.
AND POTENTIAL
3-0
7
Topol o g i c a l spaces A t o p o l o g i c a l space E i s s e p a r a b l e i f i t c o n t a i n s a c o u n t a b l e dense s e t . I t i s
c a l l e d P o l i s h i f t h e r e e x i s t s a d i s t a n c e c o m p a t i b l e w i t h i t s t o p o l o g y under which E i s complete and s e p a r a b l e . L o c a l l y compact spaces w i t h c o u n t a b l e base a r e c a l l e d
LCC spaces. We w r i t e 1 . s . c .
(u.s.c.)
t o abbreviate t h e expression lower (upper) semi-conti-
nuous. O r d i n a l s and t r a n s f i n i t e i n d u c t i o n
8
We c o n s i d e r arguments by t r a n s f i n i t e i n d u c t i o n as e x t r e m e l y c o n v e n i e n t and i n t u i t i v e and we use them f r e e l y . The f o l l o w i n g s e c t i o n c o n t a i n s e v e r y t h i n g o u r r e a d e r may need t o u n d e r s t a n d o u r p r o o f s . L e t ( J , s ) be some non-countable we1 1 - o r d e r e d
s e t w i t h a l a s t element
E.
Such a s e t " e x i s t s " : w e l l - o r d e r any u n - c o u n t a b l e s e t (axiom o f c h o i c e ) and a d j o i n E
t o i t i f necessary. F o r a l l a
(i.e.
5
E
J , l e t Ca be t h e s e t o f B
J such t h a t B
E
<
a
a, B # a).
The s e t o f a such t h a t Ca i s u n - c o u n t a b l e c o n t a i n s
E
by h y p o t h e s i s , i t i s t h e r e -
f o r e non-empty and hence has a s m a l l e s t element j o . L e t I = C . w i t h t h e o r d e r J induced by J . The o r d e r e d s e t I has t h e two f o l l o w i n g p r o p e r t i & : (1) i t i s w e l l - o r d e r e d and n o n - c o u n t a b l e ; (2) f o r a l l i
E
I , Ci
i s countable.
I t can be shown t h a t t h e s e two p r o p e r t i e s c h a r a c t e r i z e t h e o r d e r e d s e t I up t o
isomorphism, and i n p a r t i c u l a r t h a t I i s i s o m o r p h i c t o t h e s t a n d a r d s e t o f a l l count a b l e o r d i n a l s , b u t we do n o t need t o know t h a t . Having chosen I once and f o r a l l , we adopt t h e f o l l o w i n g t e r m i n o l o g y :
- t h e elements o f I a r e c a l l e d ( c o u n t a b l e ) o r d i n a l s ;
-
given a
E
I , i t i s v e r y easy t o see t h a t t h e s e t o f a l l B E I such t h a t CY < B i s We denote by a + 1 i t s s m a l l e s t element
non-empty ( o t h e r w i s e I would be c o u n t a b l e ! ) .
and we c a l l i t t h e successor o f a and a t h e p r e d e c e s s o r o f a determined as t h e l a r g e s t element o f { B : R
-
< IY.
+
1 ( i t i s uniquely
+ l} ;
t h e s m a l l e s t element o f I i s denoted by 0, we w r i t e q u i t e n a t u r a l l y 0
1+ 1
=
2, 2 + 1
=
3,
...
+
1 = 1,
The l e a s t upper bound o f t h e " i n t e g e r s " t h u s c o n s t r u c t e d i s
o f t e n denoted by w ;
- an o r d i n a l o f t h e f o r m a
+
1 i s o f t e n c a l l e d a f i r s t k i n d o r d i n a l and an o r d i n a l
# 0 w i t h o u t a predecessor a second k i n d o r d i n a l ( o r a l i m i t o r d i n a l ) . We now group i n a s i n g l e s t a t e m e n t some l e s s o b v i o u s p r o p e r t i e s o f I.
(1) R e c a l l t h a t a t o t a l l y o r d e r e d s e t i s w e l l - o r d e r e d i f e v e r y non-empty subset c o n t a i n s a s m a l l e s t element.
4-0
PROBABILITIES
LEMMA. a ) For every ordinal a
E
I , a # 0 , t h e r e e x i s t s a s t r i c t l y increasing mapping
R i such t h a t f ( 0 ) = 0 , f ( a ) = 1 . f of t h e i n t e r v a l C0,al of I W b ) Conversely, f o r every increasing mapping f of t h e whole of I t h e r e e x i s t s an ordinal y such t h a t f ( 8 ) = f ( y ) f o r a l l 8
2
R~
k
y.
c ) For every l i m i t ordinal a, t h e r e e x i s t s an increasing sequence of o r d i n a l s a , < a such t h a t a = supnan.
Proof : a ) Let A be t h e s e t of o r d i n a l s 4 # 0 such t h a t no such mapping f of C0,81 i n t o R e x i s t s . I f A i s non-empty, i t has a smallest element a. Clearly a cannot have a predecessor and a i s n o t 0 . Hence a i s a l i m i t o r d i n a l . For every 8 < a, l e t f B be a s t r i c t l y increasing mapping of C0,81 i n t o R such t h a t f 8 ( 0 ) = 0 , f ( a ) = 1 B and l e t g be t h e mapping of C0,al i n t o R equal t o f a on C0,Bl and t o 1 on 18,al. B Since t h e r e a r e countably many p < a, t h e r e e x i s t numbers E a l l s t r i c t l y positive,
8'
such t h a t C B ~ 8= 1. Then t h e function 1 E g s a t i s f i e s t h e statement on CO,al, 888 contradicting t h e d e f i n i t i o n of a. Hence A i s empty.
1
b) Let A = s u p f ( 8 ) . For a l l n l e t a n be such t h a t f ( a n ) > A - ; ( f ( a n ) > n B i f A = + m ) and l e t y = supnan. Then f ( R ) = f ( y ) = A f o r a l l 8 2 y . c ) F i n a l l y , l e t a be a l i m i t ordinal and l e t f be a s t r i c t l y increasing mapping take an In follows
I t suffices t o t o be t h e s m a l l e s t ordinal B such t h a t f ( 8 ) > c - 1. n na'ive language, t h e " p r i n c i p l e of t r a n s f i n i t e induction" can be s t a t e d as : l e t P(a) be a "property of an ordinal a''( i n o t h e r words, a subset A of I :
o f C0,al i n t o a bounded i n t e r v a l of R . Let c = supp,,.f(B).
A ) , such t h a t (1) i f P i s true f o r a, P i s true f o r a + 1, ( 2 ) i f B i s a l i m i t ordinal and P i s t r u e f o r every ordinal for B. P(a) i s t r u e f o r a i f and only i f a
E
ct <
8, P i s t r u e
(3) P i s true for 0. Then P i s true for a l l a
E
I . This i s obvious : Let A be the s e t of a l l a f o r which
P(a) i s not t r u e . I f A i s non-empty, A has a f i r s t element which has no predecessor
(l), i s not a l i m i t ordinal ( 2 ) and i s n o t 0 ( 3 ) . This i s absurd, hence A must be empty. This " p r i n c i p l e " a p p l i e s of course t o every well-ordered s e t and not only t o I . T r a n s f i n i t e induction can be used i n a s l i g h t l y d i f f e r e n t way, t o construct a function f on the set of a l l countable o r d i n a l s . One then a p p l i e s the above argument, P(a) being t h e property " t h e r e e x i s t s on the i n t e r v a l C0,alone and only one function f such t h a t . . . " , and t h e conclusion being " t h e r e e x i s t s on t h e whole of I one and only one function f such t h a t . . . " . Usually t h e dots . . . represent induction r u l e s , defining f ( a ) when f ( B ) i s known f o r a l l < a. 9
F i n a l l y , a word about t h e ( r e s t r i c t e d ) "continuum hypothesis". I t i s known t h a t t h e following axiom:
,
5-0
AND POTENTIAL
I has t h e power o f t h e continuum ( i n o t h e r words, t h a t i t i s p o s s i b l e t o "enumerate" by means o f I t h e p o i n t s o f R, t h e sequences of i n t e g e r s , ...) i s independent o f t h e usual axioms o f s e t t h e o r y . U n t i l now, t h e a d o p t i o n o r r e j e c t i o n o f t h i s axiom has been s i m p l y a m a t t e r o f t a s t e , w i t h no r e a l l y u s e f u l r e s u l t o f a n a l y s i s depending on i t . We s h a l l see below s e v e r a l v e r y b e a u t i f u l consequences o f t h e continuum h y p o t h e s i s (due t o Mokobodzki), which l e a d us t o a d o p t i t i n t h i s book w i t h t h e same s t a n d i n g as t h e axiom o f c h o i c e . See however t h e comments.