cDNA cloning and regulation of a novel rat cytochrome P450 of the 2C gene subfamily (P450IIC24)

cDNA cloning and regulation of a novel rat cytochrome P450 of the 2C gene subfamily (P450IIC24)

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Pages 645-65] Vo1.180, No. 2,1991 October 31,1991 cDNA CLONING AND R E G U L A T I O N OF A NOVE...

610KB Sizes 0 Downloads 91 Views

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Pages 645-65]

Vo1.180, No. 2,1991 October 31,1991

cDNA CLONING AND R E G U L A T I O N OF A NOVEL RAT CYTOCHROME P450 OF THE 2C GENE SUBFAMILY (P450IIC24) Peter G. Zaphiropoulos Department of Medical Nutrition, Huddinge U n i v e r s i t y Hospital, F60, NOVUM, K a r o l i n s k a Institute, S-141 86 Huddinge, Sweden Received September 9, 1991 A novel member of the cytochrome P450 2C gene subfamily was identified by screening rat prostate cDNA libraries. Two independent clones were isolated. Clone prosl was 1031 bp long and c o n t a i n e d a bizarre replacement in place of putative exon i. Clone pros2 was 1755 bp long, c o n t a i n e d a complete 3' end, and also had bizarre sequences in place of exon i, which in this case were compatible with an u n s p l i c e d intron. Northern analysis revealed m R N A expression in the liver and the kidney. Interestingly, although livers of mature rats of both sexes have comparable amounts of P4502C24 mRNA, a dramatic sex difference is seen in the kidney where only males express detectable levels of this mRNA. © 1991 Academic

Press,

Inc.

P450 cytochromes represent a wide class of enzymes that are capable of a variety drug

of m e t a b o l i c

detoxification,

and

reactions

including

carcinogen

steroid

activation

synthesis,

(1-3).

The

2C

subfamily is the largest known group of P450s that have relatively similar primary structures but quite different and expression patterns In order whether cDNA

to

further

additional

libraries

investigate forms

are

this

group

expressed

from the prostate,

were screened with a P4502C7 probe, two independent

catalytic profiles

(4-13).

in

a known

of P450s

and examine

extrahepatic source

tissues,

of P450s

(14),

resulting in the isolation of

clones coding for a new member of this subfamily,

P4502C24.

M A T E R I A L S AND METHODS Isolation and c h a r a c t e r i z a t i o n of p r o s t a t e cDNA clones A random p r i m e d and an oligo dT p r i m e d rat prostate cDNA library in IZAP and ~gtl0 respectively, kindly p r o v i d e d by Drs Stefan Andersson and Maria Str~mstedt, were screened with a 5' to n u c l e o t i d e 1013 (SphI site) P4502C7 cDNA fragment (6,15), under conditions of reduced stringency as d e s c r i b e d p r e v i o u s l y (ii). About 200.000 Rlaque ~ o r m i n g units from each of the two libraries were screened and this r e s u l t e d in the isolation of clone prosl from the random p r i m e d and clone pros2 from the oligo dT p r i m e d

645

0006-291X/91 $1.50 Copyright © 1991 by Academic Press, Inc. All rights of reproduction in any form reserved.

Vol. 180, No. 2, 1991

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

library. The inserts were subcloned into the pGEM3Z vector (Promega) and sequenced using Sequenase (U.S. Biochemicals) in the dideoxy nucleotide chain t e r m i n a t i o n protocol with the use of universal as well as c u s t o m - s y n t h e s i z e d o l i g o n u c l e o t i d e primers b a s e d on p r e v i o u s l y d e t e r m i n e d sequence.

Northern analysis RNA from different tissues of mature S p r a g u e - D a w l e y rats and RNA from liver of rats at different d e v e l o p m e n t a l stages were isolated by the m e t h o d of Chomczynski and Sacchi (16). Tissue from three animals were p o o l e d for each RNA preparation. N o r t h e r n analysis was p e r f o r m e d as before (11,15) using as a probe an AvaII - AvaII fragment (position 165 - 982) of prosl.

RESULTS The

screening

sequences prosl

1031) of

pros2.

into

two

Prosl

two

is highly

the

the

prostate

cDNA

has

segments

an

insert

(Fig.

i).

1 to

Clone

2C

gene

subfamily,

in

1 - 124), which is not.

exon

2

(19),

pros2

into two

junctions

has

an

segments

insert (Fig.

to

nucleotide

substitution

that

end

and

untranslated 7 - 124) but

is

also

codon and

in

furthermore,

(T/C) nN(C/T)AG (Fig. of

with

from to

the

the

(20),

the

is

segment prosl

pros2

The

amino

deduced

nucleotides identical

125 to

with that

acids

which

T~G,

(18),

and

be

divided

125 - 1755)

is

of

results

a

in an

it further extends to

the A,

acid

A

at

the

codon,

prosl has

3'

2C P450s

clone.

This

a termination of segment

splice

junction

a

(nucleotides

1 of the

sequence

intron/exon

represent

can

that

3'

makes

A

structure.

Segment

of

-

with the

exception

of exon

A

125

B

sequence,

with

segment

B

it likely that the segment A

part

of

an

of

clone

unspliced

intron,

i.

acid 1426

sequence was

of P450s are

the

segment

amino

present

might

of intron

P4502C12

termination

sequence

i). This last o b s e r v a t i o n

clone

with

(A)+ tail.

be

segment

coincides

(nucleotides

translation

deduced

to

again

813,

can

the p o s i t i o n of

which

In addition,

consensus

specifically

Amino

a

to the

different

contrast

gene

B

cDNA clones, which

region of the members

(17),

prosl,

and a poly

contrast

in frame

Segment

P4502C7

(nucleotides

a known

bp

at p o s i t i o n

is d i s s i m i l a r

segment,

1755

Ile~Ser.

B

sequences

with

clone

contains

region,

of

i).

of

amino acid replacement, 3'

with

bp

Interestingly,

of P4502CII

the rat 2C P450s

identical

the

1031

Segment

this switch from similar to d i s s i m i l a r

P4502C13

of

similar to the c o r r e s p o n d i n g

P450

(nucleotides

exon

libraries

r e s u l t e d in the isolation of two independent

and

divided

of

found to be IIC6,

conserved

IIC7,

in these

646

72,

pros2, 66,

IICII, five

75,

deduced 63,

IICI2, rat

and

from 65 %

and IICI3.

P450s

are,

in

Vol. 180, No. 2, 1991

1

50

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Pros2: Prosl:

ArgIleProArgAsnSerAspLeuLysLeuTrpLeuAlaAsn GCGGATTCCGCGGAATTCCGATTTGAAGTTGTGGTTGGCAAAC GCAGCTTTCTTGCAGCA-A--A-TT-G-C-T-CC-GTG-TCCC-AGGCT GlnLeuSerCysSer LysPheGly ThrCysGlyProGluAla

TyrArgCysGlyGlu***AspAlaHisIleIleLeuAsnProSerSerAlaThrHisPheLeuSerTyrPheGln TACAGATGTGGAGAGTAAGATGCTCACATTATCCTAAATCCTTCTTCTGCTACTCATTTTCTTTCTTATTTCCAG .... G-C-GGAA--C-T-TGlnPheThrAspLysLeuThr LysCysHisSerSerVal LeuHisIleAspLeuProGlyAsnLeuLeu C-GTTCACA-ATA-ACTTAC-G-AA-GTGCCA-AGTTC-GTCAG--TGCAC-T-G

125

PheSerLysIleTyrGlyProValPheThrLeuTyrPheGlyProLysProThrValValValHisGlyTyrGlu TTCTCAAAAATTTATGGCCCTGTGTTCACTCTGTACTTTGGTCCGAAGCCTACTGTGGTGGTACATGGATATGAA ...........................................................................

200

AlaValLysGluAlaLeuAspAspLeuGlyGluGluPheSerGlyArgGlySerPheProIleValGluArgMet GCAGTAAAGGAAGCCCTGGATGATCTTGGAGAGGAGTTTTCTGGGAGGGGTAGTTTCCCAATTGTTGAAAGAATG ...........................................................................

275

AsnAsnGlyLeuGlyLeuIlePheSerAsnGlyThrLysTrpLysGluLeuArgArgPheSerLeuMetThrLeu AATAATGGCCTTGGGCTCATTTTCAGCAATGGAACAAATGGAAGGAGCTTCGGCGTTTCTCACTTATGACCTTG ...........................................................................

350

ArgAsnPheGlyMetGlyLysArgSerIleGluAspArgIleGlnGluGluAlaSerCysLeuValGluGluLeu AGAAATTTTGGGATGGGGAAGAGGAGCATCGAGGATCGCATTCAAGAGGAAGCCTCCTGTCTTGTGGAAGAGCTA ...........................................................................

425

ArgLysThrAsnGlySerLeuCysAspProThrPheIleLeuSerCysAlaProSerAsnValIleCysSerVal AGAAAAACAAATGGCTCACTCTGTGATCCCACATTCATCCTGAGCTGTGCTCCCTCCAACGTGATCTGCTCAGTT ...........................................................................

500

ValPheHisAsnArgPheAspTyrLysAspGluAsnPheLeuAsnLeuMetGluLysLeuAsnGluAsnPheLys GTTTTCCATAATCGTTTTGATTATAAAGATGAGAATTTCCTTAACTTGATGGAGAAACTCAATGAAAACTTTAAA ...........................................................................

575

IleLeuAsnSerProTrpMetGlnValCysAsnAlaLeuProAlaPheIleAspTyrLeuProGlySerHisAsn ATCTTGAACTCCCCATGGATGCAGGTTTGCAATGCTCTCCCTGCCTTCATCGATTATCTCCCAGGAAGCCATAAT ...........................................................................

650

ArgValIleLysAsnPheAlaGluIleLysSerTyrIleLeuArgArgValLysGluHisGlnGluThrLeuAsp AGAGTAATTAAAAATTTTGCTGAAATAAAAAGTTATATTTTGAGACGAGTGAAAGAACATCAGGAAACACTGGAC ...........................................................................

725

MetAspAsnProArgAspPheIleAspCysPheLeuIleLysMetGluGlnGluLysHisAsnProArgThrGlu ATGGACAATCCTCGGGACTTTATTGACTGTTTCCTGATCAAAATGGAACAGGAAAAACACAATCCCCGTACTGAG ...........................................................................

800

PheThrIleGluSerLeuMetAlaThrValSerAspValPheValAlaGlySerGluThrThrSerThrThrLeu TTTACTATTGAAAGCTTGATGGCTACTGTAAGTGATGTATTTGTAGCTGGATCAGAAACCACAAGCACTACCCTG ............. T ............................................................. Ile

875

ArgTyrGlyLeuLeuLeuLeuLeuLysHisIleGluValThrAlaLysValGlnGluGluIleAspHisValIle AGATATGGACTCTTGCTCCTACTGAAACACATAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGATCACGTGATT ...........................................................................

950

GlyArgHisArgArgProCysMetGlnAspArgThrArgMetProTyrThrAspAlaMetValHisGluIleGln GGCAGACACAGGAGGCCCTGCATGCAGGACAGGACCCGCATGCCCTACACAGATGCGATGGTGCACGAAATCCAG ...........................................................................

1025

ArgTyrIleAsnLeuIleProAsnAsnValProHisAlaAlaThrCysAsnValArgPheArgAsnTyrValIle AGATATATTAACCTCATCCCCAACAATGTGCCCCATGCAGCTACCTGTAATGTTAGATTCAGAAATTATGTAATT

1100

ProLysGlyThrAspLeuLeuThrSerLeuThrSerValLeuHisAspAspLysGluPheProAsnProGluVal CCCAAGGGCACGGACTTACTAACATCACTGACTTCTGTGCTACATGATGACAAAGAATTTCCCAACCCAGAAGTA

1175

PheAspProGlyHisPheLeuAspGluAsnGlyAsnPheLysLysSerAspTyrPheMetProPheSerThrGly TTTGACCCAGGCCATTTTCTGGATGAGAATGGGAACTTTAAGAAGAGTGACTACTT~TATGCCTTTCTCAACAGGA

1250

LysArgMetCysValGlyGluAlaLeuAlaArgMetGluLeuPheLeuLeuLeuThrThrIleValGlnAsnPhe AAGCGAATGTGCGTGGGAGAGGCCCTGGCTCGCATGGAGCTGTTTTTGCTTCTGACCACCATTGTACAGAATTTT

1325

AsnLeuLysSerPheValAspThrLysAspIleAspThrThrProMetAlaAsnThrPheGlyArgValProPro AACCTGAAATCTTTTGTTGATACAAAGGACATTGACACTACTCCAATGGCTAATACCTTTGGCCGTGTACCACCT

1400 1475 1550 1625 1700

SerTyrGlnLeuCysPheIleProArg*** TCATACCAGCTGTGCTTCATTCCTCGTTAAAGCAGAGCACACTGGGCTGTTGCTATGCTGGTGTCTGTGACTAAT CAGGGGCAATCCAGTTTCCACTGTTAGGAACATCTCTCTCAATTCTCCTCTCACATCTCTTCATTCTCTCACAAT ACAGTTATCATCCATCTTTGTTTAAGAGGTTTTCCCAGAGTTATCTCGCAAATCTATCCTTTGTCTCCCACAGTC TATAACACTTATATTGACTGTGAACTGTACTAAGACATGTGCTGGGTTACTAATATGTTATGGGTGTAATACAGA ATAGTTCAACTGAGAGCCATATCTTCTTTGCTTGATTCAAAATAAAAGGAGTTATTAACTGA

Figure I. N u c l e o t i d e and deduced amino acid sequence of clones prosl and pros2. The nucleotide sequence of the two p r o s t a t e clones is shown. Identical n u c l e o t i d e s in the prosl sequence are indicated by bars. The deduced amino acid sequence of pros2 and prosl is shown above and b e l o w the respective nucleotide sequence. Only amino acids which are different in prosl codons, the conserved 3' intron polyadenylation signal are underlined.

647

are shown. The dinucleotides,

termination and the

Vol. 180, No. 2, 1991

2C24 2Cli 2C6 2C7 2C13 2C12

51

i01

151

201

251

301

351

401

451

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

FSKI GQSIKKFSKV TQSLTSFSKV SQSLTKFSKT RQSLTNFSKT RQSISNFSKT

YGPVFTLYFG YGPIFTLYLG YGPVFTLYFG YGPVFTLYLG YGPVYTLYVG YGPVFTLYFG

PKPTVVVHGY MKPFVVLHG¥ TKPTVILHG¥ SQPTVILHGY SQPTVVLHGY SQPTVVLHGY

EAVEXALDDL EAVKEALVDL EAVKEALIDH EAIKEALIDN EALKEALVDH EAVKEALIDY

GEEFSGRGSF GEEFSGRGSF GEEFAERGSF GEKIrSC.-P.GSY GEEFSGRGRL GEEFSGRGRM

PIVERMNNGL PVSERVNKGL PVAEKINKDL PMIENVTKGF PICEKVAKGQ PVFEKATKGL

GLIFSNGTKW GVIFSNGMQW GIVFSHGNRW GIVFSNGNRW GIAFSHGNVW GISFSRGNVW

KELRRFSLMT KEIRRFSIMT KEIRRFTLTT KEMRRFTIMN KATRHFTVKT RATRHFTVNT

LRNFGMGKRS LRTFGMGKRT LRNLGMGKRN FRNLGIGKRN LRNLGMGKGT LRSLGMGKRT

IEDRIQEEAS IEDRIQEEAQ IEDRVQEEAR IEDRVQEEAQ XEDKVQEEAK IEIKVQEEAE

CLVEELRKTN CLVEELRKSK CLVEELRKTN CLVEELRKTK WLVKELKKTN WLVMELKKTK

GSLCDPTFIL GAPFDPTFIL GSPCDPTFIL GSPCDPSLIL GSPCDPQFIM GSPCDPKFII

SCAPSNVICS W F H N R F D Y K GCAPCNVICS IIFQNRFDYK GCAPCNVICS IIFQNRFDYK NCAPCNVICS ITFQNHFDYK GCAPGNVICC IILQNRFDYE GCAPCNVICS IIFQNRFDYK

DENFLNLMEK DPTFLNLMHR DQDFLNLMEK DKEMLTFMEK DKDFLNLIEK DKDFLSLIEN

LNENFKILNS FNENFRLFSS LNENMKILSS VNENLKIMSS VNEAVKIISS VNEYIKIVST

PWMLVCNALP PWLQVCNTFP PWTQFCSFFP PWMQVCNSFP PGIQVFNIFP PAFQVFNAFP

AFIDYLPGSH AIIDYFPGSH VLIDYCPGSH SLIDYFPGTH ILLDYCPGNH ILLDYCPGNH

NRVIKNFSEI NQVLKNFFYI TTLAKNVYHI HKIAKNINYM NIYLKNYTWV KTHSKHFAAI

KSYILRRVKE KNYVLEKVKE RNYLLKKIKE KSYLLKKIEE KSYLLEKIKE KSYLLKKIKE

HQETLDMDNP HQESLDKDNP HQESLDVTNP HQESLDVTNP HEESLDVSNP HEESLDVSNP

RDFIDCFLIK RD~IDCFLNK RDFIDYYLIK RDFVDYYLIK RDFIDYFLIE RDFIDYFLIQ

MEQEKHNPRT MEQEKHNPQS WKQENHNPHS QKHANNIEHS RNQENANQWM RCQENGNQQM

EFTIESLMAT EFTLESLVAT EFTLENLLIT EYSHENLTCS NYTLEHLAIM NYTQEHLAIL

VSDVFVAGSE VTDMFGAGTE VTDLFGAGTE IMDLIGAGTE VTDLFFAGIE VTNLFIGGTE

TTSTTLRYGL TTSTTLRYGL TTSTTLRYAL TMSTTLRYAL TVSSTMRFAL TSSLTLRFAL

LLLLKHIEVT LLLLKHVDVT LLLLKCPEVT LLLMKYPHVT LLLMKYPHVT LLLMKYPHIT

AKVQEEIDHV AKVQEEIERV AKVQEEIDRV AKVOEEIDRV AKVQEEIDHV DKVQEEIGQV

IGRHRRPCMQ IGRNRSPCMK VGKHRSPCMQ IGRHASPCMQ IGRHRSPSMQ IGRHRSPCML

DRTRMPYTDA DRSQ~YTDA DRSRMPYTDA DRKHMPYTDA DRSHMPYTNA DRIHMPYTNA

MVHEIQRYIN VVHEIQRYID HDHEVQRFID HDHEVQRFIN MVHEVQRYID MIHEVQRYID

LIPNNVPHAA LVPTNLPHLV LIPTNLPHAV FVPTNLPHAV IGPNGLLHDV LAPNGLLHEV

TCNVRFRNYV TRDIKFRNYF TCDIKFRNYL TCDIKFRNYL TCDTKFRNYF TCDTKFRDYF

IPKGTDLLTS IPKGTNVIVS IPKGTTIITS IPKGTKVLTS ZPF~TAVLTS IPKGTAVLTS

LTSVLHDDKE LSSILHDDKE LSSVLHDSKE LTSVLWnSKE LTSVLHDSKE LTSVLHDSKE

FPNPEVFDPG FPNPEKFDPG YPDPEIFDPG FPNPEMFDPG FPNPEMFDPG ¥PNPEMFDPG

HFLDENGNFKKSDYFMPFST HILDERGNFKKSDYFMPFSA HFLDGNGKFK KSDYFMPFSA HFLDENGNFKKSD~LPFSA HFLDENGNFKKSDYFIPFSA HFLDENGNFKKSDYFMPFSA

GERMCVGEALARMELFLLLT GKRICAGEAL ARTELFLFFT GKRMCAGEGL ARMELFLFLT GERACVGEGLARMQLFLFLT GERMCLGESL ARMELFLFLT GKP.KCVGEGL ASMELFLFLT

TIVQNFNLKS TILQNFNLKS TILQHFKLKS TILQNFNLKS TILQNFKLKS TILQNFKLKS

FVDTEDIDTT LVDVEDIDTT VLHPKDIDTT LVHPKDXDTM LVDPEDINTT LSDPEDXDIN

PSYQLCFIPR PFYEACFIPV QRADSLSSHL PFYELCFIPL PTYQLCFIPS PTFQMRFIPL PTFQLCFIPV

PMANTFGRVP PAISGFGHLP PVFNGFASLP PVLNGFASLP PICSSLSSVP SIRSEFSSIP

Figure 2. C o m p a r i s o n of t h e amino acid sequence of P 4 5 0 2 C 2 4 , deduced from nucleotides 125 to 1 4 7 6 of p r o s 2 , w i t h t h a t of P 4 5 0 s 2CII, 2C6, 2C7, 2 C 1 3 , a n d 2 C 1 2 . I d e n t i c a l a m i n o a c i d s a r e i n d i c a t e d by bold letters. The numbering corresponds t o t h a t of a t y p i c a l 2C P450.

general, 302

also c o n s e r v e d in this new form, including Cys 435 and Thr

(Fig. 2) and according to the

this P450 is termed IIC24. 648

standardized nomenclature

(21)

Vol. 180, No. 2, 1991

1

2

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

3

4

5

6

7

8

1

®

2

3

4

5

6

7

8

®

Figure 3. Northern analysis of total RNA from different rat tissues probed with CYP2C24 sequences (see Materials and Methods). The individual lanes are as follows: lane i, ovary; lane 2, female lung; lane 3, female kidney; lane 4, female liver; lane 5, prostate; lane 6, male lung; lane 7, male kidney; lane 8, male liver. Figure 4. Northern analysis of total liver RNA from rats at different developmental stages probed with CYP2C24 sequences (see Materials and Methods). The individual lanes are as follows: lanes 1 to 4; 8, 4, 2, and 1 week old females, lanes 5 to 8; 8, 4, 2, and 1 week old males.

Northern

analysis

of a b o u t

1800

not

apparently

sex

difference

P4502C24

indicated

detectable is

mRNAs

developmental

analysis

that,

comparable

amounts

express

in

the

females

do

of

the

although of

with a typical

in t h e

liver

in the p r o s t a t e .

observed

while

indicated

weeks

that mRNAs

bp are e x p r e s s e d

this

significant

where

mRNA,

only

amounts

males

do

3).

In

of

2C24

in

animals

of

males

of t h i s

both

of

P450

age

size

but

are

a dramatic

(Fig.

expression

mature

sexes

Furthermore

kidney not

2C P450

of b o t h

express

addition, the

liver

sexes two

(Fig.

have

and

four

4).

DISCUSSION cDNA

clones

have

been

do

not

P450

contain I.

of

a the

termination

the

region

Instead,

segment deduced codons

absence

might

that

clone

would

pros2

of u n s p l i c e d

that

has

P450IIC24

no

these

correspond

a typical

a

intron

termination amino

subfamily

Interestingly,

contains

part

2C g e n e

acid

to

segment

I, w h i l e codons

sequence.

exon

represent

of an i n i t i a t o r

an

1 te e x o n 2 j u n c t i o n alternatively

clone

in

methionine

649

codon

in t h i s

2C

with

lack

of

segment

that

clone

transcript. alternate

is

prosl

frame

This

suggests

spliced

clones

which

as w e l l as the fact t h a t t h i s d i s s i m i l a r

at t h e p u t a t i v e

prosl

of the P 4 5 0

from the prostate.

to r e p r e s e n t

contains

ends

for a n e w m e m b e r

isolated

exon

likely

that

coding

The

exon

1

Vol. 180, No. 2, 1991

sequence

(Fig.

produce

I) indicates

a protein

to the

5'

P4502C6,

end.

protein

A

that

exon (22).

similar

8, are In

of mature

case

still

male

and

the

prostate

libraries,

prosl

and

to

does not

is not fully extended splicing

of synthesizing

2C24,

female

rats

2C6

involves

pros2

expressed

in the

levels,

also

expression but in favor of

clones

observed in the Northern analysis,

also

a microsomal

at comparable

is expressed

no significant

rare events.

transcript

having an alternate instead of the

in developmental

and furthermore

Although

represent

this

of differential

capable

similarity

shows a sex difference the female,

either

or that the cDNA sequence

where mRNA transcripts,

canonical liver

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

in the female brain have

signals

been

(22).

isolated

from this tissue

from were

indicating that such transcripts

In agreement with that,

is the large number

of Rlaque ~orming units that had to be screened in order to isolate the

two

kidney

clones.

Furthermore,

and the liver,

1800 bp are seen, the

cloning

characterization

be

P4502C24

speculated

from mRNAs

containing

Verification of

can

signals

transcripts

1 might predominate. await

where

it

of the exon 1 region

in

the

of a size of about

a typical

of this hypothesis from

that

these

P450-1ike

tissues

of the P4502C24

Acknowledqments: This research was supported by Swedish Medical Research Council (No 03X-06807) Work Health Fund.

exon

would have to and

the

gene.

grants from the and the Swedish

REFERENCES I. Gonzalez, F.J. (1988) Pharmacol. Rev. 40, 243-288. 2. Guengerich, F.P. (1991) J. Biol. Chem. 266, 10019-10022. 3. Porter, T.D. and Coon, M.J. (1991) J. Biol. Chem. 266, 1346913472. 4. Leighton, J.K. and Kemper, B. (1984) J. Biol. Chem. 259, 11165-11168. 5. Tukey, R.H., Okino, S., Barnes, H., Griffin, K.J., and Johnson E.F. (1985) J. Biol. Chem. 260, 13347-13354. 6. Gonzalez, F.J., Kimura, S., Song, B.-J., Pastewka, J., Gelboin, H.W., and Hardwick, J.P. (1986) J. Biol. Chem. 261, 10667-10672. 7. Yoshioka, H., Morohashi, K.-I., Sogawa, K., Miyata, T., Kawajiri, K., Hiroshi, T., Inayama, S., Fujii-Kuriyama, Y., and Omura, T. (1987) J. Biol. Chem. 262, 1706-1711. 8. Umbenhauer, D.R., Martin, M.V., LLoyd, R.S., and Guengerich, F.P. (1987) Biochemistry 26, 1094-1099. 9. Zaphiropoulos, P.G., Mode, A., M611er, C., Fernandez, C., and Gustafsson, J.-~. (1988) Proc. Natl. Acad. Sci. 85, 42144217. i0. McClellan-Green, P.D., Linko, P., Yeowell, H.N., and Goldstein, J.A. (1989) J. Biol. Chem. 264, 18960-18965.

650

Vol. 180, No. 2, 1991

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

ii

Zaphiropoulos, P.G., Str6m, A., Robertson, J.A., and Gustafsson, J.-A. (1990) Mol. Endocrinol. 4, 53-58. 12 Pendurthi U.R., Lamb, J.G., Nguyen, N., Johnson E.F., and Tukey, R.H. (1990) J. Biol. Chem. 265, 14662-14668. 13 Romkes, M., Falleto, M.B., Blaisdell, J.A., Raucy, J.L., and Goldstein, J.A. (1991) Biochemistry 30, 3247-3255. 14 Sundin, M., Warner, M., Haaparanta, T., and Gustafsson, J.-~. (1987) J. Biol. Chem. 262, 12293-12297. 15 Westin, S., Str6m, A., Gustafsson, J.-A., and Zaphiropoulos, P.G., (1990) Mol. Pharmacol. 38, 192-197. 16 Chomczynski, P. and Sacchi, N. (1987) Anal. Biochem. 162, 156-159. 17 Morishima, N., Yoshioka, H., Higashi, Y., Sogawa, K., and Fujii-Kuriyama, Y. (1987) Biochemistry 26, 8279-8285. 18 Zaphiropoulos, P.G., Westin, S., StrUm, A., Mode, A., and Gustafsson, J.-A. (1990) DNA Cell Biol. 9, 49-56. 19 Eguchi, H., Westin, S., Str6m, A., Gustafsson, J.-A., and Zaphiropoulos, P.G. (1991) Biochemistry, in press. 20 Green, M. R. (1986) Ann. Rev. Genet. 20, 671-708. 21. Nebert, D.W., Nelson, D.R., Coon, M.J., Estabrook, R.W., Feyereisen, R., Fujii-Kuriyama, Y., Gonzalez F.J., Guengerich, F.P., Gunsalus I.C., Johnson, E.F., Loper, J.C., Sato, R., Waterman, M.R., and Waxman, D.J. (1991) DNA Cell Biol. i0, 1-14. 22. Kimura, H., Sogawa, K., Sakai, Y., and Fujii-Kuriyama, Y. (1989) J. Biol. Chem. 264, 2338-2342.

651