PHYSICS O f f T H E EA RTH AND PLANETARY
INTERIORS
ELSEVIER
Physics of the Earth and Planetary Interiors 91 (1995) 187-201
Letter section
Centroid-moment tensor solutions for October-December 1994 A.M. Dziewonski *, G. Ekstr6m, M.P. Salganik Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA Received 19 June 1995, accepted 20 June 1995
Abstract
Centroid-moment tensor solutions are presented for 231 earthquakes that occurred during the fourth quarter of 1994. The solutions are obtained using corrections for aspherical earth structure represented by a whole mantle shear velocity model SH8/U4L8 of Dziewonski and Woodward (AcousticalImaging, 1992, Vol. A, pp. 785-797). A new model of anelastic attenuation of Durek and Ekstrfm (EOS, 1994, 75:83) is used to predict the decay of the waveforms.
This is the fourth quarterly report on the global seismicity of 1994 as investigated using the centroid-moment tensor technique. Table 1 summarizes the published CMT solutions for 1977-1994. The total number of events is 12078 and their total moment is 5.62 × 10 29 dyn-cm. Fig. l(a) is a plot of the number of earthquakes analyzed during each of the last 18 years; the number of events with a magnitude Mw ~ 6.5 is shown with a darker shade. While these large earthquakes contribute only ~ 5% of the total number of the analyzed events, they contribute 90-95% of the total moment release (Fig. l(b)). Smaller events, however, carry valuable seismotectonic information, particularly in regions with low seismicity. The CMT method is described in detail by Dziewonski et al. (1981), with the later enhancements (incorporation of mantle wave data) given by Dziewonski and Woodhouse (1983) and Woodhouse and Dziewonski (1984). The 1983
* Corresponding author.
paper is the first example of the application of the CMT method to study systematically global seismicity; it contains solutions for 201 events that occurred during 1981. The CMT method has been further refined by Woodhouse and Dziewonski (1984) by the introduction of corrections for the aspherical Earth structure. A brief description of this development is presented in the report for the first quarter of 1984 (Dziewonski et al., 1984c). Model M84C of Woodhouse and Dziewonski (1984) was used to represent the 3-D Earth structure; lower mantle was assumed to be spherically symmetric. Beginning with the third quarter of 1991 (Dziewonski et al., 1992c), we use a whole mantle shear velocity model of Dziewonski and Woodward (1992). Dziewonski et al. (1992c) demonstrate that the introduction of this model improves the variance reduction and, consequently, the quality of the CMT determinations. Beginning with January 1994 we compute decay of amplitude due to attenuation using model QL6 of Durek and Ekstr6m (1994).
0031-9201/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved SSDI 0031-9201(95)03081-6
188
A.M. Dziewonski et al. / Physics of the Earth and Planetary h~teriors 91 (1995) 187-201
Table 1 The number, total seismic moment and reference for the published CMT solutions. Total moment is given in units of 1027 dyn-cm Year
No. of events
Total moment
Publication
1977 1978 1979 1980 1981 1982
471 513 524 515 542 623
68 32 35 25 18 14
1983
665
32
1984
690
19
1985
681
38
1986 1987
707 795
28 27
1988 1989 1990 1991 1992 1993 1994
804 793 811 621 834 716 774
19 26 28 21 25 26 82
Dziewonski et al., 1987a Dziewonski et al., 1987b Dziewonski et al., 1987c Dziewonski et al., 1988a Dziewonski et al., 1988b Dziewonski et al., 1983a; 1988c Dziewonski et al., 1983b,c; 1984a,b; 1988c Dziewonski et al., 1984c; 1985a,b,c Dziewonski et al., 1985d; 1986a,b,c Dziewonski et al., 1987d,e,f,g Dziewonski et al., 1988d,e,f, 1989a Dziewonski et al., 1989b,c,d,e Dziewonski et al., 1990a,b,c,d Dziewonski et al., 1991a,b,c,d Dziewonski et al., 1992a,b,c,d Dziewonski et al., 1993a,b,c,d Dziewonski et al., 1994a,b,c,d Dziewonski et al., 1994e; 1995a,b; this paper
The present format of publication of CMT results is fully described by Dziewonski et al. (1987a). The contents and format of Tables 2 and 3 and Fig. 2, which contain data for October, November and December of 1994, have been explained by Dziewonski et al. (1987a) and we refer the reader to that paper. Of 774 analyzed earthquakes, 35 had a magnitude Mw (Kanamori, 1977) equal or greater than 6.5 (M 0 > 7 x 102s dyn-cm). Distribution of these events, including graphic representation of the moment tensor, are shown for shallow (h < 50 km) events in Fig. 3(a), and for intermediate and deep events in Fig. 3(b).
Acknowledgments The analysis described here was performed using data from the Global Digital Seismographic
Network operated by the Albuquerque Seismological Laboratory of the US Geological Survey in cooperation with the Incorporated Research Institutions for Seismology. This research has been supported by the grant EAR92-19361 from the National Science Foundation.
References Durek, J.J. and Ekstr6m, G., 1994. A new radial model of anelasticity consistent with observed surface wave attenuation, EOS, Trans. Am. Geophys. Un., Spring Meeting Suppl., 75:83 (abstract). Dziewonski, A.M. and Woodhouse, J.H., 1983. An experiment in the systematic study of global seismicity; centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981. J. Geophys. Res., 88: 3247-3271. Dziewonski, A.M. and Woodward, R.L., 1992. Acoustic imaging at the planetary scale. In: H. Emert and H.-P. Harjes (Editors) Acoustical Imaging, Vol. 19, Plenum Press, pp. 785-797. Dziewonski, A.M., Chou, T.-A. and Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86: 2825-2852. Dziewonski, A.M., Friedman, A., Giardini, D. and Woodhouse, J.H., 1983a. Global seismicity of 1982: Centroidmoment tensor solutions for 308 earthquakes. Phys. Earth Planet. Inter., 33: 76-90. Dziewonski, A.M., Friedman, A. and Woodhouse, J.H., 1983b. Centroid-moment tensor solutions for January-March 1983. Phys. Earth Planet. Inter., 33: 71-75. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1983c. Centroid-moment tensor solutions for April-June 1983. Phys. Earth Planet. Inter., 33: 243-249. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1984a. Centroid-moment tensor solutions for July-September 1983. Phys. Earth Planet. Inter., 34: 1-8. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1984b. Centroid-moment tensor solutions for October-December 1983. Phys. Earth Planet. Inter., 34: 129-136. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1984c. Centroid-moment tensor solutions for January-March 1984. Phys. Earth Planet. Inter. 34: 209-219. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1985a. Centroid-moment tensor solutions for April-June 1984. Phys. Earth Planet. Inter., 37: 87-96. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1985b. Centroid-moment tensor solutions for July-September 1984. Phys. Earth Planet. Inter., 38: 203-213. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1985c. Centroid-moment tensor solutions for October-December 1984. Phys. Earth Planet. Inter., 39: 147-156. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1985d.
A.M. Dziewonski et aL / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
189
900 800 700 600 500 400 ,300 200 100 (a)
1994
8.0e28 7.0e28 6.0e28 5.0e28 4.0e28 3.0e28 2.0e28 1.0e28
(b) Fig. 1, (a) Cumulative number of CMT solutions for individual years. Solutions for events with M,, _> 6.5 are shown using darker shade, (b) Cumulative seismic moment for individual years; the cumulative moment due to the earthquakes with M w >_6.5 is shown using darker shade.
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
190
Table 2 C e n t r o i d c o o r d i n a t e s a n d p a r a m e t e r s d e r i v e d f r o m m o m e n t t e n s o r s o l u t i o n s f o r 231 e a r t h q u a k e s o f t h e f o u r t h q u a r t e r o f 1994. F o r e x p l a n a t i o n o f t h e h e a d i n g s s e e D z i e w o n s k i e t al. ( 1 9 8 7 a )
Cemrold parameters LatJtu( [~itude h
1 2" 3"
m
mc
hl)e~
#to
#~
6 7 8 9 10
1 10 15 3 35.5*0.2 I I01635 27.0~0.1 I I0 17 46 40.9~0.2 1 lO 23 29 6.9*0.2 1 lO 23 54 1.2,0.8 210 05-534.3,1.4 2 10!10 14 39.2*0.3 2 10 22 10 40.5*0.6 3 I0 14 0 51.7"0.0 3 10 10 23 0.1,2.4
3.3 4.2 3.7 10.5 5.0 .3.1 2.7 7.0 4.1 3.8
-17.72~.02 0.I0 167.65,.02 -17.70=b.01 0.06 107.65,.01 -17.71:b.00 0.10 107.70,.02 -17.60=1=.04 -0.01 107.47,.03 -17.43::E.0@ 0.19 167.78,.00 8.03,.23 .0.03 93.83+.21 -17.4~1=.04 0.00] 167.63,.03 -25.39:1:.07 0.00 -176.60::1:.9o 31.92:[=.10 .0.11 -114,93,.11 -2.03-I-.18 0.00 133.68..17
-0.13 0.02 -0.11 .0.39 .0.07 .0.29 .0.24 0.49 0.01 -0.22
II 12" 13 14 15 16 17 18 19 20
4 10 12 9 51.7-t-I.0 4101323 28.5,0.1 $ 10203734.1,0.1 5 I0 20 39 52.7*0.4 0 10 7 38 51.6"0.4 6 10 15 42 22.0,0.2 0 I0 23 2 0 1 2 . 0 " 1 . 5 7 I0 2 3612.7"0.2 7 10 7 0 55.3~0.2 7 10 12 54 22.8~:0.8
10.2 39.2 2.3 5.5 2.0 8.9 1.1 5.7 5.0 12.1
-6.40~.07 43.90d:.9o 43.634:.02 44.22,.0~ 43.00,.9O -39.~5,.03 43.9O*.13 43.~b.02 42.942E.03 -35.(~
-0.19 I 0 4 . 0 0 , . I I -0.11 147.63,.01 0.09 147.37,.00 0.34 147.31,.90 0.41 148.05,.00 -0.24 -141.94../~ -0.34 148.0~:.13 -0.02 147.39..03 -0.20 147.9O~.03 179.13
0.05 58.34. 7.5 0.30 68.2:1:0.4 -.0.09 15.0 .0.9O 35.0* 2.3 -0.45 33.0 .0.01 15.0 0.74 56.9*6.6 0.00 42.8* 2.5 0.21 55.0* 2.2 33.0
3.6 `6.9 2.5 1.9 4.9 4.4 11.4 I.I 8.2 7,2
43.3(F&.03 42.68,.08 43.37..04 43.90~:.04 43.00:/:.05 -1.19,.01 43.87*.80 43.9O*.18 36.13<-.39 -537
.0.02 .6.13 0.00 -0.00 -0.05 0.03 -0.03 0.10 0.68
2.0 51.48:k.02 4.3 .32.22,.02 3.5 -I 1.33~.02 4.0 , 23.16~:.12 2.4 13.94~.02 5.8 13.89".01 0.0 51.31".00 4.5 -7.19~.01 2.3 -1.13,.01 5.1 43.38
0.01 .0.11 -0.09 0.41 O.20 0.15 .0.31 .0.27 0.12
-173.90~.03 -71.91,.02 165.9O*.02 143.9O~.15 134.07:E.02 124.83,.01 -173.05,.15 155.80~.02 127.94:k.01 146.86
-0.01 -0.47 -0.23 0.00 0.13 0.30 -0.18 0.04 .0.01
14.4±1.1 33,09:0,4 33.6,0.1 6.9*0.3 M.2"0.2 0.0"0.1 0.9d:0.8 31.2,0.7 6.8*0.8 51.4d:0.7
4.3 42.9O*.11 0.1 22.48:~.9O 5.7 -3.67,.01 0.3 -58.49,.04 4.7 ! -9.21:1:.02 3.3 45.73,.01 1.2 .3.9O*.09 2.4 .3.70~.09 7.2 43.43 -2.3 `6.30~:.06
0.01 0.10 0.10 0.26 0.07 0.04 0.05 .0.18
148.74:i:.16 121.73,.08 162.06,.01 150.15,.06 -75.57..03 140.32".01 152.22..09 152.09,.09 146.94 154.86~:.07
0.45 0.12 .0.02 -0.44 0.23 0.10 0.51 0.16
4,0.3 53o 13
-1.5 4.4 6.9 2.4 6.2 5.1 -0.2 4.2 5.2 3.7
.0.32
21 7 I0 22 7 I0 23 8 I0 24 8 10 25 8 lO 26* 8 lO 27* 9 I0 28 9 10 29 I0 10 30 I0 I0
15 15 5 0 12 21 7 20 14 14
0 24 28 54 13 44 55 25 8 27
31 32 33 34 35 36' 37 ~3~ * 40
lO 11 11 12 12 12 12 12 13 13
10 10 I0 I0 10 10 10 I0 10 10
21 I 17 1 6 0 10 15#
0 37 8 55 2 43 33 43
41 42 .t3' 44 45 46* ~l~
13 14 15 15 16 16 16 16 17 17
10 22 23 10 10 ]0 I0 0 39 10 6 4 8 10 0 6 10 5 10 lO i 17 4 10 17 56 10 13 55 10 19 25
12
51 18 10 3 lO lO/o 18 54* 18 55 19 .~ 19 57 19 58 20 g 20 20
10 10l 17 10 9 10= 12 10 17 10 1 10 4 10 5
18.5.0.4 3.6*0.6 29.1"0.3 39.1,0.3 50.6*0.4 13.5.0.1 49.4"0.1 9.5,1.6 5.3*0.9 29.5*0.7
55.7,0.2 25.1.0.1 6.6*0.2 47.8*0.9 52.9:1:0.2 47.6"0.1 22.1,0.8 31.7=I:0.1 30.6:E0.1 3 23.6*0.9
7 12 47 54 55 15 ~
2.3*0.7 53.8:E0.2 15.3,0.3 13~0,0.5 23.5*0.9 20.5,0.1 38.3*0.2 7.0*0,5
12.94,.03 -33.06 t3.23::i:.07 43.70*.02 -5.16±.04 -9.34:t:,07 22+36,.09 .39.19±.01 -21.91,.04 -3.31~:.06
15.0 13.9~ 0.4 17.0" 1.1 13.0 34.8* 6.1 33.0 18.6"1- 1.7 55.4* 5.4 16.0 15.2,11.3
Haft Scale D r m Factor lO"
Prln~ o
T-uis 6
Axm
Me
P-m~ ~
•
s
{
Belt DouMe Fla~l C ° ~ 2
a
1.8 4.0 3.4 1.3 1.1 1.0 1D 1.0 l.O 1.0
24 25 25 24 24 23 24 24 23 23
4.{~ 56 15 6.66 58 ~ 2.4810248 1.5077356 1.39 1 10 0.37 6 300 1.3967 18 0.68 50 232 8.38 0 104 5.84 17 107
-0.1320137 0,26 24 I ~ -0.3927140 -0.0013175 -0.1272112 -0.68 50 38 -0.1420164 0.32 21 349 -0.23 90 190 -0.46 90 230
-3.90 `6.92 -2.11 -1.44 -1.37 -~J~ -1.3~ -1.00 `6.13 .3.38
26 19 39 0 10 39 11 32 0 23
237 234 0 265 289 00S ~8 93 14 9
4.0 6.8 3.3 1.3 1.3 0.2 1.3 0.8 8.3 $.8
3 26 358 33 14 396 8 46 65 77 350 58 11 38 23323 149 90 14961
1.0 25.0 2.1 3.3 1.1 1.4 1.0 1.5 1.3 1.0
23 28 25 25 24 24 23 24 24 24
7.61 62 22 1.14 4 285 2.9346 ~ 0.1237218 0.9021 192 0 . 1 1 1 0 2 8 8 1.89 39 37 -0.60 4 139 0.84 2 11 0.43 55 278 2.1019355 .0.1069151 5.5665324 0.00 6 2 2 1 2.73 51 18 0.20 I0 275 1,78 66 328 0.45 8 221 1.20 34 310 -0.19 5 222
..8.75 -3.00 -1.01 -1.29 -1.27 -2.06 -3.61 -2.9O .3.22 -1.01
28193 20113 63 52 50226 35102 8262 24128 37178 23128 53124
8.2 3.0 1.0 1.6 1.1 2.1 5.0 2.3 2.0 1.1
27317 78100673 94 15841 24 5 0 7 4 128 ~ 28 - 1 2 7 1 1 3 6 8 -73 94 7 - 1 2 6 3 1 1 8 4 `66 1 4 1 6 4 - 2 5 2 4 2 6 7 -152 3 7 7 1 171 13002 19 20522 73 4 3 6 9 97 22112 35 9 7 8 3 I/X) 20323 71 4 4 6 8 98 6912 -6222180 -96
-16.0
1.2 1~1 1.3 1.1 1.0 0.2 10.8 1.0 1.0 1.0
24 24 24 24 24 26 26 23 23 23
0.99 68 323 0.27 I I 209 -1.20 1 9 1 1 6 1.23 69 21 0.9O 20 189-1.23 4 280 1.49 7 9 0.16 62 266 .1.64 27 103 1.00 o79 10 0,22 1,1187:-L221 10 277 1.21 . o 10 -0.01 ~ 219 l-1.20 10,5 1 . 8 4 1 1 3 1 3 -0.30 7 2 1 8 7 -1.55 14 40 9.2163294 0.33 5 33 -9.54 2 7 1 2 3 5.45 82 337 1.11 5 210 -6.56 0 120 5.39 7 7 3 2 1 `6.9413 133 -4.45 2 223 4.97 3 343 1.70 4 73 `6.86 65 212
1.1 1.2 1.8 1.1 1.2 1.7 9.4 0.0 4.9 5.8
18828 31 45 143 66 10 ~ 149 9072 22719 204 39 327 45 68 42
15.0 57.8* 1.6 6.8 52.5::[: 1.5 2.5 21.0 20.0 B -13.0 22.0 B -ll.O 32.8* 6.5 .0.2
1.0 1.9 1.2 1.0 2.2 4.0 1.2
24 24 24 23 24 25 24
3.81 62 325 5.41 35 100 1.45 79 321 6.0334220 9.0358252 4.31 63 262 1.20 59 304
3.6 4.7 1.5 5.6 8.9
254 18 102 01 72 28433 3716371 168 40 75 0 32 276 14 -132 139 80 14213 7535877
4o.2,1.3 13.7. 0.6
.00 -14.3
1.5 4.2
24 25
53.3"11.8
20.5
1.0
23
0.03 4 63 -3.63 37 154 -1.44 26 332 .3.97 2 1 2 3 2 0.04 10 172 -1.49 6 01 -0.87 9 3 1 7 .3.10 .54 59 -0.20 3 1 5 7 - 6 . 9 0 32 6,5 0.04 5 163 -4.35 .0.31 7 46 -0.39 2.32 86 19 0.02 2 1 ~ - 2 . 3 4 1 221 5.51 7 312 -6.73 79 90 .4.78 6.41 46 28 2.39 36 248 -8.71 21 141
148.51..06 0.27 31.9. 3.2 146.18.-[:.08 0.10 33.9* 3.7 140.39~.05 .0.39 21.8" 4.0 148.13=[:.04 -0.03 34.5* 2.1 147.63~.05 -0.22 53.9* 3.8 127.87:1:.01 .0.12 15.0 147.90~.01 0.06 33.2* 0.3 140.05..13 1.07 35.0 100.18..10 0.03 33.0 150.13 178.01 3.0
1.3 -14.4 -9.8 -17.3 2S.8 35.2 -7.4 23.0[ 9.01 22.9 -I.I 0.9 -4.2 5.3 19.9 10.2
1.0
251 10
5.1 7.6
1.0
23
5.50 ~ 221 -1.32 25 41 -4.13 0 1 3 1 4 . 3 2 4 3 2 ~ ] ]
23 ~5
T.go 31 ~ 1.09 13 171
1.1
24
1.~ 07 343
139.2::t: 0.9 121.1" 0.4 36.3± 9.5 17.5± 9.2 21.1, 9.7 0.01 136.4, 2.0
8.2 -17.9 3.3 -15.5 -11.9 -9.G
1.5 5.6 1.0 1.0 1.0 1.0
24 20 23 23 23 23
2.54 1.33 5.41 7.72 6.05 9.05
7 56 24 17 11 4 23 358 38 26 78 75
1.08 17 40 . 3 7 .0.10 76 341 -1.51 0.27 2o 19o -1.30 .0.39 15 1 4 8 - 2 . 2 5 0.08 58 152 -1.41 -0.01 73 154 -5.40 -1.08 64 206 `6.64 0.42 50 227 `6.47 0.46 3 331 `6.51
`69.86:1:.03 .0.34 45.4";- 2.0 33.0 -170.70 -0.19 147.24,.09 -0.9O 49.3± 5.8 82.6* 1.8 147.32,.03 0.20 0.15 0.08 152.13,.04 0.22 40.9-;-2.3 0.04 159.35,.070.03 15.0 -0.07 118.40:t:.14 -0.20 16.0 0.9O -70.90,.02 0.00 170.2::b 0.4 .0.12 - 174.48:t:.03 0.76 15.0 .0.05 146.74,.05 0.08 25.8:~ 5.3
-386
1.2 1.0 1.0 2.0 1.2 1.2 1.0 2.3 1.3 1.1
24 23 23 24 24 24 23 24 24 24
1.23 4.96 7.68 8.27 1.14 1.74 3.88 9.40 2.11 1.52
28 19 50 40 64 59 6 48 03 25
0.04 1.75 -I.19 -1.75 0.28 0.9O -0.41 0.32 0.03 -0.29
16.3 16.6 -13.1 0.2 -7.4
25 287 20 332 23 77 352 238 332 127
0 45 38 34 18 0 13 14 17 65
295 37 221 209 252 347 83 344 206 299
86 113 102 -81 93
: 117
357 -1 18840 24
1.0 2.0
15.0
66 3 5 6 5 102 120 172 52 64 -15 239 70 -155 I0~ 157~5 47 1 ~ 82 -218() 88 -162 104 3 1 7 2 8,5 82 34 52 96 100 121 48 72 -96 257 49 .65
2.3 318 g
3.3
13..3.3.2 13.0
141 131 74 69 139 125 68 64 -39 137 68 -120 100 162 47 72 -100 332 70 -13 -154 246 68 .35 134 151 59 68 15634581 69 -180 239 90 O -175 5 7 8 6 -29
4.3 14010
-1.7
.0.40
36.3* 7.2
-17.I -16.0
49
07
90 7975
-11 128
156 2 80 I I 224 ~ 301 278
8.3 1.0 1.2 2.4 1.4
1231375~ 348 d 4 4 224 21579 17230682 338 38 123 118 59 152~ 5 ~ - 1 1 4 339 ~8 177 148
57 -72 11 67 -71 32
11 11 124 12240
7.2 0.3 0.3
1 65 172 55 32633
155 143 94
54
70191
97
82 22 69 72 8415357
-1.26 62 20.5 1.2 116 17 -891295 73 -6.71 39 181 5.8 331 48 -163 230 78 -6.49 11 123 7.1 176 48 34 02 66 7 3286 `6.52 32 94 7.4 12834 538066110 -1.42 1 9 1 5 6 1 . 3 2 1 9 3 1 9 0 1 0 7 70 -1.74 3 1 2 5 7 1 . 7 3 4 6 1 4 0741 -11027452 -3.48 7 6 2 3 9 3.7 -022 39 86 9.0 234 15 161 343 85 53 3 3 6 8 -2.14 21 109 2.1 17328 -1..?.3 3 35 1.4 168 70 164 264 75
12
-90 .43 132 124 9O -73 70 108 20
A.M. Dziewonski et al. ~Physics of the Earth and Planetary Interiors 91 (1995) 187-201
191
Table 2 (continued)
No.
um
Tie h
~ P a r ~ L~.Itude
Lm~itude
Depth
m
6%
4.4 98.5o.*.58 0.10 so.~r:*.~-.0.74 15.0 01 21 10 5 6 98.2*o.3 62 2 1 1 0 1 1 9 8 9 8 . 4 . t = 0 . 0 3.0 .0.98~.i5 0.59 127.87:*.15 0.28 58.8:.11.0 63 2 2 1 0 3 1 0 9 8 . 9 4 . 0 . 7 1.9 7.8~E.11 -0.07 127.914..12 0.62 15.0 64 22 10 18 4358.0:~D.0 0.4 -0.474..07 0.15 127.794..07 0.04 35.84. 5.3 98 24 10 0 2 4 4 7 . 9 4 . 0 ~ 5 2.6 43.17=1=.07 0.17 147.884..07 -0.15 34.0~ 5.4 6 6 2 4 10 2 2 24.7::1=1.7 7.0 5.934..12 0.58 127.574..15 -0.40 ~4.74.12.4 67241044433.7::1=1.1 -0.8 -16.61::1=.170.14 -172.81::1=.13 -0.0@ 15.0 06 2 4 1 0 1 9 2 6 3 0 . 8 4 . 0 . 3 0 . 0 4 & 0 2 4 . . 0 4 0 . 0 0 146.974..04 -0.18 55.2:*: 3.6 71.004..0@ 0.0@ 258.3:* 1.1 06251005439.44.0.2 4.838.284..02 .0.05 70251043753.14.0.2 7.0 2.44:*.980.64 126,32~.0@ 0.32 44.5:* 2.0
Drtu Factc¢ lO"
•
T-szis a {
22.2 14.3 2.5
1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.2 2.2 1.3
24 24 23 23 28 7.3 24 24 24 24
1.92 I.~0 5.06 0.11 8.25 4.80 0.96 1.37 8.67 1.75
56 25 5 17 29 29 45 58 76 70
36.9:* 2.1 0.9 01.4:* 5.5 4.4 580.7:* 2.8 7.7 15.0 32.2-~II'.8 -0.0 15.0 15.0 540.64. 0.5 -0.4 34.7:* 2.1 1.7 15.0 I] -18.0
1.1 1.0 1.2 1.2 1.0 1.0 3.7 5.2 2.1 1.0
24 23 24 24 23 23 25 26 24 24
1.14 4.30 1.14 1.27 3.72 4.57 3.50 1.17 6.07 9.59
-0.3 -1.5 24.98:*.02 -0.12 121.984..02 -0.25 32.7:* L.5 4.6 2&844..0@ -0.0@ 123.15::1=.00 -0.30 33.0 -9.2 2.8 -6.244..02 -0.06
[email protected]~.02 0.06 283.8:E 0.8
[email protected] .0.27 37.2:* 0.8 .6.8 2.4 2.834..01 .0.40 27.8 3.2 15.22=i=.98 -0.19 -98.914..05 .6.20 76.8~- 4.0 5.4 7.0 -2.44~.I0 .0.0@ 106.13J=.10 -0.18 15.4:* 4.9 B -18.0 5.1 8.~4..06 .0.0@ -83.2~1:.05 0.05 15.0 4.5 -17.064..04 -0.11 - 172.014..04 0.41 15.0 5.7 -1.09:*.0~ 0.2~ 67.804..02 .0.23 15.0 1.4 4.8 5.33:*.02 0.18 118.794..02 0.17 34.4:E 1.4
1.8 1.2 2.3 3.1 1.0 1.1 I.I 1-3 1.8 1.8
7/ 25 10 13 30 30.84.0.2 4.0 43.77-t-.03 0.0@ 147.064..04 ~7~ 25101155013.8::1=0.80.55"8' .37.32:*.0@42"944.0' @ .6.240.23 146,644..0@ .6& 194..03 251021 46.3:*0.4 1.1 74 2 8 1 0 3 3 1 4.9::1=0.3 3.6 -27.324..04 -0.16 -176.28~.03 43.594-.15 -0.14 147.40~.16 10 36.5*0.8 1 . 0 2~.~k,07 .0.12 -158.86~'.11 27 1 0 1 7 7.1::1=0.1 9.943.424..01 -0.18 -128.114..01 78 27 10 20 37.34.0.1 0.21.35.754..01 0.04 179.3~:.01 . lO : 116 ,~o~o2 5.o .8.~:.o~ -o.2o 1M.4~4..02 10 22.8:1:0.2 2.7 14.754..02 0.20 -103.SO~.02
0.16 -0.46 O.SO 0.62 0.0@ -0.17 -0.82 0.04 -0.0@ -0.16
lq-mm 6 (
P-ram 4 {
Me
~ I t Double Caa l~mel ~efane 2 ~o, # ~ ~of u
-1.96 -0.79 .4.06 .6.38 -9.33 .4.97 -1.35 -1.42 -6.82 .3.03
10 4 70 13 26 42 45 28 7 10
72 288 06 191 18 255 70 303 25 75 0 2~ 2 70 49 92 6@ 5 723,5
0.14 5 34 2.77 22 11 0.07 20 158 0.13 8 1 9 1 1.81 12 340 -0.14 ~0 180 .0.0@ 8 4 3 1 0 -0.08 20 206 -0.3@ I0 123 °1.6275352
-1.28 -7-07 °1.32 -1.40 .6,53 -4.43 -3.4,5 -1.58 .6.98 -7.07
17 125 i 0101 63 24 19 98 02 226 0 168 5 161 34 310 18216 13 144
24 23 24 25 23 23 24 24 24 24
3.95 7 186 7~442273 9.5221 10 1.72 64 59 6.57 20 225 8.33 55 102 2.52 35 228 1.79 06 29,5 4.54 9 281 4.58 60 178
-1.36 17 94 2.5898 43 -0.4947255 0.28 12 304 1.58 10 129 -1.24 17 217 0.41 I I 131 0.01 1 203 -0.06 76 31 0.18 22 43
.3.61 -9.92 -9.98 -1.58 -8.18 -7.10 -2.93 -I~0 .3.06 -4.77
72 2 ~ 1 28 155
1.0
24
5.45 98 106 -1.0@ 24 ~
-4.43
10.1
1.0 1.1 1.2 3.8 1.5 1.5 1.3 1.0
23 24 24 25 24 24 24 23
9.63 1.52 1.78 3.SO &42 3.30 1.9~ 8.94
8 2421 4.9 5~1 7 1 : 1 . 3
-8,47 -1.48 47 -1.96 64 9 8 -3.66 10 90 -3.28 70 198 -3.21 80 33 -1.97 -~6.98
15.0 ,.9~24.6 12.9 43.34.13.2 13.3 21.3~ 2.2 4.3 01.0 B 0.0 4.5~4. 1.0 -14.4 137.4:t:4.0 34.4 15-0 33.6~ 3.1 1.8 127.3:1:0.7 6.3
1.0 1.0 1.0 1.2 2.1 1.4 1.0 1.0 1.1 1.9
23 23 23 24 24 24 23 23 24 24
3.02112462.542337 -3., 3 . , 62 79 1.65 4 1 7 0 .6.SO 7.97 11 345 1.98 79 1 4 7 - 9 , 5 8 1.40 7 4 1 8 2 0 . ~ 1 5 9 8 1 -1-61 5.14 56 344 0.86 18 225 -0.00 2.28 80 15 -6,10 5 138 -&18 5.72 80 314 1.53 5 198 -7.25 4.93 15 173 -0.96 37 71 .8.06 1.14 67 276 -0.18 18 137 -0.06 6.0@ 32 76 -0.9'2 58 249 -5.11
73 77 27 282 3 ~ 072 28 125 8 229 9 104 49 281 14 42 3344
4.3 3,34 34 -94 106 56 -06 4.3 818 10616973 06 &7 29 SO 175 120 06 10 1.5 1 7 1 1 4 2 1 1 3 339 52 7'1 5.8 !177 24 40 50 75 109 2.3 325 37 06 134 54 83 6.5 106 06 82 19 54 06 4.4 1303 44 -30 98 70 -130 1.1 106 35 58 327 81 110 5.6 115 .06 1 5 8 2 1 4 7 0 26
15.0 80.44-3.0 27.4 17.24. 5.5 -18.8 15.0 15.0 15.0 19.34. 2.7 -13.7 570.74. 0.5 11.7 15.0 B -18.0 15.0
1.3 1.9 1.0 1.1 1.9 8.3 1~ 4-4 :1.4 2.0
24 23 23 24 23 26 24 25 25 24
1.18 9 44 0.06 7"/ 268 5.57 98 15 1.12 3 32 8.90 53 78 5.70 13 2 ~ 2.0622322 6.19 1 202 1.10 66 304 8.48 23 344
80 ~00 10127 12130 87 241 37 281 15 202 0230 70 286 24116 18246
1.3 7.7 5.0 1~ 8.3 5.1 2.3 6.4 1.1 6.4
2.6 -11.0 21.7
0.(~ 27 -0.22 98 -0.20 19 .3.73 06 1.06 49 0.17 35 0.39 3 0.05 15 -].84 13 0.28 0
,,
38 311 331 280 225 284 0@ 218 76 47
28.8
177 141 20@ 150 355 171 132 334 285 180
a
~ 49 135 56 101 52 305 121 106 315
1.0 352 35 33 ~ o so 0.9 Iaq 70 165 Yr8 76 5.0 3 ~ 43 -118 l U 98 7.2 192 68 177 283 87 8.8 139 49 3 47 88 4.9 210 36 -167 106 32 1.2 313 3 5 210 90 1.4 15"8 22 46 44 75 7.7 272 40 110 67 53 1.9 34 36 74 234 ,55
11~ 21 -~ 22 128 -55 9~ 106 74 102
1.2 5.7 1.2 1.3 4.6 4.5 3.5 1.1 5.9 8.8
223 28 100 31 82 84 21249 12038049 60 1 3 3 2 . 3 1 1 4 9 6 6 -112 175 27 72 14 64 58 Ig0 23 .67 335 71 -103 303 90 -ISO 33 90 0 205 85 "2 M 88 -175 93 21 158 28~ 82 70 32228 11211864 79 280 76 .175 18@ 86 -14
3.3 8.6
294 41 296 36
i
81 82 83 84* 98 M 87 98 90
28 10 23 51 10.74.0.2 29 I0 4 3025.14.0.6 30 10 8 11 32.4=t0.2 31 1 0 1 1 4 8 1 6 , 3 ~ 0 . 1 31 I0 17 22 57.64.0.5 31 10 21 19 14.&kl.O 31 10 22 58 20.9~0.3 311023 411.4~0.4 111 386.84.0.2 2 I I I 43 57.84.0.1
93 94 ~6 06* 97 28 09 100
3 1l 3 7 27.34.'0.9 411 1 1 3 ~SfxL.0.l 4 II 5 2 4 2 1 . 9 4 . 2 . 7 4 11 8 27 34.8:£-0.7 4 II 10 12 44.1~0.3 5 11 2 16 1 1 . ~ 0 . 1 51110521&3~0.2 51113 532.6~0.3 0111152 06.64.0.3 0 1 1 155737.04.2.0
-63 106
01 54 -111 37 82 54
~I 0.3 1. ~ .~ ~10@ : 1103 . 1.9 ~/6 64 30 53 22 11 19
4 317 26 113 106 3~
7.4 7.7 &7 1.8 4-1 4.7
341 87 0 202 a~i 3
28 -98 1 ~ 21 142 213 14 - . I 1"m 23 06 24 76 .179 215 32 45 233
87 -107 77 73 81 -101 67 01 89 -14 68 114
i
101 102 103 104 105 106 107 106 10@ 110 111 112 113 114 115 116" 117 118" 110 120
4.11 -10.91d:.~9 4.7 .8.40~.01 3.8 -18.0~J:.18 4.2 -21.984..07 & O -17.40~.04 9.9-57.164..01 2.9 10.48~,02 &7 -9,434..~ 1.8 7.204..04 3.7 -21.3~=.15
0.01 1M2T-t-.O1 -0.07 -T1.074..01 -0.30 -17L304..90 -0.06 -179.22~.05 -0.06 -171.84.~.0@ 0.06 157.174..01 -0.26 141.474..03 -0.13 -71.144..06 -0.0@ 127.934..04 -0.31 130.714..19
0.05 164.7i 0.5 0.~1i ~,8,,lO 0.32 15.0 0.13 ~27.84. 4.3 0.76 15.0 -0.52 15.0 0.10 15.54.1.4 0.18 985.64.1.8 0.18 15.0 .0.30 , . 1 : * 7.8
711105925.8~6,6 3.5 10.464..0@ 0.25 71113 345.4~1.8 3.6 4&454..24 -0.33 3 1 1 174849.1::1=0.9 4.7 12.014..07 0.06 911 3 07 4.94.0.3 6.3 7~34..04 0.06 9 1 1 1 8 2 1 6.74.0.2 &3 43.414..02 .0.U 1 0 1 1 3 328.0d=0.2 2.4 -5.874..02 .0.10 10 II 6 2 17.1::1=1.1 3.0 -7.32 10 11 7 7 39.54.0.7 -5.8 22.83&.10 0.29 10111048 ~5.9~0.3 2.3 -7.774..04 -0.0@ 11 11 8 48 28.24.0.1 5.0 -15.844..01 -0.0?
94.0@4..~ 147.194..28 144.48~.15 -TL~J4..0@ 147.244..02 IS3.974..0@ 128.38 118.064..17 106.504..04 -72.3&4..02
13 11 6 56 5.7::1=0.4 13 11 0 7 16,&:kO,4 1 3 1 1 199831.7::1=1.0 1 4 1 1 1 1 2 8 0.64.0.3, 14 11 15 7,4 42,64.0.7 1411191539.1=;.-0.1 15 U 8 2 8 1 1 . 9 4 . 0 . 2 151112018 17.2--~-0.I 15 11 2 0 39 44.3~0.3 16 11 0 54 i0.8~0.1
•
[email protected]@ -1.07 124.72~.04 O.TJ 159.06~.18 .0.30 -17,144..04 .0.21 -174.44~.11 0.30 121.32~.01 0.23 121.314..03 0.06 110.29=1:.01 0.0~ 155.1,L*.07 0.04 -142.864..04 0.399
2,7 37.124.,04 0.22 4.5 .0.01::1=.04 0.22 8.4 51,304..0~ 0.19 4.5 0.46::1=.04 0.48 5.9 .30.4~4..13 0.60 8.4 13.44~.01 .0.06 1.1 13.844..03 0.10 6,(] -5.61::1=.01 0.00 4.0i 47.504..05 0.04 8.2 .56.49~.00 -0.41
0.31 -0.07 0.17 0.17 0.06 .0.12 -0.13 0.17 0.17
-0.3
2.
11.0 -17.5 8.6
25 28
1, ~ ~ 35 25 8 15 6 ~3~
o . ~ 1~ .1..
-1.16 63 -0.04 287 0.20 357 0.06 1-0.14 263 -0.18 31,10.02 275-2,38
21 5 06 13 7 g
106 194 ~ 287 172 lg~ 106
0.30 4 3~3 1.80 8 .116 -1.22 24 225 -0.20 2 1 2 3 .0.83 4 344 -1,17 70 64 -0.06871~51 0.54 20 l U 0.07 3 207 .0.17 60 122
:181
1.3 1.0 3.0 &3 3.3
3OS 44 352 39 132 109 1
1:., 2~ 1~
-1.48 .8.49 -4.3,$ -0.8'J -8.07 -4.83 .3.00 .6.72 -1.17 -6.31
22 20 71 33 3@
06 173 06
,:
-1413 351 -76 106 -8 m -414 280 -78 187
118
84 -419 71 -95 89 -160 61 -105 52 -99
31 06 74
154
13@ 36 - 8 3 3 1 0 5 4 -98 ~ 36 104 3 0 0 6 SO 19239 50 5 8 8 1 118 121 42 -92 304 48 - ~ 320 9 67 164 82 94 3 ~ 70 -178 249 06 -20 4 70 1 0 6 1 0 6 7 9 20 311 47 -62 93 50 -I17 19@ 21 81 ~8 06 93 2 4 6 0 17d 1 1 8 8 7 30
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
192 Table 2 (continued)
h
121 122 123 124 123 126 127 128 129" 130
21 35 1 13 5 32 21 46 2 57 6 39 8 30 14 31 16 59 16:34
16 16 18 19 20 20 20 20 20 20
11 11 11 11 11 11 11 II 11 11
21 21 21 2~2
130 140
22 11 16 1 22 11
151 132 153 lb4 153 156 157 158 ]50 160
161 162 1163 164 16,5 166 167 168 169 170 171 172 173 174 173 176 177" 178 179 180
11 2 11326 11816 11 5 11 11 22 11 12 22 11 1 5
m
131 132 133 134 135 136 137
141 142 143 144 145 146 147 148 140 1~0
Half Scale Drtn 1~ct or
Cemro~l parameters
I
No. I Date ID M
A
0.9±0.3 1.3+.0.2 51.1±0.5 54.7±0.5 21.1±0.2 25,0+.0.I 10.8±1.4 4.4+.0.4 15.5±0.1 40.8~:0.3
8.4 -0.6 3.3 5.6 3.3 3.2 -1.5 2.0 9.1 5.2
-10.02+.05 13.16:1:.02 -41.59+.A0 43.14+..05 -9.85:~.04 -20.91+..02 42.74±.13 35.36±.05 -1.81±.01 4.33±.03
0.02 0.11 0.37 -0.04 -0.08 -0.17 .0.36 0.01 0.19 0.11
-13.28~c.04 121.20~.04 -84.76+..15 147.05+..09 160.01±.03 172.99~.01 147.go+.14 39.07+..06 135.97+..01 07.30±.04
0.II 15.0 6.10 15.8± 1.5 -I.D4 15.0 0.12 50.6+. 4.3 0.33 24.0 B 0.25 15.0 6.66 52.0 -0.47 15.0 0.04 20.7± 0.7 -0.32 162.7± 1.2
-8.2 6.4 3.5 4.5 5.1 7.7 -5.6 0,7! 1.8 3.9
-15.02±.04 -36.65±.05 26.37+..02 -20.55±.03 43.90±.02 -23.31±.05 3.17±.13 13.64+..04 -1A6+..10 -7.74±.02
0.02 0.(}8 -0.12 0.25 .0.01 .0.12 0.00 0.08 0.42 -0.01
167.22±.03 78.67±.04 96,83+..02 -178.35+..03 147.51+..03 -69.60:1:.12 128.00+..15 95.51+..0.5 136.30+.12 158.57+..02
0.02 104.2± 1.8 0.35 15.0 0.13 42.7+. 1.8 0.05 562.0± 1.7 0.22 54.4+. 1.7 -0.26 76.2± 5.6 0.II 131.9~ 3.3 -0.21 22.7± 4.2 0.20 35.2:i: 9.2 0.30 35,5± 1.7
0.5 6.4 3.0 2.4 -1.3 4.2 4.1 4.1 4.3 6.7
21 30.4±0.4 4.3±0.3 40.1+.0.2 ~ 26.6+0.3 1 0.8+.0.3 10 57.0+.0.6 4 58.0+.1.5 49.5±0.9 16.6±0.2
335 48 -113 i 190 48
-6~
6 37 12 296 20 2
7.0 173 85 -178 82 88 1.8 67 55 15~ 170 73 1.2 141 57 176 233 87
-5 37 33
32
1.2
9.7 7.0 21.4 9.2 -14.1 -10.3 2.2 2.5
24 24 24 24 24 23 23 23 23 24
1.01 1.15 9.16 1.37 2.96 4.74 621 9.78 4.65 1.30
2~2 186 -0.06 32 ~ .0.05 275 .0.13 67 7 -I.02 10 350 0.17 76 126 -9.33 10 18 175 0.49 7 83 -1.67 48 207 0.50 42 33 -3.46 935 0.98 14 303 .3.71 74 01 ~.~ .0.13 ~ 2~12 -6.09 44 -1.22 61 -8.56 11 139 2.39 54 34 -7.04 80 299 -0.04 9 137 -1.34
10.03±.07 -0.10 122.60±.12 0.30 24.0 -52.89+.03 0.19 159.29~.04 -0.15 15.0 3.6 -7.17+..04 .0.16 156.90~=.04 0.29! 27.8+. 4.3 10.3 54.25";-.09 -0.3.5 162.67±.13 1.00 43.3+.7.6 -22.7 12.81+..05 .0.10 121.81:k.08 0.47 I 37.3+.6.7 8.2 -5.53+..04 -0.20 150.55+..04 0.061 150.2~ 0,0 O,O -13,24+..03 .0.10 167.07+..02 -0.03 218.0± 1.3 -26.8 43.93±.10 0.42 149.25+..11 0.20 34.2± 5.8 2.6~±.06 -0.24 -79.32:1:.06 0.17 15.0 B O.0 -20.21+..02 .0.12 168.84~.02 -0.26 36.0
1.0 1.5 I.I 1.0 1.0 I.I I.I 1.0 1.0 2.0
23 24 24 23 24 24 23 23 24
5.41 2.26 0.96 3.43 3.55 1.07 1.11 5.51 9.46 4.29
54 237 -0.04 3 164 .0.09 151 0.17 06 12 -0.70 6 319 1.62 2 3~9 0.46 87 229 0.21 76 314 1.43 10 284 .0.66 83 19 0.55
32 88 -5.37 ~ 310 -2.17 43 -1.13 24 204 -2.73 18 I~-5.17 1 2 -1.53 2 3~0 -1.32 O 224 -6.94 14 16 -6.46 6 164 -4.83
2.2 1.3 1.0 1.O l.O 1.0 1.0 1.0 1.1 1.0
24 24 23 23 23 ?,3 23 23 24 23
1.00 3.26 9.72 8.50 5.08 6.62 5.19 7.01 1.40 4.78
41 I 39 0 39 7 25 47 56
24 0.42 ,~ -6A4 -0.24 86 0.10 140 .0.47 180 3.31 40 .0.87 2 1.37 335 -0.~8 322 0.49
37 254 -1.42 ~ 173 - 1 . , 283 -8.47 22 337 ~.go 90 180 -4.61 30 12 -9.90 75 284 -4.32 6 98 -8.28 35 114 -1.11 3 56 -8.27
43 0 5 13 64 21 34
50 279 132 190 230 149
8.6 4.8 8.3 4.8 7.6 1.3 $.0
17.9
1.O 1.0 1.2 1.4 1.4 2.3 1.3 1.0 1.1 1.7
23 23 24 24 24 24 24 24 24 24
9.38 4.49 1.39 1.78 2.13 0.76 1.62 0.~ 1.24 3.72
67 69 58 27 59 26 22 17 40 10
56 26 314 170 112 113 316 174 83 263
-7.66 °4.36 -1.6~ -1.76 -1.92 -8.37 -1.76 -1.30 -1.38 -3.52
22 3 32 63 23 54 17 13 46 14
220 125 123 1 246 245 33 80 231 356
8.5 2 ~ 23 78 135 68 4.4 1 ~ 46 61 64 62 1.5 194 14 68 37 77 1.8 1267 18 -90 gO 72 2.0 30~ 28 44 172 71 0.1 244 29 -33 4 75 1.7 95 62 4 3 86 1.1 216 68 17"/ 308 87 1.3 238 17 -10 337 87 3.6 39 73 -3 130 88
-0.25 -174.60d:.05 0.55 15.0 -24,3 0.16 -27.09~.13 0.05 95.7 <` 5.6 B -1,0 0.08 -71.14=1=.01 -0.62 36~ B 0.0 0.08 142.42.+.(~t 0.28 32.0 -16.1 0.12 6~.19"1".06 0,20 38.9 +. 4,0 6.4 0.07 -72.&Sd:.IO 0.12 164AL-E2.2 B -13.0 -0.06 -101.39+.01 -0.94 54,0 -6.42 104.30+.07 -0.10 13.0 &O 0.34 -179.07+..02 0.05 394.9-3=1.1 .0.18 140.70~.0~ 0.20 15.0
1.0 l.O 2.5 1.0 1.0 l.O 3.0 1.0 1.6 1.2
23 23 25 23 23 23 25 23 24 24
7.94 6.35 1.24 7.47 6.97 6.61 4.90 7.80 3.45 1.28
09 35 70 26 14 68 36 64 51 2
277 1.44 4 18 -0.38 21 llO 282 2.29 39 158 -8.94 32 38 60 0.09 8 172 -1.33 18 26~ 114 -1.02 I0 19 -6.4~ 62 270 142 -6.85 23 239! -6.12 63 23 41 2,00 20 201 -6.60 7 293 203 0.57 12 302 -5.49 32 48 47 -0.41 14 287 -7.3~ 22 191 95 0.16 0 188 -3.64 3~ 276 334 0.06 88 154! -1.33 O 64
1.8 0.55+..I0 0.46 124.15±.12 2.9 6.go~.03 0.12 I10.46+.94 3.7 13.22±.05 -0.39 146.73+..12 6.5 -21.87+..66 0.30 -173.87+..04 4.1 38.61+..12 .0.06 20.49~.10 6.6 -20.1t~.0~ .0.02 168.62+..05 5.7 I0.80~.09 0.04 -41.04+.09 0.5 2.63+..08 .0.21 .84.37+.68 6.1 -7.90±.05 .0.18 128.26+.04 147.99 6.0 43.95
18 1 3 9 12 15 16 2 9 14
10 ,54 39 26 16 24 I? 25 29 3
5.9 -22.15+..06 4.0 -~6.0~4-.0~ 6.5-23.30+.02 3.6 3334+.06 7.1 28.05+..06 2.0 6.83+..12 4.5 18.18:1:.01 10.0 -6.32+..05 5,7 -24.55+.03 1.3 -~.69+.04
20.0+.0.6 22.4+.0.6 37.9+0.1 46.0~:0.5 7.5+.0.5 20.6-2=0.8 48.~q:0.1 54.4+.0.5 7.1+.0.2 47.5+.0.4
1.0
1.0 1.1 2.4 1.2 1.5 1.O 1.0 1.1 1.0 1.2
20 23 5 8
12 12 12 12 12 12 12 12 12 12
71 171
0 13 32 70 43 2 38 25 II 45
14.31+..0,5 3.,~+..08 -36.3&t:.03 -8.49~.90 -15.41+..03 -23.19~.01 -3.21+..04 -2.97 -19.65 2.08+..02
-6.08 0.84 0.03 .0.08 .0.08 0.27 0.25 0.11
0.50 0.06 -6.18 0.00 -0.02 .0.28 -0.01 -6.08 -0.01
18~.2+ 3.8 34.0+. 3.7 199.6+. 3.2 108.3± 3.0 15.0 46.2+. 3.7 16.0 10.0 113.3± 2.3 31.0
-92.8~:±.03 .0.58 33.0 126.73~.09 -0.03 53.5"~"6.3 178.91=E.04 0.61 1639+ 1.1 lgo.10+.03 0.36 50.9 "t" 2.2 -75.42:k.03 -0.06 33.2~ 2.1 .66.58=1:.02 0.16 246.3+ 0.8 130.88:1:,04 -0.04 36.3+ 4.1 110.81 33.0 169.13 33.0 120.91"*'.02 0.06 53.9+ 1.7
17.6 0.0
-3.3 -4.3 -96.8
3.2 1.0 -8.4 20.3 13.2 34.6
-2.8 3.9 -7.1 -6.$ 3.3 3.3
23
10 lO 16 4 15 84 50 87 ~
Best Double Cou Plaue 1 ~bme2 ~o, u ~ ~f w x
0.96 1.71 8.52 0.38 2.77 7.42 1.67 1.40 3.56 1.35
-17.2
262 0.I0 356 -0.15 86 1.38 303 2.60 345 0.19 128 -0.92 34 -0,38 102 -0.32 146 -0.06 52-0.26
Me
P,sxis 6 {
24 24 23 23 24 24 24 24 25 25
3.9 8.9 4.3 1.7 3.0 7.3 3.5 -5.0 11.1 4.2
4 5 22 16 93
0 10 10 1O I0 lO 10 11 II 11
21 1.0+.0,8 27 11.6"~:0.3 ~ 47.6d:0.8 1.1+.0.4 30 31.4~1.4 32 51.5:1:0.6 28 31.1+.0.7 50 54.3+.0.6 11 7.0+0.$ 11 57.1+2.2
principal N-ax~
T-a:as
"~ 1.0 1.2 1.0 1.0 1.7 2.2 1.0 1.2 4.5 2.5
33 10.0~0.5 23 25.5+.1.0 6 2.7+.0.3 12.6~0.3 3~ 11.8+.0.2 2.8+.0.1 22 21.5+.0.4 8 33.0~1.2 9 0.9+.1,2 30 30.8±0.2
3 12 412 412 12 67 12 12 7 12 7 12 8 12 8 12
Depth
ate
23 II 5 25 25.3+.0.7 23 11 159 ~ 57.7+0.2 II 29.8+0.3 ~11i21 ~ 6.7+.0.9 11 10 47.8±0.5 11132119.7+.0.4 24 1 1 1 0 42 48.6+.0.3 25 11 8 49 53.0+.1.1 26 11 4 48 7,5+.0.5 I~ 11 6 11 16.9+0.2 26 11 11 ~87 11 18 II 18 29 11 29 11 14 29 11 20 30 11 2 30 11 21 1 12 6 2 1 2 18
x ~.,,;t,,4~ v
Time sec
363 264 186 44 89 238 190 238 9 2
-1.07 -1.56 -9.90 -8.98 -2.90 -6.50 -1.29 -1.08 -3.30 -1.10
.73~ 0216 1~ ~ 14671.07~ 1~ 10 13S 7.7 4319439 ¢ ~ 1 ~ g : 217
113
110
I 162" 1o 212: I : N : 1,1 317 258
0.2
167
3,2 5,2 6.2
222=~~ 02 5~
-1.73 -0.13 0.26 -0.62 -0.21 -1.39 0.15 0.34 0.18 -0.20
6 20 5 1 20 24 62 68 17 72
312 217 316 269 346 11 175 315 338 138
34 76
179 124 89
14
355 56 140 141 38 -68 294 68 -107 ~ 6 1 - 1 4 6 28~ 61 "1~
273
11~
73
12 73 147
1.4 , 127 43
76 326 49
103
14 348
5.4
37 283 67
12.5
89 14 134 72 1,~ 4 254
1.3 1.2 161 43 93 357 6.2 224 31 90 44 9.4 357 37 -114 206 4.6 351 41 99 159
42 41
242732210¢ ~ 1~ ~ ~ 1~ 311.631~ 43X 1;
gO -73 82
80 90
127
1.3
,~
962~210"==1= 1,, 91301~ 186 341 175 78 363 282
207 72 7 226 204 45 247 267 9 109
12
~) 67 40
28 141
8.7 ?.6 1.3 7.0 6.6 7.6 5.2 7.6 3.6 1.3
180 38
,~
23 -6 336 88 -113 90 -190 278 90 O 48 47 214 57 127 76 -5 266 86 -166 21 -106 277 70 -63 ~ 1 ~ 103 73 54 I I 106 56 79 87
25 3~ 28 21 37 42 15 26 6 89
lgo 16 3 3~ 107 168 -62 16 -130 71 121 186 -146 124 ,58 113 94 185 1 ~ 19
96 116 96 -89 111 -114 152 22 -107 -163
66 83 88 1 ~ 64 81 71 -I00 63 -64 ~ 65 90 -78 68 105 84 gO 8~ 1"/9
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
193
Table 2 (continued) No.
Date D M
h
m
Time sec
,to
o
T-sxis 6 ~
Principal Axes N-rods o , ,~
3.01±.03 33.36<..09 -8.33<..03 58.49~.07 -37.0.~.01 -3.07<-.01 -27.37<-.02 37.12<-.05 44.07 -17.55<..02
0.23 128.33±,02 0,71 58.66±.10 0.14 ~0.30±.02 .0.20 -149.96<..09 0.24 177.45±,61 0.18 139.85<-.02 0.01 -1?6.44-~.02 -0.20 139.9C-J:.05 148.07 0.31 -178,60±.01
0.06 35.9± 2.1 2.9 0,20 33.0 .0A8 24,6 B -0,0 0.32 32.2<- 5.4 .6-3 -0.10 15.0 B -18.0 0,06 106.4± 1.0 -3.6 0.31 20.7± I.I -12-3 0.05 22.4± 4.2 -2.0 15.0 0.09 573.8± l.O 22.8
6.4
15.63<..05 -54,26<..02 -33.29~.C6 -17.914-.07 12.89 22.59-~.09 1.16<..06 -3.04 -12,21 -6.27<..05
0.18 -94.48±.07 0.19 30.0 -0.15 143.80±.03 0,70 15.0 -0.60 -I0e,60±.07 0.43 15.0 -0.08 -178.31<..M 0.15 604,4± 4.2 33.0 121.47 0.19 118.62.4:.12 .0.03 19.0 0.37 126.623:.09 0.34 41.0 133.63 15.0 106-80 15-3±10.0 -0.08 146.80~.08 0.10 111.0~ 4.0
191 192 193 194 195" 196 197 198 199 200
14 14 14 13 15 15 17 18 18 18
19 20 22 4 II 23 21 II 11 20
34.3<-0.3 M.9±1.0 6.9+0.2 15,7±0.5 20.6:~0.I 17.8:E0.1 3.5<-0.2 33.4±0.4 47.8±1.2 39.8±0.1
201 202
210
1912 84135.3±0.6 19129 22 12.4<-0.2 19 12 13 46.5<-0.4 19 12117 8 20.8±0.6 2012 8 13 29.8±0.7 21 12 11 22 12.3±0.6 21 12 17 43 33.2<-0.8 23 12 0 28 27.8±1.2 23 12 I 15 40 0.7<-1.8 24 12 9 14 34.1±0.6
5.4 .0.8 0.9 4.4 .0.8 0.9 4.1
211 212 213 214 215 210 217 218' 219 220'
24 12 25 19 35 1~ 26 12 20 19 26 13 2612 27 12 28 12 28 12
221 222 223 224 225 226 227 228 229 230
28 28 28 29 i29 ~ 30 30 31 31
20 11 2~ 3 14 14 19 17 3 12
46 43 17 8 10 48 57 32 56 19
28.1<-0.4 51.4<.0.9 15.5±1.0 17.fr~0.3 33.0~0.2 1.0<-0,7 3.3<-0.4 37.9±0.1 22,5:1:0,5 59.1<.0.1
5.5 53.24~.03 -0.25 160.98~.06 0.56 55.8<. 3.5 -2.9 -33.3~-~.02 .0.23 -177.76~.02 0.87 33.8± 1.7 1.7 -2.12-1-.09 0.23 133.49~.16 .0.33 27.0<. 8.1 -0.1 33.01-~.06 .0.08 .164.20~.05 0.19 42-3± 3.5 3.9 40.94<-.03 0.20 -124,62<-,03 -0.31 15.0 7 0 . M . 0 6 .0.33 224.0~ 3.1 -0.5 33,1fr~,07 .0.31 1.6 -16,11<-.03 -0,48 -?1.89"4-.05 -0.17 43.7± 2.9 5.4 -31.84<..01 0.10 179.82d~.01 .0.03 225.8<. 0.4 90.57 33.0 5.1 33.75 33.5 40.56~.01 0.11 149.99-J:,01 -0.5~ 27.7± 0.3
12!20 12 22 12 22 12 15 12 18 13 22 13 13 12 22 12 2 12 13
52 23 37 29 58 33 12 53 57 50
31,I<.0,2 53.1<-0.9 52.2~0.1 33,5<-0,2 34.1±0,6 25.8~1.5 33.2±0.1 31.8±0-3 19.8±0.3 27.1±0.1
2.2 -0.4 3.0 4,3 3.8 3.9 6.3 7.3 -0.8 4.5
5228.0~1.3
0.6
31 1 2 2 0
1o-
6.4 3.4 4,7 3,5 4.3 6.9 5.8 1.7 0.7 7.0
6.8 10.5 5.7 1.4 4.6 0.1 8,6 4.8 7.1 4.1
231
Half Scale Drta Factor
33, 25 2.7125 931.020 20
2.2:E0.1 3.3±0.3 21.1<-0.4 53.8<.0.7 52,M:0.3 17.3&I.0 46.5<-1.0 51.4±0.7 21.MI.3 59.0±0.1
205 206 207 208
'he".
-0.01 161.4± 0.0 10.4 0.08 41.4± 2.2 15.4 0.15 15.0 25,6± 5.4 -8.0 0.29 15.0 B -2.0 33.3±11,6 2.3 131.4± 5.7 25.4 0,60 15.0 26.0 0,49 15.0 B -18.0
7 42 14 53 21 49 0 50 823 13 I I 14 26 20 27 6 36 7 28 44 43 20 42 20 56 8 7 40 38
hDepth
-17.44±.02 0.06 .09.66±.02 -10.21±.02 -0.18 119.4M.03 -33.77±.05 0.23 46.89~,06 24.05 122.61 16.25±.05 -0.09 -98.12<.,05 53.94 ' 141.84 -24.14 .67,82 -3.18±.07 o.oo 130.71±.06 43.33 147.20 -9,634-.02 -0.17 139.80±,01
181 12 12 182 12 12 183 12 12 184 13 12 18,5 13 12 186 13 12 187 13 12 188 13 12 18@ 14 12 190 14 12 12 12 12 12 12 12 12 12 12 19
O ~ t roid paramete~ LatitudeA6~e eL°n~itude,#o
40.10<-.02 -32.93<-.14 40.32±.02 40.66<-.02 28.80<..16 4(].08 18.86d:.01 -4.20~.05 20,56<-,04 40,22<-.01
0.07l -0.05 0.07 -0.07 -0.2@
143.09~.02 179.96~,13 143.74<-,03 142.43<-.02 103.~9~.I0 143.53 0.07 143.59~,61 0.09 153.88<-.03 0.07 I09.43<-.05 0.03 142.8~<-,01
33,69±.12 -0.17
140.72:E,09
0.33 0.09 0.0~ 0.28 -0.20 0.32 -0.08 0.02 0.19 0.92
20,4
-17.7 -14.0 22.9 -76.2 -0.0 9.8 .3.0 10.7 -2.2 -5.3
31.0 B -17.0 31.3±13.1 -1.7 15.0 60.7± 1.8 27.7 33.0 30.9± 9.4 -2.1 228.2± 0.5 -0.8 53.1<- 3.6 20.1 32.1± 3.1 -0.9 34.0 B 1.0 56.4~ 5.0
-19.6
1.5,
24
2.26 73 297
1.0 1.4 1.0 1.0 1.2 1.0 2,8
24 24 23 23 24 23 25
1.15 2.33 8.90 3.98 1.74 8.33 1,70
1.7 1.0 1.5 1.] 3,6 1,9 1.3 1.0
2324 24 24 25 24 24 24
3.87 7.62 2.45 1.02 3.38 5.56 4.59 0.92
1.7
24
3.48 77 1
12
24
10 23
18 11 1.2 L0 1,6 1.0 1.0 1.0 1.1
133
49 19 60 48 60 ~ 65 31 4 56 66 2
Best Double Couple Plane 1 Plane 2 e, ~ 'e, # .~
~.
20 224
,
16@ 2,6
278
U2
129 1.0 19~0 2-3 8.0 222 4.9 491 1.7 140 7.1 231 1,7
240 270 144 50 151 201 307
113 g I -133 114 33 73
52 316 83 96 327 227 299 3,51
7957 2 4. 20 31 10 56 42 68 0
.248
0.68 13
M,
-2.M
43759~
1.84 0.73 4.44 5.37 1.13 1.02 1.40
P-axle , ~
-0.25 3 -0.90 .0.14 5 292 -2.19 1 5 7 - I . 3 1 I 261 -7.08 331 1.87 21 89 -5.33 206 .0.04 7 308 -1.70 51 -2.45 42 240 -5.91 62 0.08 5 324 -I,?6
7757 24 94 23 23 24 24 24
~,
001
.133:131
-0.02463g 1.71 26 0.18 3 347 -0.41 20 199 -0.18 67 227 1.59 26 89 0.72 8 192 0.25 80 249
~ 61 29 4 29
.3.8542151, .0.32 22 1901 -2.63 25 255 -0.61 52 316 -3.20 22 58 -7.15 20 349 -5.31 23 98 -1.17 9 81
14
3.9 182 8.5 319 2.5 338 0.9 141 3.3 100 6,3 43 4.9 1 7 3 1.0 125
14 13 32 17 55 16
23 24 24 24 24 25 23 27
9.32 0.79 2.18 1.33 1.17 3.78 7.33 4-32
3.0201, 2,9
34
1-3 1,6 1-0 3.3 1-3 1.1 3.3 1.0
24
23 24 23 23 25 ?A 24 25
23
37 23 13 63 10 8 22 56
0.24 12 161 .3.71
4 252
3.6 ' 335 42
70210213.1 0337314~27121~44 021 8 2 ~
144 25 279 87 342 320 118
-0.41 0.37 -0.21 -0.06 O,ll 0.38 -1.44 0.14
7 28 77 14 7 23 11 5
149 68 310 34 282 183 56 202
9131701312 ~
.6.91 -1.06 -1.97 -I.39 -1.20 -4.15 -3.88 -4.96
33 56 64 17 30 21 21
286 2?6 56 347 230 234 298
32 52 4 22 ?6 66 65 34
243 201 203 129 160 345 176 108
2.0 0.9 4.5 5,8 1.3 1.0 1-3
74 347 245 42 26B 314 341
82 74
0
: N,"
g ~
216
4.2
352 73 -I
1.90 5.32 0.13 3.22 1.88 0.93 0.97
-2.02 .6.50 -5.60 -3.07 -1.77 -1.33 -1.05
110 272 124 60 290 321 111
2.0 5.9 5.9 3.1 1.7 1.1 1.0
181 33 162 187 333 8 180
55 14 39 28 68 24
147 29 144 26 17 62
5.86 63 339 -2.01 11 225 -3.33 24 130
4.9
197 24
60
5 37 17 29 4 23
78 -67 83 139 95
1
9.1 1358 120 147 77 83 0.9 14 33 -149 2~7 74 .61 9.1 248 78 6 197 84 168 L3 244 26 123 28 ~ 75 1,2 III 35 -79 277 56 -98 4.0 106 44 -123 20 M -61 6.6 31 28 -116 240 68 -78 4.6 176 12 67 22 79 95
-3.83
46 50 54 50 27 64
74
50 -167 335 80 .41 18 .47 22 77 -103 34 -128 10. 64 -68 37 39 279 68 120 34 13 167 83 124 33 76 148 66 M 75 -16 T5 75 -164
-213 ~ 10. 3.117422
010 I ~ 2 , 6 7 ~ 1 1 1 2 o
320 0.12 1 2/~ 7 1.18 43 177 327 -0.53 12 223 175 -0.15 31 320 159 0.10 20 3,5 229 0.40 82 30 310 0.08 11 206
4~
108 151 51
.1 17, 701~821~187.
7.5
-2.24 -1.04 -4.58 .6.33 -1.55 .0.93 -1,19
67 78 62 73
110
- ~ 28~ ~ - 1 ~ 1 20 81 168 70 93 23 -150 23 79 -?6 72 -13 194 77 -161 34 38 280 70 118 23 70 15 68 98 82 -3 216 85 -172
4.63 10 308 .0,80 73
2~g~
113 259 278 306 89 143
o33 25 18 407 18114 45 ~ 3 3 1 3 3
31 0.40 48 123 0.31 12 182 0.14 20 230 0,96 28 109 0.42 33 70 -0.09 6 208 .0.21 69
48 325 112 274 13 90 321 298
87
~2
1,6 7. ~ N -00.33 1Oo N .2,~ .71 ~ 11 2.97,6ii,o 1.2233 1,, 1.0 1-0 1.4 1.2 I.I 3.6 1.0 14.8
75
.67 2:: ::
1~
~81
~ 192 -17
g
67 63 84 68 78 74 69
1 40 102 57 116 137 102
49 70
102
149 44 306 220 272 30
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
194
Table 3 Elements of the moment tensor obtained in CMT inversion No.
Scale 10~
M~
M#f
7 8 9 10
24 25 25 24 24 23 24 23 23 23
2.01~0.03 4.0Td:0.03 -1.31-1-0.03 1.41:1:0.03 -0.23~0.0~ -2.74.-1:0.40 1.11~-0.03! 1.48.~:0~2 ..0.23:1:0.58 -0.70~0.77
0.18:~0.06 -0.15+0.03 -0.64.-L-0.03 0.01~0.0~ 1.13:1:0.09 -1.41-t-0.92 0.04:~0.0,5 3.77.'~0.59 -7.12~:0.76 .4.03:~0.39
-2.19-~0.0S -&99~-0.04 I.&~:L-0.03 -I.4~-0.05 -0.9C-~0.10 4.16-~I.09 -1.1~-~).04 ~5.24.d:0A2 7.36";-0.45 4.73-'-0.94
2.T0d:0.00 -1.74~0.12 1.0~-~-0.0~ 4.20~0.17 .L73:1:0.13 3.09~0.0~ -I.10d:0.11 0.88:~0.11 -0.82"~0.03 0.3~,~L-0.13 0.02~-0.16 0.14:k0.04 -0.(I@~0.13 -0.32~-O.16 -0.77:I:0.0~ 2.73-~1.9,5 -0.3~d:I.45 4.26~0.41 0.~d:0.09 -0.&5~-0.10 0.16~-0.03 -0.80:k0Al 7.3~=0.46 -1.19"3:0.~ 0.07:t:1.25 .0.07d:2~8 4.00d:0.7~ -2.26~-2.00 .1.38~-1.9~ 2.26~0.67
24 23 23 23 23 23 23 23 24 24
1.13d:0~4 0,21:~0.06]o1.34:k'0J06 -0.04±1~ 1.M=I:0~7 -l.$1:klJt2 -4.3&-I:0~0 0.94=E0,30 &3&t:0A1 -2.T0~0~2 4.51~':0A7 ] -1.81:t:L17 0.77~:0.99 6.1&k0.42 4 . ~ ' 0 . ~ -0.99-~-O~ 2.fi&~0.64 1-1.fd)'J~l.27 -1~0-~0.~ 2.19~0.97 -0.3~'0.83 6.80:~0~4 0.40~0.57 -7.20:t:0.49 7.96~0.14 -6.4~:0.22 1-1.47~-0.22 1.61d:0.04 -0.TSd:0.06 -0.S&~-O.0T
11 12" 13 14 15 16 17 18 19 20
23 28 24 25 23 24 23 24 24 23
3.99~0.39 -4.93:1:0.43 1.21~-0.01 1.09-~0.01 -6.71~0.13 6.80~0.14 -0.024"0.031 0.22~0.04 -1.32=1:0.39 7.'P~J~0.~ 0.11:E0.03! 1.86~:0.04 3.64d:0.43 - I . 0 ~ 0 . 4 7 0.$8:~0.04 -0.87"~0.06 1.15:E0.03 -0,26~0.06 -3,00"~0.~6 2.14~:0,86
0.94~0.64 -2.30~0.01 .0.09"~-0.18 -0.20~0.04 -6,47±0.57 -1,97~-0.04 -2.~d:0.~6 0.29~0.06 ,-0.89&q).05 0.86=E0.84
6.49~1.08 -1.94±0.74 1.78~0.02 0.9~-0.01 -5.40~0.~5 4.14:i:0.43 1.2~L~0.11 -0.98~0.10 1.814"1.25 7.78~0.86 0.74±0.12 -0.19"3:0.15 3.03~-0.52 2.86~-0.b4 2.68~0.11 ..0,32"-0.05 1.01-t-0.~6 1.02:E0.06 6.77:E1.18 7.74:t:1.(~
1.22~0.68 -0.94&0.01 -0.23~:0.14 -0..,~M:O.04 -3.10"J:0.51 0.46~0.0,5 -1.8410.6~ -0.~0.0.5 -1.00-J:0.0~ 3.53=E0.8,5
23 23 23 24 23 23 25 2,5 24 24
9.32d:0.24 4.00d:0.36 -8.4&L-0.42 0.~:l:0.(~ -3.fHt=E0.'L2 -0.14:E0.38 -0.07:i:0~3 3.10"~:0.0~ 4.734"0.10 ; -1.80~:0.12
21 22 23 ?.4 25 26* 27* 28 29 30
23 24 24 24 24 26 26 23 23 23
7.24:k0.36 ] 0.89~0.61 1.074-0.06 O.lO-J:O.12 -0.20~0.04 1.37"t'0.05 0.97~-0.03 0.23:1:0.06 0.13'4-0.03! 0.92:k0.06 -0.29~0.01 0.12+0.01 5.42~-0.03 -2.01:I:0.02 5.27=E0.90 -0.69~1.02 5.06:t:0.34 -2.66:~0.47 -6.~:~0.72 4.64~=0.73
~8.13~0.$3 -1.17-~0.09 -1.17+0.06 -1.20d:0.04 -1.05-'-0.05 0.17d:0.01 -3.41+0.02 -4.57=L-0.?0 -2.40-J:0.69 1.94d:0.95
4.16~1.02 0.37±0.13 0.32:E0.11 0.14+0.07 0,49-A:0.06 0.07~-0.03 3.7~:0.07 0.98.4:1.93 1.19-J:l.00 0.85~:0.61
5.$9~:1.19 -4.89'~0.51 -0.23-4=0.19 -0,26~0.07 0.60~:0.15 -0.51:E0.0.5 -0.04+0.I0 -0.19-~0~)4 0.16=1:0,06 -0.4S:E0.04 0.51:t:0.04 1.62"~-0.01 6.60~0.00 -3.06~0.01 0.974~2.03 -3.244-1.14 0.814-1.01 1.91::k0.28 -0.36~0.60 0.93d:I.05
24 23 24 25 23 23 24 24 24 24
-2.40~:0.~ 3.79d:0.(~ 1.98:~0.36 -5.40~0.48 -1.98:E0.0~ 6.89d:0.13 1.0&'i:0.01 -1.13~:0.02 -5,64..~1.3,5 1.84d:0~5,5 3.67-'-0.79 -3.514"0.34 -0.99:~0.05 0.04~0.0~ 1.31#c0.06 -0.19~0~0@ -0.914"0.0~ -3.25+0.06 2.94d:0.0~ -O.lf~'O./M
31 32 33 34 3,5 36* 37 38 39* 40
24 24 24 23 24 25 23 24 25 23
2.08:1:0.04 -1.81=E0.04 -0.27+0.04 2.S,%t-0.13 1.47"t-0.12 -0.T'/'t-0.04 2.~l~kO.O~ -2.0~-0.I0 -0.~0~0.12 -0.46~0.0~ -&T0-~0.0@ I . ~ - 0 . 0 8 1.3&k0.02 0.044-0.04 -1.41=1=0.0S 0.18~-0D4 0.32~0.1M 0.27~-0.03 -I.S0~:0.36 1.49-~0~19 0.01:i:0.52 -3.47:i:0~8 3.84.~0~ -1.69-~:0.43 3.91=E0~)9 -1.0~4-0.11 -2.83:E0.14 -2.9,5±0.20 7.~0"~0.18 1.61+0.1~ 2.~6±0.021 -0.34.~0.02 -2.2~±0.02 -0.8~±0.06 3.M:I:0.0~ 0.9~:0.0~ 6.49~0.~5 -4.39-3:0~9 -2.10-~'0.71 5.62±1.60 7.18:~2.02 -0.31:1:0~7 2.29-k0.03 -I.12~-0.0~ -1.17~-0.06 0.31:~0.06 -0.19-~0.06 1.17~-0.04 -0.T0~0.03 -0.19-~0.03 0.89~0.03 0.9~-0.10 0.244-0.10 5.03:E0.03 3,04:/:1.04 -2.03_4:1.10 -1.(X)-~:I.IO 4.67::1:1.6.5 1.31=E1.06 -$.52::EI.51
24 4.30&0.06 -1.11:kO,09 2,5 -1.49~0~2 O,12-&-O.~ 23 -3.11:E0.71 '-2.31±1.22 24 -0.29d:0,0,5 0.14~0.10 24 -1.27:EOD4 0.30:L-0.06 25 i -0.274-0.02 &52:kO.02 24 -2.68~0.07 3.00~0.07 24 -3./~:I:0.06 -0.19~0.(~ 24 1.47:1:0.0,S 0.10&0.O 23 0.29:t:0.57 -6.33~I.~9
-3.19"~'0,10 -L65:L-O.OT I.~T&-O.~3 -O,II:L-O.~ 5.42~.0.79 5.364-1.8~ 0.1.~L-0~ 0.17-~0~ 0.~/~0.~ 0.25=E0.13 - 3 . ~ - 0 . 0 2 0.4&k0.96 - 0 . 3 2 ~ 0 ~ 1.61&-0J2 3.274-0.12 -0.47:E0g~ -1.56&-0.07 0.fi6=E0.19 6.04~0.99 0.0l~-0.~
41 42 43* 44 45 46* 47 48 49 50
23 23 25 23 24 26 23 23 23 23
4.32~0.~4 -3,74:E0.39 -0.0~k0.01 8.~4±0.33 -2.04::E0.04 O.10~0.0) 0.124-0.43 0.18:t:0A1 2.34±0.9? 8.26:i:0.52
-1.8~:I:0.$8 -0.53::E0.67 1.51:i:0~l -4.00-~0.39 0.544-0.0~ 1.014"0.01 5.19±0A1 6.24~0.41 1.17~1.3~ -1.92<-0.64
-2.46~0.54 -1.89-~1.13 1.76:1:I.21 4.274-0.84 5.774-0.45 4.47:t:0.]k~ -1.42~0.01 -0.4~=0.06 -0.02q-0.04 -4.~L'I:0.42 4.824"0.81 -1.30~0.78 1.50~0.09 -O.~+O./P -0.76~0.05 -1.124"0.01 0.$7::E0.00 -0.61:t:0.0~ -5.31±0.53 0.99~0.92 -0.61"0.85 -6.42±0.46 3.32-'-1.77 1.154-1.03 -3.51±0.70 3.15:1:2.31 -0.16±1.48 -6.34±0.70 1.45:~0.49 -3.42::1:0.53
-2.00~0.77 0.89-J:0.57 0.~0d:0.01 7.89~0.48 -L37+0.07 -0.48:E0.00 -0.55+0.56 0.01:1:0.45 -4.44±0.72 4.05±0.68
23 23 23 24 24 24 23 23 23 24
-5.22~0.31 2.60~0~9 1,88::E0.76 1.60~1~ 1.71~1.52 6.49-J:0.76 1.29:k0.04 0.13<-0.06 2,32~:0.06 0.31:E0.10 2.17:t:0.04 -0.93,~0.06 5.38:t:0.85 1.04±I.~ -2.20d:0.47 4.39~0A6 8.98~0.29 i -5.86"~0.47 1.03:f:0.06 -4.47~:0.10
2.62~0.47 -3.48~0.75 -8.21±2.14 -1.42~0.0~ -2.63&0.09 -1.25d:0.06 -6.4211.67 -2.19~:0.77 -3.12~0.50 3.44~0.11
51 52 53 54* 55 56
23 23 23 24 23 24 23 24 24 24
-7.15:E0.30 -1.16-A:0.59 3.86::E0.33 0.95=E0.14 7.94=i:0.3~ 0.824-0,05 -3,23~0.38 L43=1:0,10 1.41=E0.04 0,034-0,04
5.594-0.43 -3.23:i:0,96 0,51:t:0.51 2.92:t:0.14 -8.40:~0.43 -0,04±0,09 3,70:1:0.40 L44=i:0,1't 0.15::t:0.08 -0.37:1:0,07
1.55:t:0.59 4.38±0.49 -4.36d:0A4 -3.87::E0.11 0.46=i:0.51 -0,77±0.08 -0,47d:0.56 -2.87=E0.15 -1.57:E0.06 0.35~0.07
9.37d:0.56 -4.36:E0.50 4.40~1.09 0.89:E1.43 4.634"0.74 -0.67±0.69 4.50±0.11 4.42:t:0.09 7.85=1:0.82 0.81:E0.65 0 36±0,19 -1.49±0,20 U,81~:1.37 -0.~,9~:1.19 -2.77:E0.1! 8.70~0.11 0.97±0.16 1.07±0.17 -0.46:i:0.16 -0.52::E0.19
-2.~,0:E0.32 0.86:t:0.49 -3.~0~:0.51 2.22:t:0.1( -6.35:EOA1 0,19=i:0,0-S 0,69~:0.41 -1.38~0.1: -0.42:1:0.04 1.16:t:0.04
24 23 23 23 23 26 24 25 24 24
-1,40:i:0.07 6.33~0.34 4.00~0.42 -9.16~:0.36 2.80:t:0.28 -L07:i:0,02 -0.21~0,05 -5.86:1:0.04 7.24:/:0.41 0.25~:0.08
] 2* 3* 4
6~
Eleme~s of M o m a t T e n o r Mh~ M,e
No. M~,
Mff
5c~e 10"
M~,
M~
~ e m m t a d Morn,mr ~ e ~ e r Mtt M~
-2.9,5~-0.36 Z62~0.73 -O.&~d:O.74 0.14.'k0.06 1.1~.42 -4.05-~0.29 -2.654"0.04 -3.70-~0.00 -2.70d:0.16 -1.94"~0.16
Met
)~,.,
-1.16=k0.1l; -0.fi&L~0.21 -&91:l:L4m; -2.(12il.43 0.79"J:2m 1.42~1m 4.33=1:1.10 -1.6,~'-0.87 3.84=1:1.06 ~ 1 ~ 1 -&47~*-0~la 1.T&l:lJ~ -6.94-4:1.:14 - 9 . ~ 0 8 ~.61 T.~'~.60 1.23~0.1g 2.64.-~"0.22 -0.614-0.0g -0.~cL-0.0@
-0.TI~-0.04 T.10:b~L0| -2.67=L'GM 5.M&-O.T~ -l.l~k0.M 1.g~.Sl -2.~ -&6,1kk0.4a -0.H&'0.2~ -1.1~'0.0~
- 6 . ~ - 0 . 3 4 &20~0.~0 5 . ~ l : 0 M - ~ - ~ 0 . . ~ -6.'/0:L-0A9 -0.~L-E0.?lS 0.04~-0.72 -I.S~-0.4~ 9.32~0.~0 -5.59~0.61 $.l~kO.~ - l . 4 ~ f ~ -1,12~-0.04 O.3T't-O.O~ O,?T:kO.11 -0,12~1.~ 2.44d:O.SS 2.33:k1.~ - 2 , ~ 1 , T 3 Oo44&~,M 4.19"~),47 - 1.81:L-0.4~ 2.72~0.03 0.33.'I:0.I0 -0.0~:~0~9 -2.1S~-0.0~ 0.60-J:0.09 -3.20d:O.G~ o9.~Od:O.O@ -,1.26¢-0.0~ -2.03:k0.16 3.42~031 -L11:kO.2~ 2.20d:0,1] 3.74~0.17 0.3~0.43 1.92d:0.45 -8.04~0.13 -I.39~'0.11 3.42~-0.51 -4.91~'0.15 0.0~'-0.02 3.80d:0.53 -0.16~0.87 0,~0.07 .l.12:kO~ 4.16~-0.07 -2.78~'0.~
0.70=E0.06 0.70d:0.06 -1.95~0.40 *4.3&:E0.63 -1.05~0.53 -2.95~0.35 7.37d:0.38 1.79"~0.47 -1.20:~0.51 -i.61~0.50 -2.63:J:0.02 3.T0d:0.02 0.57~:0.0~ -0.36::t:0.07 5.24~:0.05 0.63::t:0.06 -0.69&0.59 -6.55:t:0.37 4.16::t:0.11 -4.41:1:0.08
-0.82:1:0.15 4.8,5~:1.2~ S.0~-0.11 1.01~'0.M -&01~"0.4~ -2.79~=lJ~t -2,10~0.13 0.50~0.16 0,33~0.16 -2.79-'~0.17
-0.27:E0.12 4.5T~'-0~ ~.10 -0~'-0.0~ I.~.41 4.13~2.67 1.4~-0.17 1.12&-0.18 0.97:k-0.21 -IJ~L%-O.15
-0.5~"0~ -&~L'0.4'I -$.~L'0.11 0.M~'0~I -2.0~L'0.~4 -1.8~L'0.72 -0.21~-0J~ -0.48:~.(~i -1.~&-kO~ -2.~.0~
-1.95:k0.0~ l.l~kO.~@ 0.40:kOJ~ -0.22:k0.0~ 5.13:~2J~: ~41~-0.~ -1,3~-0J~/ -0.M~-0.0~ 1,44.,-t-~1~ O...~.i,0,04 1.18d:O,O~ 0,2|~-0.~ 0.6&k0.19 -0.24:L-0£~ 0.65=L-0,11 -0.3$dL-0.)0 1.11=1:0.22 -0.141.~4)~ 4.89-~0~2 1.42d~0~
-0.40-~1.79 1.62~I.61 0.68~1A~ -3,87=~L48 1.31=E1.,34 -0.~9=kl.51 -0,36&~]1 ~]&kO.13 3.5,%E0.~ 2.ST~0.0~ 0.59d:0.~ -0.33~-0.0~ 0.86~L00 1.82.~|.06 -I.76±1.78 .1.6T~-I.32 -0.85<-0.94 5.92=1=0.84 0.56-J:0.(~ -3.09~0.0~
-0.10~0.36 0.~0~0~6 4.4&~I~M 0.,%T~,-0D4, -2.17+0.0 0.~@~L-0.04 .2.05:b1.42 0.41-'-0.40 3.89-J=0.32 -2,31::1:0.09
0.3~±0.20 0.99d:0.44 3.07:E1.47 0.77±1.45 2.09~:1.05 1.41:~0.0~ 1.00~0.21 -1.13±0.04 4.15±1.12 3.04~0.27
-0.4L~0.08 -4.72:1:0.48 -1.82d:0.41 -5.98'4-0.36 0.77~0.33 3.66-~-0.01 2.03:t:0.05 -2,29d:0.06 -3.26:1:0.41 3.50~0.10
-0.]9~:0.24 2.51~0.42 -0~2~t:1,56 -O.T2d:l.22 -7.8~:~0.~ 1.00-J:0.(~ 0.~0-~:0.14 -2.07:t:0.04 7.37~1.40 -1.02:E0.29
A.M. Dziewonski et al. ~Physics of the Earth and Planetary Interiors 91 (1995) 187-201
195
Table 3 (continued)
M~
I
~
.e,~
I
M,,,
121 1~ 123 124
23 24 23 23
-9.49.0.31 -1.35.~-0.04 -3.94.4:1.06 4~T~kOJ4
0.0,i~'-0.43 1.54..--'-0.06 0.44:ki.54 -2.4(K-O.M
126 127 128 129= 130
24 23 24 25 24
-0.M~0.ff;' 3.39:i=1~J -0.10~0.04 - 0 ~ 3.15"0.30
-1.M~-0.11 Z]e~o.111-0.61~'-0. ~x 3.41~1.?0 -6.gS=~l.13i L 4 T = I : I ~ -0.~'0.04 1.~"0.041-0.39~"0.14 1.43d:0.0~ -1.40:tO.O~ I -0.2~0.05 - L ~ * 0 . 4 1 2 . ~ . 4 T I &7]:£'0J0
131 132 133 134 13.5 136 137 138 139 140
23 23 24 24 24 23 23 23 23 24
T.07~-0.22 2~7~0.47 0.42:L-0.31 -9.97£-0.42 0.19"~).10 8.24£~.1T -1~.04 L(]0-20.07 1.~.0~ 0~0~7 -$.12:L'0.39 2.g6*0.6T -~L9,~'0.39 4.13=1:0.7'3 -2.26~0.31 5.41~=0.46 -0.5010.80 l.Tl~d).52 1.34~0.(~ - 0 . ~ . 0 4
-9.44S:O.~U~1-4.8~-0.27 9.5~,e0.2~ I 1.50"z0.95 -8.43.-L-0.1~1 1.8&.~-0.20 0.44*O.O7 1-0.89"~0.07 12.~] 1-1.1&~0.39 2.1T=kI.15 1 2.(~e:k0A6 -L18:kLUU 1-1.44L~0.~7 -3.I~cL'OAIJ I ~ - 3 9 -1.22~O.771
[email protected]:1.15 -0.70~0.0,II 0.0720.07
141 142 143 144 14~ 146 147 148 149 150
23 24 23 23 23 24 24 23 23 24
3.20,0.T/ -4.29"0.57 -0.06"1"0.04 1.90:1:0.04 1.42:1:0.36 4.99~0,4~ 2.6&k0.23 -0.2~*0.38 -4.94:k0.~ 2.51~'0.44 -L48~-0.04 0.67*0.0? 1.10-k-O.~ 0.21"0.06 4.74=1:0.44 - 2 . 2 1 ~ . ~ -8.26~'0.35 -0.30~0.51 4.20"20.06 0.21~"0.12
1.OU~1.181-2.66=1=1.17 -l.SZ:Lg.U4 1-0.1~'0.14 -~.4U"~J,441 0.59"1"1.01 -3.47~"0.30t 1.62,0.65 ].~.b-/'l 1.~6"1.17 o.Ta:t:o.e71-0.24-~.04 -1.31£"~0~ 1-0.04£'0.04 12.~] I 3.0f~l.:10 8.545~'-0.~11 2.8&h:I.63 -4.41d:UA21 0.5~'0.I~
151 152 IM 154 155 156 157 158 139 160
23 24 23 23 23 23 23 23 23 23
2.72£-0.945 -1.7r~1.64 0.12,0~6 1.54---'-0.06 3J&kO~O -5.06~0.T0 -0.(10"3:031 -2.~7~0.67 -0.47~0~ 1.06~0.52 5.69"*048 3 . 7 8 ~ 0 . ~ - 0 ~ 7 ~ 0 . ~ 1.174-0.48 -5~51~0~5 4,41+0,4~ 5.20:L'O.31 -0.884"0.48 1.6320.67 - 1 . L ~ 0 J H
161 162 163 164 165 166 167 168 169 170
23 23 24 24 24 24 24 24 24 24
171 172 173 174 175 176 177" 178 179 180
23 23 2,5 23 23 23 ~ 24 24
M,,.
I
I
M~,
9.45d1:0.34i 3.40~1.17 0.5T::1:1.581-L~M~.O...~ -OJO~O.061 0.M:~.17 0.3~-O.1] i 0.0T20.04 3.51=1:0.731-2.412:k2.~ -7.874"I. ~'a 1.2.0~£'0.73 -2.2~'-0.481 &:11£.0.~ ~ 1-43M£-0.54 0.~'-0.281 6.~=k0.87 -7.2&t=2.391-9.30:f~.39 -~.84K'0.181 O.31:L'0J~ -0.E4----~.061 &ll::L'O.(~ -6.30"~0.3~ I -3.~&-0.,13 0.39"~O.39 1-0.75*0.33 4.40-~0~ I 1.35:L'OJ5 -13~k0.191 &31~'0.12 -0.37i0.06 1 -O.03..~'O.(M 0/~41.U(t 1-2.18:~0.07 0JS~L'0JI01 -I.U4*U.70 2.~0~'0.741 &g2=~0.g4 -2.ff~*O.741 7.~%*O.34 -&94~I.321 4.O4~O.~2 O.~I~OJMI 0.67~0.03
M~
1
Mw
I
~
Mrf
M,.~
M~
25 24 24 23 24 23 23 24 23 25
0.TkkO.~ I -1.MK--O.0~ 0.50~'0.04 0.e,t t O . l S I 0.51=L-0.1~ -O,,5~L-0.0O -1.32~'0.041 1.2T:~.04 0 ~ 0.,15£-0.~1 0.00~'~11 O.27£-0.05 3.51:t:2.0S 1-2.40:1:1.~, -1.11=k:L71S D.Tid:l.2] I &lg-~:~.l: 0.5,1~1.64 1.0T~'-O.061-0AI6~0.~ -0.11~'0.00 l.Sa=L:O.171-O.M£-0.14 0.1,|£'0~ 2.31~-OJ~ [ -1.22~1.0d -1.00~-0.~ -T.4.~cZ53 J -~L10d:l.44 1 .M£-0,,(10 -3.'ff=l;O.M I ~L39=1:1~0( 1.00~0.07 & U t k k ~ M 1-2.12~k:0.~ 14~L,0JI9 0.M~-0.~i 1-0.3T:L-O.0( -0.[;1,0.01" -1.2~:eo.14 i 0.M£-0.14 0.44.4:0.04 3.47.0JI61-2.~t-OJ~ - ~ 5 4 - ~ &55~3.101-4.0T~I& .3.9",,,,t,-1.0T O J ~ O ~ l 1-0.3&~O~] ~ . 4 7 ~ 0 ~ i 0 . 8 ~ z ~ l 1 - 1 . ~ L 4 ~ 0.5~-0.01
191 192 193 194
24 23 ~i 23 , 24 24 24 23 24
-1.63~0~ I ~.18~0~ 4.0~O~kS [ -~.41£'0J~ 1.55~0~41 0 . 0 ~ ' 0 ~ - 1 . ~ - . 0 . ~ I -t3(K--0.31 ~-O~l 1.5T~o~ 3 . 3 4 . * 0 ~ I -&~9-~-0.1| 3.0~-0.O61 0.'/~'-0.0"] 0.22~-0.~ ] 0 . 8 T ~ 0 4 2.~L.O.M 1-0.0~'-0.~ 3.30~0~)5 1 0.01~-O.(Y]
1.81~L~OW 2.06~0.131 0.43~0.1| ~I.Md~O.TI 5JX*l.7U I 1 . ~ 1 . 1 1 -1.39~0~10.~-O~91-L~ 5.gK-0.M -1.m~--o~] 1-0.fl@:l:l.~
-Z7~ 2.61d:OJiO
-2.20~:0.73 -O.0020.0T 4.2~0.38 -0~.11 1. l m . ~ -0.80=~.O.'R 1.421,1.~ -1.0&1=3.39 -4.,I/~I.04 -O.fiO~O,lO
1~, 196 197 1~ 199 200
-1.I,L~-0.00 1-0.39~-0.0, Z01:~-0.(M I -'~.Mt0,,0(
I
181 180 183 184 185 186 187 188 18@ lgO
1Jl~L-0~l 0.@:t0.13
0.~I£-0.44 1.co,o~ ~LT~L-O,091 1J6:1:0.14 - & g 0 2 0 . ~ i -2.(]6~-0.12 ~ l L0~'-0.12! 3.31k'-0.2 -0.46~'-0.06 -1.0S~"0.04 -O.O;:£O.OSI 0.ZK-0.~ 0.3~'-0.04 -2.S4d:O.~ -o.~1±l.a@ i 2.M~O.~ 4.20,0.85 -3.31~'O~0 0.79-1-O.071-0.3|=L-O~ 1.16~-O.07
-o.m.o.m . o ~ o m l
1.FI=kL331 -X.&~kUASI O.O4:L'U.131 1.20~'0.(~ I 8.~'0.28 -0.1fz~0.701-0.84.0~ -0.~121.~1 1.U(J~-~.S3 0.31±0.0~ I 0.34--~.8e U.11£'U.U41 0.O3&'0.04 2.~U:1:1.121-3.80-J:0,~ 2.57=I=2.0~I 1.80~'0.36 -O.52~0.1SI 1.31K--O.O7
201 202 203 204
23 24 23 24 23 23 23 206 23 : 23 210 I 24
6.39d=0.M [ -4.10£-0.~1 -0.53.-1:0.061 1.13.~-.O.~ 0.24.~1.27 1-4.47~.0.34 -0.3~l:0.0TI 1.21:k0.H -5.15=1=1-39I 3.96=1:0.9~ -3.34--*0.39i 3.84~0.4~ 3.39-'~-O.M1-4J3*O.M Z 3 9 " 1 ~ 1-1.51~'1.M 7,~1.481-3.31~!JI! -0~4~0.061 0.85&-OJM
&g~l:1.27 1-2.3~1:1.11 u.~.22 i O.M=e0.2(] -o.3~:1.]4 ~ -1.12=e1.~ O.O~kO.111-1.44~U.H -1.(l~cl.~O I .7.TJL=hl.5~ -Zl~i;l.031 1.01=1:1.22 -3..31~c1.0~ I 1.11:L-OJ~ 4 . M ~ l . g 8 1 @.e~e~.44 2~1~.~391-1~5~0 -0.1(hL'0.06 1 -0.29"kO.07
2.00:k0.38 -4.:r&kO.06 -6.43*0.35 -1.02£-0.12 0.00=1:2.22 0.2,K-0.39 4.O7~.T3 S.4S21.39 2.392;.34 - 1.0~-0.06
-O.gT=kl.731 8.47+1~0 -1.(t~L-O.GSl 1.06,0.16 2.6'~'--0.791 ~ . 6 1 2,gO:L'O.~OI &as~-o.~ -O.~-kO~ I -9.47"0.~8 1 -I.§~O.M -O.~lkL-0.51I 1.04.~:1.~ 1.11~JbTI 5 . ~ ' J : l . ~ -4.32=L:0.£~I 9.7520.31 -0.0~0~551 3.&5-t-l.29
3.54~:1.221-8.W~I~ -0.43~-O.1~1-0.63dL-O.06 -~.M1.2.74~-o.76 -LII£'OJ01 1.9~0.41 4.77~0.4~ .1.1&YO.671 -ZlO*0.4~ U.t~d:l.4~l -4,57£'0.~ -I.~7~I.MI 0 . ~ 0 . ~ 1.83±0.3~ I 6.52.'L-O.47 2.62:~1.(]81-l.ll=bO.~8
211 23 ~13 24 313 ~3 214 i 23 215 24
1.03~-0.4S -0.K-kO~04 O.99*O.5O 3.'rR-0.49 1.41£-0~ -5.14.-t0.9'J -0.25i0.06 -0.2020.03 3.S4.*0.89 -0.43~-0.00
6.79"3:0.37 -4.1920.52 3.g0~--0.56 -I.0T20.42 0.53~0.04 0.02=1=0J)5 -1.04=1:0.(~ 1.06:1:0.05 L25"t'0.04 -0.37~0.08 *3.&L'k0.0~ -0.41"0.15 0.2020.06 0.11:£'0.(]6 0.31+0.I§ 0.86-J:0.10 -0.19~0.05 -0.15~'0.1~; -0.27±0.06 -3.2f~0.06
-2.(~O~0.741 3.8220~4~ -2JD£b0Jffl 1.51:t:0J~ - 0 . 5 ~ 0 ~ I 0.8220~)4 -0.~.061-1.43~0~)~ -0.88:L'O.U61-0.1&'k0.(~ 4 . ~ ' 0 . 1 ~ 1-0.3120.12 -0.3~'0.USI 0.04~0.11 -].lO:l:o.13 1-0.2'L~0.20 O.:t4:t:O.i:)I 0.~6:J:0.10 3.52-3:0.09 1-0.86*0.09
5.73~0.3~ 0.62.-~0.46 0.97~0.01 -3.7120.40 -4.5420.26 5.84.4:0.68 -1.6720.03 5.2320.3~ 0.60".~0.04 0.06±0.04
-6.IU-2U.4UI 1 . ~ . 7 1 1.g3=eO.57f-3.4620.45 -I.(M:I:O.02I 0,2220.0'2 3.M~:OAOI -|.~74"0.64 1.71D~U.2151-3.4420.74 -ei.57±o.r~ I 0.71::i:0.73 -0.2~cO.0~ I -3.~20.03 O.2b=l=U.~l 4.5321.02 -O.77:t:O.USI-0.314"0.07 -O.B4~O.UOI 0.03:k0.19
0.3~0.~3 -2.,~+0.78 0.1120.01 0.1320.45 2.8420.34 0.73::L;0.90 1.94.'k0.0~ -5.48~0.31 0.174"0.09 0.78"t'0.05
-I.ST:L'~.~
21e
23
]17 9|8* ~lO 220*
Z4 25 23 Z7
~ 9 ~ - 0 . 9° 1 - 0 . ~ 4 ~ -6Jg£-O.W -2.3;1~e0~1 l 3.57£'0~5 1 . 3 2 ~ 0 ~ I O.Zl~O~ - 1 . 5 4 ~ 0.44--4~0e ~ l . e O £ ~ 4.04~0.~ 1-0.30£-0.41 -3.74~--0.83 4 . ~ J : I J l I
[email protected]~2J0 -4.84=I:0.26[ LM~-O.M 3.49-A.O.27 7.~'-O.TI 1-1.2920.~ -0.10-JL-0£~[ -1.3~L-0.04 1.49£-0,04 -O.O7:k0.11! .O.~kI:~0.12 0.00~0~414 . S 4 ~ . ~ 4 . 1 d ~ 3.x9~o.7~ I O.OT~OM -1.18~)JM [ 1.03~0~7 O.l~kO.11 o,45£-o.1o I 0 ~ 0 . 1 0 -3J41_4-0~ | -0.35+0.0~ 3.MK~ -1Jr~ I ~1~1~-o.o~ -3.~4L-~-0.T31 2.38=1=0.T~ 1.~020.63 4.(~1.U01 2.2&:1=].02 LT320.01 J 0.1320.01 -1.8720.01 1.TU~L'O.O@I 4.16=L:O.O7
-4.71:kU.E~I 1.6~e:O~ -0.47~'~1.5~1-2.21~'O.~/ 1,U~U.041-0.47£~.0~ 0.00-20.051 u.oeeo.o4 -1.~3=1:U.121 U.75=1=0.05 -7.Ul:£'u.I] I 4.;13=t:u.I3 0.71~0.131 t . ~ - u . o b 0.34.~U.14 I U.322U.U9 -Lt2*O.I4 I 0.2920.09 0.e3:t:0.07 I -0.e9~0.05
221 222 224 225 226 227 Z28 229 Z30
)5 24 25 ~4 ~3 ~3 Z5 ~4 ~ ~4
1.12:1:0.02 1 0.18:e0.o3 -1.2~t0.03 o.~d:o.u6 1 1.~d:0.05 -0.81~'-0.51 i -0.67=I:0.77 1 . ~ . 3 9 J. X~d:1.10 l 0.33=t1.19 0.78~0.02 I O.OO&O.O~l -o.7~&-O,O~ o . 9 ~ . o 5 1 2,~M~-O~ 1.32~0.03 I 0 . 0 7 ~ 0 ~ - 1 . ~ 0 . 0 5 0.70~0.05 I 1.11£-0.0b 3.324-0.71 I 3.09~-094 -6,41£-0.64 ZOt~OZ5 I ~ J ~ 1 . 2 4 1.50=1:0.45] 0.41~0.7~ -I.W~L~0.48 ,Lz¢*z.7~, 3.7~=1.21 1.84±0.~ i 0.32,0.04 -2.1fr~0.04 -I.~-UIU3 i 0.b4L~O.U3 0.56~0.04 J 0.51.0£6 -1.0720.06 -0.9220.071 .l.tr,a±o.o7 0.51~0.(~ i -0.4620.05 -0.05.0.0~ -o.~m±o.o~ I o.~m~o.o9 6.22:;:0.08 J 0.57~0.11 -6.79~0.12 4.]t~-o ll~ I 6.J7~:o.I~]
-0.3720.03 3.90~'-0.52 -0.30",.-0.02 -0.4(R-0.04 -0.~.69 -0.23*0.46 1,2~:0".03 -0.29,0,06 - 1,05=1:0.07 -2.32~-0.09
&54d:O.811-2.92~O.36 4.8620.431 4.39-~-O.73 .0.7420.021 U.U~L'U.Ol .5.24:t:o.441 2 . 5 2 2 0 . ~ -0.27~0.741 3.~'k0~141 .2.llS*U.77 I -4.U~=I:L~Ii 2.f~O.D4 I O.12:l:fl.02 I -2.~q}~O.91I O.3fr~0.421 -3A§:~U.0~I-u.II~O.ol O.IK~::l:O.13i ].~2*iJ.U4
231
~3
3.98:t:0.35 i -1.2720.56
-0.23~0.44
-2.?1~-0.42
3.38~=0.571 l . f ~ U . S 7
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
196 1
2
5
4
5
6
7
8
9
10
11
12
15
14
15
16
17
18
19
20
21
22
25
24
25
26
27
28
29
50
51
52
55
54
55
56
37
0 38
59
40
42
43
44
45
46
47
48
49
50
51
52
0 55
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
75
74
75
76
77
78
79
80
41
ia
¢)
Fig. 2. Equal area projection of the geometrical representation of the m o m e n t tensor solution of the earthquakes listed in Table 3. Solid lines are the projections of the nodal surfaces for the full m o m e n t tensor solution; broken lines correspond to the nodal planes of the 'best double couple'. The compression and tension axes are indicated by a plus and by a cross, respectively.
A.M. Dziewonski et aL / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
197
81
82
83
84
85
Q
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
0 106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
125
124
125
126
127
128
129
130
131
132
133
134
Q
155
136
137
138
139
140
141
142
143
145
146
147
148
149
150
151
152
O0
155
156
0 157
158
159
160
Fig. 2 (continued).
0
153
154
0
144
198
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201 161
162
16,3
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
Fig. 2 (continued).
A.M. Dziewonski et al. ~Physics of the Earth and Planetary Interiors 91 (1995) 187-201
199
(a)
Fig. 3. (a) Distribution and m o m e n t tensors for 22 largest (Mw > 6.5) events of 1994 with a focal depth g 50 kin; the size of a beach-ball is a linear function of magnitude. T h e label above a beach-ball indicates the date on which the earthquake occurred. (b) Same as (a) but for 13 events at depths greater than 50 kin. T h e label above a beach-ball indicates a focal depth of an earthquake.
200
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201
Centroid-moment tensor solutions for January-March 1985. Phys. Earth Planet. Inter., 40: 249-258. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1986a. Centroid-moment tensor solutions for April-June 1985. Phys. Earth Planet. Inter., 41: 215-224. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1986b. Centroid-moment tensor solutions for July-September 1985. Phys. Earth Planet. Inter., 42: 205-214. Dziewonski, A.M., Franzen, J.E. and Woodhouse, J.H., 1986c. Centroid-moment tensor solutions for October-December 1985. Phys. Earth Planet. Inter., 43: 185-195. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1987a. Global seismicity of 1977; Centroidmoment tensor solutions for 471 earthquakes. Phys. Earth Planet. Inter., 45:0 11-36. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1987b. Global seismicity of 1978; Centroidmoment tensor solutions for 512 earthquakes. Phys. Earth Planet. Inter., 46: 316-342. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1987c. Global seismicity of 1979; Centroidmoment tensor solutions for 524 earthquakes. Phys. Earth Planet. Inter., 48: 18-46. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1987d. Centroid-moment tensor solutions for January-March 1986. Phys. Earth Planet. Inter., 45: 1-10. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1987e. Centroid-moment tensor solutions for April-June 1986. Phys. Earth Planet. Inter., 45: 229-239. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1987f. Centroid-moment tensor solutions for July-September 1986. Phys. Earth Planet. Inter., 46: 305315. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1987g. Centroid-moment tensor solutions for October-December 1986. Phys. Earth Planet. Inter., 48: 1-10. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1988a. Global seismicity of 1980; Centroidmoment tensor solutions for 515 earthquakes, Phys. Earth Planet. Inter., 50: 127-154. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1988b. Global seismicity of 1981; Centroidmoment tensor solutions for 542 earthquakes, Phys. Earth Planet. Inter., 50: 155-182. Dziewonski, A.M., Ekstr6m, G., Franzen, J.E. and Woodhouse, J.H., 1988c. Global seismicity of 1982 and 1983; additional centroid-moment tensor solutions for 553 earthquakes, Phys. Earth Planet. Inter., 53: 17-45. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1988d. Centroid-moment tensor solutions for January-March 1987. Phys. Earth Planet. Inter., 50: 116126. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1988e. Centroid-moment tensor solutions for AprilJune 1987. Phys. Earth Planet. Inter., 50: 215-225. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart,
G., 1988f. Centroid-moment tensor solutions for July-September 1987. Phys. Earth Planet. Inter., 53: 1-11. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., /989a. Centroid-moment tensor solutions for October-December 1987. Phys. Earth Planet. Inter., 54: 10-21. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1989b. Centroid-moment tensor solutions for January-March 1988. Phys. Earth Planet. Inter., 54: 22-32. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1989c. Centroid-moment tensor solutions for AprilJune 1988. Phys. Earth Planet. Inter., 54: 199-209. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1989d. Centroid-moment tensor solutions for JulySeptember 1988. Phys. Earth Planet. Inter., 56: 165-180. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1989e. Centroid-moment tensor solutions for October-December 1988. Phys. Earth Planet. Inter., 57: 179-191. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1990a. Centroid-moment tensor solutions for January-March 1989. Phys. Earth Planet. Inter., 59: 233242. Dziewonski, A,M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1990b. Centroid-moment tensor solutions for AprilJune 1989. Phys. Earth Planet. Inter., 60: 243-253. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1990c. Centroid-moment tensor solutions for JulySeptember 1989. Phys. Earth Planet. Inter., 62: 185-193. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1990d. Centroid-moment tensor solutions for October-December 1989. Phys. Earth Planet. Inter., 62: 194207. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1991a. Centroid-moment tensor solutions for January-March 1990. Phys. Earth Planet. Inter., 65: 197206. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1991b. Centroid-moment tensor solutions for AprilJune 1990. Phys. Earth Planet. Inter., 66: 133-143. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1991c. Centroid-moment tensor solutions for JulySeptember 1990. Phys. Earth Planet. Inter., 67: 211-220. Dziewonski, A.M., Ekstr6m, G., Woodhouse, J.H. and Zwart, G., 1991d. Centroid-moment tensor solutions for October-December 1990. Phys. Earth Planet. Inter., 68: 201214. Dziewonski, A.M., Ekstr6m, G., Salganik, M.P. and Zwart, G., 1992a. Centroid-moment tensor solutions for January-March 1991. Phys. Earth Planet. Inter., 70: 7-15. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1992b. Centroid-moment tensor solutions for April-June 1991. Phys. Earth Planet. Inter., 71: 6-14. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1992c. Centroid-moment tensor solutions for July-September 1991. Phys. Earth Planet. Inter., 72: 1-11. Dziewonski, A.M., Ekstr6m, G. and Saiganik, M.P., 1992d.
A.M. Dziewonski et al. / Physics of the Earth and Planetary Interiors 91 (1995) 187-201 Centroid-moment tensor solutions for October-December 1991. Phys. Earth Planet. Inter., 74: 89-100. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1993a. Centroid-moment tensor solutions for January-March 1992. Phys. Earth Planet. Inter., 77: 143-150. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1993b. Centroid-moment tensor solutions for April-June 1992. Phys. Earth Planet. Inter., 77: 151-163. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1993c. Centroid-moment tensor solutions for July-September 1992. Phys. Earth Planet. Inter., 79: 287-297. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1993d. Centroid-moment tensor solutions for October-December 1992. Phys. Earth Planet. Inter., 80: 89-103. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1994a. Centroid-moment tensor solutions for January-March 1993. Phys. Earth Planet. Inter., 82: 9-17. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1994b. Centroid-moment tensor solutions for April-June 1993. Phys. Earth Planet. Inter., 83: 1-11. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1994c.
201
Centroid-moment tensor solutions for July-September 1993. Phys. Earth Planet. Inter., 83: 165-174. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1994d. Centroid-moment tensor solutions for October-December 1993. Phys. Earth Planet. Inter., 85: 215-225. Dziewonski, A.M., Ekstr/Sm, G. and Salganik, M.P., 1994e. Centroid-moment tensor solutions for January-March 1994. Phys. Earth Planet. Inter., 86: 253-261. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1995a, Centroid-moment tensor solutions for April-June 1994. Phys. Earth Planet. Inter., 88: 69-78. Dziewonski, A.M., Ekstr6m, G. and Salganik, M.P., 1995b. Centroid-moment tensor solutions for July-September 1994. Phys. Earth Planet. Inter., 90: 1-11. Kanamori, H., 1977. The energy release in great earthquakes. J. Geophys. Res. 82: 2981-2987. Woodhouse, J.H. and Dziewonski, A.M., 1984. Mapping the upper mantle: Three dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res., 89: 5953-5986.