6) (7) 1,ll
44.73
2,ll
3.15 3,ll
4.00
g,ll
2.12 8,ll
3.63
lo,11
2.48
4,ll
1.00
5,ll 0.35 6,ll ~0 7.11 0.40
Victor
212
Table
B.
Serial No.
254
Wray
(contd.) Ref. No.
70
Molecular formula
CllHIOo
As
1,ll
253 above with CH3
replaced
2J
IJ
Structure
47.60
by CH20H
"J
2,ll
2.75 3,ll
4.29
9,ll
3.54 8,ll
2.99
IO,11
2.55
4,ll
0.87
5,ll NO 6,ll e0 7,ll MO
0
254a
7,8
123
42
(461a) (62la)
255
42.8
13
(151) (555)
256
79
257
51
I,2
I',5
40.46
5,2'
2.91
2.1
5,3' Cl.0
(157) (393) (628) 257a
124 13,14
(157a) (393a) (461b) (628a)
258
80
1,6
78
9,ll
42
40.11
2,6 3.97
3,6
3.00
3.75
(55eo 259
260
261
42.25 9,lO
4.50
9,2
9,1
3.12
9,4
2.50
9,3
0.50
1,3
4.52
1,4
1.02
I,2
78
3,ll
81
3.21
42.1
n
(563)
K??iF C14H120 H
3
(641)
262 (159)
77
@$f2+@ s line widths
I,7 +56.6
I,8 -1.1
2,8 +l.S
2,7 +3.8
3,7
4.15 0.6 § 0.8 §
Carbon-carbon
Table
B.
coupling
213
constants
(contd.)
Serial No.
Ref. No.
263
77
Molecular formula
Structure
lJ
1,7 +43.5
C14H14
(160)
2J
nJ
1,8 -1.9
2,8 +2.2
2,7 +2.5
3.7
3.2
3,8
1.1' 0.8'
5 line widths 264
52
5,6
C14H2202
42
(161) (462)
265
82
1,ll
C15H12
44.6
(568)
266
82
C15H120
replaced
(570) 267
11CH3 As 265 above with CH3
53
1,ll
2.2
by CCH3
C15H15D9
1"sI
OH
435.
(162) (572) bH 268
54
1,2
C15H180
51.5
(163) (404) (463)
269
83
270
55
2,ll
4,13
(164)
44.25
5,6
47.3
5,6
45.7
(464)
271
55
(165)
4.13
44.25
2,2'
46.7
(465)
272
33
13
C15H21N05 CH2.CH2.C02CH3 2 CCH b
C02C,(CH3) 3 H
273 (167) (467) (648)
52
C15H220
lo,15
42
2.4
Victor Wray
214
Table
B.
Serial NO.
274
(contd.) Ref. NO.
Molecular formula
1,2
82
"J
2J
15
Structure
2.0
(575)
275
5,6
04
34.0
(652) ,
276
3’,4
33
3.1
2’,4
4.1
2” , 4 (1
(477) (654)
p = CH2.CH2.C02CH3
ly
277 (478)
3’,4
3.1
2'
4
p = CH2.CH2.C02CH3 278 C6H5CH2.C02
4,4’
50.0
7,7’
40.6
A 279
85
(578) (658)
280 (182) (408) (481) (660)
HO
281
33
282
60
(183) (409) (482) (661)
7'
‘22”30NZo5
C23H2605
4.8
3” I 4 Cl
(655 1
(479)
2’,4
r 8
4
3
2
0
14 13
2,3 13,14
42 44
4,6
14
215
Carbon-carbon coupling constants
Table B. Serial NO.
283
(contd.) Ref. No.
61
Molecular formula
Structure
lJ
I',2
C23H30C1N305
2J
"J
47.6
(483) S'
284
61
As above with C9' detached
C23H32C1N305
from pyrro&e ring
(184) (484)
5
P 5
285
62
*
c25H3006
(185)
HOI*
(410) (663)
0 286
17
(186)
77
-. z
5’
(’
5',6'
37
0
0
s line 287
1',2 47.5
1,l +57.8
1,8 -0.5
2,8 +1.25
2.7 +2.5
3,l
3.9
3,8
0.6'
4r7 1.2
widths
4.83
1,l +43.1
'26'22
(181)
1,8 -0.6
2,8 +2.0
2,l +2.2
3.7
@HPh.FPh+)
4,7
5 line widths 288
77
C26H2202
AS 287 above with H's on
0.75§
4.83
1,7 +48.5
Cl and C8 replaced by OH
(188)
3.3
3,8 0.55'
I,8 +0.3
2.8 +0.9
2,l +1.8
3,7
3.2
groups
3,8
O.l=
5 line widths
4,83
4n7 1.09 289
63
C27B4201
(189) (486) (664)
290 (190)
64 C27~460*02~~~3
(411)
(665)
OH
6',9'
52
Victor
216
Table
B.
Serial NO.
Wray
Icontd.) Ref. No.
Molecular formula
"J
2J
lJ
Structure HO/
291
86
(194) (412)
7,8
50.3
9.10
44.8
13,14
49.2
6',9'
52
(487)
292
66
(195) (488)
Rl =CHO
(666)
293
R1 =H
R
2
= H
R2=CH0
Same value I forboth.
07
(585) (666) =R
m
cH3
H
CCH3 OH
294
7',7'
33
47.5
3',4
2.4
16 , 17' 0 to 3
(494) (669)
2',4
4.3
3",4
cl
16,18' 4.1 16 ,18" Cl
P = CH2.CH2.C02CH3
295
33
7,7'
48.2
P
(416)
2',4
71
4.5
3" ,4 (2 16,18'
(670)
(201)
3.4
16,17' N3
(495)
296
3',4
C35H44N406
c42H70011
=
CH2.CH2.C02CH3
See serial No. 201 for
17,18
50.1
structure
19,20
44.6
3.7
217
Carbon-carbon coupling constants
Table B. Serial No.
296a
(contd.) Ref. No.
119
(201a) (416a) (498a) (67Oa)
120
29633
119
Molecular formula
'55H70"gN4'6
2J
Structure
See serial no. 201a for
C55H72MgN405
= adjacent ring carbon
See serial no. 201b for
Cr = adjacent ring carbon
Table C.
4,C,
42
23,24
50
3,C,
45
1,c, 44
structure
(201b) 120 (416b) (498333
l,C, 44 5,c, 44
structure 'r
3
5,c,
44
4,Cr
42
23.24
50
One coupled carbon formally with sp3 hybridisation and the other is a carbon of a carbonyl function.
Serial NO.
Ref. NO.
Molecular formula
lJ
Structure
297
88
C2H3Br0
CH3.COBr
54.1
298
88
C2H3C10
cH3.ccxx
56.1
299
89
C2H3C102
CH3.CCOC1
300
88
C2H310
CH3 .COI
46.5
301
88
C2H3Na02
CH3.CO; Na+
51.6
302
88
CH3.CH0
39.4
303
88
C2H40 C2H402
2J
-2.8
+56.7
CH3.C02H
118 304
22
305
9
pH 6.4
53.6
C2H5N02
CH2WH2)C02H
C3H503Zn
CH3.CHOH.C02Zn
55.8
CH3.C0.CH3
40.44
(20) 306
5
(22)
13
C3H60
88 307 (25)
11
CH3.CH(NH2)C02H
76
308
5
(32)
13
309
10
(31)
C3H7N02
0 'qH6'
=qH6'
Iis
pH 1.2
59.2
6.4
54.1
11.1
52.7
1.6
cl+
29.7
9.5
above
29.52
9.66
"J
Victor
218
Table Serial NO.
310
C.
(contd.) Ref. No.
5
Molecular formula
78
72.5
D-
C02H
'4'6'2
(588)
7.30
H
CH3
'qH6'2
nJ
2J
lJ
Structure
(34) 311
Wray
H *
C02H
(1) 312
90
C4H7N02S
(2)
, 313
14
C4H7N04
(38) 314
15
C4H7N04
6.1
2.4
8.3
4.75
C02H.CH2.CH(NH2)C02H (1) pH 7
(3) (2)
(4)
As above
pH 6.5
(39) 315
88
(43)
13
316
37
'4H8'
CH3.C0.CH2.CH3
(1) (2) (3) '4H8'2
1,2 1.4
pH 1.3
O2H f-Y
1,2
53.6
3,4
50.4
1,2
53.8
3,4
50.6
1,2
40.4
2,3
39.3
CH3.CH2.CH2.C02H
55.4
CH3.C02.CH2.CH3
58.8
52.2
2,4
1.3
1.8
3.6
91 317
88
'4H8'2
(44) 318
88
CH3.C0.N(CH312
319
15
CH3.CHOH.CH(NH2)C02H
(49) 320
58.8
2.3
pH 0.7 92
'5H6'2
+1.84
CH3.C=C.C02CH3
(424) (671) 321
93
'5'6'2
21.90
As above
(424) (672) 322
15
pH 1.0
C5H7N03
(55)
0
x-3 N
2 1
1,2
59.9
4.5
45.0
2.5
7.5
1,4
1.1
1,2
7.50
1,3
1.54
C02H
H
323
5
c=
'5H8'
(58)
324
13
'5H8'
37.2
0
As
above
37.29
(59) 325 (589)
78
'5H8'2
(2)Qi3%H
(3)CH3
C02H
(1)
Carbon-cqrbon
Table Serial NO.
326
C.
219
constants
(contd.) Ref. NO.
Molecular formula
Structure
34 22
lJ
pH 6.3
CL 1
(62)
coupling
nJ
*J
1,2
53.5
1,2
53.4
1,4
1.5(1-I
4,5
50.7 pH 7 I
2,5
3.0(1-j
2,5
4.4(2-j
1,4
1.5
1
N
OqH
H 327
14
(64)
328
C02H.CH2.CH2.CHWH2)C02H (5)
15
(4) (3) 12)
As above
(1)
pH 0.9
(65) 329
5
1,2
59.6
1,4
1.5
4.5
53.8
2,s
3.4
1,4
3.5
CH3.CH2.C0.CH2.CH3
39.7
(67) 330
13
AS above
3.91
39.27
(68) 331
91
CH3.CH2.CH2.CH2.C02H
1,2
55.3
1,3
1.7
1,5 co.3
(5) (4) (3) (2) (1) 332
78
333
11
(69)
15
334
78
1.5 KH3)2CE.CH(NH2)C02H
pH 0.9
59.5
6.9
53.5
11.1
53.1
3.31
2.4,l.O
CH30C0.~C.CCCCH3
2.31
(674) 335
13
38.29
336
15
59.8
(74) (218) (450) 337
5
338
13
o= 0
As
37.3
above
37.9
(76) 339
37
340
91
o-
56.5
CO2H
1.2
CH3.CH2.CH2.C02.CH2.CH3
57.9
(4) (3) (2) (1) (5) (6) 341 (90)
11
(CH3)2CH.CH2.CHWi2)C02H pH 1.1
59.5
6.5
53.6
11.2
52.6
0.6
2.7
1,3
1.9
1,4
3.5
1,5
2.5
1.6
2.3
Victor
220
Table C.
(contd.)
Serial No.
Ref. No.
342
11
Molecular formula
15
lJ
Structure
CH3-CH2\CH .CH(NH CH3/
(91)
343
Wray
)co H pH l-O 2
2
(93) f223) 345
59.0
6.9
53.5
11.1
53.4
NH2CH2.CH2.CH2.CH2.CHWH2)C02H pH 7.0
(92) 344
15
nJ
2J
53.6
MO.6
53.4
l-o.5
NH=C(NH2)NH.CH2.G-12.CH2.~~(NH2)C02H pH 7.6
55.5
94 02H
346
33
(97)
8
(234)
1
1,4
6.4
1,4
6.8
4
H 347
33
(98)
4 ti
(235) 348
N H
22 HNCH2.Co.N~&I.C0
(99)
(4) (3) (2) (1) pH 7.4 349
1,2
52.5
1.4
3.5
I,4
4.0
54.0
5
(loo)
350
22
(2) (1) H2NCH2.c0.~.cH2.cH2.c~2_~~.c02H
(103) pH 1.0
1,2
55.1
6.6
,55.5
10.6
351
13
c31,2
37
55.7
54.0 ,
34.80
13
354
39
(598)
95
355
13
1,3
0
1.5 rJo.5
(110)
(536)
53.9
38.0
m:02H
353
Cis '
0
(105)
352
'Trans 59.8
cH3 .C0.C6H5
43.3
As above
42.69
Carbon-carbon
Table C. Serial NO.
coupling
221
constants
(contd.) Ref. No.
356
73
(538)
96
Molecular formula
'8'8'2
2J
lJ
Structure
“J
2.63
CH30C0.C6H5
95 357
95
358
40
0.71 'EHE02
1,2
C8H11C10
2,3
359
360
361
362
363
40
40
40
40
40
C8HllC10
C8H11C10
C8HllC10
365
40
37
37
(125)
22
2,s
1.4
2,6
1.1
2,8
2.4
2,l
2.0
1,2
39.4
2,4
1.6
2,s
1.8
35.6
2,6
2.7
2.8
2.7
2,7
1.8
5,6
35.0
1,6
2.2
6,7
36.7
6,8
3.9
-I,8 52.9
1,8
1.9
1,2
38.6
2,4
1.5
2,3
34.6
2,6
1.7
'EH12'
5.6
37.4
1,6
2.3
6,l
35.6
4,6
2.0
6.8
4.4
2.8
3.9
6,8
4.0
2,s
2.2
3.6
0.7
7
55.1
2,8
3.4
6,8
2.6
2,8
0
5,8
5.6
'EH12'2
0
59.2 'EH12'2
2,8
56.1
1,8
1.0
4,8 ~0.5
3,8
1.8
6,8
4.9
7,8
2.4
'8*12'2
:02H
367
1.2
'EH12'
7 366
35.5
2,4
2,3
7,8 364
36.5
C8H16N203
5,8 do.6
H2NCH2.C0.NH.CH(C02H)CH2.CH(CH3)2 pH 6.7
54.4
.-
Victor
222
Table Serial
C.
Wray
(contd.) Ref.
NO.
NO.
368
35
Molecular
nJ
2J
IJ
Structure
formula 0.91
42.0
Q-
co.cH3
(607)
CH3
369
95
1,2
0.75
I,2
2.4
CH 23
(608)
$02CH3 0
370
13
671
42
42.8
co.5
53
C6H5.CH2CH(NH2)C02H
(128) (247) (611) 372
pH 11.3
15 HO
(129)
53.2
CH2.CH(NH2)C02H
(544) 373
41
(130)
374
37
375
43
1,7
6.2
I,7
6
(132) (4591 376
As above
44
(132) .
(460) 377
1
2,8
37
58.5
1,8 1~0.4 3,8
6C02H 378
(1) (2)
(135)
H2NCH2.C0.
6,8 MO.5 8,9
1.9
7,8
5.2.
5,8 HO.3
cis & trans
22
rro
4,8 ~10.5
I,2
52.4
pH 6
8,9
53.7
trans
3.4
53.5
3,7
3.8
cis 3.4
52.7
3.7
3.8
PR 1 (3) CONH.CH2.C02H (8) (9)
PH 1 379 (138) (250) (553) (612)
46
OH CloHloo4
0
1,2
40
Carbon-carbon coupling constants
Table C. Serial No. 380
223
(contd.) Ref. No. 97
Molecular formula
Structure
CIoHIoO4
Ij
2j
~CO.OCH
nj
2.5
~CO.0CH33 381
48
CIOH140
382
44
C IoH1406S
~
35.9
1.1
2.0
I,7 6 70 CH3S03~ / ~ /
(140)
-
~u~ 10 38.22
383 (144)
13
CIOH180
384 (145)
22
CIoHI9N304 H2NCH2.CO.NH.~H.CH2.CH(CH3)2 ~CO.NttC~-I2.CO2H pH 1.0
385 (621)
94
CIIHIoO2
386
37
C11H1602
2
~
2
1,2 52.7
54.7
H
0.8
1,11 56.8 2,11 1.8 3,11 3.6 4,11 0.6 ~ O 2 H
387 (148)
37
C11H1602 I
$
388 (623)
51
389 (624)
78
C12H80
39O (625)
95
C12HI00
~
2
g
2,11 54.4 1,11 ~O.4 4,11 ~0.5 8,11 4.2 5,11 ~0 6,11 0.4 7,11 ~0 4,5 48.21
CIIHI8N203
CH3 .CH2 CH (CH3)CH2 .CH2 .CH3
40.'72
0
42.4 CO.CH3
2,5 1.O7
Victor
224
Table
C.
Wray
(contd.) Molecular formula
Serial No.
Ref. NO.
391
95
2.48
95
2.50
nJ
2J
lJ
Structure
(626) 392 (627) 393
51
4,5
120
9,lo
2,s
47.82
1.10
(157) c-257) (628) 393a
42.5
(153a) (257a) (461a) (628a)
394
95
40.74
0.37
0.35
39.6
0
1.33
39.24
2.65
41.02
2.13
(629) C0.C(CH3)3
CH3 395
95
(631)
396
78
0
(634)
397
78
(633)
398
s-cis
95
s-trans
(637)
399
3.07 0.2
3.28
108
(639)
400
4,5
51
46.64
(644)
401 (645)
94
54.8 '1SH12'2
2,5
1.43
Carbon-carbon
Table C.
225
ConStaMS
(contd.)
Serial No.
Ref. No.
402
95
Molecular formula
2J
J
Structure
(cH3)
c0.c
39.7
3
0
2.69
95
(647)
404
54
12,13
52
1,2
34
residue
37.5
(163) (268) (463) 405
38
(171) (470)
405a (176a)
50.8 52.2
406
7,8
56
41
(177) (476)
m30mo
(653) 407
98
41.8
63 0
59
0
c22H20010
(182) (280) (481) (660)
409
I
Cl
C18HlS0
(656)
400
“J
00 03
(646)
403
coupling
0
1,3
cCCH3 0CH3
0
60
(1831 (282) (482) (661)
,.P.P(.M.R.S.13.3-D
17,18
48
19,20
44
4,s
42
18,19
40
'23'26'5
3
1.60
Victor Wray
226
Table
C.
Serial No.
410
(contd.) Ref. No.
62
Molecular formula
1J
Structure
3',4' 40 '2SH3006
(185) (285) (663)
411
64
=27”46’9
(190) (290) -(665)
412
86 17.18 37.8
(194) (291) (412) (487)
413
67
17,28 5621
=3dI48O3
(196) (489)
414
67
'30H48'4
As 413 above with 2aOH
17,28 56
As 413 above with 2CIOH,
17,28 55
(198) (490) 415
67
'30'48'4
(197)
3aOH and Cl9 CH3 migrated
(491)
to c20
416
71
C42H70011
See serial no. 201 for structure
(201)
1,2
55.8
11,12 38.8
(296) 416a
119
C55H70MgN405 See serial no. 201a for
lo,11 58
(201al (296a) (498a) (67Oa)
120
structure
21,22 55
416b
119
C55H72MgN405 See serial no. 201b for
lo,11 58
(201b) (296b)
120
structure
21,22 55
(498b)
2 J
nJ
227
Carbon-carbon coupling constants
Table
D.
One coupled carbon formally with sp3 hybridisation and the other with sp hybridisation.
Serial No.
418
Ref. NO.
99
Molecular formula
C2H3N
lJ
Structure
CH3.CN
56.40
CH3.CBO+
45.94
CH3.CZCH
67.4
CH3.CH2.CN
55.24
2J
nJ
39
419
99
420
5
C2H30+ C3H4
11.8
99
100
421 422
99
5
D
(29)
77.9
CN 54.8
423
99
KH3)2CH.CN
424
92
CH3.CX.C02CH3
(320)
+65.15
93
(321) (671) 425
99
426
74
52.0
(CH3) 3C.cN
N2.0
(239) 427
39
428
23
C9H8
C9H13N04
Table E.
NC.CH(0.COCH3).CH2.CH2.C02CH2.CH3 (2)
(5)(4)
(677)
68.6
C6H5.CIC.CH3
4,5
2,5
66.0
3.0
Both coupled carbons formally with sp2 hybridisation (other than aromatic and carbonyl carbons).
Serial No.
Ref. No.
Molecular formula
'1J
Structure
429
3
'2'4
CH2=CH2
67.6
430
5
C3H3N
CH2=CH.CN
70.6
431
13
C3H3N0
432
13
4 5
433
8
434
13
1,2
67.34
2,3
48.54
4,5
61.35
0 s
98.7
CH2=CICH2 3,4
58.29
2J
nJ
Victor Way
228
Table
E.
Serial NO.
435
(contd.) Ref. No.
72
Molecular formula
C3H5C1
lJ
Structure
CH2=CCl.CH3
80.8
CH2=CR.CSi3
10.0
nJ
2J
(204) 436
72
C3H6
(205)
2 437
5
=4H4O
438 ,
5
439
5
=4HqS
C4H5N
1,2
69.1
1,2
64.2
1
0 0
As 437 above with
0
replaced by S
Only inner AB lines observed
As 437 above with 0
1,2
65.6
replaced bs NH 440
72
C4H5N
442
101
72
'4H6
=qH6'2
72
C4H7N0
444
72
'4'8
445
5
446
72
68.8 53.7
As 435 above with Cl
As 435 above with Cl
72.6
by CH3
As 435 above with Cl
'5'8'2
(214) =sH1O
70.8
by C02CH3
As 435 above with Cl replaced
13
70.6
by CONH2
As 435 above with Cl
replaced 72
70.5
by C02H
99.5
(2131
448
1,2 2.3
replaced
(210)
447
cH2=CH.cH=cH2
replaced
(209)
73.8
by CN
(1) (2) (3) (4)
replaced
(208) 443
435 above with Cl
replaced
(207) 441
As
84.2
by 0.CCCH3 74.1
KH3)2c=cH.cH3
(216) 449
72
C5Hloo
replaced
(217) 450
As 435 above with Cl
60
C6H8N302
(74) (218)
c:
9
80.9
by OCH2.CH3 4,5
74.5
,cH2.cHmH2)C02H
(336) 451
13
'gH12
(a31 2C-CH.CH2 .CH3
75.45.7
(79) (222) 452
102
C7H6Fe03
2
1 1,2
e
FeKO)
3
43.9
1,3 *1
1,4
9.05
Carbon-carbon
Table E.
coupling
229
constants
(contd.)
Serial No.
Ref. No.
453
112
Molecular formula
lJ
Structure
C7H9N02
2.3
HOCH2
64.6
OcH3 2 QI$ H
454
13
(102) (237) 455
39
456
102
457
13
%=8
72.56
CY.
'7Hl2
7w_3
C6H5.CH=cH2
C8H8Fe03
1,2
43.3
2,3
43.5
3,4
61.78
1,2
42.9
'9H6'2
(542) (605) 458
102
CgH8Fe03
1
2 Fe(CO)g
459
43
68 C9H1204
(132) (375)
460
44
C9H1204
AS
67.5
(132) (376) 461
103
461a
123
C10H12LiN0
7,8
88
3,4
67
5,6
63.5
4,5
62
6,12
64
c11H1005-
(254a) (621a)
461b
124
C12H1205
(157a) (257a) (628a) 461~
77
c14H12
C6H6.CH=CH.C6H5
72.9
trans
(564) 462 (161) (264)
52
C
H 0 14 22 2
11,12
72
2J
nJ
230 Table E.
Victor Wray (contd.)
Serial No.
Ref. No.
Molecular formula
463 (163) (268)
54
C15H1804
Structure
4,5 44
O~ 0 ~
(404) 464 (164) (270)
55
465 (165)
55
C15H2oO3
55
C15H2004
1j
4
S
C15H2003
8,9 68.1
.HOL~iI J ~S 8,9 65.7
O ~
(271)
466 (166)
HO U l h
467 (167) (273) (648)
52
C15H220
468 (169)
52
C15H2402
9 ~
CH2OH
11,12 72
11,12 72
.~,,cr~o HO "
469
8,9 65.7
O
52
~
, 11,12 72
C15H2402 HO 0
~
~ •
470 (171) (405)
52
471
103
11
C . H2OH
C15H2402
7,8 104.5
C15H2402Si
~ 472 (172)
52
11,12 72
OCH3 OSi (CH2 .CH3) 3 11,12 72
C15H2403 t,CHO
2j
nj
Carbon-carbon
Table E.
RcRf.
wfs.Le.C~L~~
No.
No.
formula
_#
=15-"26-"2
.m2c= <*-
HO 1w00 52
1
Structure
(174)
474
231
constants
(contd.)
SEvkL
4x-o
coqling
22
II,12
72
n
%,
.
c15ft2602
22, A?
nJ
=J
J
k
12
(1751 HOm
7,8
97.4
56
5,6
75
33
3,4
55.2
4,5
81.9
3,4
54.9
4,5
81.8
475
103
476
C16K27NOSi
(177) (406) (!Xl) (653) 477 (276)
4,6
2.8
4,7
6.0
4,6
2.5
4,7
5.5
2,5
7.1
(654)
P = CH2.cE12.co2Cti3 478
33
(277) (655)
P = CH2.CH2.C02CH3 479
33
(278)
480
111
59
69.4 54.1
4,s
66.4
4,5
62
11,12
61
C21H23N05 OH
481
2,3 3.4
c18H21N04
C22H20010
(182) (280) (408) (660)
H
0
232 Table E.
Victor Wray (contd.)
Serial No.
Ref. No.
Molecular formula
482 (183)
60
C23H2605 ~O
Structure
,,~ ~ S ~
61
C23H3oCIN305 $~ A ' ~ , . . ~ 3~( ~~w~ 3 ~ "
484 (184) (284)
61
485 (579)
113
C24H15N303
PhCON O ~ i
487 (194) (291) (412) 488 (195) (292) (666)
h~N~ P 63
C27H4207
66
75.4 61.7 69.5 54.5
A2,B5 A4,A5 B3,B4 C3,C4
76~i 60.3 68.5 54.9 7,9 6.5
II CO2CH3
~
8,17 72 2' ,3' 89
5,6 53.4
C29H4208
8,17 72 2' ,3' 89
CH30~
R I = CHO .R2 = H~ Same for R2 H R I = CHO both R2oR 1
489 (196) (413)
nj
~Ph CH30 ~ U
C29H39NO9
A2 ,B5 A4,A5 B3,B4 C3,C4
7,8 95 8,9 69
~
86
3'
C23H32ClN305 As above with chain detached at C9'
(662) 486 (189) (289) (664)
~ ' ~HN, ~
2j
1,2 78 6,7 N72 8,9 .972 9,10 69 IO,ii 70 11,12 56 12,13 70
10
(282) (409) (661)
483 (283)
ij
67
C3OH4802%
HO
~
~
~ ~/~
12,13 71.5 EO2H
Carbon-carbon
Table Serial
E.
coupling
233
constants
(contd.) Ref.
NO.
No.
490
67
Molecular formula
'30'48'4
2 .J
Structure
AS 489 above with 2aOH
12,13
73+1
As 489 above with
12,13
72.5
“J
(198) (414) 491
67
'30H48'4
ZOOI$
(197)
3aOH and 19CH3 migrated
(415)
to c20
492
68
5,6
71
C31H5202
(199)
5 6
cH3c02 0?F+ 493
69
C32H30014
8,8a
70.9
3.4
53.1
1
(200) (584) (667)
2
494
33
4,6
2.5 13,16
4.0 4.9
(294)
4,s
79.4
4,7
4.2
(669)
15,16 16,17 6,7
78.4 54.0 57.5
14,16
2.4
5.7
5.0
7,8
62.4
4,6
2.5
P = CH2'CH2.C02CH3 495
33
8,9
58.7
9,lO
70.5
3,4
54.9
4,s
81.0 14,16
4,7
16,17#54.7
(670)
15,16
P = CH2.Cli2.C02CH3
55.1
8,9
68.2
9,lo
50.2
15,16
83
9,ll
2.8 13,
[email protected] 4.7
9,12 C4.3
81.2
7,8
72
5.9 4,20
114
10,14
P = CH2.cn2.co2cH3 P 497
115
C40H46N408
P
H
20 H @ P 15 P = Cn2.CB2.C02CH3
,.P.N.M.I.S 13/?-D'
5.9s.2
C35H44N406
(295)
496
9,12
15,16
72
19,Zo
72
5 5 5.5
Victor Wray
234
Table E. Serial NO.
(contd.) Ref. No.
Molecular formula P _
s _
P
NH
20
114
A
"J
2J
A __
A B
83
498
lJ
Structure
N
N H
4,s
72
5,9
10
5
IO,14 5.5
A
P = CH2.CH2.C02CH3 A = CH2.C02CH3 498a
119
See serial
(201a) (296a)
120
structure
no. 201a for
'r
(201b)
75
b,C
70
= adjacent ring carbon b,Cr
119
See serial no. 201b for
120
structure
2,2' 68
Q,C
r p,c,
(416b) 'r 116
= adjacent ring carbon 6,Cr
C63H90CoN14014P
70
70
24,25 75
(296b)
499
68
r p,c,
(416a) (670a)
49833
2,2' 24,25
/r:
70 70 70
4,5
loo
9,lO
111
15,16
100
14,15
123
Vitamin B12
Table
F.
Both coupled carbons formally with sp2 hybridisation (both aromatic or aromatic and olefinic carbons).
Serial No.
Ref.
No.
500
13
501
13
502
5
503
504
13
13
Molecular formula
2J
Structure
I,2
52.78
'qHqN2
2,3
50.39
C5H5N
2,3
53.8
3,4
53.5
2,3
54.27
3.4
53.74
'qHqN2
=gHgN
C6H5Br
As above
nJ
2,5
13.95
2.5
13.90
I,2 63.62
1,4
10.71
2,3
54.90
2,5
8.15
3,4
56.39
Carbon-carbon coupling constants
Table
F.
Serial NO.
505
506
235
(contd.) Ref. NO.
13
13
Molecular formula
C6H5C1
C6H5C13Si
structure
lJ
As 504 above with Br
1,2 65.19
replaced by Cl
2,3
55.86
3,4
56.14
As 504 above with Br
2J
1,2
51.4s
replaced by SiC13
2,3
55.66
§ Only AB inner lines
3,4
55.41
As 504 above with Br
1,2
70.92
1,3
replaced by F
2,3
56.63
2,4 44.3
3,4
56.30
nJ
1,4
10.70
2,5
7.81
observed. 507
13
508
5
'gH5=
'6*5'
As 504 above with Br
_l,2 60.4
replaced by I
2,3
53.4
5 Only AB inner lines
3,4
58.05
3.81
1,4
10.43
2.5
6.51
2.5
8.6
observed. 509
13
510
5
'6'5'
C6H5N02
1,2 61.02
1,3
2.3
54.35
2.4 M3.7
3,4
56.15
As 504 above with Br
1,2
55.42
replaced by NO2
2,3
56.3
# Value must be in error
3,4
55.8
As 504 above with Br replaced by I
3.85
1,4
10.75
2,5
8.64
2,5
7.6
1,4
9.55
2r5
7.12
see below.
511
512
13
104
c6H5N02
C6H6
As 504 above with Br
1,2 67.32
replaced by NO2
2,3
56.01
3,4
55.32
As 504 above with Br
57.0
replaced by H 513
514
515
516
105
13
I
1,6 61
C6H6BrN
c6H60
2,3
67
3,4
56
4,5
56.5
5,6
59.5
As 504 above with Br
1,2 65.60
replaced by OH
2,3
51.61
3,4
56.10
As 504 above with Br
1,2 60.1
replaced by SH
3,4
55.99
AS 504 above with Br
1,2 61.3
replaced by NH2
2,3
58.1
3,4
56.2
1,3
3.71
Victor Wray
236
Table
F.
Serial
(contd.)
NO.
Ref. No.
517
13
518
519
13
13
Molecular formula
C6H7N
C6H8Si
C7H5m
Structure
13
C7HsN
(675)
521
522
523
13
13
13
C7H5N0
C7H5NS
'7=6'
2J
"J
As 504 above with Br
1,2
61.07
1,4 9.24
replaced by NH2
2,3
58.60
2,5
3,4
56.00
7.89
As 504 above with Br
1,2
49.69
1,4 9.40
replaced by SiH3
2,3
55.34
2,s
3,4
55.92
11.05
1,2
59.19
2,3
56.4
3‘4
55.21
As 504 above with Br
I,2
60.05
replaced by CN
2,3
56.47
3,4
55.15
As 504 above with Br
1,2
65.86
1,4
11.00
replaced by
2,3
57.00
2,5
7.87
3,4
55.81
As 504 above with Br replaced by COF
520
1J
NC0
As 504 above with Br
1,2 66.01
replaced by NCS
2,3
56.98
3,4
56.57
As 504 above with Br
1,2
57.87
1,4
8.88
replaced by CHO
3,4
55.22
2.5
8.765
As 504 above with Br
2,3
57.45
replaced by C02H
3,4
55.1
1,2
57.9+1
5 Only AH inner lines observed. 524
13
'7'6'2
S Only AH inner lines observed. 525
13
As 504 above with Br replaced by CH2F
(225) 526
13
As 504 above with Br
1,2
58.08
1,4 9.60
replaced by CH=NOH
2,3
57.2s
2,s
3,4
54.75
(7)
5 Only AH inner lines
8.92
1,7 62.8
observed. 527
13
C7H7N02 (X3 1
(229)
6
17
C7H70+
(230)
49
75
'7'8
56.26
2.3
56.82
3.4 67.44
0 0
529
1,2
5
0 528
NO2
1
74.0
1,2
57.3
$(OH)2
As 504 above with Br
replaced by CH3
1,7
1,3 0.8
1,4 9.4
Carbon-carbon coupling constants
Table F.
(contd.)
Serial Ref. No. No.
530
237
Molecular formula
AS 504
13
(230)
lJ
Structure
above with Br
2J
%
1,2
57.00
1,4 9.55
replaced by CR3
2,3
56.65
2,5
5 Only AB inner lines
3,4
55.95
8.98
observed. 531
532
533
534
13
5
13
13
As 504 above with Br
1,2 62.73
replaced by NIiNii2
2,3
58.60
3,4
55.91
As 504 above with Br
2,3
58.2
replaced by 0CH3
3,4
56.0
As 504 above with Br
1,2 67.09
1,4 9.14
replaced by CCH3
2,3
57.81
2,5
7.19
3,4
56.15
As 504 above with Br
1,2 59.79
1,4
10.0s
replaced by S03CIi3
2,3
56.15
2,5
8.75
5 Only AB inner lines
3,4
55.21
observed. 535
13
C7H9N
As 504 above with Br
1,2 61.67
I,4
8.65
replaced by NIi(CH3)
2,3
59.14
2.5
7.91
S Only AB inner lines
3.4
56.15
As 504 above with Br
1,2
57.80
replaced by C0.CH3
3,4
55.16 1,4
8.31
observed. 536
13
Can80
(355) 537
13
1,2
56.28
3,4
57.91
As 504 above with Br
1,2
58.35
replaced by C02CH3
2,3
56.35
§ Only AH inner lines
3,4
55.39
As 504 above with Br
1,2
58.58
replaced by C(CE3)=NOX (7)
2,3
56.66
As 504 above with Br
1,2
57.07
replaced by CR2.CH3
3,4
55.98
C8H80
(240)
CH3
,
0”
oC 538
13
'8'8'2
(356)
HO
5
1,4 9.38
observed. 539
13
(291)
540
13
(117)
C8HgN0
1,7 42.54 1,4 9.2
(242) 541
13
As 504 above with Br
1,2 62.95
1,4 8.1
replaced by N(C!H312
2,3
59.00
2,5
3,4
56.14
7.99
Victor Wray
238
Table Serial NO.
F.
(contd.) Ref. NO.
Molecular formula
Structure
542
4,10
(457)
5,lO
(605)
5,6
57.68
6,7
54.71
7,8
57.75
8,9
70.13
0
-543
13 CH30
544
*
15
(129)
CH2.CH(NH2)C02H
(372) 545
13
As 504 above with Br replaced
(131)
by
CH
(CH3J2
(248) 546
13
co q;:
4
13
As 546 above with replaced
548
106
As-546
above with I
replaced
549
78
58.60
3,4
66.23
1,2
57.5
2,3
58.0
3,4
60.5
1,2
1,4
7.6
57.35
1,4
8.93
2,3
56.60
2,5
9.12
3,4
55.94
1,2
65.720.3
2,3
51.25.3
3,4
60.220.5
4,lO
56.320.3
5,lO
56.5
5,6
60.4
6,7
51.1
7,8
59.9
8,9
59.1 i60.1~0.5
13
by H
As 546 above with replaced
1,2
71+2
3,4
58.9
5,6
60.0
5,lO
56.2
6,7
53.521
7,8
59.9
8,9
5822
1,2
60.3
by H
As 546 above with I replaced
550
I
by No2
59.4
2,3
1,9 547
52.2
by H
I
1,2
60.3
189
55.87
1,2
60.32
1,9
55.52
+1
2,4
2.43
2,8
5.45
2,9
1.69 2,10
7.97
2,5
1.47
2.43
1,7
5.45
0.2
1,6
1.47
1,3 1,lo
Carbon-carbon
Table F. Serial NED.
552
coupling
239
constants
(contd.) Ref. %D,
79
Molecular zrorJmJ>a
C10X8”
Structure
1J
RsfSd*wi&I
I',P
IV.0
replaced
1,9
65.4
by OH
2J
"J
I',3&-.d
i,S
1,8 Co.6
1,5
3.8
I,7
4.5
1,lo
1.8
7.9
1,6 co.6 552
A%
C10B8"
al ,$
10
5!53
4.5
(1381 (2%) (379j (612)
47
CloxloQ4
LEG
020R
1',2 68.BS
2,s
2.81' 2,8
3.m
2,3
2,9
0.50
2,lO
5.77
2,5
1.46
2,6
1.25
2,7
0.49
’
&%,A
nv
-
=T7 c7 7,8
13
=10a14
(1391
53
cllR1703P
(1511
57.86
1,4
9.24
replaced
2,3
56.74
2,s
0-M
3.4
55.89
I,3 CO.6
1,4
a.6
1,8 CO.6
1.5
4.2
1,7
5.0
by C(CH3)3
AS 504 &cwe replaced
79
C12alo02
60
I,2
wltb ax
AS 546 above with replaced
1,2
by CR2P(0) (OCR2.M3)2
(255) 556
70.5
AS 504 above with Er
(251) 555
63
s,r;, 61
8,8a 554
55.96
I
by OCOC?13
58.1 2,3
3,4
54.9
1,2
14.0
1,9
65.5
55.1
1,lO
2.0
1,6<0.6 557
13
C12H12
S Only AB inner
lines
1,2
61.3s
2,3
52.97
3.4
58.71
4,lO
55.4s
1,2
47.20
2,3
46.58
observed. 558
80
C12S14Fe
(258)
559
78
C14Hlo
9,12 +60.5
1,3
5.42
1,9 +1.80 9,14 -0.7
2,9 +5.97 4,9 +3.13 9,lO
7.6
3,9 -1.62
Victor
240
Table F. Serial
Wray
(contd.)
NO.
Ref. No.
560
78
Molecular formula
2J
lJ
Structure
9,lO
c14H10
63.0
9,14 +53.8
9,8 +2.70
“J
9,l +5.50
9,ll -1.60 9,12
5.85
9,5 c3.0 9,7
5.35
9,2 No 9,3 NO 9,4 -1.2 9,6 n0 561
13
c14H10
'
As above
5 Only AB inner lines observed. 562
82
58.9
4,12
58.0
1,ll
56.55 53.48
11,12
56.85 1,4
8.2
1,13
3.9
0
1,9
4.6
11 lofI
1,6
0.5
1,8
0.3
1,14
1.0
5
14 p
59.25
lo,11
C14Hloo 7o13
1,2 3,4
1,2
66.8
1,ll
66.3
I,12
2.0
w
563
81
C14H1005
1,9a
564
4,4a
(461a)
77
64.1
OH
(261)
67.7
trans
C14H12
77.8+0.9
5,lOa 5,6
56.8
6,7
56.8
7,8
69.6
I,7 +57.0
78
1,8 +O.l
2,8 +5.0
2.7 +2.2
4,7I 20.6 4,8 T1.2
2,7 +2.1
2.8 +3.6 3,7
565
107
1,7 +66.0
C14H14N
1,8 +4.9
2,8 rJ1.2
2,7 nr1.8
3,7
4.47
3,8
0
4,7
1.0
4,8
0 9.0
:: (=N.NH2).: WH.NH2)
566
82
C15H9N
3.8
1,2
62.8
1,3
1.0
1,4
1,ll
52.7
1,lO
1.2
1,13
3.1
1,9
5.4
Carbon-carbon
Table F.
Ref. NO.
567
82
Molecular formula
c15Hloo
(642)
Structure
As 566 above with CN replaced
82
'lSH12
(265)
569
241
constants
(contd.)
Serial no.
568
coupling
108
1,2
60.1
2J
1,3
1.2
by CHO
As 566 above with CN replaced
1J
by CH3
82
'15'12'
571
replaced
108
c15H120
by OCH3
($$J
572
53
C15H15D9
(267)
573
CD3.CH2.CHD
106 109
'16'10
Vd 3 5 0
106
0.9 8.2
56.4
1,lO
1.5
1,13
2.7
1,9
5.0
1,14
1.1
0.5
9,2
5.95
9,4
3.13
9,lO
8.00
9,3
1.72
1,2
70.0
1,3
0.6
1,4
7.7
1,ll
67.2
1,12
2.1
1,13
3.8
1,lO
0.7
1,9
4.4
1,6
0.7
1.8
0.3
1,14
0.9
9,13
69.89
1,2
70
1,6
67
9,14
1.48
9,l
1.20
9,2
5.70
9.4
4.20
9,lO
8.00
9,3
1.92
1,12
7.71
CH2.CHD.CH2.CHD.CH2.CD3
OH
1,2 1,ll
C16Hl~o
1,14
1,ll
57
1,16 ~0.2
58.9
1,lO
1.55 1,15
3.05
1,9
5.82
78
574
4.5
1,4
u
(162)
2.9
1,9
1.7
1
0
1,13
1,3
9,14
As 566 above with CN
7.6
60.1
'15'12
(266)
1,4
1,2
9,l (Jo.3
570
nJ
As 573 above with OH on Cl
1,2 1,ll
64.5 69.0
1,3 1,lO
0.34 5.00
1,16
0
Z interchangeable
1,4
1.55
1,5
2.27
1,7
0.76
1,13
0.31
1,14
1.35
1,9 5.00 1,12 7.55 1,15 3.90 1,4 1.67 1,5 1.36 1,6 1.09+ 1,7 0.74 1,8 1.392 1,13 NO.2 1,14 1.28
~
Victor
242
Table
F.
(contd.)
Serial NO.
Ref. NO.
575
82
Molecular formula
'16'12'2
As 566 above with CN by OCOCH3
0.6
1,ll
68.8
1,12
1.4
11 ,12
85
'21H16'8
(279)
w 0
(658)
e5
CH3COO 579
1,lo
1,4
8.8
1,9
5.0
1,13
4.2
1,14
1.0
54
6a,8
4
54
6,7a
4
LO,11
56
(177) (406) (476) (653) 578
72.0
Ia,8
(650)
577
1,2
6,6a
110
nJ
2J
15
Structure
replaced
(274)
576
Wray
113
PhCON
(485)
:' b:CA'
,
4
1
75877
1,ll
73.1
4,12
71.2
5,6
70.2
7,8
56.4
3,4
66 or 78 or 80
0cocH3
5,6
(662)
580
581
78
78
3.85
1,2 +1.1
4.6
3,6 +2.3
5,6 -1.3
C26H16Br4
C26H18
9,l' +56.2 10,9
67.2
10,ll +54.3
1,lO
1.84
1',10+1.3
1,9
4.20
2,lo
4.33
2',9
2.1
4,lO Cl.4
9,ll
0.1
9,12
5.24
2',10
1.1
3',9
3.42
4,9 +1.7 582
583
78
78
1,s +1.0
1,2 +1.44
2,3 +2.64
3,4
1,4 +2.14
3.66
1,2 +3.28 3,4 +0.88 1,s
3.78
Carbon-carbon
Table F.
coupling
243
constants
(contd.)
Serial No.
Ref. No.
584
69
Molecular
Structure
'32H30'14
(200) (493)
lJ
1,2
69.3
2,3
58.6
3,4
57.2
4,4a
72.3
2J
"J
-[$Q$Ha2 (667) 3 585
87
'3ZH3Z014
See serial
no. 293 for
structure
(293) (668)
586
78
3,4
70.6
5,4a
56.5
6,7
54.5
8,8a
68.4
1',2
53.9
3',4'
54.5 2.9
C34H24
NO
2,ll lv1.9
2,8
4.08
2,lO
5.97
2,12
3.47
2,5 -1.26 Ph
2,6 ~0' 2,7 rr0
Table G.
Both coupled
carbons
formally
with
sp2 hybridisation,
one of which
is a carbonyl
function.
Serial No.
Ref. No.
587
5
588
78
Molecular formula
Structure
C02H 2.17
C5H802 :;%OH
(325) 590
1.30
(=3 +
78
39
"J
70.4
CH2=CH.C02H
(311) 589
2J
lJ
2
0P
C7H5C10
74.1 J
*Em
591
592
73
73
C7H5C10
C7H5Na02
As
As
above
590 above
replaced 593
95
C7H60
94 73
'7R6'2
with CCC1
71.87
1,3
1,3
3.53
2.54
1,2
53.2
1,3
3.98
by CHO
As 590 above with COCl replaced
1,2
74.35
by CO; Na+
As 590 above with COCl replaced
594
1,2
by C02H
1,2
71.87
1,3
2.54
1,4
5.46
1,5
1.18
1,4
4.53
1,5
0.90
1,4
4.61
1,5
1.14
1,4
4.53
1,5
0.90
Victor
244
Table G. Serial No.
595
Wray
(contd.) Ref. No.
Molecular formula
Structure
lJ
0
78
7,8
03 50’
2J
nJ
6.2
5,7 ~4.2
:
4,7 -1.0
3
0
596
97
replaced
597
78
1,7 +69.9
As 595 above with S
As
by 0
above with S
595
1,8 +2.6
3,7 +4.6
3,8 +2.0
4.8 +5.0
7,8
4,7 -1.0
5.6
2.7 +3.49
3,7 +2.5#
6,7 +4.l#
5,7 +4.5
7,8
8.8
4,7 -0.9
2,7
2.07
3,7
3.99
4,7
1.06
2
replaced
by NH
+ interchangeable
598
1,7
95
6
(354)
52.5
1
40
cOCH3
# 599
1,7
95
0
CH3 4 0
600
72.4
1.7
72.0
o* 1°zH
CH3
95
0
I,7 6
95
72.0
1
4 o*
602
603
3,7
6.7
2.50
5,7
4.29
4,7
0.86
2,7
3.20
3,7
4.75
6,7
2.38
5,7
4.38
4,7
0.97
02H CH3
1,7
74.8
2,7 +2.38
98
1,8
78
13
0.90
2.0
2,8
1.9
3,8
0.5
4,8
0.7
2,7
3.8
3,7
5.4
6,7
5.2
5,7
5.7
2.3
71.2
cc3
(542)
0
2
0
606
4,7
4,7 rrl
CH30
(457)
3.7 +4.56
i02CH3
HO
605
4.55
2.81
,.:O,H 604
4.48 0.90
2,7
93 4 01 c>
3,7 4.7
028
2
0 601
2.62
1
95
4
2,7
78
0 0
~H=CH.~O~H
0
trans
1,2
1.66
1,3
7.08
cis
1,2
0.30
I,3
2.45
Carbon-carbon
Table G.
coupling
245
constants
(contd.)
Serial NO.
Ref. NO.
607
95
Molecular formula
I,7
52.7
(368)
1,7
95
608
74.6
(369)
41
609
2J
lJ
Structure
2,3
78.1
2.3
76.2
"J
2,7
1.86
3,7
3.85
6,7
3.57
5.7
4.30
4,7
0.99
2.7
3.15
3,7
4.88
6.7
2.06
5.7
4.41
4.7
1.02
I,9
2.5
(126) (245) 610 (127) (246) 42
611 (128)
0
(247)
01
(371) 612
46
(138) (250) (379) (553)
47
613
78
CH2.CH(NH2)~02H
HO
0
0
0
1,8a
54.5
1,ll
76.40
63 7os6,
3.73 3,ll
5.23
8,ll
3.57 7,ll
3.27
9,ll
6.55
2,ll
lo,11 4.12 4,ll
1.18
6,ll
0.39
2,ll
3.44 3,ll
4.57
8,ll
6.57 7,ll
3.75
9,ll
6.87
5
614
78
C11H7No
1,7
CQ HN11
60.8
‘OS6, 5
78
615
1,ll
C11H7N04
78
4,ll
0.86
2,ll
1.62 3,ll
4.70
9,ll
3.82 8,ll
0.75
IICO,H
NO 616
72.12
lo,11 3.62
10,ll
4.01
4,ll
0.76
5,ll
0.71
2,ll
1.48 3,ll
4.67
9,ll
2.45 lo,11 3.64
2 1,ll
73.50
C11H7N04 4,ll
617
'
95
I,11 'llH8'
llCH0 ‘0 co
J.P.H.H.R.S.
153-E
s 5
b,
53.7
1.0
2,ll
5.8
3,ll
5.85
9,ll
2.5
8,ll lo,11 4,ll 5,ll 7,ll
1.46 3.20 1.1 0.3 0.4
.-
Victor
246
Table
G.
( contd.I
Serial NO.
Ref. NO.
618
95
620
621
Wray
95
97
Molecular f omula
1,ll
‘1 lHE02
2,ll
cl lH802
71.7
71.8
H Co2H
CllH1002
(385)
621a
123
0
cllHloos
1,2
nJ
2J
lJ
Structure
2,ll
1.88
3,ll
4.78
9,11
3.53
8,ll
0.86
10,ll
4.01
4,ll
1.11
1,ll
2.52
4,ll
4.1
3,ll
2.73
9,ll
4.85
5,ll
0.2
lo,11
0.85
2,ll
3.8
3,ll
3.3
9,ll
2.5
8,ll
1.2
10,ll
1.9
6,ll
0.5
80.5
(254a) (461a)
622
39
623
51
CllH1202
C6H5.CH=CH.C02CH2.CH3
C11H18N203
CH3-CH2
CH G-i3)
76.3 2,6
XH2 .CH2 .CR3
3.16
(388)
624
1,ll
78
54.63
(389)
625
95
c1 2H100
1,ll
(390)
52.9
co llCocFi_
3
2,ll
1.89
3,ll
4.08
8,ll
3.81
7,ll
4.12
9,ll
9.88
10,ll
4.10
3.64
3,ll
4.83
2.00
a,11
0.9
10,ll
1,ll
C12H1002
nco,cH,
(391)
03 ogo3 5
0.53
2,ll
5
95
1.08
5,ll
9,ll
O%,
626
4,11
75.4
2,ll
1.65
9,ll
3.74
3.09
4,ll
1.09
5,ll
0.34
7,ll
0.33
3,ll
4.94
8,ll
0.81
lo,11
4.28
4,ll
1.18
5,ll
0.54
7,ll
0.42
Carbon-carbon
T&k Serial No.
G.
coupling
247
constants
\'cmzk?.j Ref. NO.
Molecular formula
Structure
2,ll
627
75.4
s0’ CD
(392)
Z02CH3
(0
1,ll
2.34 4,ll
4.35
3,ll
2.61 9,ll
4.99
10,ll
0.88
5,ll
0.35
6,ll
0.27
7,ll
0.38
4
628
2,4
3.13
(157)
1',4
2.22
2.7
2.43
(257) (393)
628a
124
2,3
80
95
1,7
51.42
(157a) (257a) (461a) 629 (394)
'7 2 1.7
95
50.7
2,7
2.11
3.7
3.62
6.7
2.36
5.7
3.87
4.7
0.95
3,7
3.31
0.C(CH313
631
CH3
95
1,7
0
(395)
4 0" 2
632
3.76 0.98
o.CKH313
CR340 oC 630
3,7 4,7
50.6
2.7
1.47
6,7
2.30
E0.C(CH3)3
78
5,7
3.73
4,7
0.85 3.75
9,l
2.62
9,2
9,lO
7.88
9,4
3.75
9,3
0.88
2,ll
1.21 3,ll
4.06
9.11
3.05 8,ll
2.9
”
633
1,ll
78
51.64
0
(397)
@I 1
7FSb3
634 (396)
78
C13Hloo
1,ll
53.56
lo,11
3.62
4,ll
1.10
5,ll
0.65
7,ll
0.52
2,ll
10.99 3,ll
9,ll
2.85 8,ll
4.56 0.65
lo,11
2.58
4,ll
0.89
5,ll
0.40
7,ll
0.21
r
Victor
248
Table
G.
(contd.
Serial No.
Ref. No.
635
95
Wray
1 Molecular formula
1,7
c13Slo”
2,7
54.8
2.71
:O.C6H5
636
70
‘13’12’
c?? 1,ll
51.55
1
2,il
2.74
9,ll
1.72
lT9;j3
637
_. 95
C13H13No
1,ll
65.9
(398)
638
95
9,12
C14H802
@ib et0 9
+53.9
(399)
9
‘3
54.90
1
3,ll
3.77
8,ll
0.55
10,ll
3.00
4,ll
0.93
1.61
3,ll
4.61
8,ll
2.00
10,ll
3.30
1,9 9,ll
9,13
1.02
2.20
4,ll
1.00
5,ll
0.27
+1.2
2,9
23.65
+2.44
4,9
23.1
11 4
100
4.03
2,11
0'
639
3,7 4,7
9,li
‘2
b
“J
2J
lJ
Structure
9,tO
3.84
3,9
To.85
1,9
1.69
2,9
3.46
9,14
2.83
4,9
3.36
3,9
0.9
2,8
0.8
3,7
4.37
4,7
1.02
0,
640
641
14
107
1,7
8a,9
81
+54.5
1,s
+14.0
2,7
3.4
53.3
(261) (563) 642
54.8
82
(567) CHO
643
117
1.95
=lSH1002
C02H
@Jg
644
51
645
94
(401)
2,4
C15H1202
‘sCO_H
13,15
8.10
2.9
1,15
1.3
14,15
1.5
2,15
0.8
3,15
1.0
4,15
0.8
Carbon-carbon
Table S&?-~al NO.
646
coupling
249
constants
( contd .)
G.
*P&. No.
95
,4&k?~U~ar formula
Structure
c15H160
1,ll
50.5
(402)
647
95
1,ll
‘1SH16’2
74.4
(403)
648
52
(167) 0
(467) 649
1.92
3,ll
4.14
1.77
8,ll
1.64
lo,11
2.84
4,ll
0.94
5.11
0.23
2,11
1.56
3,ll
4.85
9,ll
3.65
8,ll
0.81
lo,11
4.21
4,ll
1.15
5,ll
0.52
7,ll
0.38
6a,4
4
7a.10
4
52
C15H220
(273)
2,ll 9,ll
R c0
82
c16H1202
3.7
0
0CH3
0 650
C@
110
rn3ea
(576)
‘la CH20H
Jcii!i@ 0
k::
651
95
C17H1002
17C02H
109 ‘0 7o r
@ 652
O
1,17
72.1
2,17
1.75
3.17
4.50
11.17
3.52
16,17
4.52
12,17
A 0” 5
84
3,6
11.4
1,4
7.8
(275)
653
56
4,5
60
(177) (406) (476) (577) 654 (276) (477)
33
0.97
13,17
0.50
15,17
20.35
Victor
250
Table
G.
Wray
(contd.)
Serial No.
Ref. No.
655
33
Molecular formula
*J
Structure
1,4
8.2
'17H22N2'3
(277) (478)
P
656
98
=
CH2.CH2.C0
CH 2 3
c1anl8o
2,ll
53.7
(407)
1,ll
1.7
4,ll
4.4
3,ll
3.9
6,ll
3.9
5,ll Cl.0 i
657
95
5gH1402
1,17
75.8
2,17 11,17
1.72 3,1X
4.63
3.63 16‘17 4.76 10,17
0.97
4,17
0.4
5,17
0.29
9,17
0.45
12,17
1.05
13,17
0.49
14,17 l-o.15 15.17 658
85
'21H16'8
(279)
9,14
54.6
lo,13
54.6
1,17
50.8
0.49
(578)
659
95
c21H180
2,17
2.2
3,17
4.0
~~CCZC~CH~)~ 11,17 0 ,o'
@ 660
59
0 5
l2
C22H20010
13,14
79
5,6
61
(280) (408) (481)
60
PhCO C23H2605
1.9
16,17
2.2
4,17
0.2
':i, 3
(182)
661
1.7 10,17
I
I
12,17
1.1
13.17
0.2
251
Carbon-carbon coupling constants
Table
G.
(contd.)
Serial Ref. No. No.
662
Molecular formula
lJ
Structure
2J
"J
I,2 66 or 78 or 80
113
(485) (579)
663
62
2,3 65.5
(185)
7',8' 73
(285) (410)
664
63
(189) (289) (486)
665
64
I.2 65.7
(190) (290) (411) 666
66
(195) (292)
2 = Ii)Same for
(488)
667
R' = H
69
C32H30014
9,9a
55.2
6',7'
74.0
R‘ = CHOj both
(200) (493) -[j12
(584) 668
87
C32H32014
(293)
3. See serial no. 293 for structure
(585) 669
33
0
C35H42N406
(294) (494)
I,4
1
16,19 8.5
a I5
5 N
&
P
7.0
I-I 10
P
P = CH2.CH2.C~2CH3
Victor Wray
252 Table
(contd.)
G.
Serial NO.
Ref. No.
33
670
Molecular formula
l,4
C35H44N406
"J
2J
lJ
Structure
7.1
(2951 (495)
P
P
P = CH2.CH2.C02CH3 670a
119
C55H70MgN405 See serial no. 201a for
(201a) 120
3,C,
50
structure
(236a)
‘r
(461a)
= adjacent ring carbon
(498a)
Table
8.
One coupled carbon formally with sp2 hybridisation and the other with sp hybridisation.
Serial Ref. NO. No.
671
92
Molecular formula
C5H602
lJ
Structure
"J
1,3 +20.33
cH3;;F;;p2CH3
(320) (424) 672
93
'SH6'2
1,3 220.28
As above
(321) (424) 673
5
674
78
'6'6'4 '6'6'4
123
cH30co.cI’c.co2cH3 As
above
18.42
(334) 675
73
(520)
39
676
17
677
23
+ C7H50
c9H13N04
(428) 678
39
80.40
C7H5N
CllH1002
81.2
NC.CH@COCH3).CH2.CH2.C02CH2.CH3 (5) (6) C6H5.CXC.C02CH2.CH3
1,2
5.6
1.5
2,8 3,7
5.56 1.76
126.8
(1)(2) 679
107
c14H10
@""@
# interchangeable
1,7 +91.1
2,7 1,8 +13.1 2.62
4‘7
1.0 P
4.8
0.752
253
Carbon-carbon coupling constants
Table I.
Both coupled carbons formally with sp hybridisation.
Serial Ref. No. No.
Molecular formula
Structure
lJ
680
121
C2H2
CHZCH
170.6
681
39
C8H6
C6H5.CECH
175.9
682
39
C9H5N
C6H5.C.X.CN (1)(2)
1.2
2J
nJ
155.8
REFERENCES
1.
R.E. Carhart and J.D. Roberts, Org. Magn. Resonance, 2, 139 (1971).
2.
V.J. Bartuska and G.E. Maciel, J. Magn. Resonance, 2, 211 (1971).
3.
R.M. Lynden-Bell and N. Sheppard, Proc. Roy. Sot. (London), A269,
4.
H. Dreeskamp, K. Hildenbrand, and G. Pfisterer, Mol. Phys., 17, 429 (1969) and
385
C. Schumann, H. Dreeskamp, and K. Hildenbrand, J. Magn. Resonance, 2, 5.
F.J.
(1962).
97 (1975).
Weigert and J.D. Roberts, J. Amer. Chem. Sot., 94, 6021 (1972).
6.
H.
7.
F.J. Weigert and J.D. Roberts, J. Amer. Chem. Sot., 89, 5962 (1967).
8.
G. Gray, Ph.D. Thesis, Univ. Of California, Davis, California (1967) quoted in
9.
R.E. London, V.E. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., 97, 3565 (1975).
10.
J. Jokisaari, Org. Magn. Resonance, 2,
11.
S. Tran-Dinh, S. Fermandjian, E. Sala, R. Mermet-Bouvier, M. Cohen, and P. Fromageot,
Dreeskamp and G. Pfisterer, Mol. Phys., 14, 295 (1968).
reference 2.
157 (1978).
J. Amer. Chem. Sot., 96, 1484 (1977). 12.
R.D. Bertrand, D.M. Grant, E.L. Allred, J.C. Hinshaw, and A.B. Strong, J. Amer. Chem. sot., 94, 998 (1972).
13.
V. Wray and L. Ernst, unpublished results.
14.
R.E. London, T.E.Walker, V.H. Kollman, and N.A. Matwiyoff, J. Amer. Chem. Sot., 100, 3723 (1978).
15.
S. Tran-Dinh, S. Fermandjian, E. Sala, R. Mermet-Bouvier, and P. Fromageot, U. Amer. Chem. Sot., 97_, 1267 (1975).
16.
W.M. Litchman and D.M. Grant, J. Amer. Chem. Sot., 89, 6775 (1967).
17.
G.A. Olah and P.W. Westerman, J. Amer. Chem. Sot., 96, 2229 (1974).
18,
M. Barfield, S.A. Corm, J.L. Marshall, and D.E. Miiller, J. Amer. Chem.
SOC.,
98,
6253
(1976). 19.
J.L. Marshall, S.A. Conn, and M. Barfield, Org. Magn. Resonance, 2, 404 (1977).
20.
M. Pomerantz and R. Fink, J.C.S. Chem. Comm., 430 (1975).
21.
M.
22.
S. Fermandjian, S. Tran-Dinh, J. Savrda, E. Sala, R. Mermet-Bouvier, E. Bricas, and
23.
A.R. Battersby, E. Hunt, E. McDonald, and J. Moron, J.C.S. Perkin I, 2917 (1973).
24.
F.J. Weigert, M. Winokur, and J.D. Roberts, J. Amer. Chem. Sot., 90, 1566 (1968).
25.
D. Doddrell, I. Burfitt, J.B. Grutzner, and M. Barfield, J. Amer. Chem. SOC., 96, 1241
Pomerantz and D.F. Hillenbrand, Tetrahedron, 2,
217 (1975).
P. Fromageot, Biochim. Biophys. Acta, 399, 313 (1975).
(1974)
.
Victor Wray
254
26.
M. Barfield, I. Burfitt, and D. Doddrell, J. Amer. Chem. Sot., z,
2631 (1975).
27.
A. Banerji, R.B. Jones, G. Mellows, L. Phillips, and K-Y. Sim, J.C.S. Perkin I, 2221
28.
T.E. Walker, R.E. London, T.W. Whaley, R.Barker, and N.A. Matwiyoff, J. Amer. Chem.
(1977).
sot., 98_,5807 (1976). 29.
D. Y. Gagnaire, R. Nardin, F.R. Taravel, and M.R. Vignon, Nouveau J. Chim., l_,423
30.
T.E.
31.
D. Traficante, G. Maciel, D. Ellett, and G. Kneissl, Amer. Lab., March issue (1972).
32.
J.B. Grutzner,
(1977). Walker, R.E. London, R. Barker, and N.A. Matwiyoff, Carbohydrate Res., 0,
9
(1978).
M.
Jautelat, J.B. Dence, R.A. Smith, and J.D. Roberts, J. Amer. Chem.
sot., 92, 7107 (1970). 33.
v. Wray, A. Gossauer, B. Gruening, G. Reifenstahl, and H. Zilch, J.C.S. Perkin II,
34.
W. Haar, S. Fermandjian, J. Vicar, K. Blaha, and P. Fromageot, Proc. Nat. Acad. Sci.
in press.
USA, 2,
4948 (1975).
35.
O.A. Subbotin and N.M. Sergeyev, J.C.S. Chem. Comm., 141 (1976).
36.
H. Booth and J.R. Everett, J.C.S. Chem. Comm., 278 (1976).
37.
J.L. Marshall and D.E. Miiller, J. Amer. Chem. Sot., E,
38.
8305 (1973).
39.
H. Finkelmeier and W. Luettke, J. Amer. Chem. Sot., -100, 6261 (1978). K. Frei and H.J. Bernstein, J. Chem. Phys., 2, 1216 (1968).
40.
S. Berger, J. Org. Chem., 43, 209 (1978).
41.
J.P. Jacobsen, T. Reffstrup, and P.M. Boll, Acta Chem. Stand., g,
42. 43.
E. Leete, N. Kowanko, and R.A. Newmark, J. Amer. Chem. Sot., 97, 6826 (1975). T.J. Simpson and J.S.E. Holker, Tetrahedron Letters, 4693 (1975).
44.
M. Tanabe, M. Uramoto, T. Hamasaki, and L. Cary, Heterocycles, 2, 355 (1976).
45.
H. Seto, T. Sato, and H. Yonehara, J. Amer. Chem. Sot., 95, 8461 (1973).
46.
U. Sankawa, H. Shimada, T. Sato, T. Kinoshita, and K. Yamasaki, Tetrahedron Letters,
47.
H. Seto and H. Yonehara, Tetrahedron Letters, 487 (1977).
48.
S. Berger and K-P. Zeller, J.C.S. Chem. Comm., 649 i1976).
505 (1977).
483 (1977).
49.
J.L. Marshall and D.E. Miiller, Org. Magn. Resonance, 5, 395 (1974).
50.
The couplings for these compounds should be reversed in the original; see M. Barfield, S.A. Corm, J.L. Marshall, and D.E. Miiller, 3. Amer. Chem. Sot., E,
6253 (1976).
51.
R.C. Long and J.H. Goldstein, J. Magn. Resonance, 16, 228 (1974).
52.
A. Stoessl, J.B. Stothers, and E.W.B. Ward, Can. J. Chem., 56, 645 (1978).
53.
U. Sankawa, H. Shimada, and K. Yamasaki, Tetrahedron Letters, 3375 (1978).
54.
D.E. Cane and R.B. Nachbar, J. Amer. Chem. Sot., E,
55.
A.P.W. Bradshaw, J.R. Hanson, and
56.
T.J. Simpson and J.S.E. Holker, Phytochemistry, 16, 229 (1977).
M.
3208 (1978).
Siverns, J.C.S. Chem. Comm., 303 (1978).
57.
M. Pomerantz, R. Fink, and G.A. Gray, J. Amer. Chem. Sot., E,
58,
A.P.W. Bradshaw, J.R. Hanson, and M. Siverns, J.C.S. Chem. Comm., 819 (1977).
291 (1976).
59.
H. Seto, T. Sato, S. Urano, J. Usawa, and H. Yonehara, Tetrahedron Letters, 4367
60.
H. Seto and M. Tanabe, Tetrahedron Letters, 651 (1974).
61.
N.N. Gerber, A.G. McInnes, D.G. Smith, J.A. Walker, J.L.C. Wright, and L.C. Vining,
(1976).
Can. J. Chem., 56, 1155 (1978). 62.
J.S.E. Holker and T.J. Simpson, J.C.S. Chem. Comm., 626 (1978).
Carbon-carbon coupling constants
‘255
63.
Y. Kimura, M. Gohbara, and A. Suzuki, Tetrahedron Letters, 4615 (1977).
64.
T.C. Feline, R.B. Jones, G. Mellows, and L. Phillips, J.C.S. Perkin I, 309 (1977).
65.
G. Popjak, J. Edmond, F.A.L. Anet, and N.R. Easton, J. Amer. Chem. Sot., 99, 931
66.
Y. Kimura, M. Gohbara, and A. Suzuki, Tetrahedron Letters, 3115 (1978).
67.
S. Seo, Y. Tomita, and K. Tori, J.C.S. Chem. Comm., 954 (1975).
68.
S. Seo, Y. Tomita, and K. Tori, J.C.S. Chem. Comm., 319 (1978).
(1977).
69.
I. Kurobane, L.C. Vining, A.G. McInnes, J.A. Walter, and J.L.C. Wright, Tetrahedron Letters, 1379 (1978).
70.
A. Seto, T. Yahagi, Y. Miyazaki, and N. Otake, J. Antibiot., 2,
71.
H. Seto, Y. Miyazaki,
K.
530 (1977).
Fujita, and N. Otake, Tetrahedron Letters, 2417 (1977).
72.
V.J. Bartuska and G.E. Maciel, J. Magn. Resonance, I, 36 (1972).
73.
A.M. Ihrig and J.L. Marshall, J. Amer. Chem. Sot., 2,
1756 (1972).
74.
J.L. Marshall and A.M. Ihrig, Org. Magn. Resonance, I, 235 (1973).
75.
J.L. Marshall, A.M. Ihrig, and D.E. Miiller, J. Mol. Spectroscopy, 2,
76.
R. Niedermeyer and R. Freeman, J. Magn. Resonance, 30, 617 (1978).
77.
P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, 5, 632 (1976).
78.
P.E. Hansen, Org. Magn. Resonance, 2,
323 (1972).
215 (1978).
79.
S. Berger and K-P. Zeller, J.C.S. Chem. Comm., 423 (1975).
80.
P.S. Nielsen, .;.S.Hansen, and H.J. Jakobsen, J. Organometallic Chem., 114, 145 (1976).
81.
A.J. Birch, T.J. Simpson, and P.W. Westerman, Tetrahedron Letters, 4173 (1975).
82.
S. Berger and K-P. Zeller, Org. Magn. Resonance, 11, 303 (1978).
83.
A.R. Battersby, M. Ihara, E. McDonald, J. Saunders, and R.J. Wells, J.C.S. Perkin I, 283 (1976).
84.
D.P.H. Hsieh, J.N. Seiber, C.A. Reece, D.L. Fitzell, S.L. Yang, J.I. Dalezios, G.N. La Mar, D.L. Budd, and E. Motell, Tetrahedron, 2,
85.
661 (1975).
R.C. Paulick, M.L. Casey, D.F. Hillenbrand, and H.W. Whitlock, J. Amer. Chem. Sot., 97, 5303 (1975).
86. 87.
M. Uramoto, N. Otake, L. Cary, and M. Tanabe, J. Amer. Chem. Sot., -100, 3616 (1978). P.L. Canham, L.C. Vining, A.G. McInnes, J.A. Walter, and J.L.C. Wright, Can. J. Chem., z,
2450 (1977).
88.
G.A. Gray, P.D. Ellis, D.D. Traficante, and G.E. Maciel, J. Magn. Resonance, 1, 41
89.
D. Ziessow, J. Chem. Phys., z,
90.
F. Piriou, K. Lintner, H. Lam-Thanh, F. Toma, and S. Fermandjian, Tetrahedron, 2,
(1969). 984 (1971). 553
(1978). 91.
J.L. Marshall and A.M. Ihrig, Tetrahedron Letters, 2139 (1972).
92.
J.L. Marshall, D.E. Miiller, H.C. Dorn, and G.E. Maciel, J. Amer. Chem. Sot., 97, 460
93.
S.Aa Linde and H.J. Jakobsen, J. Amer. Chem. Sot., 98. 1041 (1976).
94.
J.L. Marshall, L.G. Faehl, A.M. Ihrig, and M. Barfield, J. Amer. Chem. SOc., 98, 3406
95.
P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, 2, 649 (1977).
96.
A.M.
97.
P.E. Hansen and A. Berg, Org. Magn. Resonance, 8, 591 (1976).
98,
J.L. Marshall, L.G. Faehl, and N.D. Ledford, Spectroscopy Letters, 2, 877 (1976).
99.
G.A. Gray, G.E. Maciel, and P.D. Ellis, J. Magn. Resonance, 1, 407 (1969).
(1975).
(1976).
Ihrig and J.L. Marshall, J. Amer. Chem. Sot., 94, 3268 (1972).
r
Victor Wray
256
loo.
H. Dreeskamp, E. Sackman, and G. Stegmeier, Ber. Bunges. Phys. Chem., 67, 860 (1963).
101.
G. Becker, W. Luettke, and G. Schrumpf, Angew. Chem., E,
102.
K. Bachmann and W. von Philipsborn, Org. Magn. Resonance, 8, 648 (19761.
103.
K.M. Rapp, T. Burgemeister, and J. Daub, Tetrahedron letters, 2685 (19781.
357 (1973).
104.
H.J. Bernstein,
105.
F.W. Wehrli and T. Wirthlin, "Interpretation of Carbon-13 NMR Spectra," Heyden,
private
in reference 5.
COmmUniCatiOII
London (1976). 106. P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. Resonance, L, 475 (1975). 107. P.E. Hansen, O.K. Poulsen, and A. Berg, Org. Magn. ReSOKanCe, I, 405 (1975). 108. J.L. Marshall, A.M. Ihrig, and D.E. Miiller, J. Magn. Resonance, la, 439 (1974). 109. P.E.Hansen, O.K. Paulsen, and A. Berg, Org. Magn. Resonance, 1, 23 (1975). l-lo.
A.M.
Nadzan and K.L. Rinehart, J. Amer. Chem. Sot., 98, 5012 (1976).
111. E. Leete, N. Kowanko, R.A. Newmark, L.C. Vining, A.G. McInnes, and J.L.C. Wright, Tetrahedron Letters, 4103 (1975). 112.
A. Gossauer and K. Suhl, Helv. Chim. Acta, z,
113.
G. Hoefle, Terahedron Letters, 347 (1974).
114.
A.R. Battersby, E. Hunt, and E. McDonald, J.C.S. Chem. Comm., 442 (1973).
115.
A.R. Battersby, C.J.R. Fookes, E. McDonald, and M.J. Meegan, J.C.S. Chem. Comm., 185
116.
A.I. Scott, C.A. Townsend, K. Okada, M. Kajiwara, R.J. Cushley, and P.J. Whitman,
1698 (1976).
(1978).
J. Amer. Chem. Sot., 96, 8069 (1974). 117. J.L. Marshall, private communication in reference 78. 118. D.M. Grant, J. Amer. Chem. Sot., 2,
2228 (19671.
119. C.E. Strouse, V.H. Kollman, and N.A. Matwiyoff, Biochem. Biophys. Res. Commun., 46, 328 (1972). 120. 121.
N.A. Matwiyoff and B.F. Burnham, Ann. N. Y. Acad. Sci., -206, 365 (1973). A.S. Perlin, Isotopes in Organic Chemistry, 2, 171 (1977).
122.
R.E. London, J.C.S. Chem. Comm., 1070 (1978).
123.
H. Seto, M. Shibamiya, and H. Yonehara, J. Antibio., 926 (1978).
124.
H. Set0 and S. Urano, Agr. Biol. Chem., 2,
915 (1975).