Changes in lens and erythrocyte glutathione reductase in response to exogenous flavin adenine dinucleotide and liver riboflavin content of rat on riboflavin deficient diet

Changes in lens and erythrocyte glutathione reductase in response to exogenous flavin adenine dinucleotide and liver riboflavin content of rat on riboflavin deficient diet

NUTRITION RESEARCH, Vol. 7, pp. 1203-1208, 1987 0271-5317/87 $3.00 + .00 Printed in the USA. Copyright (c) 1987 Pergamon Journals Ltd. All rights rese...

322KB Sizes 0 Downloads 15 Views

NUTRITION RESEARCH, Vol. 7, pp. 1203-1208, 1987 0271-5317/87 $3.00 + .00 Printed in the USA. Copyright (c) 1987 Pergamon Journals Ltd. All rights reserved.

C H A N G E S IN LENS AND E R Y T H R O C Y T E G L U T A T H I O N E R E D U C T A S E IN R E S P O N S E TO E X O G E N O U S FLAVIN A D E N I N E D I N U C L E O T I D E A N D LIVER RIBOFLAVIN C O N T E N T OF RAT ON RIBOFLAVIN D E F I C I E N T DIET K. S e e t h a r a m Bhat 1, ph.D. and P. Vasanth Rao, M.Sc. N a t i o n a l I n s t i t u t e of N u t r i t i o n Indian Council of Medical R e s e a r c h J a m a i Osmania PO, H y d e r a b a d - 500 007 India

ABSTRACT The e f f e c t of e x o g e n o u s flavin adenine d i n u c l e o t i d e (FAD) and h e p a t i c level of r i b o f l a v i n on the a c t i v i t y of l e n t i c u l a r and e r y t h r o c y t e g l u t a t h i o n e r e d u c t a s e (GSH-R) was studied in r a t s fed a diet d e f i c i e n t in riboflavin. By 75 days of feeding, the G S H - R a c t i v i t y , under basal c o n d i t i o n (in the absence of e x o g e n o u s FAD) and the a c t i v a t i o n c o e f f i c i e n t (AC, a c t i v i t y of the e n z y m e in response to e x o g e n o u s F A D to t h a t w i t h o u t it) values w e r e s i g n i f i c a n t l y a l t e r e d in lens as well as e r y t h r o c y t e s of r a t s fed riboflavin d e f i c i e n t diet. Significant r e d u c t i o n in r i b o f l a v i n c o n t e n t of liver was also o b s e r v e d in the e x p e r i m e n t a l animals. T h e s e findings suggest t h a t the A C value for the l e n t i c u l a r G S H - R is as equally a r e l i a b l e b i o c h e m i c a l p a r a m e t e r for assessing r i b o f l a v i n n u t r i t u r e as t h a t of the e r y t h r o c y t e e n z y m e . Key Words:

Lens, e r y t h r o c y t e , liver, g l u t a t h i o n e r e d u c t a s e , riboflavin, a c t i v a t i o n c o e f f i c i e n t , rat. INTRODUCTION

D e t e r m i n a t i o n of flavin adenine d i n u c l e o t i d e (FAD) d e p e n d e n t g l u t a t h i o n e r e d u c t a s e (GSH-R, E.C. 1.6.4.2) in e r y t h r o c y t e s from human s u b j e c t s (1-4) and e x p e r i m e n t a l animals (5-7) has been shown to be a s e n s i t i v e index of r i b o f l a v i n nutriture. In the v i t a m i n d e f i c i e n t s t a t e , the e n z y m e is s t i m u l a t e d following in v i t r o addition of its c o - f a c t o r , FAD and also a f t e r v i t a m i n a d m i n i s t r a t i o n in vivo. In an e a r l i e r study on r a t s from our Institute, it was o b s e r v e d t h a t G S H - R in e r y t h r o c y t e was m o r e s e n s i t i v e to riboflavin d e f i c i e n c y than t h a t of liver e n z y m e , although the v i t a m i n c o n t e n t of the liver d e c r e a s e d at a f a s t e r r a t e than t h a t of e r y t h r o c y t e s (7). F u r t h e r , no response was o b s e r v e d in t h e h e p a t i c e n z y m e a c t i v i t y to in v i t r o addition of FAD. Glutathione reductase is p r e s e n t in lens and its a c t i v i t y d e c r e a s e s during aging and c a t a r a c t f o r m a t i o n (8-11). R e c e n t l y Ono and Hirano (12) have provided e v i d e n c e for t h e e x i s t e n c e of flavin m o n o n u c l e o t i d e (FMN) and F A D synthesising e n z y m e s in lens.

1To whom c o r r e s p o n d e n c e should be addressed.

1203

1204

K.S. BHAT and P.V. RAO

To i n v e s t i g a t e the relationship b e t w e e n l e n t i c u l a r and e r y t h r o c y t e G S H - R a c t i v i t y and liver riboflavin c o n t e n t , the a c t i v i t y of GSH-R in lens as well as e r y t h r o c y t e and riboflavin c o n t e n t of the liver w e r e d e t e r m i n e d . In addition, t h e e f f e c t of in v i t r o addition of F A D on the a c t i v i t y of GSH-R was also studied in lens and e r y t h r o c y t e from t h e s e rats, MATERIALS A N D METHODS Ten m a l e NIN-Wistar a riboflavin d e f i c i e n t diet riboflavin s u p p l e m e n t e d (8 rats was fed ad libitum, to the food c o n s u m p t i o n (Pair-fed). The rats w e r e tained at 22-25~

strain rats weighing 35-54 g w e r e fed ad libitum on (7). Two groups of rats, 10 in each group, r e c e i v i n g mg/kg) diet s e r v e d as controls. One group of c o n t r o l while the o t h e r group was fed with a q u a n t i t y equal of the riboflavin d e f i c i e n t group in the previous day c a g e d individually in s c r e e n - b o t t o m e d c a g e s and m a i n -

A t the end of 75 days of feeding, rats w e r e s a c r i f i c e d a f t e r o v e r n i g h t fasting under e t h e r anaesthesia. Blood was drawn from the orbital plexus into h e p a r i n i z e d tube kept cold. Blood was c e n t r i f u g e d at 2000 x g for 15 min in the cold. The plasma and the b u l l y c o a t w e r e r e m o v e d with p a s t e u r e p i p e t t e . The residual plasma and buffy c o a t w e r e r e m o v e d by resuspending the e r y t h r o c y t e s in 5 v o l u m e s of ice cold 0.9% NaC1 solution and c e n t r i f u g i n g at 2000 x g for 10 min. The e r y t h r o c y t e s w e r e washed t h r i c e in the s a m e medium. A l i q u o t e s of the packed e r y t h r o c y t e s ( h a e m a t o c r i t , 96%) w e r e dispensed into a m b e r c o l o u r e d s c r e w capped glass tubes, f r o z e n and s t o r e d at - 2 0 ~ till f u r t h e r analysis. The processing of e r y t h r o c y t e s was c a r r i e d out under dim light. Lens was c a r e f u l l y e x c i s e d through p o s t e r i o r approach. Each lens was h o m o g e n i z e d (10%) in 0.2 M T r i s - E D T A buffer, pH 8.2 in a P o t t e r - E l v e n j e m glass h o m o g e n i z e r and the h o m o g e n a t e was c e n t r i f u g e d at 20000 X g in a Sorvall RC 513 superspeed c e n t r i f u g e at 4 ~ for 30 rain. The liver was rapidly r e m o v e d and s t o r e d at - 2 0 ~ G l u t a t h i o n e r e d u c t a s e a c t i v i t y in both lens and e r y t h r o c y t e was assayed a c c o r d i n g to Bayoumi and Rosalki (13). The c o n t e n t s of the r e a c t i o n m i x t u r e are shown in Table 1. The r e a c t i o n was followed k i n e t i c a l l y for the first 5 min TABLE 1 C o n t e n t of the G l u t a t h i o n e R e d u c t a s e E n z y m e Assay M i x t u r e Lens

Erythrocyte

Potassiumphosphate b u f f e r

78

Enzyme preparation

80 pl (2000 g s u p e r n a t a n t )

EDTA

1.6 jJ m o l e

100 }H (1:15 h a e m o lyzate} 4 ~ mole

GSSG

2 p mole

5 p mole

FAD*

jJ mole (pH 7.4)

10 n mole Incubated at 3 7 ~

0.2 m mole (pH 7.4)

25 n mole for 25 min.

NADPH

0.16 y m o l e

0.4 F mole

Total volume

1.0 ml

2.45 ml

* When p r e s e n t

GSH-REDUCTASE AND RIBOFLAVIN DEFICIENCY

1205

( m a x i m u m l i n e a r r a t e ) by t h e d e c r e a s e in o p t i c a l d e n s i t y a t 340 nm in a G i l f o r d s p e c t r o p h o t o m e t e r (Model 250) e q u i p p e d with a r e c o r d e r (Model 6050). T h e d e c r e a s e in o p t i c a l d e n s i t y was l i n e a r with t i m e and e n z y m e c o n c e n t r a t i o n . Protein concent r a t i o n of t h e lens was d e t e r m i n e d by t h e m e t h o d of L o w r y e t al (14) w i t h c r y s t a lline b o v i n e s e r u m a l b u m i n as a p r o t e i n s t a n d a r d . A c t i v a t i o n c o e f f i c i e n t (AC) v a l u e for GSH-R, t h e s t i m u l a t o r y e f f e c t of e x o g e n o u s FAD, on t h e e n z y m e was c a l c u l a t e d by dividing t h e a c t i v i t y of t h e e n z y m e in t h e p r e s e n c e of a d d e d c o - f a c t o r by t h a t w i t h o u t it to p r o v i d e e v i d e n c e of r i b o f l a v i n d e f i c i e n c y (15,16). R i b o f l a v i n c o n t e n t of t h e l i v e r was a s s a y e d m i c r o b i o l o g i c a l l y using L. c a s e i as t h e t e s t o r g a n i s m (17). S i g n i f i c a n c e of d i f f e r e n c e s b e t w e e n groups was e v a l u a t e d by t h e s t u d e n t ' s ' t ' t e s t . RESULTS A N D DISCUSSION A t t h e e n d of 75 days of f e e d i n g w i t h t h e r i b o f l a v i n s u p p l e m e n t e d d i e t , t h e r a t s in ad l i b i t u m (274 + 3.9g) and p a i r - f e d (108 + 3.3g) groups w e r e s i g n i f i c a n t l y h e a v i e r (P/-. 0.001) t h a n t h e a n i m a l s fed r i b o f l a v i n d e f i c i e n t d i e t (58 + 3.3g). T h e m e a n food i n t a k e by t h e r a t s a t t h e end of t h e e x p e r i m e n t a l perTod was 14.8 + 0.75 g / d a y in ad l i b i t u m g r o u p as a g a i n s t 4.9 + 0.33 g / d a y o f t h e r i b o f l a v i n d e f i c i e n t group. S i m i l a r t r e n d was also r e p o r t e d from this i n s t i t u t e e a r l i e r (7). S i g n i f i c a n t c h a n g e s w e r e also s e e n in lens w e t w e i g h t ( P < 0 . 0 0 1 ) and t o t a l p r o t e i n c o n t e n t ( P ~ 0.025) of t h e lens b e t w e e n r i b o f l a v i n d e f i c i e n t (33.2 +_ o.39 m g and 17.1 + 0.37 r a g / l e n s r e s p e c t i v e l y ) and c o n t r o l s (37.1 + 0.37 m g and 19.4 + 0.56 m g / l e n s r e s p e c t i v e l y ) . H o w e v e r , t h e c o n t e n t of lens pr-oteins, e x p r e s s e d p e r g w e t w e i g h t was not s i g n i f i c a n t l y d i f f e r e n t in t h e e x p e r i m e n t a l (514 + 9.3) and c o n t r o l groups (501 + 16.1 and 523 + 15.0). Riboflavin deficiency h a s b e e n s h o w n to r e s u l t in d e c r e a ~ d r i b o f l a v i n c o ' t e n t and a c t i v i t i e s of f l a v i n n u c l e o t i d e d e p e n d e n t e n z y m e s in t i s s u e s (18-20). In t h e p r e s e n t study, s i g n i f i c a n t r e d u c t i o n in r i b o f l a v i n c o n t e n t of t h e l i v e r was o b s e r v e d in r i b o f l a v i n d e f i c i e n t r a t s {17.3 + 0.72 )ag/g liver) a g a i n s t b o t h ad l i b i t u m and p a i r fed c o n t r o l a n i m a l s (44.7 + 1.9-2 a n d 45.1 + 1.48 jag/g l i v e r r e s p e c t i v e l y ) w h i c h was s i m i l a r to t h a t r e p o r t e d by B a m j i a n d S h a r a d a (7). T h e a c t i v i t y of G S H - R b o t h in lens a n d e r y t h r o c y t e s , in t h e a b s e n c e of e x o g e n o u s F A D was s i g n i f i c a n t l y { P < 0 . 0 0 1 ) l o w e r e d in r a t s on r i b o f l a v i n d e f i c i e n t r a t i o n (50%) c o m p a r e d to r i b o f l a v i n s u p p l e m e n t e d r a t s (Table 2). On t h e o t h e r hand, G S H - R a c t i v i t y in t h e p r e s e n c e of t h e c o f a c t o r did not s i g n i f i c a n t l y d i f f e r in t h e v i t a m i n d e f i c i e n t and s u p p l e m e n t e d r a t s . A d d i t i o n of F A D c a u s e d a s i g n i f i c a n t i n c r e a s e ( P < 0.001) in G S H - R a c t i v i t y in r i b o f l a v i n d e f i c i e n t t i s s u e s c o m p a r e d to c o n t r o l s , w i t h t h e r e s u l t , t h e A C v a l u e increased significantly (P<0.001) in lens as well as e r y t h r o c y t e s in r i b o f l a v i n deficient rats. S i m i l a r r e s u l t s w e r e also o b t a i n e d w h e n t h e e n z y m e a c t i v i t y was e x p r e s s e d p e r g p r o t e i n ( r e s u l t s not given). E r y t h r o c y t e G S H - R a c t i v i t y c o e f f i c i e n t v a l u e s h a s b e e n p r o v e d to b e a useful tool in p r o v i d i n g b i o c h e m i c a l e v i d e n c e for t h e d e f i c i e n c y of r i b o f l a v i n {15,16}. F u r t h e r , t h e A C v a l u e for e r y t h r o c y t e G S H - R was s h o w n to be a b e t t e r i n d e x of r i b o f l a v i n d e f i c i e n c y s t a t e t h a n t h a t of liver e n z y m e (7). A p r e v i o u s s t u d y (21) r e p o r t e d 40% d e c r e a s e in e r y t h r o c y t e G S H - R a c t i v i t y of r i b o f l a v i n d e f i c i e n t r a t s c o m p a r e d to c o n t r o l s a f t e r 21 days on t h e vitamin deficient diet. In t h e s e r a t s t h e a c t i v i t y of t h e e n z y m e was also f o u n d to b e l o w e r e d in lenses. S i m i l a r l y , a b o u t 70% d e c r e a s e was o b s e r v e d in e r y t h r o c y t e e n z y m e a c t i v i t y of r a t s f e d a r i b o f l a v i n d e f i c i e n t d i e t for 35 days (5). An association between r i b o f l a v i n d e f i c i e n c y a n d lens o p a c i t y h a s b e e n r e p o r t e d (22-25). S i n c e lens m e t a b o l i s m a p p e a r s to be s i m i l a r to t h a t of e r y t h r o c y t e s (26), it is o f i n t e r e s t to s e e w h e t h e r t h e r e s p o n s e o f e x o g e n o u s F A D on G S H - R a c t i v i t y in lens is s i m i l a r to t h a t o b s e r v e d in e r y t h r o c y t e s . The response o b s e r v e d to t h e in v i t r o a d d i t i o n of F A D on G S H - R a c t i v i t y in lens is v e r y s i m i l a r t o t h a t o b s e r v e d in e r y t h r o c y t e s ( T a b l e 2). This f u r t h e r s u g g e s t s t h a t t h e t h e s y n t h e t i c r a t e of t h e a p o e n z y m e was not a f f e c t e d d u r i n g r i b o f l a v i n d e f i c i e n c y

1206

K.S. BHAT and P.V. RAO

b o t h in lens a n d e r y t h r o c y t e s . R e c e n t s t u d y on r a t s h a s d e m o n s t r a t e d d e c r e a s e d c a p a c i t y of t h e lens t o s y n t h e s i z e flavin n u c l e o t i d e s d u r i n g r i b o f l a v i n d e f i c i e n c y (27). W h e t h e r t h i s d e c r e a s e d c a p a c i t y of t h e lens to s y n t h e s i z e f l a v i n n u c l e o t i d e s d u r i n g r i b o f l a v i n d e f i c i e n c y is due to low r i b o f l a v i n c o n t e n t of t h e t i s s u e r e m a i n s to be investigated, While t h e p r e s e n t work w a s in p r o g r e s s Ono a n d H i r a n o (28) f r o m J a p a n r e p o r t e d F A D s t i m u l a t e d r e s p o n s e of t h e G S H - R in lens o f r a t s m a i n t a i n e d on r i b o f l a v i n d e f i c i e n t d i e t . It is s u g g e s t e d t h a t t h e l i m i t i n g f a c t o r for G S H - R a c t i v i t y d u r i n g r i b o f l a v i n d e f i c i e n c y is c o - f a c t o r s a t u r a t i o n c a p a c i t y of t h e t i s s u e (28). TABLE 2 G l u t a t h i o n e R e d u c t a s e A c t i v i t y in Lens a n d E r y t h r o c y t e Ad libitum fed c o n t r o l (10)

Pair-fed c o n t r o l (10)

from Rats Riboflavin d e f i c i e n t (10)

Lens G l u t a t h i o n e R e d u c t a s e ( p m o l e N A D P H o x i d i z e d -h p e r 100 m g p r o t e i n ) -

FAD

2.63 + 0.201

2.44 + 0.252

1.35 + 0 . 0 8 1 "

+

FAD

3.07 + 0.205

2.93 + 0.199

2.58 + 0:076

1,17 + 0.O35

1.23 + 0.049

1.97 + 0 . 1 1 8 #

Activation Coe f f i c i e n t Value

Erythrocyte

Glutathione Reductase

( p m o l e N A D P H o x i d i z e d -h p e r ml e r y t h r o c y t e ) -

FAD

34.2 + 2.39

31.9 + 2.49

19.4 + 1.55#

+

FAD

39.2 + 2.50

37.6 + 3.29

35.6 + 3.86

1.15 + 0.003

1.17 + 0.017

1.82 + 0 . 0 8 6 #

Activation Coe f f i c i e n t Value

D a t a r e p r e s e n t m e a n and s t a n d a r d e r r o r . F i g u r e s in p a r e n t h e s i s i n d i c a t e n u m b e r of a n i m a l s . * P < 0.005, s i g n i f i c a n t l y d i f f e r e n t f r o m c o n t r o l r a t s . # P<0.001,

significantly different from control rats.

The results of the present study taken together with those reported earlier (4,6,7,28) s u g g e s t t h a t t h e A C v a l u e in r e s p o n s e to e x o g e n o u s F A D for t h e lens a n d e r y t h r o c y t e G S H - R is a s e n s i t i v e b i o c h e m i c a l i n d e x for t h e a s s e s s m e n t o f r i b o f l a v i n s t a t u s in r a t s . E x p e r i m e n t s a r e in p r o g r e s s t o s e e t h e v a l i d i t y of t h i s t e s t in h u m a n s i t u a t i o n . ACKNOWLEDGEMENTS T h e a u t h o r s g r a t e f u l l y a c k n o w l e d g e Dr. B.S. N a r a s i n g a Rao, D i r e c t o r , N a t i o n a l I n s t i t u t e of N u t r i t i o n , H y d e r a b a d , for his k e e n i n t e r e s t in t h e s t u d y . Mrs. P. L a x m i Rajkumar provided technical assistance. P.V.R. is a r e c i p i e n t of s e n i o r f e l l o w s h i p f r o m C o u n c i l of S c i e n t i f i c a n d I n d u s t r i a l R e s e a r c h , India.

GSH-REDUCTASE AND RIBOFLAVIN DEFICIENCY

1207

REFERENCES Bamji MS. Glutathione reductase activity in red blood cells and riboflavin nutritional status in humans. Clin. Chim. Acta 1969; 26:263-69. 2.

Beutler E. Glutathione reductase : Stimulation in normal subjects by riboflavin supplementation. Science 1969; 165:613-15.

3.

Glatzle D, Korner WF, Christeller S, Wiss O. Method for the detection of a biochemical riboflavin deficiency stimulation of NADPH2-dependent glutatbione reductase from human erythrocytes by FAD in vitro. Investigations on the vitamin B9 status in healthy people and geriatric patients. Int. J. Vit. Res. 1970; 40:I66-83.

4.

Bhat KS. Riboflavin deficiency and galactose metabolism in human subjects. Nutr. Metab. 1974; 16:111-18.

5.

Beutler E, Srivastava SK. Relationship between glutathione reductase activity and drug-induced baemolytic anaemia. Nature 1970; 226:759-60.

6.

Tillotson JA, Sauberlich HE. Effect of riboflavin depletion and repletion on the erythrocyte glutathione reductase in the rat. J. Nutr. 1971; 101: 1459-66.

7.

Bamji MS, Sharada D. Hepatic glutathione reductase and riboflavin concentrations in experimental deficiency of thiamin and riboflavin in rats. J. Nutr. 1972; 102:443-48.

8.

Harding JJ. Free and protein-bound glutathione in normal and cataractous human lenses. Biochem. J. 1970; 117:957-60.

9.

Giblin F J, Chakrapani B, Reddy VN. The effect of X-irradiation on lens reducing systems. Invest. Ophthalmol. Vis. Sci. 1979; 18:468-75.

10.

Zigman S. Influence of aging and light on oxidation: reduction reactions in the lens. In: Srivastava, SK, ed. Red blood cell and lens metabolism. New York: Elsevier North Holland, Inc., 1980; 181-84.

11.

Rao PV, Bhat KS. Age related biochemical changes in rat lens. Annual Report, National Institute of Nutrition, Hyderabad, India. 1984/85: 85-88.

12.

Ono S, Hirano H, Sato Y. Formation of flavin adenine dinucleotide and flavin mononucleotide by lens homogenate. Exp. Eye Res. 1982; 34:297-301.

13.

Bayoumi RA, Rosalki SB. Evaluation of methods of coenzyme activation of erythrocyte enzymes for detection of deficiency of vitamin B1, B2 and B6. Clin. Chem. 1976; 22:327-35.

14.

Lowry OH, Rosebrough N J, Farr AL, Randall R J. Protein m e a s u r e m e n t with the Follin phenol reagent. J. Biol. Chem. 1951; 193:265-75.

15.

Sauberlich HE, Dowdy RP, Skala JH. Laboratory tests for the of nutritional status. CRC Crit. Rev. Lab. Sci. 1973; 4:215-340.

16.

Bamji MS. Laboratory tests for the assessment of vitamin nutritional status. In: Briggs, MH, ed. Vitamins in Human Biology and Medicine. Florida: CRC Press, Inc., 1981: 1-27.

assessment

1208

K.S. BHAT and P.V. RAO

I?.

Clegg KM, Kodicek E, Mistry SP. A modified medium for Lactobacillus casei for the assay of B vitamins. Biochem. J. 1952; 50:326-331,

18,

Bhat KS, Belavady B, Riboflavin nutritional status of rats essential fat t y acid deficiency. J. Vitaminol, 1970; 16:149-53,

19,

Goldsmith GA. Riboflavin deficiency. York: Plenum Press, 1975: 221-44.

20.

Lane M, Smith FE, Alfrey Jr CP, Experimental dietary and antagonist-induced human ariboflavin deficiency. In: Rivilin, RS, ed. Riboflavin, New York: Plenum Press, 1975: 245-77.

21.

Srivastava SK, Beutler E. Galactose Biochem, Med, 1972; 6:372-79,

22.

Day PL, Darby WJ, Cosgrove KW. The arrest of the use of riboflavin. J, Nutr. (suppl) 1938; 15:83-90,

23.

Bhat KS, Gopalao C. Human c a t a r a c t and galactose metabolism. Nutr. Metab. 1974; 17:1-8.

24.

Prchal JT, Conrad ME, Skalka HW. Association of presenile c a t a r a c t s with heterozygosity for g a l a c t o s a e m i c states and with riboflavin deficiency, Lancet 1978; i: 12-13.

25,

Dunce GE. Nutrition and C a t a r a c t , In: Tobin, RB, Mehlman Advances in Modern Human Nutrition, Vol. 1. Illinois: Pathotox Inc., 1980: 1-31,

26,

Srivastava SK. Red Blood North Holland, Inc., 1980.

27.

Ono S, Hirano H, Hamajima S, Horiuchi S, E f f e c t of riboflavin deficiency on the synthesis of ester forms of riboflavin in rat lens. J. Nutr. Sci. Vitam. 1981; 27:599-604,

28.

Ono S, Hirano H. FAD-induced in vitro a c t i v i t y of glutathione in the lens of B 2 deficient rats. Curr. Eye Res. 1984; 3:663-65.

Cell

and

Accepted for publication July 6, 1987.

In:

Rivlin,

cataract

Lens

RS,

in

ed,

riboflavin

suffering

from

Riboflavin,

New

deficient

nutritional

Metabolism.

New

cataract

rats.

by

MA, eds. Publishers,

York:

Elsevier

r ed u ct ase