1
CHAPTER
POINTWISE CONVERGENCE OF A SEQUENCE OF OPERATORS
There a r e q u i t e a number o f i m p o r t a n t problems i n F o u r i e r A n a l 1
s i s and i n o t h e r areas i n which a sequence ( o r g e n e r a l i z e d sequence ) o f o p e r a t o r s a r i s e s i n a n a t u r a l way. i)I f
f
E
L1([0,2x)),
f
periodic o f period
2 ~ r ,t h e p a r t i a l
sums
F o u r i e r s e r i e s can be i n t e r p r e t e d as t h e a p a l i c a t i o n o f t h e o D e r a t o r t o the function where
Dk(x)
f . E q u i v a l e n t l y S k f ( x ) = Dk
, the
*
f(x) =
D i r i c h l e t k e r n e l , i s d e f i n e d by
1
TI
Sk
f(x -y)Dk(y)dy
-Ti
s i n ( k t T1) x Dk(X) =
X
TI s i n 2
ii)I n an analogous way, t h e Cesaro sums
Okf(X)
=
S,f(x)
-t
Slf(X)
-t
.,. -t
Skf(X)
k + l
can be i n t e r p r e t e d as t h e a p p l i c a t i o n o f t h e o p e r a t o r i s t h e F e j 6 r k e r n e l , d e f i n e d by
Fk(x) =
1
2n( k + l )
1
ak
to
f. I f
fk
1. POINTWISE CONVERGENCE OF OPERATORS
2
We know t h a t
parameter
r
A r f ( x ) = Pr
,is
*
f(x)
Pr(x) =
i v ) If f E L1(Rn)
i s t h e mean v a l u e o f
f
over
where
1 -
2n
t h e Poisson k e r n e l of
Pr(x),
1-r2
1 - 2 r cos x + r 2
, B(0,r)
B(x,r)
= Cx
e Rn : 1x1
6
r
I
which i s c o n s i d e r e d i n t h e t h e o r y
o f differentiation o f integrals. v ) I n a more general way
\
,
k ( y ) d y = 1, k E ( x ) =
if
E
-n
k E L1(Rn)),
k),(
x
for
E
> 0, t h e n
a r e t h e o p e r a t o r s considered i n t h e s t u d y o f t h e a p p r o x i m a t i o n s o f t h e
id e n t it y
.
vi) If
f E L’(R”)
and
if
1x1
if
1x1 <
2 E
hE(x) = 0
,
E
1.0. INTRODUCTION
then
i s t h e truncated ( a t v i i ) If
k
E
) Hilbert transform.
i s a complex valued function defined on Rn--COI
such t h a t
then, f o r f 8 L 1 ( R n ) , KEf(x) = k E * f ( x ) i s t h e truncated ( a t E ) Calder6n-Zygmund transform of t h e function f , considered i n t h e theory o f singular integral operators. The most natural question in a l l t h e s e s i t u a t i o n s i s : ( A ) Tv dind vu.t W h d h a ,Oh u n d a which a d d i t i v n d nvn & v i a l c v n d i t i v a vn 5 v h an t h e vpehatvlrn Th ,the cornuponding bequence Tk6 ( x ) cvnuagen 6vh e v a y x O h denvot eVt?hy x and whdt ahe t h e p m ~ W e h ad the,& h L i 2 .
This i s , i n a l l the cases we have considered, a t the same time t h e most d i f f i c u l t question. In many of them, because of t h i s d i f f i c u l t y , t h e theory s t a r t e d w i t h a l e s s ambitious program: ( B ) Tv 5ind o u t w h e t h a , V R u n d a which a d d i t i v n d nvn .&ivial
cvnd&..LvnA vn 4 ah On t h e v p a d t v h n T k . t h e CvntLupanding oeyuence ~ u n C ; t i v a ~~6 cvnuenga i n Avme opace LP.
04
Question B has in many of t h e above presented s i t u a t i o n s a r a t h e r simple s o l u t i o n . Suppose t h a t we know t h a t T k i s l i n e a r , t h a t
4
1. POINTWISE CONVERGENCE OF OPERATORS
we can show, f o r example, t h a t , i f
11 T k f 11 6 c g E t o(Rn)
say,
Tg.
Ilf
p,q
]I f -
g
> ko,
.
c
w i l l converge i n
Hence, g i v e n
L2 (R')
with
independent o f
we a r e a b l e t o show t h a t
L e t us prove t h a t
and so T k f
2c
11
f E L2(Rn),
112
E
11 Tpg -
Tqg
L2(Rn).
T h i s would s o l v e q u e s t i o n
k
, and
and t h a t that for
L2(Rn)
Tkg i s t h e n a Cauchy sequence
{Tkfl
We can w r i t e , f o r
f E
tomn)
f
to, i n L2(Rn)
ego
(Rn),
such t h a t
g i s f i x e d , k o such t h a t , i f I T k f } i s a convergent sequence i n
and, once 6 4 2 . So
E/2
and
converges i n
> 0, we can f i r s t choose
6
f
Tk f E L2(Rn)
(B) and would l e a v e unanswered q u e s t i o n
( A ) . What can we do t o t h r o w some l i g h t on i t ? L e t us t a k e a c l o s e r l o o k a t i t s meaning. Assume, as b e f o r e , t h a t Tk i s l i n e a r . We wou d l i k e t o be a b l e t o prove, f o r example,that,
[A(f,X)I
=
for
f E L1(Rn)
( t x e R n : l i m sup I T f ( x ) P PY9
-
and
X
> 0,
Tqf(x)( >
X 1 = o
-+
T h i s would g i v e us t h e convergence o f Assume t h a t we know t h a t , f o r converges. Then, if h = f
- g,
g e
{Tkf(x)) 0(Rn)
and so t h e problem i s reduced t o prove t h a t if
h
fixed
i s o f small
X
L'
a t almost e v e r y
and f o r each
A(h,X)
x E Rn.
x E Rn , { T p g ( x ) l
i s o f s m a l l measure
- norm. Assume t h a t we can p r o v e t h a t , f o r each
> 0,
T h i s would s o l v e o u r prob em.
1.0. INTRODUCTION
5
However, t h e s e t A(f,A) has a r a t h e r unhandy s t r u c t u r e and so one can think of s u b s t i t u t i n g i t by some o t h e r e a s i e r t o handle. I t i s quite clear that lA(f,A)
defined by T*f(x) =
sup lTkf(x)[
has a r a t k k e r simple s t r u c t u r e . We may hope t h a t we w i l l be able t o prove now t h a t and t h a t t h e oper t o r T*
0 , and t h i s w i l l as well give us our desired IA*(fy A ) I 0 a s 11 f 1 1 1 almost everywhere convergence of {Tkf} +
-f
.
So we a r e led t o consider t h e operator
T*
defined by
.
I f {Tk} i s which i s c a l l e d t h e maxim& a p e h a t a h associated t o { T k } an ordinary sequence, k = 1,2,..., T*f i s c l e a r l y measurable. I f k i s not countable one has t o prove t h a t T*f i s anyway measurable o r e l s e t o deal with t h e o u t e r measure o f tT*f > A I . The operator T* i s such t h a t f o r each f and x, T*f(x) a 0 and, i f the Tk a r e l i n e a r , we can w r i t e
The relevance of t h e operator
T*
stems from t h e r o l e i t plays
in t h e pointwise convergence proofs, as i n d i c a t e d , and in t h e information i t furnishes about t h e l i m i t , when i t e x i s t s . Assume, f o r example, in t h e l a s t mentioned s i t u a t i o n , t h a t we can prove t h a t f o r each
f 6 L1(Rn)
with
f
c
independent of
6
L’(Rn)). Then we obtain f o r each
X
0,
1. POINTWISE CONVERGENCE OF OPERATORS
6 and so
ICT*f > X
11
-f
0
as
where convergence r e s u l t .
II Tf III
C IIT*f IIi
c
X
1) f ]I1
-f
0. Thus we o b t a i n t h e a l m o s t e v e r y
Furthermore i f t h e l i m i t i s
Tf,
I1 f I I 1 .
O f course,in o r d e r t o o b t a i n t h e almost everywhere convergence,
(*)
condition
i s somewhat s u p e r f l u o u s and sometimes f a l s e . I t i s good
enough t o know t h a t
f e L1@)
f o r each
.
X
and
O r even j u s t t o know t h a t f o r each
When
(**I
Condition at
o
X > 0 , with
and f o r each
from
L
to
(***) j u s t says t h a t
Observe t h a t c o n d i t i o n
(**)
i s o f weak t y p e
T*
?V .
independent of
f
31 > 0
T*
h o l d s one says t h a t
c
(1,l).
i s continuous i n measure
can be e q u i v a l e n t l y expressed by
saying t h a t
I n fact
11 f 11 1 >
(**) t r i v i a l l y i m p l i e s
( * * ) ' and, i f we have
(**I'
and
0, we can w r i t e
Our f i r s t t a s k w i l l be t o e s t a b l i s h some equivalences between a.e.
- convergence and p r o p e r t i e s of
the function
@(A)
T*
and t o c l e a r up a - l i t t l e th.e r o l e
p l a y s i n t h e whole business.
The general s e t t i n g i n which we w i l l p l a c e o u r s e l v e s i s t h e following: Genahae o e t t i n g . ( a ) We c o n s i d e r
(Q,F,p)
,
a measure space
t h a t w i l l be i n some cases o f f i n i t e measure and i n some o t h e r s + f i n i t e .
7
1.0. INTRODUCTION ( b ) We denote by a b l e f u n c t i o n s d e f i n e d on ( c ) With
Q to R
from
X
“I n ,
ing
k
X
u-a.e.
t ).
.
to
t h a t are f i n i t e
we denote a Banach space of measurable f u n c t i o n s
(ot to
( d ) The sequence t o r s from
t h e s e t of r e a l ( o r complex) valued measuc
w i l l be an o r d i n a r y sequence of opera-
{TkI
I n many cases t h e r e w i l l be no problem i n assum-
t o be a continuous parameter.
(e) Each w i l l be assumed t o be l i n e a r and i n some cases Tk j u s t t o s a t i s f y t h e f o l l o w i n g cond t i o n : f o r fl, f 2 e X , X 1 , 1 2 E lR we have
ITk(X1
fl
’
12
f2)
( f ) With and
x e fi
6 1x11
T*
we d e s i g n t h e maximal o p e r a t o r , i . e .
for
,
( 9 ) We denote by
T
t h e 1 imi t o p e r a t o r , i.e.
l i m Tkf k+m
Tf = when i t e x i s t s i n some sense.
(h) F i n a l l y f o r $(A)
X > 0, =
sup f ex
w i l l be
$(A)
u{
x
E
R
: T*f(x)
}
f E X
,
1. POINTWISE CONVERGENCE
8
1.1.
OF OPERATORS
AND CONTINUITY I N MEASURE OF THE MAXIMAL OPERATOR
FINITENESS A.E.
The f i r s t i m p o r t a n t r e s u l t we s h a l l s t u d y i s a general p r i n c i p l e
T h e com%ukty .in meanme ad each one 06 the ope ha to^ o a a @miey Y JRu a ~LnCteneohcmclump-tivn on t h e cahhanpond i n g maxim& opehatoh -impfie0 t h e continLLity .in meanwre at 0 0 6 t h e maL i m & o p e h a t u h .itnd4. T h i s statement, o f course, has a l l t h e f l a v o u r o f due t o Banach. Roughly s t a t e d :
a u n i f o r m boundedness p r i n c i p l e , and so i t i s .
I t can be o b t a i n e d by a
s i m p l e a p p l i c a t i o n o f t h e general u n i f o r m boundedness theorem and t h i s i s t h e way we f o l l o w here.
[1970
, pages
F o r an a l t e r n a t i v e p r o o f one can see A.Garsia
1-4 1 .
I n o r d e r t o p r e s e n t t h e theorem as a p a r t i c u l a r case o f t h e u n i f o r m boundedness p r i n c i p l e , we endow t h e l i n e a r space p-measurable p-a.e.
p-a.e.
m
and f o r
f E ??I (R)
i n t h e sense o f Yosida [1965 only i f
{ f n IE d(f
- fn)
and -f
More s p e c i f i c a l l y , l e t
l e t us s e t
I t i s an easy e x e r c i s e t o check t h a t
a sequence
of a l l
w i t h a d i s t a n c e t h a t w i l l d e f i n e i n "I ( 0 )
a r e t h e same)
t h e topology o f t h e convergence i n measure. p(Q) <
'"I(a)
f i n i t e f u n c t i o n s (where f u n c t i o n s t h a t c o i n c i d e
d:/)n(R)
, p.30 I . "m , we
f e
[ 0,m)
+
i s a quasi-norm
A l s o i t i s easy t o show t h a t f o r have
fn
-f
f
(p-measure)
i f and
0.
For a s u b l i n e a r o p e r a t o r
T
f r o m a normed space
to
X
'hl (R)
one a l s o shows e a s i l y t h a t t h e f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t .
-' M(R) i s
(a)
The o p e r a t o r
T : X
(b)
The f u n c t i o n
4 : (0,m)
-f
[O,m)
continuous a t d e f i n e d by
0
E
X
9
1.1. FINITENESS A.E. AND CONTINUITY
tends to 0 as X tends to
a.
Of course, if T is linear, then continuity of T on X .
(a) is equivalent to the
Likewise, let (TcOaeA be a family of sublinear operators from X to W (R). Then one easily shows that the follow ng statements are a1 so equi Val ent
I > h } + O
asXtm
For the theorem that follows we shall use the following form of the uniform boundedness principle, that can be seen in Yosida [1965, p.681: LeI
k%mu~
(X,il
A ~ U C ~ L.
11
~ A
dying doh each f, g e X
d(Ta(Af)) 7 6 the
(Y,d) a q u a i - n a m e d be a ~amieqo p e h a t a u &horn X t o Y A& -
) be a Banach npace and
=
d(ATaf)
{Taf : a e A} c Y d(Taf) = 0 u n i ~ a m L qi n a Ilfll-. 0 We recall here that the fact that a each neighborhood U of the origin lim
A&
bounded doh each f
E
X,
,then
e A.
set ScY is bounded means that for there is an E > 0 such that E S c U.
With these preliminaries the proof of the following theorem is straightforward.
1. POINTWISE CONVERGENCE OF OPERATORS
10
lei {TkIF=l be a bequence o d hubfineah ope l d u r n dhom X, a Banach hpace, t o "@l (a) w i t h u(Q) < m. h w n e t h a t each Tk LA conLLnuvlLs and that t h e maxim& opeha2vh T* dedined doh f E X and x E R an 1.1.1.
A huch thud T * f T*
A d
6
A ~.ivLite u-a.e. Then
%doh I each f, i .e. T*f at 0 , and thenedahe
o continuouA
Phaod. imal operator
Clearly T i 0 & T;f(x) each
TtlEOREM.
c
For
Ti
..
n = 1,2,3,.
we d e f i n e t h e t r u n c a t e d
i n t h e f o l l o w i n g way. For
f
E
i s s u b l i n e a r , continuous f r o m X t o T*f(x) f o r each x e a , we have
X
and
x e
( a t n) max-
n
and s i n c e d(T*,f) c d ( T * f )
for
f.
Therefore t h e uniform boundedness p r i n c i p l e a p p l i e s and continuous a t
~(6) <
-
0,
{T*,)
i.e.
Observe t h a t , i f
p(R) =
,
m
we can s e l e c t
c R
and, i f we d e f i n e
&i)
i s equi-
=
sup
Ilf I1 6 1
p
1 x
E
6 : T*f(x)
> X 1
t h e n w i t h t h e same h y p o t h e s i s of t h e theorem we a l s o o b t a i n
with
1.2. CONTINUITY AND A.E.
0
1.2. CONTINUITY I N MEASURE AT CONVERGENCE
E
X
CONVERGENCE
OF THE MAXIMAL OPERATOR AND A.E.
We a l r e a d y know t h a t t h e f i n i t e n e s s
a.e.
a t o r i m p l i e s i t s c o n t i n u i t y i n measure a t
0 e X
t h i s c o n t i n u i t y i m p l i e s t h e closedness i n
X
of
i n which t h e sequence
X
Tkf
11
.
o f t h e maximal operWe s h a l l now see t h a t
o f t h e s e t o f elements
converges
f
I n most i n t e r e s t i n g
a.e.
cases i t i s easy t o e s t a b l i s h such a convergence f o r some s e t dense i n and so we o b t a i n t h e
a.e.
convergence f o r a l l f u n c t i o n s i n
theorem t h a t f o l l o w s i t i s n o t necessary t o assume t h a t
For t h e
X.
X
X
i s complete.
be a sequence 06 &hean. opehatom 6hom X, a named Apace, t o 'hl (n). h b w n e t h a t t h e ma&& opehdtoh T* h cow%nuouh in memwte &am X t o at 0 e X . Then t h e be;t E ad d e m e h f 06 x dolt which {Tkf} CUnvmgtA at a.e. x e R iA doseed i n X.
we have
1.2.1.
THEOREM.
Phood. -
Let
PIX e =
R :
f
Since f e E.
X
l i m sup m,n -+a
PIX E R ; l i m sup m,n
G
E
LeA
211 I x 8
@
ITk)
and c o n s i d e r
ITmf(x)
-
g
E
E.
Tnf(x)[ >
\Tm(f -g)(x)
-
a > 0
Then f o r any
CL
1
=
Tn(f -g)(x)J >
~1
}
G
f
E
+a
R :
[h) 0 J-
as
COROLLARY.
I]
f -g
11 J-
we see t h a t i f
then
t h e p h e c e h g Theohem .h a nomed subspace oh %'t and id doh each g e E Me have T k g ( x ) - + g ( x ) at a . e . x e R , then we &o have doh each f E , T k f ( x ) f ( x ) at 1.2.3.
16 ,the space
0
X
06
-+
1. POINTWISE CONVERGENCE OF OPERATORS
LI C X E fi :
lirn sup k + -
=
FIX E R : I i r n sup k +-
<
~ C 6X 0.: T * ( f - g ) ( x )
b u t t h i s tends t o c e r o as
g
>
-f
a )+ 7
f ( h ),
V{X
e n : I(f-g)(x)l
>
a 1 2