A1 Chapter 1
SUKFACE SPECTROSCOPIC TECHNIQUES
J.L. G. F i e r r o I n s t i t u t o de C a t a l i s i s y P e t r o l e o q u i m i c a , C . S . I . C . , (Spai n ) 1.1
Serrano 119, 28006 M a d r i d
INTKODUCTION
As t h e growth o f i n d u s t r i a l heterogeneous c a t a l y s t s c o n t i n u e s t o a c c e l e r a t e , t h e r o l e and c o n t r i b u t i o n s o f s u r f a c e s c i e n t i s t s and mechanism s p e c i a l i s t s become i n c r e a s i n g l y v i t a l . Researchers i n t h e s e f i e l d s a r e making m a j o r e f f o r t s i n d e v e l o p i n g t h e fundamental methods t o p r o v i d e t h e knowledge needed t o s u p p o r t r a p i d progress i n b a s i c and a p p l i e d c a t a l y s i s . Many r e c e n t developments t o c h a r a c t e r i z e c a t a l y t i c p r e p a r a t i o n s and r e a c t i o n mechanisms have r e s u l t e d i n i m p o r t a n t advances i n o u r u n d e r s t a n d i n g o f c a t a l y t i c phenomena. F o r a g i v e n c a t a l y z e d process a c t i v i t y and s e l e c t i v i t y a r e two i m p o r t a n t parameters which i n d i c a t e how good a c a t a l y s t i s . However, t h e s e parameters r e s u l t from measurements c a r r i e d o u t a t a macroscopic s c a l e , i . e . u s u a l l y by gas-chromatography, which i s c o n s i d e r a b l y g r e a t e r t h a n t h e a t o m i c s c a l e o f t h e m o l e c u l a r events c o n f i n e d t o t h e c a t a l y t i c s u r f a c e . From a s c i e n t i f i c p o i n t o f view, t h e i n v e s t i g a t i o n o f t h e s u r f a c e c o m p o s i t i o n and l o c a l s t r u c t u r e o f c a t a l y s t s a t t h e atomic l e v e l and t h e c o r r e l a t i o n o f t h e s e d a t a w i t h c a t a l y s t p e r formance r e s u l t e x t r e m e l y u s e f u l i n u n d e r s t a n d i n g t h e r o l e t h a t s u r f a c e atoms p l a y i n t h e c a t a l y t i c r e a c t i o n . T h i s b a s i c i n f o r m a t i o n on t h e s t r u c t u r e - p r o p e r t y r e l a t i o n s h i p f o r e x i s t i n g c a t a l y s t systems w i l l u l t i m a t e l y b e of v a l u e i n t h e d e s i g n o f new c a t a l y s t s , e s p e c i a l l y more e f f i c i e n t ones. On t h e same lines,much work i s undoubtedly
carried out i n the investigation o f catalyst f a i l u r e o r
gradual d e a c t i v a t i o n t o i d e n t i f y c a t a l y s t p o i s o n i n g mechanisms, e.g. by segreg a t i o n o f c a t a l y s t i m p u r i t i e s , d e p o s i t i o n f r o m i m p u r i t i e s i n t h e r e a c t a n t stream o r from side-reaction products. The above o b j e t i v e s o f t h e a n a l y s i s o f c a t a l y t i c s u r f a c e s have been a r t i c u l a t e d n e a r l y f i f t e e n y e a r s ago w i t h t h e advent o f many new techniques, developed through s u r f a c e s c i e n c e and r e i t e r a t e d many t i m e s (see (1-10)). Perhaps i t i s i m p o r t a n t h e r e t o keep i n mind t h a t t h e concept o f c a t a l y s t s u r faces i s n o t w e l l d e f i n e d , because t h e c o m p o s i t i o n o f t e n d e v i a t e s f r o m t h e i r b u l k values f o r depths o f m i c r o n s . As can be seen i n t h e n e x t s e c t i o n , d u e t o t h e fact t h a t each i n d i v i d u a l s u r f a c e a n a l y s i s t e c h n i q u e shows i t s own sampling depth, each p r o v i d e s i t s unique v i e w o f t h e inhomogeneous c a t a l y s t s u r f a c e r e g i o n . T h i s f e a t u r e i s a m a j o r b a r r i e r t o q u a n t i t a t i v e a n a l y s i s and as such has
A2
m o t i v a t e d e f f o r t s t o e s t a b l i s h c a l i b r a t i o n standards. Surface a n a l y s i s o f heterogeneous c a t a l y s t s i n v o l v e s t h e measurement o f t h r e e d i f f e r e n t q u a n t i t i e s . The most i m p o r t a n t o f these i s t h e qua1 i t a t i v e i d e n t i f i c a t i o n of surface species, i.e.,
what atom-type i s a t t h e surface. The
second concerns t h e chemical s t a t e o f these atoms, i.e.,
the oxidation state o f
surface species. F i n a l l y , i t i s necessary t o determine t h e s p a t i a l l o c a t i o n o f t h e s u r f a c e s t r u c t u r e s . For instance, i n a supported c a t a l y s t i s i t c r u c i a l t o know i f t h e a c t i v e i n g r e d i e n t i s on t o p o f t h e c a r r i e r s u r f a c e o r d i f f u s e s i n i t , o r perhaps i t forms l o c a l i z e d c r y s t a l l i t e s a t v a r i o u s p o s i t i o n s across t h e surface. T h i s t y p e o f surface a n a l y s i s i s by f a r t h e most e x t e n s i v e l y used form o f a n a l y s i s o f c a t a l y s t surfaces and i s t h e s u b j e c t o f most of t h e p u b l i s h e d papers. A complete review i n t h i s area covering t h e l a s t t h r e e y e a r s has been very r e c e n t l y pub1 i s h e d (11).
A d i s a p p o i n t i n g f e a t u r e , however, i s t h e non-planar n a t u r e o f t h e c a t a l y s t surfaces. Most o f t h e s u r f a c e spectroscopies r e q u i r e an ordered surface, i.e., a s i n g l e c r y s t a l . The e l e c t r o n spectroscopies f a l l i n t h i s category, although Auger spectroscopy i s n o t so r e c t r i c t e d , and has been s u c c e s s f u l l y a p p l i e d t o t h e study o f pronioter d i s t r i b u t i o n i n a commercial ammonia s y n t h e s i s K20-A1203Fe c a t a l y s t ( 1 2 ) . The small area samples, o f t e n s i n g l e c r y s t a l o r p o l y c r y s t a l l i n e f o i l s , b u t w e l l s u i t e d t o c h a r a c t e r i z e surfaces i n u l t r a h i g h vacuum by low energy e l e c t r o n d i f f r a c t i o n (LEED) , Auger spectroscopy (AES) o r o t h e r s u r f a c e s e n s i t i v e techniques, can be used as model c a t a l y s t s , s i n c e a s p e c i a l c o n f i g u r a t i o n provides p a r a l l e l k i n e t i c s t u d i e s under c o n d i t i o n s t h a t a r e v i r t u a l l y i d e n t i c a l t o those used i n t h e chemical technology. For d e t a i l s , t h e reader i s r e f e r r e d t o t h e works o f Goodman (13) and Somorjai ' s group ( 1 4 ) . When one t u r n s , however, $0 supported c a t a l y s t s c o n s i s t i n g o f small c r y s t a l s dispersed on h i g h s u r f a c e area c a r r i e r s , e.g.,
z e o l i t e s , A1203, Si02, e t c , m o s t l y w i t h i n t h e
pores, these spectroscopies become i m p r a c t i c a l . T h i s i s due t o t h e f a c t t h a t t h e a c t i v e i n g r e d i e n t i s n o t a c c e s i b l e by e l e c t r o n probes. S t u d i e s o f t h e atomic s t r u c t u r e and composition o f these l a t t e r c a t a l y s t s r e q u i r e o t h e r techniques. Among them, s o l i d s t a t e NMR (15-17), extended X-ray a b s o r p t i o n f i n e s t r u c t u r e (EXAFS) (5, 18. 19). X-ray p h o t o e l e c t r o n spectroscopy (XPS) (20-33), and Mossbauer spectroscopy (23, 24), o f l a t e have been found p a r t i c u l a r l y useful i n studies o f t h i s class o f catalysts.
1.2
SPECTROSCOPIES AND RELATED TECHNIQUES S c i e n t i s t working i n s u r f a c e science and c a t a l y s i s a r e now r a t h e r f a m i l i a r
w i t h many s u r f a c e spectroscopies f o r which t h e y have adopted conventional, b u t no l e s s confusing, acronyms (XPS, EAS. LEED, I S S , EELS, e t c . ) .
I n the past
f i f t e e n years t h e number o f these techniques has increased i n a such manner t h a t i t becomes d i f f i c u l t t o devise new acronyms f r e e o f ambiguity. Hence,many
A3
Fig. 1.1. P i c t o r i a l v i e w of surface analysis technlques. Various combinatSons o f probes i n and p a r t i c l e s out determine the various surface analysis techniques. attempts have been made t o overview i n a systematic way the plethora o f surface spectroscopies (25). Perhaps the m s t descriptlve and simplest method t o categorize them i s the Propst representation (Fig. 1.1).
The crossed c i r c l e represents the surface to be analyzed. In-going drrws represent the various probes t o e x c i t e the sample, while out-going arrows correspond t o t h e excitations which convey i n f o m a t i o n about the sample. In p r i n c f p l e , every spectroscopy can be represented by a combination o f dn
an ingoing
and
out arrow. On the basis of the 6 surface probes, i t r e s u l t s t h a t there are
6 2 combinations, about h a l f of them are I n c m n use. However, the number o f e x i s t i n g spectroscopies i s much larger. This i s due t o the f a c t that a s l n g l e
combination of an in-going arrow andaout-going arrow may lead t o several q u i t e d i s s i m i l a r spectroscopies, dependtng on what propertjes o f the probe and o f the emitted p a r t i c l e s a r e measured. For instance, when photons are used as the incident probe, t h e i r wavelength may widely vary frm radiofrequencies t o 'f-rarn. I n t h i s broad range o f energies the complete
diatinn, t y p i c a l l y I02 t o lo-''
electrwnagnetic spectrum comprises various narrower regions o f photon energy,
namely, radi ofrequencey , microwaves, in f rared , v l s 1 b l e-u 1. trav lo1 e t , X-rays, and ,,-radiation. Therefore, a single combination o f an i n and out photon (Fig, 1.1) may lead t o NMR, ESH, I R , UV-visible, XRD, XRF. EXAFS, and Mossbauer spectroscopies. I n order t o visualize t h i s f a c t i n a clearer way, the Propst diagram
IN
F i g . 1.2. A survey of t h e most common a n a l y t i c a l methods basedon p h y s i c a l phenomena.
-
n
rn
r+
W
2.
0
v) v)
W
v)
In ID
n
1 0
u
3 Q
A.
n
S
0
V
v)
rn
-5 1
0
0
rn
rt. 3-
n
S
W
v)
3
0
A.
ui
m
1
1
s
rn
3
m
v)
S
0
A.
-5
w
<
113
4 .rt
2 5.
3 3
0 s
rt-i
or+
5 0
urn
mu) a
S
A.
2 02
I m
Sui rtS
o1 w 3
s o
rtrt 0 1
0 0
Jrn
a%
(Ll
3 -
A.
0 s
m-rl
I
c a. w s *
m
r 5 t.
g uiz
K
i
Nuclear Excitations
Transitions
h e r Electronic
Transitions
Eltc t ronic
Vibrations
Molecular
Rotations
Molecular
50
Gli
50
z
I 1 4. Y
6.
CI
Y v
3
h
A6
has been more e x p l i c i t l y c o n s t r u c t e d i n F i g . 1.2. A l t h o u g h few o f t h e s e s p e c t r o s c o p i e s a r e e x t e n s i v e l y r e v i e w e d i n t h e f o l l o w i n g c h a p t e r s o f t h i s volume and a l s o i n p a r t B o f t h i s s e r i e s , a v e r y s h o r t d e s c r i p t i o n o f t h e s p e c t r o s c o p i e s summarized i n F i g . 1.2. which i n c l u d e s t h e i r p h y s i c a l bases and a p p l i c a t i o n s , i s o u t l i n e d below. F o r t h e t e c h n i q u e s t h a t a r e n o t d e a l t w i t h i n t h e s e c h a p t e r s , t h e l i t e r a t u r e mentioned has been r e s t r i c t e d t o o n l y few b a s i c r e f e r e n c e s . 1.2.1
Photons-Photons N u c l e a r Magnetic Resonance (NMR). T h i s t e c h n i q u e i s based on t h e i n t e r a c t i o n o f n u c l e a r s p i n s w i t h an e x t e r -
n a l magnetic f i e l d which s p l i t s t h e c o r r e s p o n d i n g energy l e v e l s . T r a n s i t i o n s between them e x a c t l y corresponds t o t h e energy o f t h e i n c i d e n t wave, t y p i c a l l y o f 100 MHz ( F i g . 1 . 3 ) . T h e s p l i t t i n g i s v e r y s e n t i s i v e t o t h e symmetry and conf i g u r a t i o n o f t h e nuclei, t h e r e f o r e t h i s technique allows t o study t h e environment o f t h e atoms and t h e i r m o t i o n . A e x t e n s i v e r e v i e w o f t h e a p p l i c a t i o n s o f IIMR i n c a t a l y s i s i s g i v e n i n p a r t 6, c h a p t e r 4.
E l e c t r o n S p i n Resonance (ESR)
.
I n t h i s case, t h e i n t e r a c t i o n o f t h e e l e c t r o n s p i n s o f t h e atoms w i t h a e x t e r n a l magnetic f i e l d causes a s p l i t t i n g o f t h e c o r r e s p o n d i n g energy l e v e l s . T r a n s i t i o n s between t h e s e l e v e l s o c c u r a t s l i g h t l y h i g h e r e n e r g i e s t h a n f o r NMR, t y p i c a l l y o f 10 GHz ( F i g . 1.3). As f o r NMR, t h e s p l i t t i n g o f t h e e l e c t r o n l e v e l s i s a f f e c t e d by t h e environment o f paramagnetic atoms, i o n s o r r a d i c a l s . A r e v i e w o f t h i s t e h c h n i q u e a p p l i e d t o c a t a l y s i s and r e l a t e d phenomena i s g i v e n i n p a r t B, c h a p t e r 3 . I n f r a r e d Spectroscopy ( I R ) . I n t h e a b s o r p t i o n mode, t h i s t e c h n i q u e i s based on t h e a b s o r p t i o n by a so-
l i d which e x c i t e s m o l e c u l a r v i b r a t i o n s . t h e energy o f t h e s e v i b r a t i o n s depends on t h e n a t u r e and b i n d i n g o f t h e groups (26-28).
I n t h e emission (29) o r r e f l e c -
t i o n (30, 31) modes, t h e s p e c t r a o f e m i t t e d r a d i a t i o n upon h e a t i n g o r t h e r e f l e c t e d i n f r a r e d r a d i a t i o n by t h e s o l i d can be a l s o r e c o r d e d . Ranian Spectroscopy. K a d i a t i o n f r o m t h e v i s i b l e wavelength window, t y p i c a l l y l a s e r beams o f 500-600 nm ( F i g . 1.3), i s i n e l a s t i c a l l y s c a t t e r e d by a s o l i d as a r e s u l t o f t h e
e x c i t a t i o n o f m o l e c u l a r v i b r a t i o n s . The i n f o r m a t i o n p r o v i d e d by t h i s t e c h n i q u e i s e s s e n t i a l l y s i m i l a r t o t h a t g i v e n by i n f r a r e d spectroscopy, and f r e q u e n t l y i s complemented by i t ( 3 2 ) . Atoniic A b s o r p t i o n Spectroscopy (AAS). The a b s o r p t i o n o f photons i n t h e v i s i b l e f r e q u e n c y window, i n t h e o r d e r 100-900 nm wavelength, induces e l e c t r o n i c t r a n s i t i o n s between t h e e l e c t r o n i c energy l e v e l s o f atoms. Since t h e energy o f t h e absorbed photon i s c h a r a c t e r i s -
A7
t i c o f each atom, t h i s p r o p e r t y i s e x p l o i t e d f o r q u a n t i t a t i v e a n a l y s i s (33, 3 4 ) . This technique r e s u l t s extremely useful i n c a t a l y s i s l a b o r a t o r i e s f o r determining t h e atomic composition o f the c a t a l y s t s . D i f f u s e R e f l e c t a n c e Spectroscopy (DRS). T h i s t e c h n i q u e i s based on t h e r e f l e c t i o n o f U V - v i s i b l e r a d i a t i o n by f i n e l y d i v i d e d m a t e r i a l s . The c o o r d i n a t i o n and 1 i g a n d charge t r a n s f e r phenomena i n t r a n s i t i o n metal i o n s o f heterogeneous c a t a l y s t s may be e a s i l y s t u d i e d f o r m t h e i n t e n s i t y and p o s i t i o n o f t h e U V - v i s i b l e a b s o r p t i o n bands ( 3 5 ) . P h o t o a c o u s t i c ( PAS) and P h o t o - D e f l e c t i o n Beam Spectroscopy (PDS). These techniques d i f f e r f r o m i n f r a r e d and U V - v i s i b l e s p e c t r o s c o p i e s o n l y i n t h e way t h e a b s o r p t i o n i s d e t e c t e d . I n t h e case o f PAS t h e t e m p e r a t u r e i n crease induced by a b s o r p t i o n o f an i n c i d e n t modulated r a d i a t i o n produces an a c o u s t i c wave t h a t may be p r o p e r l y r e c o r d e d by a microphone (36, 3 7 ) . The PDS c o n s i s t s o f p a s s i n g a l i g h t beam o v e r a heated s u r f a c e . The r e f r a c t i v e i n d e x g r a d i e n t i n t h e medium o v e r t h e s u r f a c e causes t h e l i g h t beam t o be d e f l e c t e d (38, 39).
X-Ray D i f f r a c t i o n (XRD) and X-ray Fluorescence (XRF). L i k e AAS, X-ray d i f f r a c t i o n i s an e x t r e m e l y u s e f u l t e c h n i q u e i n c a t a l y s i s l a b o r a t o r i e s , because i t a l l o w s t o c h a r a c t e r i z e t h e c r y s t a l s t r u c t u r e o f s o l i d m a t e r i a l s . From t h e broadening a n a l y s i s o f t h e most i n t e n s e d i f f r a c t i o n peaks o r f r o m t h e X-ray d i s t r i b u t i o n a t l o w d i f f r a c t i o n angles, t h e c r y s t a l s i z e o f a g i v e n c r y s t a l l i n e phase
can be determined (40, 4 1 ) . I n f l u o r e s c e n c e t h e i n c i -
d e n t X-ray photons can e j e c t e l e c t r o n s from t h e i n n e r l e v e l s o f t h e atoms. Furt h e r d e e x c i t a t i o n i n v o l v e s t r a n s i t i o n s o f e l e c t r o n s f r o m upper l e v e l s w i t h emission o f c h a r a c t e r i s t i c X-ray r a d i a t i o n . T h i s p r o p e r t y can be a1 so e x p l o i t e d f o r a n a l y t i c a l purposes ( 4 2 ) . Extended X-ray A b s o r p t i o n F i n e S t r u c t u r e (EXAFS). T h i s t e c h n i q u e i n v o l v e s t h e a b s o r p t i o n o f X-ray r a d i a t i o n by t h e atoms, which a l l o w s t h e excape o f t h e c o r e e l e c t r o n s f r o m t h e a t o m i c p o t e n t i a l w e l l . The i n t e r a c t i o n between t h e wave a s s o c i a t e d w i t h t h e e x c i t e d e l e c t r o n s and t h e n e i g h b o u r i n g atoms produce a f i n e s t r u c t u r e i n t h e X-ray spectrum i n an energy range o f 50-100 eV h i g h e r t h a n t h e energy o f t h e a b s o r p t i o n a t t h e edge. The o b s e r v a t i o n and f u r t h e r a n a l y s i s o f t h e f i n e s t r u c t u r e spectrum r e q u i r e s a h i g h l y powered X-ray source such as t h a t p r o v i d e d by s y n c h r o t r o n r a d i a t i o n . The d e t e r m i n a t i o n o f l o c a l s t r u c t u r e parameters around t h e e x c i t e d atom, e.g.,
in-
t e r a t o m i c d i s t a n c e s and c o o r d i n a t i o n numbers, can be d e r i v e d f r o m t h e a b s o p r t i o n spectrum. An e x t e n s i v e r e v i e w concerning t h i s t e c h n i q u e i s g i v e n i n Chapter 4. MSssbauer Spectroscopy. T h i s t e c h n i q u e i s based on t h e r e c o i l - f r e e e m i s s i o n and a b s o r p t i o n o f low energy gamma r a y s by t h e n u c l e i o f atoms i n s o l i d s . The photon e m i t t e d b y a r a d i a c t i v e nucleus may be absorbed by a n o t h e r nucleus, i f t h e c o r r e s p o n d i n g
A8 nuclear t r a n s i t i o n energies a r e p r o p e r l y matched. The f a c t t h a t t h e MGssbauer t r a n s i t i o n s have v e r y narrow l i n e w i d t h s p e r m i t s t h e use o f r e l a t i v e l y simple methods f o r modulating t h e gamma energy. By moving t h e r a d i a t i o n source o r t h e absorber r e l a t i v e t o t h e o t h e r , t h e energy o f t h e gamma r a y can be brought i n t o resonance by v i r t u e o f t h e Doppler e f f e c t . The energy o f t h i s resonance i s a f f e c t e d by t h e i n t e r a c t i o n o f t h e nucleus w i t h i t s environment. The study o f t h e e m i t t e r o r absorber environment i s o n l y f e a s i b l e f o r a few atomic p a i r s , e . g.,
57Fe-57Co, 119Sn-119Sb,
195Pt-195Au.
The a p p l i c a t i o n s i n c a t a l y s i s a r e
reviewed i n Chapter 5. Photon-Electrons
1.2.2
UV-Photoelectron (UPS) and X-ray P h o t o e l e c t r o n Spectroscopy (XPS)
.
The p r i n c i p l e o f p h o t o e l e c t r o n spectroscopy i s t h e r e l a t i o n hv = Eb
+
KE
(1.1)
where hu i s t h e energy o f t h e i n c i d e n t photon, E,
t h e b i n d i n g energy o f t h e
e l e c t r o n t o t h e atomic l e v e l s , and KE t h e k i n e t i c energy o f t h e e l e c t r o n s escaping from t h e atoms. Due t o t h e lower energy o f t h e i n c i d e n t photons ( F i g . 1.3), UPS a l l o w s t o study t h e valence and conduction bands, whereas XPS i s a powerful technique t o examine t h e chemical n a t u r e and b i n d i n g o f t h e atoms from t h e a n a l y s i s o f core e l e c t r o n photoemission peaks. Since t h e i n e l a s t i c mean f r e e path o f t h e photoelectrons i s w i t h i n t h e range 0.5-5
nm, b o t h techniques
prove t o be e s p e c i a l l y s e n s i t i v e f o r t h e f i r s t twenty upper-most s u r f a c e l a y e r s . 1.2.3
Photons-Molecules Photodesorption. Photon a b s o r p t i o n may be expected t o produce e l e c t r o n i c t r a n s i t i o n s i n ad-
sorbed molecules l e a d i n g t o desorption. This technique r e q u i r e s , i n p r i n c i p l e , photons i n t h e U V - v i s i b l e r e g i o n ( 4 3 ) , however o t h e r sources, such as synchrot r o n r a d i a t i o n ( 4 4 ) and gamma r a y s from 6oCo can be used. Mechanisms o f desorpt i o n and o f s u r f a c e r e a c t i o n s can be e l u c i d a t e d by t h i s technique. Laser Microprobe Mass Spectrometry (LMMS)
.
I n t h i s case, bombardment o f a s o l i d w i t h a l a s e r beam produces t h e emiss i o n o f i o n i z e d fragments which can be i d e n t i f i e d by mass ( a n a l y s i s ) spectrometry. The method a l l o w s t o deterniine t h e composition o f t h e sample w i t h a r e s o l u t i o n down t o t h e range o f 1-10 urn. By v a r y i n g t h e i n c i d e n t power d e n s i t y t h e in-depth r e s o l u t i o n may w i d e l y change from lo-’
to
m (46).
A9 1.2.4
Electrons-Photons Appearance P o t e n t i a l Spectroscopy (APS)
.
The t r e s h o l d p o t e n t i a l f o r i n e l a s t i c s c a t t e r i n g o f e l e c t r o n s f r o m atoms can be c o r r e l a t e d w i t h t h e appearance o f c h a r a c t e r i s t i c l i g h t emission. The r e s o l u t i o n i s much b e t t e r t h a n i n e l e c t r o n s p e c t r o s c o p i e s , s i n c e an e l e c t r o n spect r o m e t e r i s n o t r e q u i r e d . The t e c h n i q u e s which i n v o l v e appearance p o t e n t i a l s , e.g.,
s o f t X-ray- (SXAPS), Auger e l e c t r o n - (AEAPS), and disappearance p o t e n t i a l
spectrsocopy (DAPS), p r o v i d e i n f o r m a t i o n about t h e c o n d u c t i o n s t a t e s (47, 48). E l e c t r o n Probe M i c r o a n a l y s i s (EMPA). The atoms e x c i t e d upon bombardment o f a s o l i d w i t h h i g h energy (10-100 keV) e l e c t r o n s decay by emission o f c h a r a c t e r i s t i c X-ray photons w i t h e n e r g i e s equal t o t h e energy d i f f e r e n c e between t h e e x c i t e d and ground s t a t e s . The EPMA method a l l o w s q u a n t i t a t i v e compositon o f s o l i d s w i t h a s p a t i a l r e s o l u t i o n o f 1 pm ( 4 9 ) . 1.2.5
Electrons-Electrons Scanning (SEM) and Transmission E l e c t r o n Microscopy (TEM). I n t h e scanning mode, t h e t e c h n i q u e a l l o w s f o r t h e imaging of t h e t o p o g r a -
phy o f a s o l i d s u r f a c e by means o f b a c k s c a t t e r e d o r
secondary e l e c t r o n s . I t s
p r e s e n t r e s o l u t i o n i s b e t t e r t h a n 5 nm, TEM, which i n v o l v e s a v a r i e t y o f imaging techniques, e.g.
b r i g h t f i e l d , dark f i e l d , h i g h r e s o l u t i o n , a l l o w s f o r t h e e l u -
c i d a t i o n o f i n i c r o t e x t u r e and m i c r o s t r u c t u r e o f e l e c t r o n t r a n s p a r e n t samples w i t h an a c t u a l r e s o l u t i o n b e t t e r t h a n 0.5 nm ( 5 0 - 5 2 ) . E l e c t r o n Energy Loss Spectroscopy (EELS). T h i s t e c h n i q u e i s based on t h e i n e l a s t i c s c a t t e r i n g s u f f e r e d by e l e c t r o n s on s o l i d s u r f a c e s . The i n t e n s i t y o f t h e e l e c t r o n s i s r e c o r d e d as a f u n c t i o n o f t h e energy l o s s w i t h r e s p e c t t o t h e i n c i d e n t energy. T h i s i s a v i b r a t i o n a l t e c h n i q u e which a l l o w s t o s t u d y t h e s t a t e o f adsorbed molecules. The a p p l i c a t i o n s o f t h i s t e c h n i q u e a r e reviewed i n c h a p t e r 3 o f volume 6 . Auger E l e c t r o n Spectroscopy (AES). I n t h i s case, e n e r g e t i c (1-2.5 keV) e l e c t r o n s e j e c t c o r e e l e c t r o n s o f t h e atoms. I n t h e f o l l o w i n g d e e x c i t a t i o n process, a second e l e c t r o n (Auger) may be e j e c t e d , whose energy i s c h a r a c t e r i s t i c o f t h e energy d i f f e r e n c e between t h e l e v e l s , and t h e r e f o r e o f t h e t y p e o f atoms. Due t o t h e i n e l a s t i c mean f r e e p a t h o f t h e e l e c t r o n s , AES p e r m i t s t h e a t o m i c c o m p o s i t i o n o f t h e surface. The e j e c t e d Auger e l e c t r o n s may be r a s t e r e d on t h e s u r f a c e and imaged, t h u s p r o v i d i n g a mapping o f t h e
s u r f a c e composition. The t e c h n i q u e i s t h e n c a l l e d Scanning
Auger Spectroscopy (SAM). When u s i n g a h i g h d e n s i t y focussed e l e c t r o n beam, t h e s p a t i a l r e s o l u t i o n may be i n t h e o r d e r o f 0.1 pm. The t e c h n i q u e i s reviewed i n c h a p t e r 2 o f t h i s volume.
A10
Low Energy E l e c t r o n D i f f r a c t i o n (LEED). T h i s t e c h n i q u e i s based on t h e e l a s t i c s c a t t e r i n g o f e l e c t r o n s w i t h e n e r g i e s below 300 eV t h r o u g h t h e topmost l a y e r s o f s i n g l e c r y s t a l s u r f a c e s . From analysis o f the d i f f r a c t e d electron intensities, the structure o f the surface atoms and o f t h e cheinisorbed l a y e r can be r e v e a l e d ( 5 3 , 5 4 ) . R e f l e c t i o n High Energy E l e c t r o n D i f f r a c t i o n (RHEED). I n t h i s case, t h e s u r f a c e i s bombarded w i t h a monoenergetic e l e c t r o n beam,
t y p i c a l l y o f 10 keV. The a n a l y s i s o f t h e a n g u l a r d i s t r i b u t i o n o f e l a s t i c a l l y scattered electrons allows a l s o t h e study o f t h e surface s t r u c t u r e o f s i n g l e c r y s t a l s . One advantage o f RHEED w i t h r e s p e c t t o LEED i s t h a t t h e h i g h energy e l e c t r o n beam used i n t h e f o r m e r e x c i t a t e s X-rays c h a r a c t e r i s t i c of t h e elements, t h u s p e r m i t i n g simultaneous e x a m i n a t i o n o f t h e s t r u c t u r e a n d composit i o n (55). 1.2.6
Electron-Ions E l e c t r o n S t i m u l a t e d D e s o r p t i o n (ESD). If a s u r f a c e i s bombarded, w i t h low-energy ( < 500 eV) e l e c t r o n s , a t l o w
power d e n s i t i e s t o p r e v e n t thermal e f f e c t s , one can observe t h e d i s p e r s i o n o f n e u t r a l atoms and molecules, e x c i t e d n e u t r a l and p o s i t i v e i o n s , as w e l l as c o n v e r s i o n between b i n d i n g s t a t e s o f t h e adsorbates. The mass and k i n e t i c e n e r gy o f t h e desorbed s p e c i e s can t h u s r e v e a l t h e c r o s s s e c t i o n s o f d e s o r p t i o n . and t h e t h r e s h o l d e l e c t r o n energy f o r d e s o r p t i o n , t h e complex i n t e r a c t i o n s o f gases on w e l l c h a r a c t e r i z e d s u r f a c e s ( 5 6 - 5 8 ) . 1.2.7
Ions-Photons I o n Emission X-rays (IEXR). As occurs w i t h e l e c t r o n s , t h e bombardment o f s o l i d s u r f a c e s w i t h i o n s ( I -
5 MeV) produces t h e e m i s s i o n o f X-rays. T h i s p r o p e r t y i s a l s o e x p l o i t e d f o r q u a n t i t a t i v e a n a l y s i s . The advantage o f t h i s t e c h n i q u e o v e r EPMA i s t h a t i t does n o t r e q u i r e s a vacuum chamber. The s p a t i a l r e s o l u t i o n o f IEXP i s i n t h e o r d e r o f a few micrometers (59, 6 0 ) . 1.2.8
Ions-Electrons I o n N e u t r a l i z a t i o n Spectroscopy ( I N S ) . The approach o f a slow i o n t o a s u r f a c e p r o v i d e s a v a c a n t l o w - l y i n g l e v e l
which w i l l be f i l l e d by an e l e c t r o n t u n n e l i n g downward f r o m t h e v a l e n c e band o f t h e s u r f a c e . The energy r e l e a s e d i n t h i s t r a n s i t i o n can be t a k e n up by a second valence e l e c t r o n i n an Auger t r a n s i t i o n , The energy o f t h e e m i t t e d Auger e l e c t r o n depends on t h e l e v e l s w i t h i n t h e v a l e n c e band f r o m which t h e n e u t r a l i z i n g e l e c t r o n t u n n e l s . The energy d i s t r i b u t i o n t h u s r e f l e c t s t h e d e n s i t y o f s t a t e s
(DOS) o f t h e v a l e n c e band ( 6 1 ) .
All 1.2.9.
Ions-Ions I o n S c a t t e r i n g Spectroscopy ( I S S ) . D u r i n g t h e bombardment o f a s o l i d s u r f a c e w i t h l o w energy (0.5-3 keV) i o n s ,
some p a r t o f t h e i r k i n e t i c energy i s t r a n s f e r r e d t o t h e atoms o f t h e s u r f a c e . As t h e l o s t energy depends on t h e mass o f t h e t a r g e t atoms and o f t h e s c a t t e r i n g angle, a n a l y s i s o f t h e k i n e t i c energy o f t h e s c a t t e r e d i o n s p r o v i d e s t h e mass spectrum o f t h e atoms a t t h e s u r f a c e (62, 6 3 ) . Secondary I o n Mass Spectrometry (SIMS)
.
T h i s t e c h n i q u e i s based on t h e e r o s i o n o f a s o l i d s u r f a c e w i t h an i o n beam (1-10 keV). The i o n i z e d fragments a r e f u r t h e r analyzed by mass s p e c t r o m e t r y . The t e c h n i q u e p r o v i d e s t h e r e f o r e c o m p o s i t i o n as a f u n c t i o n o f depth. I t s sens i t i v i t y i s h i g h enough t o a l l o w f o r n o n - d e s t r u c t i v e a n a l y s i s o f t h e f i r s t t o t h i r d topmost l a y e r s by means o f a l o w d e n s i t y i o n beam (64, 6 5 ) . R u t h e r f o r d B a c k s c a t t e r i n g Spectroscopy (RBS)
.
The p r i n c i p l e i s t h e same as f o r I S S b u t RBS uses a h i g h energy ( 1 - 3 MeV) i o n beam. I t p r o v i d e s i n f o r m a t i o n concerning deeper l a y e r s . The d i s t r i b u t i o n o f heavy elements i n a l i g h t m a t r i x can be r e v e a l e d by t h i s t e c h n i q u e ( 6 6 ) . 1.2.10
Neutrals-Neutrals
Atom- and M o l e c u l a r Beam S c a t t e r i n g (AS and MBS). I n t h i s case, t h e bombardment o f s i n g l e c r y s t a l s u r f a c e s w i t h a mono-energ e t i c beam o f atoms o r molecules a l l o w s t o s t u d y t h e i r s t r u c t u r e t h r o u g h t h e a n a l y s i s o f t h e a n g u l a r d i s t r i b u t i o n and number o f s c a t t e r e d p a r t i c l e s (67, 6 8 ) . Neutron S c a t t e r i n g (NS). The s c a t t e r i n g o f neutrons i s used f o r s e v e r a l purposes. As t h e s c a t t e r i n g c r o s s - s e c t i o n f o r hydrogen i s c o n s i d e r a b l y g r e a t e r t h a n t h a t f o r any o t h e r atom,
NS i s e s p e c i a l l y s e n s i t i v e t o hydrogen. C r y s t a l s t r u c t u r e s , v i b r a t i o n a l t r a n s i t i o n s , atomic o r m o l e c u l a r d i f f u s i o n , and p o r e s i z e s can be s t u d i e d by NS (69, 70).
1.3 GENERAL FEATURES From t h e p o s s i b l e ways t o v i e w t h e s u r f a c e o f heterogeneous c a t a l y s t s , as a l r e a d y r e p r e s e n t e d by t h e P r o p s t diagram ( F i g . 1.1) o r more e x p l i c i t y b y F i g . 1.2, one would ask whether a r a n k i n g o r d e r can be e s t a b l i s h e d a c c o r d i n g t o t h e r e l e v a n c e o f i n f o r m a t i o n t h e y p r o v i d e . The answer i s n o t easy and would r e s u l t i n an e n t e r t a i n i n g e x e r c i s e , s i n c e each t e c h n i q u e analyzes t h e c a t a l y s t s u r f a c e frow a d i s t i n c t l y d i f f e r e n t perspective. I t i s not possible, therefore,
to
separate t h e r e l e v a n c e o f each spectroscopy f r o m t h e problems i t e x p e c t s t o solve. Several parameters, such as bandwidth, s e n s i t i v i t y , and d e p t h i n f o r m a t i o n a r e common t o a l l s p e c t r o s c o p i e s . However, t h e use o f t h e s e parameters must be t a k e n w i t h c a r e because few o f them a r e t o a l a r g e e x t e n t t r a n s m u t a b l e . F o r
A12
instance, s e n s i t i v i t y and r e s o l u t i o n a r e u s u a l l y balanced from bandwidth over a wide range. The optimum balance between these parameters depends on what i n f o r mation we a r e i n t e r e s t e d i n . Therefore, i t r e s u l t s impossible t o s p e c i f y t h e s e n s i t i v i t y o f a s u r f a c e technique w i t h o u t h a f u l l d e s c r i p t i o n o f i t s r e l a t i o n s h i p t o t h e o t h e r parameters. I n a d d i t i o n , i t must be d i f f i c u l t t o d i s t i n g u i s h t h e i n t r i n s i c l i m i t a t i o n s o f t h e technique i t s e l f f r o m t h e l i m i t a t i o n s o f an a p p r o p r i a t e model instrument. These parameters a r e analyzed below. 1.3.1
Ins trumental Sens it i v i Every s u r f a c e spectroscopy re1 i e s on some d i s t i n g u i s h i n g c h a r a c t e r i s t i c s t o
d i s c e r n t h e d e s i r e d s i g n a l from t h e background o f unwanted emissions t h a t t h e probe has a l s o s t i m u l a t e d . The s e n s i t i v i t y o f every a n a l y t i c a l spectroscopy i s u l t i m a t e l y l i m i t e d by a background residue, which i s i n some way c o r r e l a t e d w i t h t h e expected s i g n a l . By i n c r e a s i n g t h e primary c u r r e n t , t h e background w i l l increase p r o p o r t i o n a l l y t o t h e s i g n a l , It i s thought, however, t h a t reducing a r b i t r a r i l y t h e s t a t i s t i c a l n o i s e c o n t r i b u t i o n by i n c r e a s i n g i n d e f i n i t e l y t h e t i m e o f data a c q u i s i t i o n , any s i g n a l c o u l d be d e t e c t e d on t h e background. Unfort u n a t e l y , n e i t h e r an extremely l o n g measurement t i m e n o r p a t i e n t experimentat i o n s can p r o v i d e d i s t i n g u i s h a b l e s i g n a l s on t o p o f t h e background. T h i s phenomenon i s a p p r o p r i a t e l y named 'If1 i c k e r e f f e c t " . Much has been w r i t t e n on t h e sources o f f l i c k e r noise, and explanations o f i t s o r i g i n abound i n l i t e r a t u r e (83). The s i g n a l - t o - f l i c k e r n o i s e r a t i o can be regarded as a measure o f t h e s t a b i l i t y o f t h e e n t i r e measurement c i r c u i t . I n c o n t r a s t t o t h e white-noise spectrum r e s u l t i n g from thermal n o i s e i n t h e measurement system, f l i c k e r noise i s described by l / f spectrum. Consequently, i t increases p r o p o r t i o n a l l y t o t h e t i m e r e q u i r e d f o r r e c o r d i n g t h e spectrum. F l i c k e r n o i s e i s a m p l i f i e d by t h e background l e v e l . Small changes over t i m e i n any measurement parameter may completely overshadow a small s i g n a l i n t h e presence o f l a r g e background. Thus i n c r e a s i n g s e n s i t i v i t y i s e q u i v a l e n t t o r e moving t h e low frequency components o f t h e spectrum. I t i s , t h e r e f o r e , i n f e r r e d t h a t simple
s u b t r a c t i o n o f t h e background, however s o p h i s t i c a t e d i t be (84) may
simp1 i f y spectrum a n a l y s i s , s e n s i t i v i t y remaining unchanged. One i n t e r e s t i n g p o i n t t o analyze i s when t h e d e t e c t e d s i g n a l i n t h e spectrometer comes o n l y from t h e s u r f a c e region, o r i t comes from
both
surface
and b u l k regions, b u t i t i s p o s s i b l e t o d i s t i n g h i s h t h e s u r f a c e component from t h e b u l k . Most o f t h e XPS and AES s i g n a l s we a r e i n t e r e s t e d i n correspond t o t h e e l e c t r o n s which a r e detected w i t h o u t s u f f e r i n g i n e l a s t i c c o l l i s i o n s and which appear t h e r e f o r e a t t h e i r o r i g i n a l c h a r a c t e r i s t i c energies i n t h e e l e c t r o n spectrum. The IblFP i s s h o r t so these e l e c t r o n s can o n l y have o r i g i n a t e d from t h e inmiediate s u r f a c e environment, which proves t h e techniques t o be s u r f a c e s e n s i t i v e . The thickness from which t h e d e t e c t e d e l e c t r o n s can escape depends m o s t l y
A13
on k i n e t i c e n e r g y ( E q . 1 . 2 ) , b u t a l s o on t h e n a t u r e o f t h e compound ( s h o r t e s t i n m e t a l s , l a r g e s t i n metal o x i d e s ) and on t h e geometry o f t h e experiment. V a r y i n g t h e k i n e t i c energy o f t h e d e t e c t e d e l e c t r o n s b y v a r y i n g t h e energy o f t h e i n c i d e n t photon o r t h e a n g l e o f d e t e c t i o n o f t h e p h o t o e l e c t r o n s p r o v i d e s a means o f v a r y i n g t h e depth f r o m which t h e s i g n a l i s generated (71, 85). The sampled d e p t h can v a r y i n t h e range o f 0.5-10nm,
t a k i n g i n t o c o n s i d e r a t i o n a l l t h e above f a c -
tors. I o n s c a t t e r i n g (ISS) has t h e g r e a t e s t s u r f a c e s e n s i t i v i t y o n l y i n terms o f d e p t h sampled, b u t n o t i n terms o f l o w e s t l i m i t s o f d e t e c t i o n (secondary i o n s mass spectroscopy, SIMS, i s much more p o w e r f u l ) . Although t h e i m p i n g i n g He'
ions
can p e n e t r a t e t h e l a t t i c e , t h e single-He+-atom-coll i s i o n o c c u r s e n t i r e l y w i t h atoms f r o m t h e topmost l a y e r , so t h e ISS spectrum c o n t a i n s i n f o r m a t i o n a b o u t t h a t l a y e r . The d e t e c t i o n l i m i t i s i n t h e o r d e r o f 10-2-10- 3 monolayers. F o r SIMS i n t h e s t a t i c mode w i t h r e l a t i v e l y l o w energy i o n s (1-2 keV) t h e m a j o r i t y
o f e j e c t e d secondary i o n s i s b e l i e v e d t o o r i g i n a t e m a i n l y f r o m t h e f i r s t a t o m i c l a y e r , and o n l y a small f r a c t i o n f r o m t h e second l a y e r (86). I n t h e dynamic mode, t h e f a s t s p u t t e r i n g r a t e and t h e subsequent broadening e f f e c t s mask t h e d e f i n i t i o n o f s u r f a c e s e n s i t i v i t y , because t h e s u r f a c e i s 1.3.2
r a p i d l y changing.
1-nformation DepthAtoms exposed a t t h e s u r f a c e o f s o l i d s d i f f e r s u b s t a n t i a l l y i n symmetry and
a t o m i c p o t e n t i a l s f r o m atoms p o s i t i o n e d deeper w i t h i n t h e s o l i d . There a r e , however, o t h e r s u b s t r a t e atoms which sense t h e a1 t e r e d chemical environment imposed by those o f t h e s u r f a c e . For c l e a n metals, t h e s u r f a c e r e g i o n can i n c l u d e no more t h a n t h e topmost two a t o m i c l a y e r s . The sample d e p t h o f a givenmeasurement, which i s c o n f i n e d t o t h i s r e g i o n , i s f r e q u e n t l y c a l l e d s u r f a c e s e n s i t i v i t y . The s h a l l o w sampling d e p t h o f s u r f a c e s p e c t r o s c o p i e s d e r i v e s e i t h e r from t h e e x c i t i n g probe o r f r o m
t h e a t t e n u a t i o n o f t h e escaping p a r t i c l e s , which c a r r y i n -
f o r m a t i o n about t h e s u r f a c e . F o r most e l e c t r o n s p e c t r o s c o p i e s t h e c h a r a c t e r i s t i c
surface information i s
c o n t a i n e d i n t h e energy and momentum o f t h e e l e c t r o n s escaping from t h e s o l i d . Consequently, t h i s i n f o r m a t i o n i s l o s t a f t e r e l a s t i c o r i n e l a s t i c s c a t t e r i n g events t h a t t h e e l e c t r o n s u f f e r s on i t s way between t h e p o i n t where i t was gener a t e d and t h e s u r f a c e . F o r b u l k m a t e r i a l t h e i n e l a s t i c s c a t t e r i n g p r o b a b i l i t y i s p r o p o r t i o n a l t o t h e p a t h l e n g t h i n t h e s o l i d . The f l u x o f e l e c t r o n s decays expon e n t i a l l y w i t h distance, I = Io.e
-x/X
where X i s t h e i n e l a s t i c mean f r e e p a t h (IMFP) o f t h e e l e c t r o n . Representing t h e s o l i d by a f r e e e l e c t r o n gas o f p r o p e r d e n s i t y , a dependence o f X on t h e k i n e t i c
A14
energy o f t h e e l e c t r o n can be e a s i l y d e r i v e d (71). There have been d i f f e r e n t values f o r t h i s energy dependence, X a En, w i t h n
%
0.5-1.0
Szajman e t a l . ( 7 2 )
have d e r i v e d an a n a l y t i c a l expression t o compute IMFPs i n f r e e e l e c t r o n metals, and by e x t e n s i o n t o semiconductors, i n s u l a t o r s and non-free e l e c t r o n - l i k e met a l s . Good agreement w i t h experimental r e s u l t s was r e p o r t e d f o r a number o f mat e r i a l s a t energies g r e a t e r t h a n 200 eV. These authors then proposed t h a t t h e e l e c t r o n mean f r e e path has t h e form A.E0*75,
where A i s a c o n s t a n t dependent
upon t h e m a t e r i a l f o r energies above 200 eV ( 7 3 ) . Seah and Dench ( 7 4 ) examined IMFPs from a l a r g e number o f m a t e r i a l s . T h e i r a n a l y s i s i n d i c a t e d t h a t t h e r e were t h r e e separate classes o f m a t e r i a l s : metals, i n o r g a n i c , and o r g a n i c compounds. A l l t h e m a t e r i a l s f o l l o w e d a general e q u a t i o n o f t h e form, A = A . E - ~ + B.E+
where A and B a r e constants ( B i s p r o p o r t i o n a l t o atomic s i z e f o r t h e elements and i n o r g a n i c m a t e r i a l s ) . I t has been suggested, however, t h a t t h e energy dependence a t energies above 100 eV should more c l o s e l y f o l l o w a power dependency o f 0.65-0.75.
A graph o f t h e e x p e r i m e n t a l l y determined e l e c t r o n escape depth versus
e l e c t r o n energy i s g i v e n i n F i g . 1.4 f o r most o f t h e d a t a r e p o r t e d i n B r u n d l e ' s review (75). Note t h a t h i s v e r y small i n t h e energy range 20-50 eV. A t h i g h e r energies h increases almost 1 i n e a r l y and i s remarkably independent o f m a t e r i a l , however, below 30 eV t h e v a l u e o f X r i s e s f a s t w i t h decreasing e l e c t r o n energy and i s more dependent on m a t e r i a l (76). From F i g . 1.4,
i t i s i n f e r r e d t h a t elec-
t r o n spectroscopies would be more s e n s i t i v e t o t h e s u r f a c e o f d i f f e r e n t mater i a l s i n t h e e l e c t r o n energy range o f 20-50 eV. The mean f r e e p a t h o f an e l e c t r o n i s n o t always e q u i v a l e n t t o t h e sampling depth. F o r instance, i n disappearance p o t e n t i a l spectroscopy (DPS) and energy l o s s spectroscopy (ELS)
, the c h a r a c t e r i s t i c electron i s the primary electron
i t s e l f . I t penetrates t h e s u r f a c e l a y e r t w i c e and t h e r e f o r e t h e i n f o r m a t i o n depth i s X/2. For an e l e c t r o n l e a v i n g t h e s u r f a c e a t an angle
e from t h e normal,
t h e sampling depth i s p r o p o r t i o n a l t o A . Cos 8 . However, f o r s u r f a c e e x c i t a t i o n s i n ELS, sampling depth i s n o t r e l a t e d t o X a t a l l , b u t i s determined by t h e e l e c t r o n energy and r e f l e c t i o n angle. From these c o n s i d e r a t i o n s , i t r e s u l t s e v i dent t h a t sampling depth i s a v e r y u n c e r t a i n q u a n t i t y i n e l e c t r o n spectroscopy and one has t o be extremely c a u t i o u s and a t t e n t i v e , i f q u a n t i t a t i v e a n a l y s i s i s desired. For q u a n t i t a t i v e a n a l y s i s , h i g h energy e l e c t r o n s m i g t h t h e r e f o r e be used a t t h e expense o f a h i g h s u r f a c e s e n s i t i v i t y . S u b s t a n t i a l d i f f e r e n c e s e x i s t , when t h e s u r f a c e i s bombarded w i t h i o n s . A t energies o f a few k i l o v o l t s t h e displacement o f l a t t i c e atoms, i n c l u d i n g sputt e r i n g , accounts f o r most o f t h e energy loss. A t much h i g h e r (ca. 1 MeV) energ i e s , t h e p r i n c i p a l l o s s mechanism i s again by e l e c t r o n i c e x c i t a t i o n , and i o n s
A15
10"
10'
loL
ld Electron Energy (ev)
F i g . 1.4. Experimental e l e c t r o n escape depth as a f u n c t i o n o f t h e e l e c t r o n energy f o r s e v e r a l elements i n d i c a t e d . Each d a t a i n d i c a t e s t h e n a t u r e o f t h e e x p e r i mental source: 0 , XPS; 0 , UPS; 0 , AES. The f i g u r e has been r e p l o t t e d f r o m t h e Brundle's data (75). may p e n e t r a t e deeply. D e s p i t e t h e d e s t r u c t i o n o f t h e s u r f a c e , t e c h n i q u e s t h a t measure t h e r e c o i l momentum i n t h e presence o f an e x c i t i n g s l o w i o n , o r a n a l y z e t h e mass-to-charge r a t i o o f i o n s a r i s i n g f r o m t h e surface, a r e h i g h l y s p e c i f i c t o t h e topmost s u r f a c e l a y e r ( 7 7 ) . 1.3.3.
Statistical
Noise-
A common f e a t u r e o f t h e s u r f a c e s p e c t r o s c o p i e s i s t h a t t h e y r e q u i r e a vacuum, m o s t l y u l t r a - h i g h vacuum (UHV), environment. By UHV one u s u a l l y means p r e s s u r e s o f lo-'
T o r r o r b e t t e r . T h i s i s a necessary o p e r a t i o n a l c o n d i t i o n ,
s i n c e a s u r f a c e which i s h i g h l y r e a c t i v e , i . e . whose s t i c k i n g p r o b a b i l i t y app r o a c h e s l f o r r e s i d u a l gases, such as N i , Co, Rh, e t c . , w i l l t a k e f i f t e e n minut e s t o a few hours t o become contaminated t o monolayer q u a n t i t i e s , i . e . ,
long
enough t o make measurements w h i l e t h e s u r f a c e i s s t i l l c l e a n . If one i s i n t e r e s t e d i n t h e s t u d y o f t h e i n i t i a l a d s o r p t i o n r a t e s o f gases on c l e a n m e t a l s , one must work under UHV c o n d i t i o n s (78, 79). I n g e n e r a l , none o f t h e s p e c t r o s c o p i c t e c h n i q u e s has t o be performed a t UHV from a fundamental p h y s i c s o r i n s t r u m e n t a l p o i n t o f view. I t i s necessary t h a t i n t e r a c t i o n s o f t h e p r o b i n g s p e c i e s (photons, e l e c t r o n s , i o n s o r m o l e c u l e s ) w i t h t h e environmental gases do no i n t e r f e r e w i t h t h e s u r f a c e measurement and t h e r e
A16
may be some s u b s i d i a r y instrumental f a c t o r s t o be considered (extreme c a u t i o n w i t h t h e X-ray source, e l e c t r o n gun o r e l e c t r o n m u l t i p l i e r ) . I n c a t a l y s i s r e search one i s o f t e n i n t e r e s t e d i n r e a c t i o n s which occur, a t atmospheric pressure o r above, and then most o f t h e spectroscopic techniques become unusable. However, i n r e c e n t years work has been p u b l i s h e d which demostrates t h a t w i t h some instrumental refinement, techniques such R u t h e r f o r d b a c k s c a t t e r i n g (RBS) ( 8 0 ) and arrangements w i t h mass spectrometry (MS), Auger gun (AES) and low-energy e l e c t r o n d i f f r a c t i o n (LEED) o p t i c s (14, 81) may remain o p e r a t i v e a t much h i g h e r pressures (100 -10 4 T o r r ) . For t h e o p e r a t i o n under UHV c o n d i t i o n s , i t i s t h e contamination t h a t d e t e r mines t h e maximum t i m e t h a t can be t o l e r a t e d i n a s u r f a c e measurement
. The
above requirement o f a f i n i t e t i m e i n t e r v a l , w i t h i n which t h e measurement must be completed, bears s t a t i s t i c a l u n c e r t a i n l y . T h i s e f f e c t , which was named by Schottky (82) t h e " s h o t e f f e c t " ,
i s a consequence o f t h e f a c t t h a t t h e s i g n a l
c o n s i s t s o f d i s c r e t e quanta. According t o Poisson's law, t h i s e f f e c t can be expressed i n terms o f t h e s i g n a l - t o - n o i s e r a t i o S/Ns, S/Ns = (n.1.t)
as
f
where n i s t h e number o f s i g n a l events counted per each i n c i d e n t probe, and I i s t h e r a t e a t which t h e sample i s probed f o r t h e measurement t i m e t. The shot e f f e c t produces a w h i t e n o i s e spectrum whose c o n t r i b u t i o n depends e x c l u s i v e l y on bandwidth ( r e c i p r o c a l o f measurement t i m e t ) . According t o Eq. 1.4, any s i g n a l - t o - n o i s e r a t i o can be achieved by i n c r e a s i n g I o r t, however t h e r e a r e l i m i t s on how l a r g e I can be made, j u s t as t h e measurement w i l l be perturbed, i f t becomes a s i g n i f i c a n t p a r t o f t h e t i m e r e q u i r e d t o form a monolayer o f con-
tamination. 1.3.4.
R e s o l u t i o n o f t h e Instrument
Chemistry and physics f r e q u e n t l y g i v e us c l e a r l i m i t i n g g o a l s f o r t h e r e s o l u t i o n o f our spectroscopic techniques. I n t h e case o f t h e mass a n a l y s i s technique, f o r example, t h e r e i s n o t h i n g t o be gained by a r e s o l u t i o n b e t t e r than one atomic mass u n i t unless a t t e n t i o n i s focussed on t h e d e t e r m i n a t i o n of t h e mass d e f e c t o f a chemical bond. I n t h e case o f core l e v e l spectroscopies t h e r e i s l i t t l e i n t e r e s t i n r e s o l v i n g s p e c t r a l f e a t u r e s separated by l e s s t h a n t h e energy corresponding o f a l i f e t i m e o f a core h o l e . F o r many purposes, i t i s n o t important t o approach these l i m i t s , however, c o r r e c t i o n f o r t h e d i s t o r t i o n o f t h e spectrum by t h e instrument may be necessary i n o t h e r cases. The d i s t o r t i o n e f f e c t o f a spectrometer can be t r e a t e d a n a l y t i c a l l y through t h e use o f a broadening f u n c t i o n . For a recorded spectrum, S(E)exp, t h e r e i s t h e p o s s i b i l i t y o f r e - w r i t t i n g t h i s as t h e c o n v o l u t i o n p r o d u c t o f t h e ''clean" spec-
A17
trum, S(E), w i t h t h e spectrometer response,
where T(E) i s t h e f u n c t i o n t h a t t h e spectrometer would r e c o r d f o r a h y p o t h e t i c a l spectrum c o n s i s t i n g of a u n i t impulse. T h e r e f o r e , t h e knowledge o f T(E) g i v e s us t h e p o s s i b i l i t y t o compute t h e o u t p u t o f t h e spectrometer f o r an a r b i t r a r y i n p u t . There are, i n p r i n c i p l e , two approaches t o determine T(E) o f an i n s t r u m e n t : i ) by d e r i v i n g t h e response f r o m t h e known parameters o f t h e spectrometer, and i i ) by r e c o r d i n g t h e response o f a t e s t s i g n a l n e a r l y equal t o an impulse. The usual d i f f i c u l t y t o o b t a i n T(E) from t h e l a t t e r approach i s t o g e n e r a t e a s u f f i c i e n t l y narrow t e s t s i g n a l . The problem o f d e r i v i n g T(E) i s g r e a t l y s i m p l i f i e d by i s o l a t i n g i t s v a r i o u s c o n t r i b u t i o n s . A p h o t o e l e c t r o n spectrum i s broadened by b o t h t h e pass energy o f t h e e l e c t r o n a n a l y z e r and by t h e energy spread o f t h e e x c i t i n g photons. Assuming a monochromatic X-ray source, t h e response f u n c t i o n f o r t h e a n a l y z e r Ta(E) can be d e r i v e d , and assuming a p e r f e c t a n a l y z e r , t h e response i s j u s t t h e convolut i o n p r o d u c t o f t h e i n d i v i d u a l responses,
The w i d t h T(E) i s a measure o f t h e r e s o l u t i o n o f t h e s p e c t r o m e t e r . To e s t i mate t h e r e s o l u t i o n , i t i s c o n v e n i e n t t o assume t h a t each i n d i v i d u a l response f u n c t i o n i n Eq. 1.6 can be d e s c r i b e d as a Gaussian l i n e , t h e w i d t h o f T(E) measured a t h a l f maximum (FWHM), b e i n g g i v e n by t h e q u a d r a t i c sum of t h e i n d i vidual widths. 1.4. STRUCTURAL CHARACTERIZATION METHODS The u n d e r s t a n d i n g o f t h e c a t a l y t i c r e a c t i o n s r e q u i r e s t h e m i c r o s c o p i c desc r i p t i o n o f t h e environment and chemical s t a t e o f t h e i n d i v i d u a l s u r f a c e atoms. U n f o r t u n a t e l y , t h e r e i s no general method a l l o w i n g t h e c h a r a c t e r i z a t i o n o f t h e s t r u c t u r e o f t h e o u t e r e l e c t r o n i c l e v e l s , and t h e environment of t h e atoms. One has f r e q u e n t l y t o t r y a v a r i e t y o f techniques, each o f which i s s u i t a b l e f o r a p a r t i c u l a r aspect o r p r o v i d e s b u t p a r t i a l i n f o r m a t i o n . A s s t a t e d above, NMR, ESR, and M8ssbauer s p e c t r o s c o p i e s a r e h i g h l y s e n s i -
t i v e techniques f o r s t u d y i n g t h e chemical environment o f s p e c i f i c atoms l o c a t e d e i t h e r a t t h e s u r f a c e o r i n t h e b u l k o f s o l i d c a t a l y s t s . However, o n l y t h o s e atoms possessing a n u c l e a r magnetic moment, paramagnetic c h a r a c t e r , and a v a i l a b i l i t y o f an e m i t t e r - a b s o r b e r p a i r can be s t u d i e d by NMR, ESR, and MSssbauer techniques, r e s p e c t i v e l y . Consequently, t h e u s e f u l n e s s o f t h e s e s p e c t r o s c o p i e s depends on t h e chemical c o m p o s i t i o n o f t h e c a t a l y s t s . EXAFS i s d o u b t l e s s l y an
A18
exceptional technique, and can be, i n p r i n c i p l e , a p p l i e d t o any element. The most oustanding f e a t u r e o f EXAFS i s t h e p o s s i b i l i t y o f determining t h e l o c a l s t r u c t u r e o f each s e l e c t e d atomic species i n any phase. From an a n a l y s i s o f EXAFS data, one can o b t a i n i n f o r m a t i o n on t h e number and type o f neighbouring atoms around a s e l e c t e d absorber atom, on i n t e r a t o m i c d i s t a n c e s , and on t h e mean square r o o t d e v i a t i o n o f t h e i n t e r a t o m i c d i s t a n c e s from t h e e q u i l i b r i u m . D e s p i t e t h e relevance o f EXAFS i n c a t a l y s i s research, r e s t r i c t e d machine hours a v a i l a b l e a t synchrotron r a d i a t i o n s t a t i o n s have imposed a s e r i o u s 1 i m i t a t i o n on t h e popul a r i t y o f EXAFS. Other spectroscopic techniques e x t e n s i v e l y used i n t h e c h a r a c t e r i z a t i o n o f c a t a l y s t s t r u c t u r e a r e U V - v i s i b l e , I R and Raman spectroscopies, and t o a much l e s s e r e x t e n t , photoacoustic spectroscopy. U V - v i s i b l e i s m o s t l y employed i n t h e s t u d y o f t h e c o o r d i n a t i o n o f t r a n s i t i o n metal i o n s . U n f o r t u n a t e l y , t h e q u a n t i t a t i v e i n t e r p r e t a t i o n o f s p e c t r a i s complex, which means t h a t most s t u d i e s a r e c a r r i e d o u t from a q u a l i t a t i v e p o i n t o f view.
I R and Raman are, however, more
f r e q u e n t l y used f o r t h e study o f s u r f a c e s i t e s through a n a l y s i s o f t h e v i b r a t i o n a l modes and b i n d i n g energies o f s u i t a b l e probe-molecules (see p a r t B) s t u d i e s o f t h e v i b r a t i o n a l modes o f t h e c a t a l y s t s alone a r e r e s t r i c t e d t o a l i m i t e d number o f s y s t e m . Photoacoustic (PAS), and more s p e c i f i c a l l y photothermal beam d e f l e c t i o n (PDS) spectroscopies, undoubtedly o f f e r promising prospects f o r t h e study o f a wide range o f m a t e r i a l s , i n c l u d i n g carbons.
1.4.1. I n - g o i n g Photons 1.4.1.1. Out-going Photons 1.4.1.1.1. S o l i d S t a t e NMR When molecules move more o r l e s s f r e e l y , as occurs i n t h e l i q u i d o r i n t h e weekly adsorbed s t a t e , t h e r e s u l t i n g NMR 1 i n e s a r e sharp, because t h e broadening i n f l u e n c e s a r i s i n g from d i p o l a r i n t e r a c t i o n s and o t h e r s h o r t range i n t e r a c t i o n s a r e averaged by t h e motion o f molecules. T h i s i s n i c e l y i l l u s t r a t e d by s o l i d
1 c l a y c a t a l y s t s , f o r which r a t h e r sharp 13C- and H-NMR l i n e s can be o b t a i n e d from
i n t e r c a l a t e d o r g a n i c molecules, p r o v i d e d they execute a t r a n s l a t i o n a l and r o t a t i o n a l motion w i t h i n t h e i r i n t e r l a m e l l a r regions. For instance, t h e p r o t o n c a t a l y z e d a d d i t i o n o f water o r methanol t o isobutene i n these i n t e r l a m e l l a r regions, y i e l d i n g t - b u t a n o l and m e t h y l - t - b u t y l
e t h e r (87, 88), can be f o l l o w e d by NMR,
s i n c e t h e i n v o l v e d molecules possess adequate t r a n s l a t i o n a l and r o t a t i o n a l degrees o f freedom. F i g u r e 1.5 d i s p l a y s t h e 13C spectrum recorded a f t e r a small dose of isobutene was added t o a sample o f A13+-exchanged h e c t o r i t e . known t o be a good Bronsted c a t a l y s t . For n u c l e i t h a t have l o n g s p i n l a t t i c e r e l a x a t i o n times t h e r e a r e two main d i f f i c u l t i e s which l i m i t t h e o b s e r v a t i o n o f h i g h r e s o l u t i o n NMR s p e c t r a o f
A19
C
1 7
C- 'C
F i g . 1.5. 13C-NIVIR s p e c t r a o f a ) A13+-exchanged h e c t o r i t e , and b ) a f t e r adding a small dose of i s o b u t e n e l e s s t h a n t h a t r e q u i r e d t o consume a l l t h e i n t e r l a m e l l a r water.
s o l i d s . One o f t h e s e i s t h a t n o r m a l l y t h e resonance l i n e s a r e broadened by a n i s o t r o p i c d i p o l e - d i p o l e i n t e r a c t i o n s and quadrupole f i e l d g r a d i e n t i n t e r a c t i o n s , g i v i n g r i s e t o l i n e w i d t h s i n t h e kHz range. The second problem i s chemical s h i f t a n i s o t r o p y . These a n i s o t r o p i c i n t e r a c t i o n s a r e a1 so p r e s e n t i n 1 i q u i d s b u t a r e averaged t o z e r o b y r a p i d Brownian m o t i o n . F o r s o l i d s , a s i m i l a r a v e r a g i n g may be r e a l i z e d by magnetic a n g l e s p i n n i n g (MAS), which can e l i m i n a t e d i p o l a r and quadrupole f i e l d i n t e r a c t i o n as w e l l as chemical s h i f t i n t e r a c t i o n (89, 90). The s p i n n i n g frequency must be o f t h e same o r d e r as t h e f r e q u e n c y d i f f e r e n c e s which a r e p r e s e n t i n t h e s o l i d , e.g.
f o r a 27Al nucleus, s p i n n i n g f r e q u e n c i e s o f
a few kHz a r e r e q u i r e d a t a f i e l d o f 4.698 T (200 MHz f o r
'H).
MAS may b e a l s o
combined w i t h c r o s s p o l a r i z a t i o n ( C P ) t o i n c r e a s e s e n s i t i v i t y of r a r e s p i n s and long r e l a x a t i o n times. 1.4.1.1.1.1.
*'Si
and 27Al N u c l e i
Numerous r e p o r t s o f s o l i d s c h a r a c t e r i z a t i o n by s i l i c o n and aluminium NMR have appeared q u i t e r e c e n t l y . F o r an e x t e n s i v e
overview t h e r e are e x c e l l e n t
r e v i e w a r t i c l e s (15-17), c o v e r i n g more t h a n 500 r e f e r e n c e s on m i n e r a l s i l i c a t e s p i l l a r e d c l a y s , z e o l i t e s , and s i l i c a - a l u m i n a s . Some o f t h e key p o i n t s r e g a r d i n g
A20
TABLE 1.1. C a p a b i l i t i e s of 2 9 S i and 27Al S o l i d S t a t e NMR i n Studies o f A l u m i n o s i l i c a t e s
2 7 ~ ~
29~i 1.
Quant it a t i v e l y d i s t ingui s h i ng a1 1 f i v e p o s s i b l e Si(nA1) b u i l d i n g u n i t s , Si(nA1) represents SiO4 t e t r a h e d r o n l i n k e d t o n A104 t e t r a hedra and t o 4-n o t h e r SiO4 t e t r a hedra.
1.
Unambiguouslyand q u a n t i t a t i v e l y d i s t i n g u i s h i n g between t e t r a h e d r a l l y and o c t a h e d r a l l y coord i n a t e d A l , even i n n o n - c r y s t a l l i n e materials.
2.
Q u a n t i t a t i v e d e t e r m i n a t i o n o f Si/A1 framework r a t i o s according t o Eq. (7). P o s s i b i l i t y t o study n o n c r y s t a l l i n e materials.
2.
I n s i g h t s i n t o t h e n a t u r e o f act i v e s i t e s , when combined w i t h 1~-MAS-NMR,
3.
Combined w i t h t h e i n t e n s i t i e s o f 29Si peaks, c a l c u l a t i o n o f framework Si/A1 r a t i o s as l a r g e as ca. 10.000.
4.
I n f u l l y dealuminated z e o l i t e s t h e number and i n t e n s i t y o f d i s t i n c t peaks y i e l d s t h e p r o p o r t i o n o f nonequivalent tetrahedral ( S i ) s i t e s i n t o the u n i t c e l l .
4.
Q u a n t i t a t i v e d e t e r m i n a t i o n o f cat a l y t i c a l l y a c t i v e s i t e s (when synonymous o f A1 s i t e s i n framework).
5.
D i s t i n g u i s h e d d i f f e r e n t peaks f o r c r y s t a l l o g r a p h i c non-eqQivalent Si(OSi), groupings.
3.
t h e power and usefulness o f r e c o r d i n g 2 g S i and 27Al MAS-NMR spectra of aluminos i l i c a t e s a r e summarized i n Table 1.1. The a p p l i c a t i o n o f MAS-NMR t o t h e study o f c a t i o n d i s t r i b u t i o n i n alumin o s i l i c a t e s i s i l l u s t r a t e d f o r t h e case o f v e r m i c u l i t e ( 9 5 ) . I n F i g . 6a. t h e 27Al MAS-NMR spectrum o f a v e r m i c u l i t e shows two main components and a s e r i e s o f s i d e bands a s s o c i a t e d w i t h t h e s p i n n i n g o f t h e sample. The l i n e a t t5.0 ppm should be assigned t o octahedral A l . w h i l e t h e l i n e a t 62.5 ppm corresponds t o t e t r a h e d r a l A1
. The
r e l a t i v e i n t e n s i t i e s o f t h e s i g n a l s agree s a t i s f a c t o r i l y
w i t h t h e s t r u c t u r a l formula o f t h e sample. The 2 9 S i MAS-NMR spectrum e x h i b i t s , however, t h r e e w e l l - r e s o l v e d components a t -92.0,
-88.0,
and -83.5 ppm which a r e
associated w i t h t h r e e d i f f e r e n t S i environments r e s u l t i n g from t h e Si/A1 d i s t r i b u t i o n i n t h e t e t r a h e d r a l sheet. The a n a l y s i s o f t h e r e l a t i v e i n t e n s i t i e s o f t h e t h r e e components i n t h e 29Si MAS-NMR spectrum p e r m i t s c e r t a i n aspects o f t h e S i / A l d i s t r i b u t i o n t o be
e l u c i d a t e d and furthermore a l l o w s f o r a check on t h e v a l i d i t y o f Loewenstein's r u l e , which excludes t h e A1 atoms from occupying neighbouring t e t r a h e d r a . The c r i t e r i o n used t o prove compliance w i t h Loewenstein's r u l e i s t h e good agreement o f t h e S i / A l r a t i o s o b t a i n e d from t h e s t r u c t u r a l formula and from t h e NMR spect r a . I n t h e absence of A1-0-A1 l i n k a g e s , S i / A l r a t i o s may be c a l c u l a t e d accor-
A21
200
o
100
-100
ppm
-
-50
-70
-90
-110
BPI
F i g . 1.6. 27Al and "Si MAS- MR s p e c t r a o f v e r m i c u l i t e ( L l a n o , Texas). Chemical s h i f t s a r e t a k e n f r o m Al(H20)) and TMS, r e s p e c t i v e l y . Readapted f r o m r e f . ( 9 5 ) . d i n g t o t h e expression:
where ISi(nAl)
i s t h e i n t e g r a t e d i n t e n s i t y o f t h e n-component i n t h e MAS-NMR
spectrum, and n t h e number o f A1 i o n s around t h e S i . Table 1.2. compares t h e Si/A1 r a t i o s , c a l c u l a t e d a c c o r d i n g t o Eq. 1.7, s t r u c t u r a l froniula
and t h o s e o b t a i n e d f r o m t h e
f o r t h r e e d i f f e r e n t p h y l l o s i l i c a t e s . The r e a s o n a b l y good
agreement o f t h e Si/A1 r a t i o s o b t a i n e d f r o m t h e s t r u c t u r a l f o r m u l a
and t h o s e
d e r i v e d f r o m Eq. 1.7 demonstrate t h e v a l i d i t y o f L o e w e n s t e i n ' s r u l e i n t h e r e ported p h y l l o s i l icates. TABLE 1.2. S t r u c t u r a l and C a l c u l a t e d Si/A1 R a t i o s o f P h y l l o s i l i c a t e s Silicate Muscovite Vermicul it e Phlogopite
S t r u c t u r a l Formula 3.7 2.6 2.7
C a l c u l a t e d by Eq. 1.7 3.6 2.6 2.6
S t u d i e s of p i l l a r e d c l a y s u s i n g 2%1 ( 9 6 ) and "Si and 2 7 A l MAS-NMR (97, 98) have been conducted i n t h e v e r y r e c e n t p a s t . P i n n a v i a e t a l . ( 9 5 ) s t u d i e d
A22
p i l l a r e d s m e c t i t e c l a y s by 2 7 A l and concluded t h a t , i r r e s p e c t i v e o f t h e d i f f e rence i n t h e p i l l a r i n g reagents, t h e same t y p e o f oxocation, probalby Al13 Kegg i n ions, i s formed on t h e i n t r a c r y s t a l l i n e s u r f a c e o f t h e c l a y s . These authors proposed t h e f o r m a t i o n o f an u n i f o r m monolayer o f hydrated polyoxo c a t i o n s i n t h e i n t e r l a y e r s , w i t h t h e concomitant achievement o f e l e c t r i c a l n e u t r a l i t y v i a t h e h d y r o l y s i s o f t h e p i l l a r e d c a t i o n s . 27Al and "Si
MAS-NMR have been used by
Plee e t a l . (98) t o d e f i n e t h e s h o r t range o r d e r - s t r u c t u r e i n p i l l a r e d smectites. They showed t h a t c a l c i n e d p i l l a r e d smectites d i d n o t undergo r e a c t i o n between t h e p i l l a r s and t h e c l a y i n t h e absence o f t e t r a h e d r a l s u b s t i t u t i o n , as occurs i n l a p o n i t e . However, a deep s t r u c t u r a l t r a n s i t i o n was observed i n beidel l i t e upon c a l c i n a t i o n , which has such a t e t r a h e d r a l s u b s t i t u t i o n . T h i s change was a t t r i b u t e d t o t h e growth o f a three-dimensional network g r a f t e d on t h e twodimensional network o f t h e c l a y , t h e f i n a l p r o d u c t showing a c i d i c p r o p e r t i e s comparable t o z e o l i t e s and s i g n i f i c a n t l y s t r o n g e r t h a n those of c a l c i n e d p i l l a r e d smectites w i t h o u t s u b s t i t u t i o n i n t h e t e t r a h e d r a l l a y e r s . Z e o l i t e s , and e s p e c i a l l y dealuminated z e o l i t e s , have been r e c e n t l y invest i g a t e d by MAS-NMR techniques, because t h e i r s p e c t r a can y i e l d d i r e c t l y t h e number and d i s t r i b u t i o n o f non-equivalent t e t r a h e d r a l s i t e s p e r u n i t c e l l o f t h e framework. By means o f NMR and I R techniques, Anderson e t a l . ( 9 9 ) showed t h a t t r e a t -
ment o f a h i g h S i / A l r a t i o ZSM-5 z e o l i t e w i t h A1C13 vapour a t e l e v a t e d temperat u r e s produces t h e isomorphic s u b s t i t u t i o n o f A1 f o r S i i n t h e framework w i t h t h e simultaneous f o r m a t i o n o f o c t a h e d r a l l y c o o r d i n a t e d A1 i o n s a t t h e non-framework. Jacobs e t a l . (100) s t u d i e d t h e sol i d t r a n s f o r m a t i o n s o c c u r i n g i n t h e ZSM-5 z e o l i t e s upon thermal treatments. Based on 27Al and 2 9 S i spectra, they p o s t u l a t e d t h a t z e o l i t e dealumination r e s u l t s i n m i g r a t i o n o f A13+ i o n s from t h e framework t o i n t e r s t i t i a l p o s i t i o n s , thus r e l i e v i n g t h e s t r a i n from t h e f o u r membered r i n g s . As a r e s u l t , pore i n t e r a c t i o n s become more open. These authors a1 so s t u d i e d t h e realuminated z e o l i t e and concluded t h a t s i m i l a r phenomena occur i n the reverse direction. Thomas (101) has r e p o r t e d "Si MAS-NMR s p e c t r a o f f i v e z e o l i t i c s o l i d s upon dealumination. These a r e summarized i n F i g . 1.7. The most r e l e v a n t features a r e as f o l l o w s : i ) With f a u j a s i t e i n t h e form o f Y - z e o l i t e w i t h S i / A l = 2.61, o n l y one Si(OSi)q remains upon dealumination.
2 ) T h i s i s t o be expected as t h e r e i s
o n l y one c r y s t a l l o g r a p h y c a l l y d i s t i n c t t e t r a h e d r a l s i t e i n t h i s s t r u c t u r e . i i ) Z e o l i t e omega shows two sharp s i g n a l s , i n t h e i n t e n s i t y r a t i o 2:1,
i n l i n e with
expectations based on t h e known c r y s t a l l o g r a p h i c s t r u c t u r e o f m a z z i t e (space group P63/mmc), where t h e r e a r e two f a m i l i e s o f t e t r a h e d r a l l y c o o r d i n a t e d S i i n t h e r a t i o o f 24:12 (102). i i i ) With o f f r e t i t e , t h e two peaks e x h i b i t e d by t h e dealuminated form, w i t h t h e 2 : l i n t e n s i t y r a t i o
,is
what would be expected on
A23
I Zeolite Y
A Offretite
4
I
Mordenit e
+idink
zsM-5
1
)o
i
-110
I
-120
ppm from TMS
F i g . 1.7. *'Si MAS-NMR s p e c t r a a t 79.8 MHz o f s e v e r a l z e o l i t e s b e f o r e ( z e o l i t e Y and z e o l i t e omega) and a f t e r ( o f f r e t i t e , mordenite, and ZSM-5) d e a l u m i n a t i o n . The number and t h e i n t e n s i t y o f t h e peaks o f t h e dealuminated samples r e f l e c t s t h e number and d i s t r i b u t i o n o f n o n - e q u i v a l e n t t e t r a h e d r a i n t h e u n i t c e l l . Readapted from Thomas ( 1 0 1 ) . t h e b a s i s o f t h e z e o l i t e s t r u c t u r e (space group P6m2, w i t h two f a m i l i e s o f t e t r a h e d r a l s i t e s i n t h e r a t i o 12:6 ( 1 0 2 ) ) . i v ) With m o r d e n i t e (space group Cmcm) f o u r peaks would be expected w i t h i n t e n s i t y r a t i o s 2:1:1:2,
but only three
peaks a r e observed. I t i s p r o b a b l e t h a t t h e l a r g e s t peak, a t -115.0 ppm f r o m TMS, i s composite. The observed peak i n t e n s i t y r a t i o s a r e 2:1:3, however s t a c k i n g f a u l t s , which t e n d t o occur, c o u l d presumably be p r e s e n t e i n m o r d e n i t e . v ) The spectrum o f dealuminated ZSM-5 z e o l i t e i s r a t h e r c o m p l i c a t e d and t h e assignment o f t h e i n d i v i d u a l peaks t o s p e c i f i c s i t e s i s n o t y e t f e a s i b l e as s i g n a l s f r o m a number o f d i s t i n c t S i s i t e s a r e superimposed. A n o t h e r c o m p l i c a t i o n a r i s e s f r o m t h e m o n o c l i n i c d i s t o r t i o n s t o t h e o r t h o r h o m b i c s t r u c t u r e which i n creases t h e number o f d i s t i n c t s i t e s f r o m 12 t o 24 ( 1 0 3 ) . The s t u r c t u r a l a n a l y s i s o f Y z e o l i t e s and m o r d e n i t e s has been c a r r i e d o u t by Nakata e t a1
.
(104) u s i n g 2 7 A l and 2 9 S i MAS-NMR. They showed t h a t t h e Ht-ex-
change s i m u l t a n e o u s l y accompanies d e a l u m i n a t i o n o f Y z e o l i t e s , however t h i s i s n o t t h e case w i t h m o r d e n i t e s . Such a comparison can b e t a k e n w i t h c a u t i o n s i n c e Y z e o l i t e s a r e much more A l - r i c h t h a n m o r d e n i t e s and, hence, more s u s c e p t i b l e t o
A24
dealutiiination. F u r t h e r s t u d i e s by A u k e t t e t a l . (105) showed t h a t even i n a h i g h s i l i c a z e o l i t e such as a ZSM-5 w i t h Si/A1%15, dealumination can occur upon Htexchange.
'H Nucleus
1.4.1.1.1.2.
The measurement o f t h e
1H MAS-NMR s p e c t r a o f a c i d i c m a t e r i a l s , such as
z e o l i t e s and r e l a t e d c a t a l y s t s i s complicated by t h e f a c t t h a t these s o l i d s a r e m o s t l y hygroscopic so t h a t i t becomes necessary t o s p i n sealed powder w i t h a speed o f 2-3 kHz. F o l l o w i n g t h i s procedure, many 'H-MAS-NMR
samples
s t u d i e s have
been conducted i n r e c e n t years (106-110). Among them, amorphous s i l ica-alumina and z e o l i t e s were p r e f e r e n t l y i n v e s t i g a t e d . The 1H MAS-NMR spectra o f amorphous s i l i c a - a l u m i n a o f d i f f e r e n t composit i o n , obtained by Hunger e t a l . (106), a r e shown i n F i g . l.SA.Twolines,
which
a r e denoted by ( 1 ) and ( Z ) , can be discerned, t h e maximum s i l i c a - a l u m i n a contai n i n g 25.0 w t % A1203. For t h i s sample, t h e t o t a l c o n c e n t r a t i o n o f protons ( c ) , as w e l l as those g i v i n g r i s e t o l i n e s ( 1 ) and ( 2 ) , and values f o r t h e chemical s h i f t o f l i n e ( Z ) , t a k i n g l i n e ( 1 ) as an i n t e r n a l r e f e r e n c e
1.8 ppm),
were c a l c u l a t e d and a r e summarized i n Table 1.3. TABLE 1.3. I n f l u e n c e o f Pretreatments on Chemical S h i f t and P r o t o n Concentrations. Pretreatment o f s i l i c a aluiiiina (25.0 w t % A1203) 300 350 400 450
DB( DB DB DB
*
C
C
(1)
(2)
Chemical s h i f t P Pm
p) H
3.1 2.0 1.5 0.6
0.8 0.8 0.75 0.6
2.4 1.2 0.75
-
6.85 6.50 6.25
( " I DB = deep bed, estimated e r r o r i n p r o t o n c o n c e n t r a t i o n s and i n chemical s h i f t s a r e i 0.1 -0.2 x 1 0 2 l and 2 0.1, r e s p e c t i v e l y .
L i n e ( 1 ) i s a s c r i b e d t o n o n - a c i d i c HO groups, s i n c e i t can be observed f o r a l l samples i n c l u d i n g t h e pure Si02 and A1203 p a r t n e r s , which a r e known t o be non-acidic c a t a l y s t s . I n c o n t r a s t t o l i n e ( l ) , f o r l i n e (2) t h e c o n c e n t r a t i o n o f protons and t h e chemical s h i f t decrease w i t h i n c r e a s i n g temperature. T h i s l a t t e r l i n e i s associated t o a c i d i c protons, which belong t o
NH; i o n s a f t e r c o n t a c t i n g
t h e sample w i t h amnonia. As a t e s t r e a c t i o n t h e authors s t u d i e d t h e c r a c k i n g o f cumene on s i l i c a alumina c o n t a i n i n g 10-90 w t % A1203. The r a t e c o n s t a n t kl o f t h e cumene c r a c k i n g process, as w e l l as t h e r e l a t i v e a c i d i t y , as estimated b y t h e c(')/c
ratio (cf.
Table 1.3), a r e p l o t t e d as a f u n c t i o n o f t h e A1203 c o n t e n t o f t h e s i l i c a - a l u m i n a ( F i g . 1.88). The inaxiina o f b o t h curves appeared a t t h e same composition ( % 3 0 w t %
A25
I
20
I
10
1
0
6, ( P P ~ )
F i g . 1.8. (A) 1H MAS-NMR spectra o f amorphous s i l i c a - a l u m i n a s of d i f f e r e n t comp o s i t i o n : a ) Si02; b) 20 w t % A1203; c ) 25 w t % AlzO3; d ) 50 wt% Al.03; e ) ?-A1203 ( 6 ) Rate s t a n t ( k l ) o f t h e cumene c r a c k i n g ( 0 ) a t 35OOC and t i e r e l a t i v e i n t e n s i t y cffy/c o f t h e l i n e ( 2 ) i n t h e 1H MAS-NMR spectrum (0) o f t h e amorphous s i l i c a - a l u m i n a s as a f u n c t i o n o f t h e A1203 content. Readapted from r e f . (106). A1203). These r e s u l t s demonstrate t h e predominant r o l e played by t h e a c i d i c OH groups which g i v e r i s e t o l i n e ( 2 ) i n t h e 'H MAS-NMR spectra.
A26
Freude e t a1
. (107)
have o b t a i n e d h i g h l y r e s o l v e d 'H MAS-NMR s p e c t r a o f
v a r i o u s types o f hydroxyl groups i n z e o l i t e s . They u s u a l l y found t h r e e l i n e s . The resonance a t t h e h i g h e s t magnetic f i e l d (1.8 ppm from TMS) a r i s e s from nona c i d i c OH groups attached t o S i atoms i n t h e framework. These a r e s o - c a l l e d t e r minal hydroxyl groups, comparable t o those p r e s e n t i n s i l i c a g e l s (108). The l i n e s a t medium f i e l d (ca. 3.9-4.6
and 4.8-5.6
ppm) a r i s e from t h e a c i d i c o r so-
c a l l e d s t r u c t u r a l HO groups, and a r e o f t h e k i n d :
F i n a l l y , t h e s i g n a l a t t h e l o w e s t f i e l d (7.0-7.5
ppm) i s a t t r i b u t a b l e t o
t
r e s i d u a l NH4 i o n s .
An e s s e n t i a l f e a t u r e o f t h i s approach t o a c i d i t y measurements i s t h a t i t provides s t r i c t l y q u a n t i t a t i v e data, which c o n t r a s t w i t h I R measurements, where i n t e n s i t i e s do o f t e n vary, because o f t h e changes i n t h e environment. Moreover, p r o t o n s t u d i e s by NMR surpass t h e approach based on t h e use o f Hammett's i n d i c a t o r s , since, even s t e r e o c h e m i c a l l y
i n a c c e s s i b l e protons t o l a r g e o r g a n i c mo-
l e c u l e s a r e detected by t h e NMR technique. I n t e r e s t i n g works on t h e a c i d i t y o f z e o l i t e s have a l s o been r e p o r t e d by Dessau and K e r r (109) and by O c c e l l i e t a l . (110). Dessau and K e r r (109) s t u d i e d t h e s t r o n g shape-selective a c i d s i t e s generated i n ZSM-5 and ZSM-11 z e o l i t e s by treatment w i t h A1C13, and f u r t h e r h y d r o l y s i s and c a l c i n a t i o n . T h e i r I R and NMR data revealed t h a t A1 i s r e i n c o r p o r a t e d i n t o t h e framework. Both I R and 'H-NMR techniques were a l s o used by O c c e l l i e t a l . (110) t o m o n i t o r t h e s u r f a c e a c i d i t y o f ZSM-34 and s y n t h e t i c o f f r e t i t e z e o l i t e s . O f f r e t i t e was shown t o y i e l d more propylene and h e a v i e r o l e f i n e s i n t h e c a t a l y t i c conversion o f methanol w h i l e ZSM-34 z e o l i t e d i s p l a y s b e t t e r s e l e c t i v i t y t o conversion t o e t h y l e n e . The authors were a b l e t o d i s t i n g u i s h t h e d i s t i n c t d i f f e r e n c e s among t h e charge-compensating protons and c l a s s i f y them i n t o t h r e e c a t e g o r i e s : i s o l a t e d , l o c a l i z e d p a i r s , and c l u s t e r s f o r which t h e average i n t e r n u c l e a r d i s t a n c e s a r e 1.0, 0.7 and 0.3 nm, r e s p e c t i v e l y . 1.4.1.1.1.3.
Other N u c l e i
Boron-containing z e o l i t e s have been i n v e s t i g a t e d by
11i3 MAS-NMR techniques
(111, 112). T h i s technique was used as complementary t o 2 7 A l MAS-NMR t o c o n f i r m t h e s u b s t i t u t i o n a l i n s e r t i o n o f boron i n t o t h e z e o l i t e framework f o r z e o l i t e s t r e a t e d w i t h BC13. From these data and t h e a c t i v i t y o f t h e c r a c k i n g o f n-hexane, Derouane e t a l . (111) concluded t h a t t h e a c t i v i t y i s c o n t r o l l e d by t h e framework t e t r a h e d r a l aluminium content. They discuss t h e c r i t i c a l v a r i a b l e s i n t h e NMR
A27
experiments t o q u a n t i f y t e t r a h e d r a l aluminum and a l s o propose a mechanism t o account f o r t h e a c i d i t y o f t h e s u b s t i t u t e d z e o l i t e s . S i m i l a r s t u d i e s have been conducted by S c h o l l e and Veeman ( 1 1 2 ) who i n v e s t i g a t e d t h e e f f e c t o f h y d r a t i o n and d e h y d r a t i o n on t h e c o o r d i n a t i o n o f boron H - b o r a l i t e . On t h e b a s i s o f t h e quadrupole i n t e r a c t i o n i t i s i n f e r r e d t h a t d e h y d r a t i o n s e v e r e l y d i s t o r t s t h e c o o r d i n a t i o n sphere o f boron t o such an e x t e n t t h a t boron a l m o s t l i e s i n t h e p l a n e o f t h r e e oxygen atoms.
A new and s e n s i t i v e method t o probe a c i d s i t e s i n z e o l i t e s has r e c e n t l y been developed by L u n s f o r d e t a l . ( 1 1 3 ) . The a u t h o r s s t u d i e d t h e a d s o r p t i o n o f t r i m e t h y l phosphine(TMPj u s i n g 31P MAS NMR t e c h n i q u e and were a b l e t o d i s t i n g u i s h TMP bound t o BrSnsted o r Lewis s i t e s on HY z e o l i t e . The advantage t o use t h i s phosphorus-containing m o l e c u l e as an a c i d i t y probe l i e s i n t h e f a c t t h a t 31P i s an 100% abundant nucleus and r e l a t i v e l y easy t o d e t e c t . Such an approach
t o measure a c i d i t y can be used as a complementary t e c h n i q u e f o r t h e convent i o n a l d i s p e r s i v e i n f r a r e d spectroscopy. 31P magic a n g l e s p i n n i n g has a l s o been employed by Segawa e t a l . ( 1 1 4 ) t o
e l u c i d a t e t h e enhanced c a t a l y t i c a c t i v i t i e s f o r butene i s o m e r i z a t i o n o f s e v e r a l a f t e r o u t g a s s i n g a t d i f f e r e n t temperatures. Among t h e z i r c o n i u m phosphates amorphous ( g e l ) o r t h e c r y s t a l l i n e (a and E ) l a y e r e d forms o f z i r c o n i u m phosphates,
E-Zr(HP02)2 and s y n t h e t i c ZrP207 evacuated a t h i g h temperatures ( c a .
800 K) e x h i b i t e d t h e h i g h e s t c a t a l y t i c a c t i v i t y . F o r t h e
E
f o r m o n l y one 31P
resonance l i n e i s observed ( F i g . 1.9) a t -21.9 ppm. The o r d e r o f t h e chemical s h i f t o f t h e resonance corresponds t o d e c r e a s i n g amounts o f c r y s t a l 1 i z a t i o n water. A f t e r e v a c u a t i o n a t 773 K ( a f t e r condensation o f t h e phosphate g r o u p s ) t h e s p e c t r a show a peak w i t h b r o a d e r l i n e w i d t h a t -37.8 ppm, which i s essent i a l l y s i m i l a r t o t h a t o f s y n t h e t i c ZrP207, b o t h having a s m a l l number o f phosphate groups niay enhance t h e p r o t o n i c c h a r a c t e r i s t i c s , s i n c e t h e s e c a t a l y s t s show h i g h e r magnetic f i e l d s t h a n t h e o t h e r s . When a c c u m u l a t i o n Of e l e c t r o n s around P atoms occurs, t h e e l e c t r o n s move f r o m t h e r e s i d u a l s u r f a c e phosphate t o l a t t i c e P atoms, t h u s f a c i l i t a t i n g t h e a c i d i c p r o p e r t i e s o f t h e c a t a l y s t s . The s t r o n g q u a d r u p o l a r i n t e r a c t i o n s i n e t a1
. (115)
59C0
have been e x p l o i t e d by Ledoux
t o c h a r a c t e r i z e cobal t-promoted h y d r o d e s u l p h u r i z a t i o n C a t a l y s t s .
These a u t h o r s found f o u r d i f f e r e n t Co s i t e s , and i n t e r p r e t e d t h e r e s u l t s i n ternis o f a new quasi-amorphous c o b a l t s u l p h i d e phase c o e x i s t i n g w i t h t h e regul a r Cogs8 phase, w i t h Co i n s i d e v e r y i r r e g u l a r s u l p h u r tetrahedra.Such a c o n f i g u r a t i o n can be i n dynamic e q u i l i b r i u m w i t h an i n a c t i v e o c t a h e d r a l c o b a l t w i t h two vacancies i n i t s c o o r d i n a t i o n sphere. They a l s o concluded t h a t t h e synerget i c e f f e c t o f Co on Mo can be s i m p l y i n t e r p r e t e d i n terms o f a d d i t i v i t y o f MoS2 phase a c t i v i t y t o t h a t o f t h e h i g h l y d i s p e r s e d t e t r a h e d r a l c o b a l t s u l p h i d e phase.
A28
I
3'P
0 -20 -60 -60
Sp
(ppm)
F i g . 1.9. "P MAS-NMR spectra o f €-zirconium phosphate outgassed a t d i f f e r e n t temperatures: a ) ambient temperature; b ) 573 K; c ) 773 K; e ) 1473 K. * S p i n n i n g s i d e band. Readapted from r e f . 114. 1.4.1.1.2.
E l e c t r o n Spin Resonance (ESR)
I n t h e c o n t e x t of heterogeneous c a t a l y s i s , t h e ESR technique has been f r e q u e n t l y used t o i n v e s t i g a t e t h e n a t u r e o f t h e c a t a l y t i c s i t e and i t s c o o r d i n a t i o n number. The a p p l i c a t i o n o f ESR t o heterogeneous c a t a l y s t s , i n c l u d i n g det e r m i n a t i o n of o x i d a t i o n s t a t e s , f o r m a t i o n o f i o n p a i r s , and m o n i t o r i n g o f i o n m i g r a t i o n , have been r e c e n t l y reviewed by Che and Ben T a a r i t (136). An e x t e n s i v e r e v i s i o n o f t h e p o s s i b i l i t i e s o f t h e technique u s i n g adsorbed molecules t o i n v e s t i g a t e t h e n a t u r e of t h e c a t a l y t i c s i t e s i s g i v e n i n p a r t B, chapter 5. Only
A29
a few r e c e n t examples o f t h e a p p l i c a t i o n o f ESR t o s o l i d c a t a l y s t s , w i t h o u t adsorbed molecules, a r e examined i n t h i s s e c t i o n . 1.4.1.1.2.1.
Zeolites
Narayana and Kevan (117) used ESR and e l e c t r o n s p i n echo m o d u l a t i o n t e c h niques t o i n v e s t i g a t e t h e l o c a t i o n and environment o f CuZt i n CaX z e o l i t e s . They proposed a t r i g o n a l b i p y r a m i d a l complex t o account f o r t h e observed s p e c t r a l f e a t u r e s w i t h t h e most p r o b a b l e l o c a t i o n b e i n g s i x r i n g windows between t h e s o d a l i t e u n i t s and supercages o f t h e z e o l i t e . I n a p a r a l l e l s t u d y M i c h a l i k e t a l . (118) i n v e s t i g a t e d t h e f o r m a t i o n o f N i t i o n s o v e r Ni-CaX z e o l i t e s a p p l y i n g ESR. The f o r i n a t i o n o f two N i t complexes was p o s t u l a t e d , s t a b l e o n l y i n t h e p r e -
sence o f hydrogen i n t h e z e o l i t e . I n a t h i r d s t u d y , Narayana e t a l . (119) det e r m i n e d t h e chemical s t a t e o f p a l l a d i u m i n Pd-NaX z e o l i t e by ESR and XPS t e c h niques. The c a l c i n a t i o n i n a i r o f t h e z e o l i t e ion-exchanged w i t h [Pd(NH3i41ClZ i n d i c a t e d t h e f o r m a t i o n o f Pd3' i o n s which c o u l d be e a s i l y reduced t o Pd
at
moderate temperatures. The ESR and XPS d a t a i n d i c a t e d t h e f o r m a t i o n o f s m a l l charged Pd c l u s t e r s d i f f i c u l t t o i d e n t i f y . I n a r e c e n t ESR work, Ghosh and Kevan ( 1 2 0 ) s t u d i e d t h e n a t u r e o f t h e s i t e s on Pd-exchanged Na-X and Ca-X z e o l i t e s used f o r t h e d i m e r i z a t i o n o f e t h y l e n e . 2+ ) c o c a t i o n s i n X z e o l i t e s has been shown t o i n f l u e n -
The presence o f Nat ( o r Ca
ce t h e l o c a t i o n o f t h e a c t i v e p a l l a d i u m s p e c i e s (119) f o r t h e e t h y l e n e d i i n e r i z a t i o n . I n Pd-NaX z e o l i t e s , p a l l a d i u m c a t i o n s occupy s i t e s S I I ' which a r e r e l a t i v e l y a c c e s s i b l e t o e t h y l e n e . As a r e s u l t , t h e r e a c t i o n was f o u n d t o be s t r o n g l y i n h i b i t e d i n Pd-NaX z e o l i t e c a t a l y s t s , and o n l y o c c u r s a f t e r a l o n g i n d u c t i o n p e r i o d due t o m i g r a t i o n o f p a l l a d i u m s p e c i e s toward more a c c e s s i b l e l o c a t i o n s . I n t h i s s t u d y , t h e paramagnetic species g i v i n g ESR s i g n a l s a t gl1 = 2.53 and gll = 2.33-2.34,
t
both w i t h gL = 2.10, were assigned t o Pd c a t i o n s c o o r d i n a -
t e d t o e t h y l e n e . The f a c t t h a t t h e s e species were d e t e c t e d p r i o r t o butene f o r mation, seems t o i n d i c a t e t h a t Pdt c a t i o n s a r e c a t a l y t i c a l l y a c t i v e s i t e s f o r ethylene dimerization.
A c a r e f u l i n v e s t i g a t i o n o f reduced Pd-NaY z e o l i t e s was c a r r i e d o u t by Z i n a e t a l . (121) a l s o u s i n g ESR. Hydrogen o r e t h y l e n e r e d u c t i o n
Of
this zeolite a t
room temperature, a f t e r c a l c i n a t i o n i n oxygen a t 773 K, c o n v e r t e d Pd3' s p e c i e s i n t o Pdt i o n s , which a r e s t a b i l i z e d i n t h e s o d a l i t e cages o f t h e z e o l i t e . Above 423 K, t h e f r a c t i o n o f Pd2' d i f f e r e n t Pd'
l o c a t e d i n i n a c c e s s i b l e p o s i t i o n s were reduced t o
i o n s w i t h t h e p a r a l l e l f o r m a t i o n o f some Pd m e t a l .
The Claus r e a c t i o n has a l s o been s t u d i e d by ESR and FTIR s p e c t r o s c o p i c methods on both X and Y z e o l i t e s ( 1 2 2 ) . A c i d i c h y d r o x y l groups were formed on the X-zeolite,
b u t n o t on t h e Y - z e o l i t e d u r i n g t h e course o f s u l p h u r f o r m a t i o n .
It appears t h a t t h e SO; r a d i c a l s , observed by ESR, and t h e adsorbed SO2, obser-
ved by FTIR, a r e n o t c o r r e l a t a b l e .
TABLE 1.4. Re1evant ESK Features o f Supported-Molybdena C a t a l y s t s
A Support Zr02
g1 g L 1.920 1.959 a t 295 K
Ti02
Si02
B ,g
1.963
1.958
1.980 1.959 removed a t T>473K
gII
91
9 11
91
1.889 1.953 1.861 outgassing a t 373 K
1.952 1.856 a t 773 K
1.945 1.886 a t 295 K ~
~~~~~~~
~
1.945 1.872 increases w i t h Tr
2'3 1.956 1.870 a t 773 K
1.944 1.870 a t 295 K
E or F 9 11
91
92
93
1.961 1.895 o n l y above 473 K
1.853 1.948 1.931 1.955 a t 373 K, i n t e n s i t y maxima a t 473 K
~
Si02 .A1 203
D
C
1.884
1.955 1.866 H2-reduction a t 773K
1.915 1.815 1.790 a t room temperature 1.944 1.938 1.899 o n l y a f t e r H2-reduction
A31
1.4.1.1.2.2. Supported C a t a l y s t s Supported vanadium oxides, comnonly used f o r t h e s e l e c t i v e o x i d a t i o n o f hydrocarbons, have been e x t e n s i v e l y s t u d i e d by ESR. An i n t e r e s t i n g example has r e c e n t l y been s u p p l i e d by Sharma e t a l . (123), who s t u d i e d monolayers and double l a y e r s of V205 supported on alumina, s i l i c a and magnesia. From t h e s p e c t r a , these a u t h o r s o b t a i n e d an e s t i m a t e o f t h e V=O bond s t r e n g t h and t h e d e l o c a l i z a t i o n o f t h e V4'
u n p a i r e d e l e c t r o n o n t o t h e c o o r d i n a t i v e l y bound oxygen l i g a n d s .
T h e i r a n a l y s i s o f t h e s p e c t r a was based on a t e t r a g o n a l l y (C4,,)
d i s t o r t e d aver-
age c o o r d i n a t i o n geometry; i n c r e a s i n g t e t r a g o n a l d i s t o r t i o n , which i s due e i t h e r t o s h o r t e n i n g of t h e V=O bond o r t o an i n c r e a s e d l i g a n d t o a h i g h e r bond strength. On alumina, an i n c r e a s e i n bond s t r e n g t h was observed upon second V 2 0 5 l a y e r i n c o r p o r a t i o n . H 2 - r e d u c t i o n weakened t h e V=O bond t o t h e same e x t e n t on b o t h monolayer and d o u b l e l a y e r s on alumina and i n c r e a s e d t h e e l e c t r o n d e l o c a l i z a t i o n o n t o t h e 1 i g a n d o r b i t a l s . I n c o n t r a s t , t h e s i l i c a - s u p p o r t e d monolayer V205 showed a s l i g h t l y weaker V=O bond t h a n t h e c o r r e s p o n d i n g double l a y e r c a t a -
l y s t . H 2 - r e d u c t i o n s t r e n g t h e n e d t h e bond c o n s i d e r a b l y i n b o t h c a t a l y s t s , b u t e l e c t r o n d e l o c a l i z a t i o n was e s s e n t i a l l y unchanged upon i n c r e a s i n g V205 l o a d i n g and upon r e d u c t i o n . Magnesia-supported vanadia e x h i b i t e d , however, t h e l a r g e s t e l e c t r o n d e l o c a l i z a t i o n and t h e s m a l l e s t t e t r a g o n a l d i s t o r t i o n , i n d i c a t i n g a weak V=O bond. H 2 - r e d u c t i o n o f t h e magnesia-supported monolayer c a t a l y s t d i d n o t i n f l u e n c e t h e V=O bond s t r e n g t h , b u t a weak c o n t r i b u t i o n (5-10%) of a spectrum corresponding t o V2'
i o n s was found superimposed on t h e V4'
o f o c t a h e d r a l l y c o o r d i n a t e d V2'
signals; the signals
i o n s being much more abundant i n t h e d o u b l e
1ayer p r e p a r a t i o n s . Molybdena-based c a t a l y s t s , commonly used f o r hydrodesul p h u r i z a t i o n and hyd r o d e n i t r o g e n a t i o n processes, c o n s t i t u t e a n o t h e r i m p o r t a n t c l a s s o f p r e p a r a t i o n s which have been e x t e n s i v e l y s t u d i e d by ESR. I n a v e r y r e c e n t work, Caceres e t a l . (124) s t u d i e d t h e presence o f Mo5' species on supported molybdena c a t a l y s t s w i t h subnionolayer l o a d i n g on T i 0 2 , Zr02, A1203, S i 0 2 and Si02.A1203 c a r r i e r s . Vacuum p r e t r e a t m e n t s o f t h e c a t a l y s t s gave r i s e t o v a r i o u s Mo5' ESR s i g n a l s whose i n t e n s i t y was s t r o n g l y dependent on b o t h temperature and s u p p o r t . The most r e l e v a n t f e a t u r e s o f t h e Mo5' s i g n a l s a r e summarized i n T a b l e 1.4. The s i n g a l A, narrow and o f l o w i n t e n s i t y , was observed when t h e o t h e r s i g n a l s B, C and D were v e r y weak o r absent. I t s g-values,
l o w e r t h a n ge, i n d i c a t e t h a t i t i s due t o
t r a p p e d e l e c t r o n s , p r o b a b l y i n d e f e c t s i n t h e Moo3. S i g n a l E has been a s s i g n e d t o iUlo5'
i n s u b s t i t u t i o n a l p o s i t i o n s i n T i 0 2 ( 1 2 5 ) . S i g n a l s 6, C and D showed g-
v a l u e s c l o s e t o t h o s e observed by L o u i s and Che (126) f o r Mo5' i n d i f f e r e n t co5+ 5+ o r d i n a t i o n environments, i . e . s i g n a l C t o M O ~ ~s i ,g n a l B t o M o and ~ ~s i g n a l D t o Moi:
i o n s . F i n a l l y , s i g n a l F, generated by H2-treatments, showed g-values v e r y
c l o s e t o those o f t h e hexacoordinated Mo5'05(OH)
species (127).
A32
F i g . 1.10. ESR spectra o f v a r i o u s supported molybdena c a t a l y s t samples subjected t o outgassing a t 473 K. The ESR spectra of t h e c a t a l y s t s outgassed a t 473 K a r e reproduced i n F i g . 1.10. I n general, t h e s i g n a l s a r e narrow and b e t t e r r e s o l v e d i n Mo03/M (M=Zr02,
Ti02) c a t a l y s t s than i n t h e o t h e r (M = Si02, A1203, Si02.A1203) p r e p a r a t i o n s which m o s t l y d i s p l a y a broad band. T h i s f a c t was i n t e r p r e t e d i n terms o f a good
Moo3 d i s p e r s i o n and a homogeneous oxygen environment around t h e Mo atom, when supported on L r 0 2 and Ti02. whereas t h e broadening o f t h e Mo5+ s i g n a l s i n Si02, A1203 and Si02.A1203 c a r r i e r s r e f l e c t e d s i g n i f i c a n t h e t e r o g e n e i t y i n oxygen coo r d i n a t i o n and probably d i p o l a r magnetic i n t e r a c t i o n s between c l o s e Mo5+ i o n s . The same c a t a l y s t s were H2-reduced i n t h e temperature range o f 295-773 K and s t u d i e d by ESR. The i n t e g r a t e d i n t e n s i t y o f t h e dominant ESR s i g n a l p e r gram Mo i s g i v e n i n F i g . 1.11, as a f u n c t i o n o f t h e r e d u c t i o n temperature ( T r ) . Sign i f i c a n t d i f f e r e n c e s i n s i g n a l i n t e n s i t y and Tr dependence were found among t h e c a t a l y s t s . For Mo03/Ti02, t h e curve showed a maximum a t ca. 473 K, i n d i c a t i n g t h a t t h e r e d u c t i o n o f Mo5+ species t o Mo4+ on t h e T i 0 2 c a r r i e r occurred a t v e r y low temperature. I n c o n t r a s t , f o r t h e Mo03/Zr02 c a t a l y s t , t h e Mo5+ concentra-
A33
O
400
600
C
T (K) *O0
F i g . 1.11. V a r i a t i o n o f t h e Mo5' ESR s i g n a l i n t e n s i t y (a.u.) o f H2-reduced c a t a l y s t s as a f u n c t i o n o f t h e r e d u c t i o n temperature. 0 , Mo03/Zr02; 0, Mo03/Ti02; A, Mo03/A1 203. t i o n i n c r e a s e d c o n t i n u o u s l y o v e r t h e e n t i r e t e m p e r a t u r e range. The Mo03/A1203 c a t a l y s t showed a r e l a t i v e l y much l o w e r Mo5'
i o n c o n c e n t r a t i o n , and t h e forma-
t i o n o f Mo5' s p e c i e s o c c u r r e d a t h i g h e r temperatures. I n t h i s case, t h e appearance o f a smooth and broad maximum a t 573-673 K suggested t h a t most o f t h e Mo"
species formed were r a p i d l y reduced t o a l o w e r v a l e n c e s t a t e and/or became
s p i n p a i r e d w i t h o t h e r Most i o n s i n t h e Moo3 c l u s t e r . F i n a l l y , t h e s i g n a l i n t e n s i t i e s f o r Mo03/Si02 and Mo03/Si02.A1203 c a t a l y s t were v e r y l o w and p r a c t i c a l l y constant. 1.4.1.1.3.
I n f r a r e d Spectroscopy
I R spectroscopy i s o n l y one o f many probes o f v i b r a t i o n a l and low energy
( < 10.000 cm- 1j e l e c t r o n i c e x c i t a t i o n s a t s u r f a c e s . Each o f t h e v i b r a t i o n a l
techniques possesses d e f i n i t e a t t r i b u t e s t h a t r e n d e r them s u i t a b l e t o p r o b e d i f f e r e n t aspects o f v i b r a t i o n s o f s u r f a c e s . The most r e l e v a n t v i b r a t i o n a l t e c h niques, t h e i r c h a r a c t e r i s t i c s , s t r e n g t h s and weakenesses a r e summarized i n Table 1.5 ( 1 2 8 ) . The a b s o r p t i o n o f I R r a d i a t i o n by molecules o r i g i n a t e s t r a n s i t i o n s between d i s c r e t e v i b r a t i o n a l (and r o t a t i o n a l ) energy l e v e l s . The r e s u l t i n g I R spectrum
TABLE 1.5. L i s t o f Surface V i b r a t i o n a l Spectroscopies EELS
I RS
SRS
ABS
INS
Probe
Low energy e l e c t r o n s ( - 5 eV)
Photons
Photons
Thermal atoms ( - 0.04 eV)
Neutrons
Mechanism
Inelastic
Resonant
Inelastic
Inelastic
I n e la s t i c
Analysis
Electrostatic analyzer
Grating o r i n t e r ferometer spect romet e r s
G r a t i n g spectrometer
Time o f f l i g h t
Grating o r time o f flight
Advantages
Sentitive (dipole High r e s o l u t i o n and non-dipol e ( < 1 cm-1) modes) Selection rules Broadband (10LOW and h i g h pres1000 meV) sures Momentum t r a n s f e r E l e c t r i c and mag( - 10 nm-1) netic fields Time r e s o l u t i o n < l s Time r e s o l u t i o n < l s
Good r e s o l u t i o n ( - 1 cm-1) Selection rules Low and h i g h pressures E l e c t r i c and magnetic fields
High r e s l u t i o n ( < 1 m-5 Low frequency (<400 cm-1) Large momentum t r a n s f e r (-10nm-I) Surface s e n s i t i v e
Broadband ( > 3 0 0 0 ~ m - ~ ) Sensitive t o H Q u a n t i t a t i v e measure o f a l l normal modes
Disadvantages
Low r e s o l u t i o n (-30 cm-1) Requires vacuum (10-4 T o r r ) R e f l e c t i v i t y strong l y depends on surface order
Current detectors Very i n s e n s i t i v e and r a d i a t i o n sour- except resonant ces l i m i t s e n s i t i - o r enhanced SRS v i t y a t low f r e quencies (<600cm-1)
R e s t r i c t e d t o low f a c e area high Requires frequencies (<400 cm-1) t o O n l y sensitive a v o i d mu1 tiphonon effects Requires long-range substrate order ( > 5 nm)
'"to
A35 may a l l o w f o r t h e stereochemical arranqements o f atoms i n
a molecule, s i n c e i t s
symmetry determines t h e a c t i v e v i b r a t i o n a l modes. The t y p e o f experiments t h a t can be t a c k l e d most s u c c e s s f u l l y by I R spectroscopy a r e t h o s e t h a t r e q u i r e h i g h r e s o l u t i o n , s t r i c t p o l a r i z a t i o n r u l e s , t i m e r e s o l u t i o n o r h i g h pressure. The s t u d y o f many c a t a l y t i c problems, which i n v o l v e a d s o r p t i o n and f u r t h e r r e a c t i o n o f molecules a t t h e s u r f a c e o f c a t a l y s t s , has t o r e l y on most o f t h e s e p r o p e r t i e s . The r e s o l u t i o n p o t e n t i a l makes i t p o s s i b l e t o r e s o l v e t h e c l o s e l y spaced normal modes o f t h e adsorbed molecules; s e n s i t i v i t y towards b o t h p a r a l l e l and p e r p e n d i c u l a r components of t h e modes i s c r u c i a l f o r s t r u c t u r e d e t e r m i n a t i o n ; and t i m e r e s o l u t i o n ( < 1s) i s c o m p a t i b l e w i t h t h e k i n e t i c s t a k i n g place, as t h e p r e s s u r e o f t h e adsorbate ( o r r e a c t a n t ) o r t h e temperature i s v a r i e d , even under c o n d i t i o n s where e l e c t r o n s p e c t r o s c o p i e s a r e no l o n g e r app i c a b l e.
1.4.1.1.3.1.
Transmission
I R spectroscopy i n i t s t r a n s m i s s i o n mode has been
SUC
e s s f u l l y used f o r
many y e a r s i n t h e s t u d y of adsorbed species on h i g h s u r f a c e area metal o x i d e s and supported m e t a l c a t a l y s t s . I n t h i s case, t h e I R beam passes t h r o u g h v e r y t h i n wafer-samples, and t h e f r a c t i o n o f t r a n s m i t t e d I R r a d i a t i o n i s r e c o r d e d as a f u n c t i o n o f t h e wavelength o f t h e I R source. The spectrum o f adsorbed s p e c i e s may b e o b t a i n e d by a p p r o p r i a t e
s u b t r a c t i o n f r o m t h e o v e r a l l spectrum and t h a t
of t h e gaseous phase. T h i s o p e r a t i o n i s now e a s i l y c a r r i e d o u t by computerized I R and by FTIR spectrophotometers. The a p p l i c a t i o n o f I R i s r e s t r i c t e d t o a some-
what
l i m i t e d s p e c t r a l r e g i o n because o f t h e s t r o n g a b s o r p t i o n o f I R r a d i a t i o n
by t h e s o l i d c a t a l y s t s t o which t h e adsorbates a r e bound. Consequently, n o t a l l t h e bands b e l o n g i n g t o t h e adsorbate can be observed, and t h e assignment o f s u r f a c e s t r u c t u r e s must be done by s i m i l a r i t y between t h e bands observed i n t h e spectrum and t h e corresponding bands o f t h e m o l e c u l e s i n t h e b u l k phase.
1.4.1.1.3.2.
R e f l e c t i o n - A b s o r p t i o n (RAIRS)
R e f l e c t i v i t y measurements o f a s u r f a c e c o n t a i n i n g an a d s o r b a t e can y i e l d t h e I R s p e c t r a o f t h e adsorbed s p e c i e s . There a r e two d i f f e r e n t r e f l e c t i o n - a b s o r p t i o n techniques: i n t e r n a l and e x t e r n a l
. These
t e c h n i q u e s a r e b r i e f l y exa-
mined t o g e t h e r , as t h e p h y s i c a l n a t u r e o f b o t h i s v e r y s i m i l a r .
I n i n t e r n a l r e f l e c t i o n an I R beam i s g u i d e d a l o n g t h e i n s i d e of an I R t r a n s p a r e n t s l a b , u s u a l l y s i l i c o n , s a p p h i r e , and germanium v i a i n t e r n a l r e f l e c t i o n , as shown i n F i g . 1.lla. The power l o s t a t each wavelength t h r o u g h i n t e r a c t i o n w i t h t h e adsorbed l a y e r i s measured. W i t h t h i s c o n f i g u r a t i o n a h i g h sens i t i v i t y can be achieved by u s i n g s u f f i c i e n t l y t h i n s l a b s t o g e n e r a t e m u l t i p l e r e f l e c t i o n s . T h i s t e c h n i q u e can be used q u a n t i t a t i v e l y w i t h c a l i b r a t i o n s , and i t s a p p l i c a t i o n i s r e s t r i c t e d t o s u r f a c e f i l m s on I R - t r a n s p a r e n t m a t e r i a l s which can be c u t and p o l i s h e d t o t h e r e q u i r e d s l a b dimensions. I t cannot be a p p l i e d ,
A36
1
I R beam
V
film
substrate
')a
prism
0
p r i s m g
substrate
F i g . 1.12. a ) T y p i c a l e x p e r i m e n t a l c o n f i g u r a t i o n o f t h e i n t e r n a l r e f l e c t i o n experiment f o r a f i l m d e p o s i t e d on a n I R t r a n s p a r e n t s l a b ; b ) d e s c r i p t i o n o f t h e external r e f l e c t i o n f o r a f i l m coated substrate; c ) experimental configur a t i o n o f surface e l e c t r o m a g n e t i c waves p r o p a g a t i o n .
A37
however, t o b u l k metals, u n l e s s v e r y t h i n ( < 10 nm) f i l m s o f t h e s e m a t e r i a l s can be p l a c e d on t h e s u r f a c e o f t h e r e f l e c t i o n s l a b so t h a t p a r t o f t h e evanesc e n t wave can p e n e t r a t e through t h i s l a y e r t o reach t h e adsorbate. F o l l o w i n g t h i s metodology, R i c e and H a l l e r (129) were a b l e t o r e c o r d RAIRS s p e c t r a o f CO adsorbed on a v e r y t h i n Pd f i l m d e p o s i t e d on a s a p p h i r e s l a b . I n e x t e r n a l r e f l e c t i o n t h e I R beam i s r e f l e c t e d o f f a metal s u r f a c e , as shown i n F i g . 1 . l l b . The power l o s t by i n t e r a c t i o n o f t h e s t a n d i n g wave near t h e metal s u r f a c e w i t h an adsorbed l a y e r g i v e s r i s e t o an a b s o r p t i o n spectrum. F o r i n s t a n c e , u s i n g a metal exposed t o ambient experiment, a f i l m o f t h e o x i d e w i l l cover t h e metal s u b s t r a t e , t h i s o x i d e f i l m b e i n g o f i n t e r e s t f o r e x t e r n a l r e f l e c t i o n . The e l e c t r i c f i e l d i n t e n s i t y o f I R r a d i a t i o n extends c o n t i n u o u s l y beyond t h e s u r f a c e , and t h e r e i s no l i m i t t o t h e t h i c k n e s s o f t h e sample t o be probed. R e l a t i v e l y i n e x p e n s i v e commercial attachments can be f i t t e d t o t h e spect r o p h o t o m e t e r s , and good s i g n a l t o n o i s e r a t i o s must be o b t a i n e d u s i n g e i t h e r FTIR (130) o r d i s p e r s i v e spectrophotometers w i t h wavelength (131) o r p o l a r i z a t i o n m o d u l a t i o n (132, 133), i n c o n j u n t i o n w i t h v e r y s e n s i t i v e d e t e c t o r s as i n t r i n s i c photoconductors, o f which MCT i s a t y p i c a l example. Conventional spect r o p h o t o m e t e r s can, however, be used f o r f i l m s t h i c k e r t h a n ca. 10 nm. I n t e r e s t i n g a p p l i c a t i o n s o f t h e e x t e r n a l r e f l e c t i o n t e c h n i q u e t o s u r f a c e a n a l y s i s have been reviewed (130, 134, 135).
1.4.1.1.3.3. Emission A l l samples which absorb I R r a d i a t i o n a l s o e m i t a t t h e same f r e q u e n c i e s , and i n p r i n c i p l e t h e I R spectrum can be o b t a i n e d by t h e d e t e c t i o n of t h i s emiss i o n . T h i s a1 t e r n a t i v e r e s u l t s e x t r e m e l y v a l u a b l e i n I R spectrum d e t e r m i n a t i o n , s i n c e i t does n o t r e q u i r e a f l a t r e f l e c t i n g s u r f a c e as i s t h e case w i t h t h e RAIRS technique, and t h u s t h e spectrum o f a rough s u r f a c e c o u l d be o b t a i n e d . There are, however, two s e r i o u s l i m i t a t i o n s . F i r s t , I R e m i s s i o n i s a f u n c t i o n o f temperature, and a t ambient temperature t h e l e v e l o f e m i s s i o n f r o m s u r f a c e f i l m s o r supported c a t a l y s t s near monolayer t h i c k n e s s i s v e r y weak compared t o t h e l e v e l s measured w i t h c o n v e n t i o n a l I R spectrophotometers. Second, s t i l l a t room temperature, t h e o p t i c s o f t h e i n s t r u m e n t e m i t s unwanted and i n t e r f e r i n g I R r a d i a t i o n , There a r e s e v e r a l ways t o overcome t h e s e d i f f i c u l t i e s : c o o l t h e opt i c s , h e a t t h e sample o r examine t h i c k f i l m s o r metal p a r t i c l e s w i t h h i g h emiss i o n l e v e l s . A l l t h r e e approaches have been experimented w i t h , b u t t h e few s t u d i e s t h a t have been p u b l i s h e d deal o n l y w i t h heated samples. A u s e f u l d i s c u s s i o n o f t h e a p p l i c a t i o n s o f e m i s s i o n I R has been p r o v i d e d by Chase (136).
1.4.1.1.3.4.
P h o t o a c o u s t i c (PAS) and Photothermal D e f l e c t i o n Beam Spectroscopy (PDBS)
PAS and PDBS a r e two r e l a t i v e l y new I R t e c h n i q u e s , which have been a p p l i e d t o study the surface properties o f m a t e r i a l s t h a t a r e d i f f i c u l t o r impossible t o
A38
examine by conventional means. The b a s i c p r i n c i p l e s o f b o t h techniques a r e v e r y simple. I t i s assumed t h a t a p o r t i o n o f t h e r a d i a t i o n impinging on a samp l e i s absorbed and degraded t o thermal energy. A p o r t i o n o f t h e thermal energy t r a v e l s t o t h e s u r f a c e and t h e r e heats t h e gas j u s t above t h e surface. The temp e r a t u r e d i s t u r b a n c e i n t h e gas i s q u i c k l y damped, so t h a t o n l y a v e r y t h i n gas l a y e r i s a f f e c t e d . I f t h e a b s o r p t i o n o f r a d i a t i o n and t h e h e a t i n g o f t h e g a s a r e p e r i o d i c , t h e gas l a y e r i n immediate c o n t a c t w i t h t h e s o l i d expands and cont r a c t s p e r i o d i c a l l y and thus can a c t as a p i s t o n on t h e r e s t o f t h e gas, producing an a c o u s t i c pressure s i g n a l t h a t t r a v e l s throughout t h e gas. The detect i o n o f t h a t s i g n a l i s p o s s i b l e w i t h PAS (36, 37). I n c o n t r a s t , w i t h PDBS, t h e r a p i d l y damped thermal e f f e c t s above t h e s u r f a c e a r e probed v i a t h e mirage e f f e c t (38, 39). The changes i n temperature i n t h e boundary l a y e r induce changes i n t h e r e f r a c t i v e index o f t h e gas. A beam o f l i g h t t r a v e r s i n g t h e l ' h o t zone'' i s thus d e f l e c t e d ; t h a t i s t h e mirage e f f e c t which Boccara e t a l . (38) have shown t o be t h e b a s i s o f a v e r s a t i l e and s e n s i t i v e spectroscopy. I t i s known t h a t t e x t u r e and p a r t i c l e s i z e e f f e c t s , as w e l l as l i g h t s c a t -
t e r i n g i n f l u e n c e t h e PAS s i g n a l s i g n i f i c a n t l y . S i m i l a r l y , p a r t i c l e s i z e and s c a t t e r i n g e f f e c t s a r e known t o have a bearing on PDBS measurements although a t h e o r e t i c a l treatment i n depth would be requ'red t o c l a r i f y t h e d i f f e r e n t i n t e r a c t i o n s . I n s h o r t , i t i s necessary t o c o n s i d e r parameters, such as p a r t i c l e s i z e and shape, surface t o volume r a t i o , s u r f a c e coverage by adsorbed molecules, pack i n g o f t h e s o l i d and e s p e c i a l l y t h e i n f l u e n c e o f such parameters on s c a t t e r i n g . Many examples o f t h e a p p l i c a t i o n o f PAS and PDBS e x i s t i n t h e l i t e r a t u r e , and t h e examination of a few r e l e v a n t systems o f i n t e r e s t f o r c a t a l y s i s a r e examined i n p a r t B, chapter 2. 1.4.1.1.3.5.
Surface Electromagnetic Waves (SEW)
External r e f l e c t i o n depends on t h e presence o f a standing wave generated by r e f l e c t i o n o f an I R beam from a surface. I t i s a l s o p o s s i b l e , by passing t h e i n - g o i n g I R beam a t a s p e c i f i c angle through a prism, t o launch a propagating wave along t h e s u r f a c e i n t e r f a c e . For metals, such as Cu, u s i n g mid-IR r a d i a t i o n , t h i s d i s t a n c e can be coupled o u t through another p r i s m and d i r e c t e d t o a d e t e c t o r . The SEW can i n t e r a c t w i t h t h e s u r f a c e and g i v e r i s e t o a b s o r p t i o n spectra. An experimental c o n f i g u r a t i o n o f t h e technique i s g i v e n i n F i g . 1.11~.
A general review o f t h e technique has been compiled by B e l l (1371, and i t s app l i c a t i o n t o t h e study o f hydrogen chemisorbed on W under UHV c o n d i t i o n s has been examined by Chabal and Sievers (138). The technique has n o t been g i v e n widespread use because o f t h e a d d i t i o n a l c o m p l e x i t y o f t h e o p t i c s , c o u p l i n g prisms and t h e narrow band c a p a b i l i t i e s o f l a s e r s (139).
A39
1.4.1.1.4.
UV-Visi b l e R e f l e c t i o n
L i g h t o f t h e U V - v i s i b l e r e g i o n o f t h e e l e c t r o m a g n e t i c spectrum can be used t o s t u d y t h e e l e c t r o n i c t r a n s i t i o n s o f s u b s t r a t e s . O p t i c a l s p e c t r a can b e obt a i n e d d i r e c t l y by e i t h e r i n t e r n a l o r e x t e r n a l r e f l e c t i o n - a b s o r p t i o n t e c h n i q u e s ( r e f l e c t a n c e s p e c t r o s c o p y ) . A m o d i f i c a t i o n o f r e f l e c t i o n spectroscopy, i .e. e l l i p s o m e t r y , i n which t h e p o l a r i z a t i o n p r o p e r t i e s o f r e f l e c t e d l i g h t a r e measured p r o v i d e s t h e above i n f o r m a t i o n , and, i n a d d i t i o n , can s u p p l y i n f o r m a t i o n on t h e t h i c k n e s s o f o v e r l a y e r s , even when t h e y do n o t absorb r a d i a t i o n . 1.4.1.1.4.1.
Ref1 ectance
Both i n t e r n a l and e x t e r n a l r e f l e c t a n c e spectroscopy a r e r e l a t i v e l y s i m p l e and w e l l developed ( c f . ( 1 4 0 ) ) . The attachments r e q u i r e d t o p e r f o r m t h e s e k i n d s o f measurement a r e commercially a v a i l a b l e and can be e a s i l y assembled t o s t a n d a r d U V - V i s i b l e spectrophotometers. S t i l l , even i n t h e 1 i g h t o f t h e s e advantages, t h e techniques have n o t been w i d e l y a p p l i e d t o s u r f a c e a n a l y s i s . The p r i n c i p a l reason appears t o be t h a t t h e U V - V i s i b l e s p e c t r a a r e v e r y b r o a d and a c c o r d i n g l y o f l i t t l e use i n a n a l y z i n g m o l e c u l a r s u r f a c e groups. 1.4.1.1.4.2.
Ellipsometry
I n t h i s t e c h n i q u e t h e changes i n t h e s t a t e o f l i g h t p o l a r i z a t i o n a r e measur e d upon r e f l e c t i o n r a t h e r t h a n t h e r e f l e c t e d power. The t h e o r y o f e l l i p s o m e t r i c measurements and d a t a a n a l y s i s i s w e l l known (141, 142) and t h e e x p e r i m e n t a t i o n t e s t procedures a r e r a t h e r s i m p l e . I t c o n s i s t s o f passing a w e l l c o l l i m a t e d monochromatic beam o f u n p o l a r i z e d l i g h t t h r o u g h a p o l a r i z e r t o o b t a i n a known p o l a r i z a t i o n s t a t e . T h i s l i g h t i s t h e n r e f l e c t e d o f f t h e sample, passed t h r o u g h a second p o l a r i z e r , which i s v a r i e d t o a n a l y z e t h e change i n t h e p o l a r i z a t i o n s t a t e , and f i n a l l y d i r e c t e d t o t h e d e t e c t o r . The o n l y r e q u i r e m e n t i s t h a t t h e sample r e f l e c t s l i g h t s p e c u l a r l y ; hence m e t a l s and non m e t a l s , i n p r i n c i p l e , can be analyzed, Consequently, when f l a t p a r a l l e l o v e r l a y e r s were developed on t h e s u b s t r a t e , i t became p o s s i b l e t o c a l c u l a t e b o t h t h e o p t i c a l p r o p e r t i e s and f i l m t h i c k n e s s f r o m e l 1i p s o m e t r i c s p e c t r a . 1.4.1.1.4.3.
Raman Spectroscopy (LRS)
Rainan spectroscopy i s based upon t h e Raman e f f e c t i n which l i g h t , u s u a l l y w i t h i n t h e v i s i b l e wavelength spectrum and d e l i b e r a t e l y monochromatic, can be adsorbed by a sample and be r e e m i t t e d as s c a t t e r e d l i g h t a t a d i f f e r e n t f r e q u e n cy. The frequency o f s c a t t e r e d l i g h t can be e i t h e r h i g h e r ( a n t i - S t o k e s ) o r l o w e r ( S t o k e s ) than t h a t o f t h e i n c i d e n t source, The d i f f e r e n c e i n f r e q u e n c i e s i s known as t h e Raman frequency. It corresponds t o a m o l e c u l a r v i b r a t i o n a l f r e q u e n cy, and t h u s t h e Raman spectrum g i v e s s i m i l a r i n f o r m a t i o n t o t h a t o b t a i n e d f r o m I R , except t h a t t h e v i b r a t i o n a l bands have d i f f e r e n t i n t e n s i t i e s and sometimes
A40
s l i g h t l y d i f f e r e n t frequencies. As Raman s c a t t e r i n g i s q u i t e i n e f f i c i e n t , o n l y w i t h t h e a p p l i c a t i o n o f l a s e r s w i t h a h i g h e r i n p u t power than t r a d i t i o n a l sources good q u a l i t y spectra a r e recorded. Lasers such as A r
+ , K r+
and He-Ne a r e
used as Raman e x c i t a t i o n sources. Raman s h i f t s a r e observed, whenever t h e v i b r a t i o n o f t h e molecule g i v e s r i s e t o a change i n p o l a r i z a b i l i b y , such v i b r a t i o n being known as Raman a c t i v e . Raman spectroscopy has been used s u c e s s f u l l y i n c a t a l y s i s (143-147)and s u r f a c e s t u d i e s (148-150).There are, however, experimental reasons, such as t h e weakness o f Raman l i n e s , t h e i r masking by f l u o r e s c e n c e e f f e c t s , and h e a t i n g on t h e coloured samples under t h e i n t e n s e t h e a p p l i c a t i o n o f LRS t o c a t a l y s t s t u d i e s
aser beam, which p u t s c o n s t r a i n t s on Considering t h a t a t y p i c a l monolayer
i s about 10l8 molecules rnm2, i t i s e v i d e n t t h a t t h e technique was though useless f o r s u r f a c e s t u d i e s u n t i l a few years ago. I n r e c e n t times, however, several Raman techniques have been developed capab e o f p r o v i d i n g Raman s p e c t r a o f monol a y e r s and t h i n f i l m s .
1.4.1.1.4.4. Surface Enhanced Raman Spectroscopy (SERS) The i m p o r t a n t d i s c o v e r y o f s u r f a c e enhanced Raman spectroscopy (SERS) has increased t h e e f f e c t i v e s e n s i t i v i t y o f t h e Raman e f f e c t , so t h a t i t i s now poss i b l e t o study adsorbates a t coverages as low as 1%o f a monolayer. The d i s c o v e r y o f SERS was made by Fleichrnan e t a1
. (164), who observed
i n t e n s e Raman
s i g n a l s from p y r i d i n e adsorbed on a roughened Ag e l e c t r o d e . I n t e n s e a c t i v i t y f o l l o w e d these i n i t i a l s t u d i e s and SERS was observed from a l a r g e number o f mol e c u l e s adsorbed on a r e l a t i v e l y small number o f surfaces. I n general, t h e s c a t -
t e r e d i n t e n s i t i e s can be 104-107 times l a r g e r than expected from gas-phase Raman s c a t t e r i n g cross-sections and t h e d e n s i t y o f adsorbed molecules. Some success i n enhanced s c a t t e r i n g has a1 so been achieved f o r c a t a l y t i c P t (152), N i (153) and Ag-Pd a1 1oy ( 154) surfaces. These developments have m o t i v a t e d a g r e a t number o f s t u d i e s over t h e l a s t years, so t h a t t h e general f e a t u r e s o f t h e mechanisms i n v o l v e d i n SERS a r e r a t h e r w e l l understood. The increased i n t e n s i t y o f SERS makes i t p o s s i b l e t o study s u r f a c e processes which occur a t v e r y l o w coverages, as w e l l as t i m e - r e solved measurements u s i n g conventional Raman i n s t r u m e n t a t i o n . Moreover, t h e surf a c e s e l e c t i v i t y o f SERS ensures t h a t t h e processes under o b s e r v a t i o n o r i g i n a t e a t o r v e r y c l o s e t o t h e surface. I n case one wishes t o study t h e s u r f a c e o f e s p e c i a l l y roughened o r prepared metals, such as Ag, Cu and Au, t h e method i s v e r y promising, and t h e v i b r a t i o n a l s p e c t r a can be o f b e t t e r q u a l i t y than t h e corresponding RAIRS spectra. The more general problem, however, i n v o l v e s t h e measurements o f t h e SERS spectrum o f a monolayer on o t h e r substrates, which would i n c l u d e o t h e r metals, metal oxides, e t c . U n f o r t u n a t e l y , SERS has n o t p r o ven t o be a general technique, because o f i t s s t r i n g e n t requirements r e g a r d i n g
A41
I 100
I
I
900
I
I
I
I
700
500 Wavenumber Icm-ll
F i g . 1.13. S u r f a c e enhanced Raman s p e c t r a (SERS) o f s i l v e r powder samples subj e c t e d t o v a r i o u s p r e t r e a t m e n t s : a ) background spectrum o f t h e sample exposed t o w a t e r vapour; b ) Raman spectrum o f t h e sample exposed f i r s t t o w a t e r vapour and t h e n t o NO; c ) Raman spectrum o f t h e sample exposed f i r s t t o w a t e r vapour and t h e n t o NO2; d ) Raman spectrum r e c o r d e d a f t e r i n t r o d u c t i o n o f a i r and s t a n d i n g f o r about 12 h. The l a s e r c o n d i t i o n s were 647.1 nm and 100 mW f o r a ) and b ) , and 488.0 nm and 50 mW f o r c ) and d ) . Readapted f r o m r e f . ( 1 5 5 ) . s u r f a c e morphology and d i e l e c t r i c c o n s t a n t . M a j o r improvements a r e expected t o o c c u r i n t h e near f u t u r e by combining u l t r a v i o l e t e x c i t a t i o n sources and s o p h i s t i c a t e d mu1 t i c h a n n e l d e t e c t o r s . To i l l u s t r a t e t h i s , t h e SERS s p e c t r a o f NO adsorbed on a s i l v e r powder s u r face a r e g i v e n i n F i g . 1.13 ( 1 5 5 ) . The Raman spectrum o f t h e sample exposed t o w a t e r vapour f o l l o w e d by evacuation, showed peaks a t 615 and 915 cm-',
due p r o -
b a b l y t o surface s p e c i e s , such as Ag20 ( 1 6 6 ) . When NO was c o n t a c t e d w i t h t h e Ag surface, a peak a t 815 cm-' was observed. However t h i s peak d i d n o t appear, i f t h e experiment was performed w i t h O2 i n s t e a d o f H20. A c c o r d i n g t o t h e s e r e s u l t s , Matsuta and Hirokawa (155) concluded t h a t H20 vapour i s necessary f o r t h e ads o r p t i o n of NO t o form NO;
s p e c i e s on t h e Ag s u r f a c e . The SERS spectrum o f t h e
A42
same sample exposed f i r s t t o water vapour and t h e n t o NO2 gave peaks a t 815 and 1040 cm-'
( F i g . 1.13, spectrum c ) , due t o NO;
and NO;
species, r e s p e c t i v e l y
(157). When a i r was introduced, t h e peaks due t o s u r f a c e o x i d e appeared again. These f a c t s show t h a t some NO2 was adsorbed on s u r f a c e Ag20 species t o form
NO; ions. However, i n t h e case o f NO, t h e i n t e n s i t y o f t h e SERS peaks due t o s u r f a c e species such as Ag20 d i d n o t change, as shown i n F i g . 1.13, spectrum b. T h i s i n d i c a t e s t h a t NO molecules were n o t adsorbed on Ag20. Since t h e decompos i t i o n o f water i n t o atomic oxygen on a s i l v e r s u r f a c e has been observed (158), i t so seems t h a t t h e atomic oxygen produced from adsorbed water molecules may
be accountable f o r t h e a d s o r p t i o n o f NO. 1.4.1.1.4.5.
Other Raman techniques
Other Raman techniques, i n c l u d i n g s t i m u l a t e d Raman g a i n (SRG) and i n t e r n a l R e f l e c t i o n Raman (IRR), have been r e c e n t l y used t o enhance t h e e l e c t r o m a g n e t i c f i e l d s t r e n g t h s o f a Raman e x c i t a t i o n beam. I n SRG, two synchronously pumped h i g h i n t e n s i t y , l a s e r beams o f s l i g h t l y d i f f e r e n t frequencies, cross t h e sample, When t h e d i f f e r e n c e i n frequencies o f t h e beams c o i n c i d e s w i t h t h a t o f a Raman a c t i v e v i b r a t i o n a l mode, one beam gains power a t t h e expense o f t h e o t h e r . The r e f l e c t e d beams a r e separated o p t i c a l l y and t h e Raman spectrum i s recorded by p l o t t i n g t h e power change as a f u n c t i o n o f t h e beam frequency d i f f e r e n c e . The I R R i s , however, o n l y a p p l i e d t o t h i c k e r and o p t i c a l l y t r a n s p a r e n t slabs. I n
t h i s case, t h e enhancement o f several o r d e r s o f magnitude i s due t o t h e w e l l understood p r o p e r t i e s o f t h e e l e c t r o m a g n e t i c f i e l d s a t smooth i n t e r f a c e s , thus r e s u l t i n g i n s u f f i c i e n t Raman s c a t t e r i n g s i g n a l s t o p r o v i d e u s e f u l spectra. 1.4.1.1.5. X-ray D i f f r a c t i o n (XRD) and Small Angle S c a t t e r i n g (SAS) X-ray d i f f r a c t i o n (XRD) f o r many y e a r s has been r o u t i n e l y used t o i d e n t i f y c r y s t a l l i n e phases i n heterogeneous c a t a l y s t s . The X-ray d i f f r a c t i o n l i n e s broaden when t h e c r y s t a l s i z e o f c a t a l y s t p a r t i c l e s f a l l s below about 100 nm. The simples approach t o analyze l i n e broadening i s t o assume t h a t p a r t i c l e s i z e c o n t r i b u t e s m a i n l y t o l i n e w i d t h i n excess o f i n s t r u m e n t w i d t h . The mean diameter, dp, o f c r y s t a l l i t e s i s d e l i n e d by t h e S c h e r r e r ' s e q u a t i o n (159).
where X i s t h e X-ray wavelength, K i s S c h e r r e r ' s constant, which takes values o f 0.84-0.89,
depending on t h e assumed p a r t i c l e s i z e , and 6 i s t h e angular l i n e -
width i n radians
due t o p a r t i c l e s i z e broadening and d e f i n e d by B2 = 8'
- b2
(6 standing f o r experimental w i d t h and b f o r i n s t r u m e n t a l width, which can be determined by c a l i b r a t i o n ) . T h i s technique i s a p p l i c a b l e t o p a r t i c l e s o f 3.5-6.0 nm; below 3.5 nm t h e
l i n e i s v e r y broad and d i f f u s e o r i s even absent, w h i l e
A43
F i g . 1.14. D i s t r i b u t i o n o f metal p a r t i c l e s i z e s i n a 0.6% Pt/A1 0 c a t a l y s t . The continuous l i n e i s from X-ray SAS, t h e dashed l i n e f r o m transmi$s?on e l e c t r o n microscopy ( f r o m r e f . ( 1 6 0 ) ) . above 60 nm t h e change i n l i n e s h a p e i s t o o s m a l l . F o r p a r t i c l e s w i t h s i z e s below 3.5 nm, t h e small a n g l e X-ray s c a t t e r i n g (SAS) t e c h n i q u e becomes v e r y v a l u a b l e . SAS i s based on t h e a n a l y s i s o f s c a t t e r e d r a d i a t i o n w i t h i n v e r y l o w angles
(<4")
o f t h e i n c i d e n t beam. The t h e o r y and p r i n c i p l e s o f t h e method have been w e l l e s t a b l i s h e d ( 4 0 ) , and a r e a p p l i c a b l e t o supported c a t a l y s t s . If t h e r a t i o between t o t a l s u p p o r t s u r f a c e and t h a t covered by s u p p o r t e d p a r t i c l e s i s favour a b l e w i t h respect t o the s c a t t e r i n g p r o p e r t i e s o f t h e support, analysis o f the Porod s l o p e s o f t h e SAS s u p p o r t curves, w i t h and w i t h o u t t h e c a t a l y t i c component, a l l o w s f o r r e l i a b l e measurement o f t h e t o t a l c a t a l y s t area. I t i s also p o s s i b l e t o determine c a t a l y s t p a r t i c l e s i z e d i s t r i b u t i o n f r o m SAS f o r known o r hypothet i c a l p a r t i c l e shapes, as Renouprez e t a l . (160) have p o i n t e d o u t f o r t h e case of P t p a r t i c l e s supported on alumina. The p a r t i c l e s i z e d i s t r i b u t i o n f u n c t i o n f ( d ) , as o b t a i n e d f r o m X-ray SAS V P and t r a n s m i s s i o n e l e c t r o n microscopy (TEM), i s shown i n F i g . 1.14. S p h e r i c a l p a r t i c l e s were assumed, and reasonable agreement was observed f o r t h e l o w e r peak o f t h e d i s t r i b u t i o n f u n c t i o n a t a d i a m e t e r o f 1.5-2.0 nm. The SAS d a t a do n o t reproduce t h e peak a t about 5 nm, p r i m a r i l y because o f a w i d e p o r e s i z e d i s t r i b u t i o n o f t h e c a r r e i r , which l e a d s t o a d d i t i o n a l s c a t t e r i n g . A l t h o u g h t h e d i s t r i b u t i o n f u n c t i o n s from SAS may n o t be a b s o l u t e l y c o r r e c t i n e v e r y d e t a i l , t h e y y i e l d v a l u a b l e i n f o r m a t i o n , e s p e c i a l l y f o r comparing d i f f e r e n t metal l o a d i n g s
A44
and a l s o f o r t h e d e t e r m i n a t i o n o f t h e changes induced by thermal treatments. For instance, Renouprez e t a l . (160) found t h a t i n P t / S i 0 2 c a t a l y s t s , i t i s econom i c a l l y u n p r o f i t a b l e t o e x c e e d a p t l o a d i n g o f 1 w t % because t h e excess o f P t i s p r i m a r i l y i n c o r p o r a t e d i n t o l a r g e r p a r t i c l e s w i t h a lower c a t a l y t i c e f f i c i e n c y . G a l l e z o t e t a l . (161) have s t u d i e d t h e l o c a t i o n and d i s p e r s i o n o f p l a t i n u m i n Pt-exchanged NaY z e o l i t e u s i n g X-ray SAS, a p a r t from o t h e r techniques. The r e s u l t s showed t h a t
P t O
c l u s t e r s form more e a s i l y upon r e d u c t i o n , i f t h e P t 2 +
i o n s a r e i n i t i a l l y i n supercages r a t h e r than i n s o d a l i t e cages. 1.4.1.1.6.Extended X-ray Absorption F i n e S t r u c t u r e (EXAFS) Extended X-ray a b s o r p t i o n f i n e s t r u c t u r e (EXAFS) has become an i m p o r t a n t t o o l i n t h e a n a l y s i s o f heterogeneous c a t a l y s t s . T h i s t r e n d i s p r o g r e s s i v e l y i n c r e a s i n g due t o t h e a v a i l a b i l i t y o f t h e new g e n e r a t i o n o f h i g h energy e l e c t r o n storage r i n g s p r o v i d i n g h i g h e r X-ray f l u x e s . The p h y s i c a l b a s i s o f EXAFS i s v e r y simple. When t h e photon energy o f t h e e x c i t a t i n g source becomes j u s t s u f f i c i e n t t o cause emission o f photoelectrons from any e l e c t r o n s h e l l , a sharp i n c r e a s e i n t h e c r o s s - s e c t i o n f o r photon abs o r p t i o n occurs. i.e.,
t h e a b s o r p t i o n edge. Above t h e a b s o r p t i o n edge an o s c i -
l l a t o r y v a r i a t i o n i n t h e a b s o r p t i o n cross s e c t i o n i s u s u a l l y observed. As Savers e t a l . (162) demonstrated, t h i s o s c i l l a t o r y s t r u c t u r e r e v e a l s t h e l o c a l s t r u c t u r e o f t h e atom under study. The g r e a t e r ease o f i n t e r p r e t a t i o n of d a t a i n t h e range 100 eV above t h e a b s o r p t i o n edge has g i v e n r i s e t o t h e t e r m Extended X-ray Absorption F i n e S t r u c t u r e . The study o f t h e o s c i l l a t o r y v a r i a t i o n s i n a b s o r p t i o n cross s e c t i o n s near t h e a b s o r p t i o n edge provides t h r e e types o f v e r y v a l u a b l e data: i ) i n t e r - a t o m i c distances; i i ) c o o r d i n a t i o n number; i i i ) Debye-Waller f a c t o r . These q u a n t i t a t i v e and s t r u c t u r a l data present many problems. F o r t u n a t e l y , t h e t h e o r y and i t s exper i m e n t a l v e r i f i c a t i o n has progressed v e r y much i n t h e l a s t decade (18, 163). On t h e b a s i s of EXAFS s p e c t r a o f m a t e r i a l s o f known s t r u c t u r e i n v o l v i n g t h e same elements as absorbers and s c a t t e r e r s , i t i s p o s s i b l e t o determine i n t e r a t o m i c distances w i t h an accuracy c u r r e n t l y estimated t o be
5 x 19-'
nm. The
d e t e r m i n a t i o n of t h e c o o r d i n a t i o n number i s more d i f f i c u l t . because t h e amplitude f u n c t i o n of t h e FT data i s more s t r o n g l y
a f f e c t e d than t h e phase by a low
s i g n a l - t o - n o i s e r a t i o , by f i n i t e l e n g t h i n t h e k space o f data, as w e l l as by d i f f e r e n c e s i n t h e sample and r e f e r e n c e compound. One must be concerned about t h e e l e c t r o n mean f r e e paths, t h e r e l a t i v e d i s o r d e r , and inhomogeneities between sample and r e f e r e n c e m a t e r i a l
. Very v a l u a b l e
i n f o r m a t i o n on supported metals
(and a l l o y s ) , and metal oxides (and s u l p h i d e s ) has been p r o v i d e d by EXAFS, which demonstrates t h a t these d i f f i c u l t i e s can be overcome (40, 164, 165). A review o f t h e most i n t e r e s t i n g a p p l i c a t i o n s o f EXAFS t o supported c a t a l y s t s i s g i v e n i n chapter 4, p a r t A.
A45
There a r e two r e l a t e d t e c h n i q u e s employing s y n c h r o t r o n r a d i a t i o n which p r o v i d e s t r u c t u r a l i n f o r m a t i o n , such as bond d i s t a n c e s w i t h i n absorbates and b i n d i n g s i t e s : S u r f a c e Extended X-ray A b s o r p t i o n F i n e S t r u c t u r e (SEXAFS) and Near Edge X-ray A b s o r p t i o n F i n e S t r u c t u r e (NEXAFS). SEXAFS i s an a d a p t a t i o n o f b u l k s t r u c t u r a l EXAFS, which r e v e a l s t h e bond l e n g t h and t h e c h e m i s o r p t i o n s i t e o f an adsorbate. NEXAFS determines, however, t h e o r i e n t a t i o n and bond l e n g t h s between l o w atomic number atoms w i t h i n an adsorbate. T h i s l a t t e r i n f o r m a t i o n i s o f p a r t i c u l a r i n t e r e s t , s i n c e most techniques a r e r a t h e r i n s e n s i t i v e a t o m i c number atoms, e.g.,
1.4.1.1.7.
t o low
hydrocarbons.
Mtissbauer Spectroscopy
MBssbauer spectroscopy i s based on t h e r e c o i l - f r e e e m i s s i o n o f g a m a r a d i a t i o n f r o m a nucleus i n an e x c i t e d s t a t e and i t s subsequent r e c o i l - f r e e r e s o n a n t a b s o r p t i o n and r e - e m i s s i o n by a nucleus o f t h e same i s o t o p e i n t h e ground s t a t e . I n a s o l i d t h e r e c o i l energy may be l e s s t h a n t h e l o w e s t q u a n t i s e d l a t t i c e v i b r a t i o n a l energy, so t h a t t h e gamma r a y may be e m i t t e d w i t h o u t l o s s o f energy due t o t h e r e c o i l o f t h e nucleus. Since t h e p r o b a b i l i t y o f t h e r e c o i l - f r e e p r o cess depends upon t h e energy o f t h e gamma photon, t h e Mossbauer e f f e c t i s r e s t r i c t e d t o c e r t a i n i s o t o p e s w i t h l o w - l y i n g e x c i t e d energy s t a t e s . Mossbauer s p e c t r a a r e c h a r a c t e r i z e d by t h e number p o s i t i o n , shape and r e l a t i v e i n t e n s i t y o f t h e v a r i o u s a b s o r p t i o n 1 i n e s . A l l t h e s e f e a t u r e s r e s u l t from t h e n a t u r e o f t h e v a r i o u s h y p e r f i n e i n t e r a c t i o n s and f r o m t h e p o s s i b l e m o t i o n o f t h e a b s o r b i n g n u c l e i . The t h r e e main h y p e r f i n e i n t e r a c t i o n s a r e p r i m a r i l y r e f l e c t e d i n t h e isomer s h i f t ( 6 ) , quadrupole s p l i t t i n g ( A ), and magnetic s p l i t t i n g . The isomer s h i f t r e p r e s e n t s a measure o f t h e d i f f e r e n c e i n t h e e l e c t r o n i c environments o f t h e source and a b s o r b e r n u c l e i . I t p r o v i d e s , t h e r e f o r e , a means o f m o n i t o r i n g s - e l e c t r o n d e n s i t y a t t h e nucleus, which depends o n e l e c t r o n d i s p o s i t i o n i n t h e o u t e r s h e l l s . Hence t h e isomer s h i f t g i v e s i n f o r m a t i o n on t h e o x i d a t i o n s t a t e and covalency. The second i m p o r t a n t i n t e r a c t i o n c a l l e d quadrupole s p l i t t i n g a r i s e s when t h e n u c l e a r quadrupole moment e x p e r i e n c e s an asymmetric e l e c t r i c f i e l d produced by an asymmetric e l e c t r o n i c charge d i s t r i b u t i o n o r l i g a n d arrangement. F o r instance, t h e 57Fe i n t h e e x c i t e d s t a t e w i t h
I = 3/2 and i n t h e presence o f a non-zero e l e c t r i c f i e l d g r a d i e n t s p l i t s i n t o a t w o - l i n e spectrum, w i t h t h e two l i n e s separated by A . The t h i r d i n t e r a c t i o n has i t s o r i g i n i n t h e i n t e r a c t i o n between any n u c l e a r magnetic moment and t h e magn e t i c f i e l d . Such i n t e r a c t i o n r i s e s t h e degeneracy o f a n u c l e a r s t a t e w i t h I>O and s p l i t s i t i n t o 21
+ 1 l i n e s . F o r 57Fe t h e ground s t a t e , w i t h I
= 3/2, s p l i t s
i n t o f o u r l i n e s , i n such a way t h a t t h e s i x t r a n s i t i o n s a p p r o p r i a t e t o t h e m = 0, 21 s e l e c t i o n r u l e g i v e a s e x t e t MBssbauer spectrum.
MBssbauer spectroscopy i s a v e r y s u i t a b l e t e c h n i q u e f o r t h e i n s i t u s t u d y o f c r y s t a l 1 i n e and n o n c r y s t a l l i n e s o l i d s i n c l u d i n g h i g h l y d i s p e r s e d p a r t i c l e s
A46
on a c a r r i e r . T h i s i s due t o t h e f a c t t h a t gamma r a y s w i t h energies t y p i c a l o f 1-2 keV can p e n e t r a t e a gaseous environment. D e s p i t e t h i s g r e a t advantage t h e r e e x i s t some n e g a t i v e features. The use o f t h e technique f o r c a t a l y s t c h a r a c t e r i z a t i o n a t temperatures above room temperature i s r e s t r i c t e d t o p r e p a r a t i o n s cont a i n i n g Fe, Sn, o r Eu. F u r t h e r r e s t r i c t i o n s a r e caused by t h e low n a t u r a l abundance o f some isotopes, which r e q u i r e s t h e i s o t o p i c enrichment of c a t a l y s t s cont a i n i n g these elements t o o b t a i n good q u a l i t y s p e c t r a .
A good account o f t h e
Mossbauer technique and a review o f t h e most r e l e v a n t a p p l i c a t i o n s t o c a t a l y t i c system i s g i v e n i n chapter 5, p a r t A. 1.4.1.2.
Out-going E l e c t r o n s
1.4.1.2.1.
U1 t r a v i o l e t P h o t o e l e c t r o n Spectroscopy (UPS)
U l t r a v i o l e t p h o t o e l e c t r o n Spectroscopy (UPS) i s based on t h e a n a l y s i s and i n t e r p r e t a t i o n o f t h e k i n e t i c energy d i s t r i b u t i o n o f t h e p h o t o e l e c t r o n s produced by u l t r a v i o l e t i r r a d i a t i o n . U s u a l l y two photon sources o f energy, e i t h e r o f 21.2 o r 40.8 eV, a r e used. These a r e produced by a discharge i n helium gas
according t o t h e f o l l o w i n g processes: t
He
+ e-
Hezt + e-
He
-+
-+
He'
(HeI, hv = 21.2 eV) ( H e I I , hv = 40.8 eV)
Due t o t h e low energy o f t h e e x c i t a t i o n source, UPS probes t h e valence e l e c t r o n l e v e l s . I t s p h y s i c a l b a s i s and experimental c o n f i g u r a t i o n i s t h e same as f o r XPS, b u t t h e r e s o l u t i o n o f gas phase s p e c t r a i s i n v a r i a b l y much b e t t e r i n UPS.
I n s o l i d s t h i s advantage i s f r e q u e n t l y l o s t , because t h e d i s c r e t e energy l e v e l s present i n i s o l a t e d atoms broaden i n t o energy bands. UPS i s u s u a l l y a p p l i e d i n t h e d i r e c t d e n s i t y d e t e r m i n a t i o n of s u r f a c e va-
lence s t a t e s o f s o l i d s , i n t h e assignment o f o r b i t a l s f o r adsorbed species, and i n t h e study o f t h e d i r e c t i o n a l dependence o f t h e photoemission process. The measured d e n s i t y of s t a t e s o f a s o l i d can o n l y be accepted as t h e t r u e d e n s i t y o f s t a t e s (DOS) , when t h e p h o t o i o n i z a t i o n process o f t h e valence e l e c t r o n s a r e e x c i t e d i n t o t h e f i n a l s t a t e which c o n s i s t s o f a f e a t u r e l e s s continuum. Theref o r e , i t i s i m p o r t a n t t o determine t h e DOS with m u l t i p h o t o n sources, and pref e r a b l y w i t h synchrotron photon sources. Since t h e geometry of t h e e l e c t r o n acceptance angle o f t h e a n a l y z e r can be a c c u r a t e l y defined, t h e angular d i s t r i b u t i o n o f t h e p h o t o e l e c t r o n i n t e n s i t y enables t h e d e t e r m i n a t i o n of t h e symmetry o f t h e s t a t e from which t h e e l e c t r o n was e m i t t e d . T h i s a n g u l a r dependence i s a l s o h e l p f u l i n t h e assignment o f o r b i t a l s f o r adsorbed molecules, a l t h o u g h t h e p r e c i s e c a l c u l a t i o n o f t h e energy s h i f t s undergone by t h e valence o r b i t a l s i n t h e gas phase molecule upon a d s o r p t i o n i s an unresolved problem.
-
@
A47
-@ .--
2s
II
...aAwere
2P
-
I
2~ or L2d
photoelectron
-
I
1s
U
-
IS
Or
II
F i g . 1.15. Diagram of t h e p h o t o e l e c t r o n process ( a ) and t h e Auger process ( b ) . 1.4.1.2.2.
X-ray P h o t o e l e c t r o n Spectroscopy (XPS)
X-ray p h o t o e l e c t r o n spectroscopy i s based on t h e a n a l y s i s o f t h e k i n e t i c energy d i s t r i b u t i o n of t h e p h o t o e l e c t r o n s e m i t t e d by a sample upon i r r a d i a t i o n w i t h a monoenergetic s o f t X-ray source. Usual p h o t o n sources employ e i t h e r MgK, r a d i a t i o n ( h v = 1253.6 eV) o r AlK, r a d i a t i o n ( h v = 1486.6 eV), a l t h o u g h t h e r e i s i n c r e a s i n g i n t e r e s t i n t h e use o f c o n t i n u o u s l y t u n a b l e h i g h f l u x photon synchrot r o n r a d i a t i o n . I n t h e absence o f monochromators, t y p i c a l l i n e w i d t h s a r e i n t h e o r d e r o f 0.8 eV b u t i n t h e presence o f c r y s t a l monochromators t h e s e w i d t h s a r e reduced t o l e v e l s as l o w as 0.3 eV. X-rays have a l i m i t e d p e n e t r a t i n g power i n a s o l i d , i n t h e o r d e r o f 1-10 pm, They i n t e r a c t w i t h t h e atoms i n t h i s s u r f a c e r e g i o n t h r o u g h t h e p h o t o e l e c -
t r i c e f f e c t causing e l e c t r o n s t o be e m i t t e d . A c c o r d i n g t o t h e p h o t o e l e c t r i c process, t h e k i n e t i c energy o f t h e e m i t t e d e l e c t r o n i s g i v e n by,
where hv i s t h e energy o f t h e i n c i d e n t photon, BE t h e b i n d i n g energy o f t h e e l e c t r o n , which r e p r e s e n t s t h e d i f f e r e n c e i n t h e energy o f t h e i n i t i a l ( n e u t r a l ) s t a t e and t h e f i n a l ( i o n i z e d ) s t a t e o f t h e system, and GS i s t h e s p e c t r o m e t e r work f u n c t i o n . I n a d d i t i o n t o t h e p h o t o e l e c t r o n s e m i t t e d i n t h e p h o t o e l e c t r i c process, Auger e l e c t r o n s a r e a l s o e m i t t e d due t o r e l a x a t i o n of t h e e n e r g e t i c i o n s l e f t a f t e r photoemission. T h i s Auger e l e c t r o n e m i s s i o n o c c u r s r o u g h l y 10 seconds a f t e r t h e p h o t o e l e c t r i c process. As i l l u s t r a t e d i n F i g . 1.15,
-14
i n the
Auger process an o u t e r e l e c t r o n f a l l s i n t o t h e i n n e r o r b i t a l vacancy, and a second e l e c t r o n i s e m i t t e d , c a r r y i n g o f f t h e excess energy. Thus, p h o t o i o n i z a -
A48
tion normally leads t o two emitted electrons, a photoelectron and an Auger electron; t h e i r energies being below that of the ionizing photon. The photoelectron spectrum consists of discrete peaks superimposed on a background due t o i n e l a s t i c a l l y scattered electrons, Frequently, each peak i s accompanied by other, l e s s intense peaks. Effects such as spin-orbit coupling and many electron processes r e s u l t in additional spectral features. Extra l i n e s , placed on the higher binding energy side of a principal peak, called s a t e l l i t e s or shake-up processes, are usually observed in the photoelectron spectrum. The binding energies ( B E ) are calibrated w i t h respect t o the Fermi level ( f o r solids) or vacuum level ( f o r gases) of the spectrometer, usually by reference t o a peak of accurately known BE. Binding energies f o r Cls a t 284.6 eV and f o r A ~ 4 f , , ~a t 83.8 eV are frequently used as calibrating standards. This l a t t e r procedure i s of particular use for poorly conducting samples where compensation of s h i f t s in the measured kinetic energy due to surface charging e f f e c t s i s necessary. The BE value f o r a particular photoelectron provides a q u a l i t a t i v e identification of the atom from which the electron was emitted, and i t i s particularly sensitive t o the chemical environment through a "chemical s h i f t " e f f e c t . Another very important characteristic of XPS i s t h a t i t provides a quantit a t i v e analysis of the surface. The intensity of the signal observed i s a function of the number of atoms present in the sample. In addition t o the concentration of the element producing the signal , XPS i n t e n s i t i e s depend upon the inel a s t i c mean f r e e p a t h (IMPF) of the electrons and the efficiency of absorption of the exciting X-rays by the solid. I f these factors are well understood or i f good standards are available quantitative analysis can be carried o u t by XPS. The relative concentration of the elements i s the quantity usually desired and i t can be obtained by the r e l a t i v e i n t e n s i t i e s i f the above factors are taken into account. Thus, theoretical models allow measured photoelectron i n t e n s i t i e s t o be related t o the concentration of the emitting atoms in the surface region (20-22). A large review of the XPS technique as well as examples of i t s application a r e given i n chapter 2. 1.4.2. In-going Electrons Electron probes have been used more extensively t h a n any other surface probes. This i s mainly due t o the f a c t that electron beams of controlled energy and density can be easily generated or are readily available a t low cost in the laboratory. When surfaces are bombarded by electrons the emission of photons, electrons, neutrals or ions can occur. Fig. 1.16 summarizes a sketch of the groups of general techniques involving in-going electrons, as well as the acronyms of the specific techniques. The general features of the most commonly used techniques are considered below, with special emphasis on those involving o u t going electrons because of the r e l a t i v e ease of electron detection.
+
A49
Electrons
Neutrals: € I D
Photons:
APS, CIS, EPHA
v/su ;a;
&'fl/
F i g . 1.16. Sketch summarizing t h e general group of t e c h n i q u e s i n v o l v i n g i n - g o i n g e l e c t r o n s . APS, appearance p o t e n t i a l spectroscopy; C I S , c h a r a c t e r i s t i c i s o c h r o mat spectroscopy; EMPA, e l e c t r o n microprobe analysis;LEED, l o w energy e l e c t r o n d i f f r a c t i o n ; HEED, h i g h energy e l e c t r o n d i f f r a c t i o n ; AES, Auger e l e c t r o n spect r o s c o p y ; HREELS, h i g h r e s o l u t i o n e l e c t r o n energy l o s s spectroscopy; RHEED, r e f l e c t i o n h i g h energy e l e c t r o n d i f f r a c t i o n ; EID, e l e c t r o n i n d u c e d n e u t r a l desorpt i o n ; E I I D , e l e c t r o n induced i o n d e s o r p t i o n .
1.4.2.1.
Out-going Photons
There a r e v a r i o u s t e c h n i q u e s a v a i l a b l e , such as appearance p o t e n t i a l spect r o s c o p y (APS) ( 1 6 6 ) , c h a r a c t e r i s t i c isochromat spectroscopy (CIS) (167), and e l e c t r o n probe m i c r o a n a l y s i s (EPMA) (168). A l l t h e s e t e c h n i q u e s p r o v i d e i n f o r m a t i o n from a r e g i o n c o n s i d e r a b l y t h i c k e r t h a n t h e s u r f a c e monolayer. A l t h o u g h t h e g e n e r a t i o n of t h e e l e c t r o n beam as t h e e x c i t a t i o n s o u r c e i s r e l a t i v e l y simp l e , photon d e t e c t i o n p r e s e n t s two m a j o r problems. The f i r s t i s r e l a t e d t o t h e f a c t t h a t t h e photons l e a v e t h e s u r f a c e i n a l l d i r e c t i o n s and o n l y a s m a l l f r a c t i o n o f them reaches t h e d e t e c t o r . The second problem i s t h e n o i s e l e v e l . I f one generates photons i n t h e UV o r v i s i b l e r e g i o n , s c a t t e r e d l i g h t from many sources , even w i t h we1 1-designed equipment , can produce a 1a r g e background n o i s e l e v e l . T h i s l a t t e r problem can be p r a c t i c a l l y e l i m i n a t e d by g e n e r a t i n g X-ray photons. T h i s approach r e q u i r e s o b v i o u s l y t h e use o f h i g h energy i n - g o i n g e l e c t r o n s as w i t h t h e EPMA technique, which t h e n p e n e t r a t e so d e e p l y , t h a t i t can no l o n g e r be termed a s u r f a c e - s e n s i t i v e t e c h n i q u e . I n a d d i t i o n , t h e bombardemenl o f t h e s u r f a c e by t h e e l e c t r o n beam g i v e s r i s e t o an i n c r e a s e of t h e background l e v e l o f photon n o i s e due t o Bremstrahlung. 1.4.2.2.
Out-going E l e c t r o n s
I n s u r f a c e s t u d i e s i n v o l v i n g i n - g o i n g and o u t - g o i n g e l e c t r o n s , t h r e e parameters, namely t h e i r energy, t h e i r s p a t i a l r e s o l u t i o n and t h e number o f e l e c -
A50
t r o n s l e a v i n g t h e surface, a r e o f prime importance. I f t h e r e f l e c t e d e l e c t r o n s a r e detected and t h e i r s p a t i a l r e s o l u t i o n i s considered, one i s , i n f a c t , d e a l i n g w i t h t h e well-known low energy e l e c t r o n d i f f r a c t i o n (LEED) technique (63, 169, 170). I n t h i s case, a monoenergetic c o l l i m a t e d e l e c t r o n beam i n t h e range o f 20-200 eV i s impinged on a surface, u s u a l l y d i r e c t e d p e r p e n d i c u l a r l y t o t h e surface, and t h e d i f f r a c t i o n o f e l a s t i c a l l y s c a t t e r e d e l e c t r o n s i s analyzed. Due t o t h e l a r g e s c a t t e r i n g cross s e c t i o n s o f atoms f o r l o w energy e l e c t r o n s , o f ca. nm2, as compared t o ca. 10-8 nm2 f o r X-ray photons, t h e s c a t t e r e d e l e c t r o n s come m a i n l y from s u r f a c e o r v e r y near t h e s u r f a c e atoms and hence c a r r y informat i o n concerning t h e s t r u c t u r e i n t h i s r e g i o n . LEED p a t t e r n s supply d a t a on t h e s p a t i a l p o s i t i o n i n g o f t h e atoms b u t do n o t p r o v i d e i d e n t i f i c a t i o n o f t h e t y p e o f atoms. Another p o i n t t o be considered i s t h e f a c t t h a t most o f t h e e l e c t r o n d i f f r a c t i o n s t u d i e s use l o w energy e l e c t r o n beams. However, h i g h energy e l e c t r o n s can a l s o be used t o produce d i f f r a c t i o n p a t t e r n s . The r e s u l t i n g technique i s c a l l e d h i g h energy e l e c t r o n d i f f r a c t i o n (HEED) (171). T h i s l a t t e r technique i s g e n e r a l l y a p p l i e d t o v e r y t h i n f i l m s , where t h e h i g h energy e l e c t r o n s p e n e t r a t e t h e f i l m , thus observing t h e t r a n s m i s s i o n e l e c t r o n d i f f r a c t i o n p a t t e r n . Theref o r e , w i t h t h i s technique, one g e t s i n f o r m a t i o n r e l a t e d t o t h e b u l k r a t h e r than t o t h e surface, as i t i s n o t s u r f a c e - s e n s i t i v e . HEED can, however, be made s u r f a c e - s e n s i t i v e by p r o b i n g t h e s u r f a c e a t a g l a n c i n g angle. Then, t h e s c a t t e r e d e l e c t r o n s a r e r e f l e c t e d from t h e s u r f a c e l a y e r s and appear on t h e same s i d e as t h e probe beam. The technique i s designed as r e f l e c t i o n h i g h energy e l e c t r o n d i f f r a c t i o n (RHEED) and can be used f o r s u r f a c e a n a l y s i s ( 1 7 2 ) . For smooth surfaces, LEED and RHEED techniques p r o v i d e s i m i l a r i n f o r m a t i o n , LEED being e a s i e r t o use. Yet f o r rough surfaces, RHEED can p r o v i d e s t r u c t u r a l i n f o r m a t i o n , f o r which LEED becomes i n e f f e c t i v e . The above techniques a r e concerned p r i m a r i l y with e l a s t i c a l l y s c a t t e r e d e l e c t r o n s , b u t many experiments have been conducted t o study t h e i n e l a s t i c a l l y s c a t t e r e d as w e l l as t h e secondary e l e c t r o n s . The energy a n a l y s i s o f t h e e m i t t e d e l e c t r o n s i s t h e main o b j e c t i v e i n t h i s l a t t e r category. Among these, h i g h resol u t i o n e l e c t r o n energy l o s s (HREELS) (173), and Auger e l e c t r o n (AES) spectroscopi c methods a r e predominant 1.4.2.2.1.
.
_High R e s o l u t i o n E l e c t r o n Energy Loss Spectroscopy (HREELS)
The HREELS technique i s used t o examine t h e v i b r a t i o n a l modes of adsorbed molecules on f l a t surfaces. I n t h i s case, a monoenergetic e l e c t r o n beam (usual Y 2-5 eV) i s impinged on t h e s u r f a c e and t h e s p e c u l a r l y r e f l e c t e d e l e c t r o n beam i s e n e r g e t i c a l l y analyzed. The e l e c t r o n s may i n t e r a c t w i t h t h e d i p o l e f i e l d o f t h e v i b r a t i n g d i p o l e on t h e adsorbed molecules, a c h i e v i n g v i b r a t i o n a l t r a n s i t i o n . The energy o f t h e t r a n s i t i o n reduces t h e k i n e t i c energy of t h e e l e c t r o n s
A5 1 t h e v i b r a t i o n a l spectrum r e s u l t s f r o m a p l o t o f t h e e l e c t r o n c u r r e n t a g a i n s t t h e energy l o s s . S e l e c t i o n r u l e s a r e t h o s e o f i n f r a r e d spectroscopy w i t h t h e a d d i t i o n t h a t v i b r a t i o n s p a r a l l e l t o the surface a r e i n a c t i v e . Resolutions f o r HREELS i n t h e o r d e r 3-10 meV a r e p o o r e r t h a n t h o s e o b t a i n e d by i n f r a r e d spect r o s c o p y , b u t t h e l a t t e r ' s s e n s i t i v i t y i s much h i g h e r , e.g.,
a b o u t one
thousandth o f a CO inonolayer can be d e t e c t e d on a s i n g l e c r y s t a l s u r f a c e . Ano t h e r i m p o r t a n t advantage o f t h i s t e c h n i q u e i s i t s c o m p a t i b i l i t y w i t h o t h e r u l t r a h i g h vacuum e l e c t r o n s p e c t r o s c o p i e s , v i z . , LEED, XPS and AES. A g e n e r a l o v e r v i e w o f t h e HREELS technique, as w e l l as i t s a p p l i c a t i o n t o model c a t a l y s t s i s g i v e n i n c h a p t e r 3, p a r t B. 1.4.2.2.2.
Auger E l e c t r o n Spectroscopy (AES)
The AES t e c h n i q u e i s concerned w i t h t h e s t u d y o f i n e l a s t i c a l l y s c a t t e r e d e l e c t r o n s . I t i s based on t h e a n a l y s i s o f k i n e t i c energy d i s t r i b u t i o n o f t h e e l e c t r o n s e j e c t e d f r o m s o l i d s by Auger t r a n s i t i o n s . The Auger t r a n s i t i o n f o r an i s o l a t e d i o n can be r e p r e s e n t e d by t h e e q u a t i o n : Ilt(i)-
M2'(j,k)
t e-
(1.10)
where Mt i s an i o n formed by t h e l o s s o f an e l e c t r o n f r o m t h e c o r e l e v e l i, as a r e s u l t o f e l e c t r o n bombardment w i t h e n e r g i e s i n t h e 1-2 keV energy range, o r from t h e X-ray r a d i a t i o n , as o c c u r s i n X-ray p h o t o e l e c t r o n spectroscopy (XPS). The Auger process occurs, when an e l e c t r o n f r o m a h i g h e r l e v e l j f a l l s i n t o t h e c o r e l e v e l i, and t h e energy r e l e a s e d s u f f i c e s t o e j e c t an e l e c t r o n f r o m a t h i r d l e v e l k, p l a c e d above i, b u t p o s s i b l y a t t h e same l e v e l as j. The l e v e l s i , j and k a r e such t h a t t h e o v e r a l l t r a n s i t i o n would r e l e a s e energy; t h i s appears an t h e k i n e t i c energy o f t h e e j e c t e d e l e c t r o n . The e l e c t r o n a c c o u n t a b l e f o r t h e Auger t r a n s i t i o n ( i j k ) , i s known as an Auger e l e c t r o n . The energy a n a l y s i s o f t h e s e e l e c t r o n s may r e s u l t i n t h e i r chemical i d e n t i f i c a t i o n , i n t h e same manner as a n a l y s i s o f e m i t t e d c h a r a c t e r i s t i c X-rays p r o v i d e s t h i s i n f o r m a t i o n . The usual n o t a t i o n designates t h e t r a n s i t i o n by t h e symbol o f t h e atom and t h e t r i p l e t s t a t e . The p r i n c i p a l quantum numbers 1,2,3
,...
a r e denoted b y K,L,M
,...,
and
t h e t o t a l a n g u l a r momentum of t h e e l e c t r o n j = 1 t s by t h e s u b s c r i p t s 1,2,3, ...
....
corresponding t o j = 1/2, 312, 5/2, Thus, a M M L ~ Lt ~r a n s i t i o n s t a r t s w i t h and 2p h o l e s i n M. an 1s h o l e i n t h e atom W and f i n i s h e s w i t h 2p 1/2 312 As f o r XPS, an irnportant f a c t o r t o be c o n s i d e r e d i s t h e escape d e p t h of t h e e l e c t r o n s f r o m t h e s o l i d . The i n c i d e n t e l e c t r o n beam p e n e t r a t e s t h e s o l i d t o a s i g n i f i c a n t depth. However, t h e Auger e l e c t r o n s produced i n subsurface l a y e r s
w i l l have a h i g h p r o b a b i l i t y o f s c a t t e r i n g i n e l a s t i c a l l y on t h e way o u t and t h e r e f o r e w i l l n o t be observed i n t h e Auger peak. The e l e c t r o n s r e s u l t i n g from t h e Auger process have escape depths v a r y i n g from 0.5 t o 1 nm
SO
t h a t AES i s
A52
surface-sensitive.
The c o n t r i b u t i o n o f t h e v a r i o u s subsurface l a y e r s decreases
e x p o n e n t i a l l y w i t h depth. So t h e s i g n a l i s s t r o n g l y surface-monolayer dependent. For q u a l i t a t i v e a n a l y s i s , AES i s q u i t e simple. However, i f one wishes q u a n t i t a t i v e a n a l y s i s , t h e r e l a t i o n s h i p o f t h e i n t e g r a t e d Auger peak t o a s p e c i f i c numb e r o f atoms o f t h e s o l i d r e q u i r e s s u i t a b l e c a l i b r a t i o n as w e l l as c a r e f u l cont r o l o f t h e e l e c t r o n energy analyzer. Moreover, w i t h these experimental r e q u i rements, i n f o r m a t i o n about t h e chemical s t r u c t u r e o f t h e atoms a t t h e s u r f a c e can be revealed. I n every case, t h e Auger e l e c t r o n s produce a v e r y weak impulse on a p l o t o f t h e i n t e n s i t y o f secondary e l e c t r o n s versus k i n e t i c energy. To d i s c r i m a t e among these components, t h e s i g n a l i s d i f f e r e n t i a t e d by r e l a t i v e l y simp l e e l e c t r o n i c procedures, and t h e a v a i l a b i l i t y o f l o c k - i n a m p l i f i e r s make t h i s a v i a b l e process. The sharpness o f t h e Auger peaks makes t h i s f e a s i b l e by measu2 2 rement o f d I/dK as a f u n c t i o n o f K, where I i s t h e c u r r e n t o f e l e c t r o n s and K i s t h e k i n e t i c energy. An Auger t r a n s i t i o n i n such a p l o t appears as a peak f o l l o w e d by a trough
trough; t h e v o l t a g e a t t h e i n f l e c t i o n p o i n t between peak and
i s t y p i c a l o f each element and i t s environment, and t h e peak-to-trough
energy i s taken as p r o p o r t i o n a l t o t h e s u r f a c e d e n s i t y o f t h a t element. The det e c t i o n o f Auger s i g n a l s as low as 0.1% o f t h e monolayer can be performed by t h a t device. A general overview o f t h e AES technique as w e l l as several i n t e r e s t i n g a p p l i c a t i o n s a r e g i v e n i n chapter 2.
1.4.2.3.
Out-going N e u t r a l s
The impact of e l e c t r o n s on adsorbed molecules can g i v e r i s e t o d e s o r p t i o n o f n e u t r a l fragments and i o n s . The desorbed n e u t r a l s can be i d e n t i f i e d , and q u a n t i f i e d t o p r o v i d e i n f o r m a t i o n about t h e adsorbed l a y e r . The method b a s i c a l l y i n v o l v e s two consecutive steps. F i r s t l y , t h e desorbed i o n s can be d i r e c t e d w i t h a p p r o p r i a t e e l e c t r i c f i e l d s t o t h e d e t e c t o r . Secondly, t h e desorbed n e u t r a l s from t h e s u r f a c e i n a l l d i r e c t i o n s can be i d e n t i f i e d by p r e v i o u s i o n i z a t i o n . The t y p i c a l r a t i o of c o l l e c t i o n e f f i c i e n c y f o r desorbed n e u t r a l s t o desorbed i o n s can be as low as
t o lom4. Since t h e s i g n a l o f desorbed i o n s i s small, t h e
s i g n a l o f desorbed n e u t r a l s i s t o o small t o be detected. I n a d d i t i o n t o t h i s , t h e secondary i o n i z i n g beam w i l l a l s o i o n i z e t h e r e s i d u a l gas components, which u s u a l l y a r e t h e same as t h e adsorbed species. I t i s , t h e r e f o r e , r e q u i r e d t o d e t e c t t h e small s i g n a l o f t h e desorbed component on t h e background component a t t h e same m/e v a l u e i n t h e mass spectrum. The r e s u l t i n g technique, known as e l e c t r o n induced n e u t r a l d e s o r p t i o n (EID), p r o v i d e s v e r y i m p o r t a n t i n f o r m a t i o n about t h e s u r f a c e monolayer. As occurs i n AES, t h e problem o f d e t e c t i n g these v e r y small s i g n a l s overimposed t o t h e h i g h background presents a f o r m i d a b l e t a s k . 1.4.2.4.
Out-going I o n s
E l e c t r o n bombardment o f atoms and molecules a t surfaces w i l l r a i s e them t o e x c i t e d and/or i o n i z e d s t a t e s . I n t h i s case, t h e mass r a t i o o f t h e e l e c t r o n s t o
A53
-I 5
9
W
e
+N
0
Energy (eV) F i g . 1.17. EIID i o n energy d i s t r i b u t i o n f o r CO; s p e c i e s f r o m a p o l y c r y s t a l l i n e rhodium r i b b o n exposed t o 1.6 L (po2/pCo = 2 ) a t 300 K. Readapted from ref.(174). atoms i s v e r y small and hence k i n e t i c energy exchanges a r e m i n i m a l . However, t h e e l e c t r o n i c t r a n s i t i o n s , i n v o l v i n g e n e r g i e s o f 0-50 eV, a r e expected t o o c c u r because of t h e i r h i g h
cross-sections. Therefore, electrons o f energies i n the
50-100 eV energy range w i l l cause v i r t u a l l y a l l p o s s i b l e e l e c t r o n i c t r a n s i t i o n s i n t h e adsorbed components. I f t h e adsorbed atoms o r m o l e c u l e s r i s e t o an e x c i t e d o r i o n i z e d s t a t e t h e y w i l l s t i l l remain bound t o t h e s u r f a c e , b u t i f t h e y r i s e t o a d i s s o c i a t i v e s t a t e , t h e n t h e fragments may l e a v e t h e s u r f a c e as i o n s . The r e s u l t i n g i o n s can be d i r e c t e d through a mass spectrometer f o r d e t e r m i n a t i o n o f t h e i r mass and number. Consequently, t h e t e c h n i q u e i n v o l v e s p r o b i n g t h e s u r f a c e w i t h an e l e c t r o n beam i n t h e energy range o f 100 eV and a n a l y z i n g t h e desorbed i o n s by mass spectrometry. The t e c h n i q u e i s known as e l e c t r o n - i n d u c e d i o n d e s o r p t i o n (EIID) o r e l e c t r o n - s t i m u l a t e d d e s o r p t i o n ( E S D ) . The i o n s i g n a l s d e t e c t e d by t h e mass spectrometer a r i s e o n l y from t h e outermost adsorbed l a y e r ; t h e t e c h n i q u e b e i n g s e n s i t i v e t o t h e adsorbed monol a y e r . A p a r t from t h i s advantage, t h e t e c h n i q u e has two m a j o r c o n s t r a i n t s . One i s t h a t no d i r e c t i n f o r m a t i o n i s o b t a i n e d about t h e s u b s t r a t e . The second i s t h a t n o t a l l adsorbed species g i v e r i s e t o E I I D s p e c t r a . There i s c o n s i d e r a b l e c o n t r a s t between t h e l a r g e s i g n a l s observed f o r some s t a t e s o f adsorbed CO and 02, and t h e absence o f e l e c t r o n - i n d u c e d i o n s i n adsorbed n i t r o g e n . However, t h e
t e c h n i q u e p r o v i d e s v a l u a b l e i n f o r m a t i o n about t h e a d s o r p t i o n and d e s o r p t i o n p r o cesses c o n f i n e d t o t h e s u r f a c e o f model c a t a l y s t s .
A54 The E I I D technique has been w i d e l y used t o study t h e n a t u r e o f adsorbed species on w e l l d e f i n e d surfaces, e.g.,
s i n g l e c r y s t a l s and f i l m s . I n a v e r y
n i c e p i e c e o f work Van Hieu and Craig (174) have shown t h a t CO and O2 adsorbates r e a c t a t ambient temperature on p o l y c r y s t a l l i n e Rh r i b b o n s t o y i e l d adsorbed C02. They observed electron-induced d e s o r p t i o n o f CO; t
i o n s . The i o n energy d i s -
t r i b u t i o n f o r C02 i o n s i s shown i n F i g . 1.17 f o r sample exposure of 1.6 L and p a r t i a l pressures Po2/Pco = 2. I t e x h i b i t s an unusual narrow i o n energy d i s t r i b u t i o n w i t h t h e FWHM v a l u e o f 1.6 eV and a peak energy around 2.5 eV. I t was p r e v i o u s l y observed t h a t t h e r e e x i s t s a c o r r e l a t i o n between t h e adsorbate b i n d i n g energy and t h e energy peak and FWHM a s s o c i a t e d w i t h t h e i o n energy d i s t r i b u t i o n o f e l e c t r o n i c a l l y desorbed species. For instance, f o r CO chemisorbed on N i ( 1 7 5 ) , W(176) and Pd(177), t h e t r o n impact. CO
t
Ot, 0- and Cot i o n s were found t o be r e l e a s e d by e l e c -
species was observed t o o r i g i n a t e from t h e most l o o s e l y bound
o f t h e a d s o r p t i o n s t a t e s . While being r e l e a s e d from such s t a t e s , t h e Cot i o n s showed a r a t h e r narrow energy d i s t r i b u t i o n . I n c o n t r a s t , 0' was observed t o be released from t h e s t a t e o f t h e l a r g e s t b i n d i n g energy, w i t h c o n s i d e r a b l y h i g h e r energy d i s t r i b u t i o n and a much h i g h e r peak v a l u e . Therefore, t h e narrow energy d i s t r i b u t i o n found by Van Hieu and C r a i g (174) f o r Cod i o n s i s due t o t h e v e r y weak b i n d i n g between t h e r e a c t i o n p r o d u c t C02(C0 t 02-,C02) I n a d d i t i o n , t h e i o n energy d i s t r i b u t i o n o f CO;
and Rh
atoms.
ions, measured a t i n c r e a s -
i n g sample temperature, e x h i b i t e d t h e same d i s t r i b u t i o n shape, b u t t h e CO;
ion
s i g n a l d r a s t i c a l l y increased. T h i s i s due t o t h e f a c t t h a t t h e h e a t i n g o f t h e sample p r i o r t o e l e c t r o n bombardment undoubtedly promoted t h e o x i d a t i o n r e a c t i o n o f CO by 02, thus i n c r e a s i n g t h e amount o f C02 formed, which then c o n t r i b u t e s t o t h e increase of t h e CO;
i o n s d e t e c t e d by t h e mass spectrometer.
A r e c e n t development o f t h e E I I D technique i n v o l v e s measurement o f angular v a r i a t i o n s i n t h e i o n d e s o r p t i o n (ESDIAD) , e l e c t r o n s t i m u l a t e d d e s o r p t i o n i o n angular d i s t r i b u t i o n . The angular d i s t r i b u t i o n o f e l e c t r o n induced i o n desorpt i o n may r e f l e c t t h e a n i s o t r o p y o f t h e f i n a l s t a t e o r t h e asymmetry o f t h e r e l a x a t i o n process. Arguments have a l s o been p u t f o r w a r d which r e l a t e t h e ESDIAD p a t t e r n t o t h e symmetry o f t h e a d s o r p t i o n s i t e i n t h e ground s t a t e , thus d i s playing directional properties. 1.4.3.
In-going Neutrals The techniques i n v o l v i n g n e u t r a l probes have a l i m i t e d use because o f t h e
r e l a t i v e l y g r e a t d i f f i c u l t y i n producing and c o n t r o l l i n g n e u t r a l p a r t i c l e beams. Among these, neutron i n e l a s t i c s c a t t e r i n g (NIS), atom beams (AB) and m o l e c u l a r beams (MB), have been a p p l i e d t o t h e s t u d y o f c a t a l y t i c surfaces.
A55
Fig. 1.18. Neutron i n e l a s t i c s c a t t e r i n g s p e c t r a obtained w i t h EUROCAT 6 w t % Pt/SiO2 c a t a l y s t a f t e r H2 a d s o r p t i o n a t 300 K and coverages o f 1.0 monolayer(a); and 0.3 monolayer ( b ) . Both s p e c t r a were recorded a t 100 K. Readapted from r e f . (185). 1.4.3.1.
Out-going Neutral s
1.4.3.1 .l. N e u t r o n - I n e l a s t i c S c a t t e r i n g (NIS) The N I S spectroscopy i s e s p e c i a l l y s u i t e d f o r t h e study o f adsorbed molec u l e s on surfaces (178-183). Due t o t h e l a r g e incoherent cross-section o f hydrogen atoms, t h e technique has been m o s t l y a p p l i e d t o t h e s t u d y o f hydrogen ads o r p t i o n on P t (178, 183), Pd(179, 183, 184) and Ni(181). An i n t e r e s t i n g example on t h e a p p l i c a t i o n o f N I S t o t h e a d s o r p t i o n o f H2 on t h e EUROCAT 6% Pt/Si02 c a t a l y s t has
r e c e n t l y been r e p o r t e d b y Renouprez and
J o b i c (185). The difference spectra a t coverages o f 0.3 and 1.0 monolayer ( F i g . 1.18) show peaks a t ca. 67 ( w i t h shoulders a t ca. 60 meV), 85, 125, 160 and 275 meV. I n agreement w i t h l i t e r a t u r e data f o r t h e a d s o r p t i o n o f H2 on Pd(100) (184) and t h e frequency v i b r a t i o n s c a l c u l a t e d by Nordlander e t a1
. (186)
f o r H-atoms
s i t t i n g i n t h e c e n t e r o f C4v s i t e s , t h e 67 and 85 meV peaks were assigned t o t h e p a r a l l e l and perpendicular v i b r a t i o n s a t t h e C4v o f Pt(100) faces. The shoulder a t 60 meV must be due t o v i b r a t i o n o f H-atoms with even h i g h e r c o o r d i n a t i o n than i n a C4v symmetry. To e x p l a i n t h i s , two i n t e r p r e t a t i o n s were advanced. The f i r s t assumes a t o t a l l y degenerate v i b r a t i o n l i k e t h a t o f H- atoms i n octahedral s i t e s (183), and t h e second considers an H-atom l o c a t e d i n a s i t e j u s t below t h e surface a t t h e c e n t e r o f a square-based pyramid a t t h e P t (100) f a c e (Scheme 1 ) . On t h e o t h e r hand, t h e assignment o f t h e 125 and 160 meV peaks t o t h e asymmetric s i t e i s commonly accepted (183, and symmetric s t r e t c h i n g o f H-atoms i n a C 3v 186, 187). The peak a t 85 meV has been e x p l a i n e d as due t o H-atoms i n a Cpv
A56 SCHEME 1. C o n f i g u r a t i o n o f P t S i t e s f o r Hydrogen Adsorption. Symmetry
C
cov
c2v
c3v
Subsurface
c4v
symmetry. The t h r e e expected v i b r a t i o n a l modes and t h e proposed frequencies agreed r a t h e r w e l l w i t h t h e N I S spectra: wagging mode a t 80 meV, symmetric s t r e t c h a t 120 meV and asymmetric s t r e t c h a t 160 meV. Since an equal N I S i n t e n s i t y should be expected f o r t h e t h r e e v i b r a t i o n s , t h e observed N I S i n t e n s i t y c o n t a i n s a l s o c o n t r i b u t i o n s from t h e C3v s i t e . F i n a l l y , t h e N I S peak a t ca. 275 meV was assigned t o a t e r m i n a l hydrogen (Cmv). From t h e above example i t i s c l e a r t h a t t h e c l a s s i c a l concept o f H-atoms s i t t i n g on t o p o f a P t atom t o form a monolayer is a rough approximation. The p i c t u r e revealed by NIS s p e c t r a i s more complex; t h e p r o p o r t i o n of t h e d i f f e r e n t s i t e s depends s t r o n g l y on c r y s t a l l o g r a p h y . Hence, t h e H / P t s t o i c h i o m e t r i e s above
1, commonly found when P t atoms a r e t i t r a t e d by H2 chemisorption, a r e p e r f e c t l y explained. The N I S technique has a1 so been used by W r i g h t e t a1 p r e f e r e n t i a l l o c a t i o n o f adsorbed Xe i n z e o l i t e rho. The
.
(182) t o reveal t h e
Dt -form o f t h e z e o l i t e
was exposed t o Xe gas, and approximately 6 Xe atoms were r e t a i n e d p e r u n i t c e l l . The neutron powder p r o f i l e s were recorded w i t h t h e sample a t 5K and 210K. A t 5K, a l l t h e Xe atoms were found t o be l o c a t e d a t t h e c e n t r e o f t h e octogonal prism. A t 210 K t h e degree o f occupancy o f t h i s s i t e decreased t o ca. 70% o f i t s former value, and a d d i t i o n a l s i t e s i n t h e supercage, j u s t o u t s i d e t h e octogonal prism, became p a r t i a l l y occupied. From these r e s u l t s , i t can be concluded t h a t , w i t h adequate neutron f l u x and v a r i a b l e temperature o f t h e sample, i n s i t u s t u d i e s o f t h e l o c a t i o n , movement and f r a g m e n t a t i o n o f molecules adsorbed i n z e o l i t e s might be possible, thereby g i v i n g g r e a t e r i n f o r m a t i o n on t h e dynamics o f c a t a l y t i c changes under r e a c t i o n c o n d i t i o n s . 1.4.3.1.2.
Molecular Beams (MB)
The experimental technique known as molecular beam (MB) spectrometry has become i n c r e a s i n g l y used i n t h e study o f t h e r a t e s and mechanisms o f s u r f a c e chemical r e a c t i o n s . Another a p p l i c a t i o n o f MB i s t h e n o n - r e a c t i v e i n e l a s t i c s c a t t e r i n g which r e v e a l s i m p o r t a n t i n f o r m a t i o n about t h e gas-sol i d energy exchange. The MB technique has been reviewed e x t e n s i v e l y (188-190).
It bassically
c o n s i s t s o f a w e l l - c o l l i m a t e d molecular beam i n t e r r u p t e d p e r i o d i c a l l y t o gene-
A57
L
1 Electrons: INS1 [Photons : IIR,PIX
1 \
I Neutrals: Sputtering 1
/
I Ions: ISS.RBS,SIMSI
F i g . 1.19. Sketch summarizing t h e general group o f t e c l i n i q u e s i n v o l v i n g i n - g o i n g i o n probes.IIR, i o n induced r a d i a t i o n ; P I X , p r o t o n induced X-rays; INS, i o n n e u t r a l i z a t i o n spectroscopy; ISS, i o n s c a t t e r i n g spectroscopy; RBS, R u t h e r f o r d b a c k s c a t t e r i n g spectroscopy; SIMS, secondary i o n mass spectroscopy. r a t e bem i n t e n s i t y modulation. T h i s process t i m e - t a g s t h e c r e a t i o n o f t h e i n p u t r e a c t a n t beam and p r o v i d e s a t i m e r e f e r e n c e f o r r e a c t i o n r a t e measurements. The modulated beam impinges upon t h e sample surface, which has been c l e a n e d and i s m a i n t a i n e d i n an u l t r a - h i g h vacuum environment, i n o r d e r t o ensure t h a t i t s c h a r a c t e r i s p r e s e r v e d t h r o u g h o u t t h e experiment. The modulated beam i n t e r a c t s w i t h t h e sample s u r f a c e and t h e s c a t t e r e d p r o d u c t s a r e d e t e c t e d by a mass spect r o m e t e r tuned t o t h e mass o f i n t e r e s t . A r e c e n t r e f i n e m e n t of t h i s t e c h n i q u e has been a p p l i e d by Sawin and M e r r i l l (191) i n a s t u d y o f t h e decomposition o f h y d r a z i n e on I r ( l l 1 ) . They demonstrated t h e power o f t h e F o u r i e r t r a n s f o r m t e c h n i q u e i n t h e a n a l y s i s o f MB data. F u r t h e r a n a l y s i s o f t h e F o u r i e r t r a n s f o r m method, as a p p l i e d t o modulated m o l e c u l a r beam s p e c t r o m e t r y ( 1 9 2 ) , l e d t o substant i a l improvements, which i n c r e a s e b o t h t h e accuracy and t h e g e n e r a l i t y o f t h e MB technique. 1.4.4.
In-going Ions I o n beams c o n s t i t u t e an i m p o r t a n t c l a s s o f s u r f a c e probes. As i n t h e case
o f photon o r e l e c t r o n probes, i o n beams can e m i t t h e f o u r t y p e s of p a r t i c l e s (photons, e l e c t r o n s , n e u t r a l s and i o n s ) ( F i g . 1.19). Among t h e s e , t h e most simp l e c o n f i g u r a t i o n i n v o l v e s t h e d e t e c t i o n o f e m i t t e d i o n s . When comparing i n going i o n t e c h n i q u e s w i t h those i n v o l v i n g i n - g o i n g photon o r e l e c t r o n t e c h n i ques, t h e m a j o r d i f f e r e n c e i s t h a t an i m p o r t a n t k i n e t i c energy exchange can o c c u r , because t h e masses o f t h e i o n p r o j e c t i l e s a r e comparable t o t h o s e o f t h e
A58 surface atoms. This energy exchange may cause i r r e v e r s i b l e s u r f a c e damage by s p u t t e r i n g . I t i s c r u c i a l , t h e r e f o r e , t o keep t h e k i n e t i c energy o f t h e i o n s a t a l e v e l a t which t h e s u r f a c e i s n o t destroyed b e f o r e t h e i n f o r m a t i o n i s obtained. 1.4.4.1. 1.4.4.1.1.
Out-going Photons Ion-Induced X-rays ( I I X R )
Ion-induced X-rays ( I I X R ) a n a l y s i s i s a r e l a t i v e l y simple technique t o apply i n an a c c e l e r a t o r l a b o r a t o r y , I t i s based on t h e e x c i t a t i o n of charact e r i t s t i c X-rays w i t h an i n c i d e n t i o n possessing g r e a t e r energy than t h e b i n d i n g energy o f core e l e c t r o n s i n t h e sample atoms. Protons (PIX) a r e used most f r e q u e n t l y (193), b u t h e a v i e r i o n s may have advantages i n some cases ( 5 9 ) . I n these cases, t h e r e l a t i v e l y weak I I X R s i g n a l s r u l e o u t t h e use o f d i s p e r s i v e a n a l y z e r s The i n s t r u m e n t a t i o n c o n s i s t s o f a cooled S i ( L i ) d e t e c t o r u s u a l l y i n i t s vacuum chamber and separated from t h e a c c e l e r a t o r by t h i n Be windows. Although t h e r e s o l u t i o n a t t a i n a b l e w i t h t h e S i ( L i ) d e t e c t o r i s c o n s i d e r a b l y h i g h e r than t h a t o f t h e e l e c t r o n spectrometers (more than two hudred), i t i s f r e q u e n t l y adequate f o r qua1 i t a t i v e a n a l y s i s . T h i s r e p r e s e n t s an i n t e r e s t i n g example o f t h e r e l a t i o n s h i p between s e n s i t i v i t y and r e s o l u t i o n . Ifone attempts t o use t h i s t y p e o f r e s o l u t i o n w i t h e l e c t r o n spectrometers, t h e i n c r e a s e i n background n o i s e would be dramatic. U n l i k e t h e b a c k s c a t t e r i n g , t h e energies o f t h e observed X-rays a r e charact e r i s t i c o n l y o f t h e elements p r e s e n t i n t h e samples and n o t o f t h e i r depth d i s t r i b u t i o n , T h i s f e a t u r e i s e x p l o i t e d t o p r o v i d e f o r elemental i d e n t i f i c a t i o n , e s p e c i a l l y i n cases where h i g h mass numbers cause d i f f i c u l t i e s u s i n g e l a s t i c i o n b a c k s c a t t e r i n g o r i n o t h e r cases t o i d e n t i f y l i g h t e r elements which may be masked by o t h e r masses i n o v e r l a p p i n g b a c k s c a t t e r i n g d i s t r i b u t i o n s . I t i s a l s o p o s s i b l e t o g e t q u a n t i t a t i v e i n f o r m a t i o n o f an element from
X-ray data. I n general, c o r r e c t i o n s a r e r e q u i r e d f o r decreasing c r o s s s e c t i o n and i n c r e a s i n g X-ray a b s o r p t i o n as a f u n c t i o n o f depth i n t h e s o l i d , except f o r cases o f elements deposited o n l y i n a t h i n l a y e r near t h e surface. 1.4.4.2.
Out-going E l e c t r o n s
It i s r a t h e r w e l l e s t a b l i s h e d t h a t i o n s impinging on a s u r f a c e cause e l e c -
t r o n emission. However, t h i s p a r t i c u l a r probe c o n f i g u r a t i o n has n o t been l a r g e l y e x p l o i t e d , m a i n l y because i t i s much e a s i e r t o produce secondary e l e c t r o n s by an i n c i d e n t e l e c t r o n beam. There e x i s t s another process, c a l l e d i o n n e u t r a l i z a t i o n (INS), c o n s i s t i n g b a s i c a l l y o f t h e n e u t r a l i z a t i o n o f l o w energy i o n s when approaching t h e s u r f a c e (194). The n e u t r a l i z a t i o n energy can be t r a n f e r r e d t o a s u r f a c e e l e c t r o n , and i f t h i s energy surpassesa t h r e s h o l d , t h e e l e c t r o n can be emitted. The a n a l y s i s o f t h e k i n e t i c energy o f t h e out-going e l e c t r o n s r e v e a l s
A59
i n f o r m a t i o n about t h e e l e c t r o n i c p r o p e r t i e s o f t h e s u r f a c e . The e x p e r i m e n t a l c o n f i g u r a t i o n o f I N S i s n o t simple, and t h e t e c h n i q u e has been a p p l i e d t o a l i m i t e d number of systems. F i n a l l y , i t i s i m p o r t a n t t o emphasize t h a t t h e p i o neer work of Hagstrum (194) on I N S was q u i t e s i g n i f i c a n t , b u t i t became o v e r shadowed by t h e advent, i n t h e e a r l y ~ O ' S , o f t h e newer s p e c t r o s c o p i c methods, r e g a r d i n g i n - g o i n g e l e c t r o n s ( s e e S e c t i o n 1 . 4 . 2 ) , as w e l l as t h e i n - g o i n g phot o n s (see S e c t i o n 1.4.1) capable o f s u p p l y i n g s i m i l a r i n f o r m a t i o n . 1.4.4.3.
Out-going N e u t r a l s
Most o f t h e d e s o r p t i o n p r o d u c t s f r o m ion-bombarded s u r f a c e s i n v o l v e neut r a l p a r t i c l e s . These p a r t i c l e s can be a n a l y z e d i n a s i m i l a r manner as i s done w i t h i o n s i n I S S , RBS and S I M S ( s e e S e c t i o n 1.4.5).
However, i n t h i s case ana-
l y s i s o f t h e desorbed n e u t r a l s i s much more d i f f i c u l t . I f one a t t e m p t s t o i o n i z e a small f r a c t i o n o f t h e n e u t r a l p a r t i c l e s l e a v i n g t h e s u r f a c e and t h e n analyzes t h e r e s u l t i n g i o n s , one w i l l encounter a s e r i o u s problem. T h e r e f o r e t h e s u r f a c e t e c h n i q u e s i n v o l v i n g i n - g o i n g i o n s and o u t - g o i n g n e u t r a l s a r e r e c e i v i n g scarce a t t e n t i o n . 1.4.5.
In-going Ions
1.4.5.1. 1.4.5.1.1.
Out-going I o n s I o n - S c a t t e r i n g Spectroscopy (1%)
T h i s t e c h n i q u e p r o v i d e s o n l y an atomic i d e n t i f i c a t i o n as t h e b i n a r y c o l l is i o n c a r r i e s no d i r e c t chemical t n f o r m a t i o n . I n p r i n c i p l e , a l l elements can be analysed from E1/Eo measurement, b u t i n p r a c t i c e elemental r e s o l u t i o n i s a lim i t i n g f a c t o r ( 1 9 5 ) . The a b s o l u t e and r e l a t i v e s e n s i t i v i t i e s of elements i n ISS depend on t h e s c a t t e r i n g c r o s s - s e c t i o n s f o r t h e i n c i d e n t i o n and on t h e i o n n e u t r a l i z a t i o n p r o b a b i l i t y . The s c a t t e r i n g c r o s s - s e c t i o n s i n c r e a s e w i t h i n c r e a s i n g p r o j e c t i l e mass and w i t h decreasing s c a t t e r i n g angle, b u t v a l u e s cannot be a c c u r a t e l y determined. The n e u t r a l ' i z a t i o n o f t h e i n c i d e n t i o n can a1 so o c c u r as i t approaches t h e s u r f a c e t o be analyzed, e.g.,
by Auger i o n n e u t r a l i z a t i o n ,
t h u s decreasing t h e d e t e c t e d s c a t t e r i n g i o n c u r r e n t . Using t h e ISS t e c h n i q u e one can g a t h e r i n f o r m a t i o n on t h e t y p e o f atoms exposed a t t h e o u t e r l a y e r o f c a t a l y s t s u r f a c e s and t h o s e which a r e p o s i t i o n e d i n t h e second o r deeper l a y e r s . S h e l e f e t a l . (196) were t h e f i r s t surface
tG
present
examination o f s e v e r a l s p i n e l s by ISS. The t e c h n i q u e has been promp-
t l y a p p l i e d by s e v e r a l r e s e a r c h e r s t o s t u d y t h e h i g h l y d i s p e r s e d components i n
inany supported c a t a l y s t s (197-203). Among these, molybdenum-based h y d r o t r e a t i n g c a t a l y s t s were e x t e n s i v e l y s t u d i e d . To i l l u s t r a t e t h i s , t h e I S S s p e c t r a of a commercial CoMo/A1203 c a t a l y s t reduced by hydrogen a t v a r i o u s temperatures were recorded
t
( 2 0 3 ) . I n t h i s case, t h e samples were bombarded w i t h He
ions, w i t h
an energy o f 1 keV and a t o t a l c u r r e n t o f 10 nA, a t normal i n c i d e n c e ; t h e i o n s
A60
0
.. I:
:.
..
a2
1
1
I
04
0.6
I
573
I
m
LC*a.
O8 E1/Eo14
I
I
I
973
Reduction Temperature (K)
F i g , 1.20. A ) I o n s c a t t e r i n g s p e c t r a o f CoMo/Al203 c a t a l y s t reduced by H a t 673 K ( a ) and 1073 K ( b ) . Dependence o f t h e r e d u c t i o n t e m p e r a t u r e o f c a t a f y s t on t h e (Mo/A1)ISS (B) and ( C O / M O ) ~ (~c ~) i n t e n s i t y r a t i o s . b a c k s c a t t e r e d i t a c o n i c a l s o l i d a n g l e o f 138" t o t h e p r i m a r y beam d i r e c t i o n b e i n g d e t e c t e d . F i g . 1.20A shows two t y p i c a l ISS s p e c t r a o f an i n d u s t r i a l CoMo/ A1203 c a t a l y s t reduced b y hydrogen a t 673
t
K. The d i s t r i b u t i o n o f He i o n s s c a t -
t e r e d b y t h e s u r f a c e atoms (0, A l , Co and Mo) i s g i v e n i n F i g . 1.20A. t i o n o f t h e energy r a t i o (E1/EO).
as a f u n c -
The ISS peak a r e a s have been e v a l u a t e d f o r t h e
d i f f e r e n t s u r f a c e atoms. From t h e s p e c t r a o f t h e sample s u b j e c t e d t o such ex-
A61
treme H2-petreatments i t r e s u l t s t h a t t h e Co i n t e n s i t y d i d n o t change essent i a l l y a f t e r H 2 - r e d u c t i o n , whereas a s t r o n g decrease o f Mo i n t e n s i t y was observed i n t h e c a t a l y s t reduced a t t h e h i g h e s t temperature. The i n t e n s i t i e s o f Mo r e l a t i v e t o A1 (Mo/A1)ISS,
and Co r e l a t i v e t o Mo ( C O / M O ) a~ r~e ~g i v e n i n F i g .
1.208 and C, r e s p e c t i v e l y , as a f u n c t i o n o f t h e r e d u c t i o n temperature.
I t should be n o t e d t h a t an i m p o r t a n t decrease o f t h e (Mo/A1)ISS r a t i o occurs a t temperatures above 673 K, whereas an o p p o s i t e t r e n d i s observed r e g a r d i n g t h e ( C O / M O ) r~a~t i~o . Such b e h a v i o u r i s n o t s u r p r i s i n g , because t h e (Co/ r a t i o s remained e s s e n t i a l l y unchanged. T h i s s u r p r i s i n g r e s u l t can be e x p l a i n e d by t h e s u p e r p o s i t i o n o f two a n t a g o n i s t i c phenomena. On t h e one hand, m e t a l l i c Co from t h e i n t e r a c t i n g Co-Mo phase p r o g r e s s i v e l y s i n t e r s . B u t , on t h e o t h e r hand, "new" m e t a l l i c Co i s formed by r e d u c t i o n o f t h e CoA1204 phase p r e s e n t a t t h e alumina i n t e r f a c e . T h i s l a t t e r phenomenon is much more marked a t h i g h e r r e d u c t i o n temperatures.
As r e v e a l e d b y chemical a n a l y s i s , t h e Mo c o n t e n t o f t h e c a t a l y s t s reduced a t t h e h i g h e s t temperatures d i d n o t change, i n d i c a t i n g t h a t no s u b l i m a t i o n o c c u r s f o r Mo upon h e a t i n g . T h i s f i n d i n g l e a d s t o t h e c o n c l u s i o n t h a t t h e l a r g e decrease o f t h e (Mo/A1)ISS
r a t i o observed a t r e d u c t i o n temperatures above 803 K
i s due t o t h e s t r o n g s i n t e r i n g o f t h e Moo2 s p e c i e s r e s u l t i n g from t h e r e d u c t i o n o f molybdena; t h e Moo2 b u l k - l i k e phase b e i n g t h e n much more d i f f i c u l t t o reduce. Many o t h e r examples o f r e l e v a n t a p p l i c a t i o n s t o t h e s t u d y o f s u r f a c e phenomena, e.g.,
a d s o r p t i o n . d e s o r p t i o n and phase s e g r e g a t i o n , as w e l l as c a t a l y s t s
c h a r a c t e r i z a t i o n have been r e c e n t l y reviewed b y H o r r e l l and Cocke ( 2 0 4 ) . I t i s i m p o r t a n t t o emphasize t h a t i n most cases t h e i n f o r m a t i o n p r o v i d e d by ISS cann o t be g a i n e d by o t h e r techniques, because o f i t s u n i q u e s u r f a c e s e n s i t i v i t y . However, t h e l a c k o f chemical i n f o r m a t i o n f r o m t h e ISS s p e c t r a and i t s semiquant i t a t i v e c h a r a c t e r i s an i m p o r t a n t shortcoming o f t h e t e c h n i q u e . TO overcome t h i s d i f f i c u l t y , I S S i s o f t e n used j o i n t l y w i t h XPS
and Raman spectroscopy. O f
p a r t i c u l a r i n t e r e s t i s t h e use of t h e XPS t e c h n i q u e a t a v e r y l o w t a k e - o f f a n g l e , which p r o v i d e s chemical i n f o r m a t i o n a b o u t t h e t o p 2-3 a t o m i c l a y e r s . 1.4.5.1.2.
R u t h e r f o r d B a c k s c a t t e r i n g (RBS)
The h i g h energy v e r s i o n o f i o n s c a t t e r i n g (RBS) uses a beam o f a c c e l e r a t e d low mass i o n s (H',
He+, He2+) w i t h an energy between 0.5 and 5 MeV (205-207).
Some o f t h e i o n s a r e b a c k s c a t t e r e d a f t e r c o l l i s i o n s w i t h t a r g e t atoms and a r e analyzed a t t h e d e t e c t o r . The s c a t t e r i n g process is a g a i n b i n a r y , however, a t t h i s energy t h e b a c k s c a t t e r i n g mechanism i s t r i g g e r e d f r o m t h e nucleus. T h i s means t h a t i o n s d i r e c t l y s t r i k i n g t h e nucleus a r e b a c k s c a t t e r e d , b u t most of t h e p r o j e c t i l e s s u f f e r small a n g l e s c a t t e r i n g , l o s e energy, t r a v e l on i n t o t h e l a t t i c e , and a f t e r a s e r i e s o f c o l l i s i o n s can be e v e n t u a l l y b a c k s c a t t e r e d . As i t occurs i n ISS, d i f f e r e n t masses of n u c l e i , i . e . d i f f e r e n t elements, can t h u s
A62
0
xl
1.5
A
Fe
24
&
Energy (Me'
F i g . 1.21. Rutherford backscattering spectrum f o r a t h i n MoS2 sputter-deposited f i l m . Conditions: He' ions normally i n c i d e n t a t 3.0 MeV and scattered ions detected a t 135" by a s u r f a c e - b a r r i e r diode detector. Note t h e scale f a c t o r f o r other than Mo and Si peaks. The sample l a y e r c o n f i g u r a t i o n i s i n d i c a t e d a t t h e upper l e f t . Readapted from r e f . (209). be i d e n t i f i e d by the energy o f the backscattered ion. I n a d d i t i o n , RBS, allows t o determine t h e composition o f the t a r g e t (208, 209). The number o f backscattered and detected p a r t i c l e s i s r e l a t e d t o t h e number o f i n c i d e n t p a r t i c l e s , t o the d i f f e r e n t i a l Rutherford s c a t t e r i n g cross section, t o the acceptance angle o f the detector and, of course, t o t h e concentration o f t a r g e t atoms o f the respective elements. As an i l l u s t r a t i o n o f t h i s technique, F i g . 1.21 shows t h e RBS spectrum f o r 2 a t h i n (401~9cm- ) MoS2 sputter-deposited f i l m (209). Since t h i s a n a l y s i s i s confined t o a r e l a t i v e l y t h i n l a y e r , i t provides a good example o f t h e e f f e c t s o f the e l a s t i c c o l l i s i o n process i n t h e i d e n t i f i c a t i o n o f t h e elements present w i t h i n the f i l m . As t h e He2+ p r o j e c t i l e s are s c a t t e r e d i n t o a narrow angular range, they w i l l have an energy dependent o n l y upon t h e mass of the nucleus from which they were scattered. This determines t h e energy spectrum o f t h e scattered ions, i n which each peak corresponds to a r e l e v a n t element. Another important f a c t o r t o be considered i s t h e r o l e o f energy loss, which defines t h e depth a t which t h e p a r t i c u l a r s c a t t e r i n g event took place. T h i s energy l o s s i s due t o i n e l a s t i c c o l l i s i o n s o f He2+ ions with the atoms present i n t h e f i l m .
I n this
A63
case, t h e r e l a t i v e l y t h i n MoS2 l a y e r d i s p l a y s RBS peaks w i t h an energy w i d t h n o t s i g n i f i c a n t l y g r e a t e r t h a n t h e energy r e s o l u t i o n o f t h e d e t e c t o r . However, f o r t h i c k e r l a y e r s , both t h e incoming and s c a t t e r e d He2+ i o n s l o s e energy a c r o s s t h e d i s t a n c e between t h e s u r f a c e and t h e s c a t t e r i n g atom, causing t o a broad d i s t r i b u t i o n of energy. T h i s d i s t r i b u t i o n c o n t a i n s a l a r g e amount o f i n f o r m a t i o n on t h e energy process. Thus, i t i s p o s s i b l e t o q u a n t i f y t h e d e p t h a t which t h e s c a t t e r i n g process t o o k p l a c e i n terms o f t h e energy loss i n t h e s c a t t e r e d He2+ i o n s as compared t o t h o s e s c a t t e r e d a t t h e s u r f a c e , f o r which no i n e l a s t i c l o s s e s occurred. F o r l o w e n e r g e t i c He2+ ions, i.e.,
below 3MeV. t h e e l a s t i c c o l l i s i o n p r o 2+
cess i s due e n t i r e l y t o t h e e l e c t r o s t a t i c r e p u l s i v e f o r c e s between t h e He
i o n s and t h e nucleus and does n o t i n v o l v e an a c t u a l c o n t a c t between t h e p r o j e c t i l e and t h e t a r g e t atoms. The advantage o f t h e p u r e l y e l e c t r o s t a t i c s c a t t e r i n g i s t h a t i t s p r o b a b i l i t y depends e x c l u s i v e l y on t h e atomic number of t h e n u c l e u s and n o t on s p e c i f i c n u c l e a r p r o p e r t i e s . T h e r e f o r e , f o r a g i v e n element t h e c r o s s s e c t i o n o f s c a t t e r i n g can be c a l c u l a t e d q u i t e s i m p l y . I t s h o u l d be emphasized t h a t a Z 2 dependence o f t h e c r o s s s e c t i o n s makes t h e process v e r y s e n s i t i v e f o r h e a v i e r elements , b u t p r o p o r t i o n a t e l y l e s s f o r l i g h t e r elements. T h i s e f f e c t i s observed i n F i g . 1.21 where t h e Au-peak i n d i c a t e s t h e presence of o n l y a b o u t 0.04% Au compared t o about 50% f o r t h e 0-peak. I n t h i s l a t t e r case, t h e s e n s i t i v i t y i s lowered b y t h e s u p e r p o s i t i o n o f t h e 0-peak f r o m t h e t h i n f i l m w i t h t h e broad d i s t r i b u t i o n f r o m t h e t h i c k u n d e r l y i n g s i l i c o n s u b s t r a t e . Note a l s o t h a t t h e s i l i c o n s u b s t r a t e was p r e v e n t e d f r o m i n t e r f e r i n g w i t h o t h e r elements by p l a c i n g a g r a p h i t e l a y e r on i t s s u r f a c e p r i o r t o d e p o s i t i n g t h e t h i n MoS2 film.
1.4.5.1.3. Secondary I o n Mass Spectroscopy ( S I M S ) I n t h e SIMS t e c h n i q u e a beam o f e n e r g e t i c i o n s , i . e . ,
Ar
+
t y p i c a l l y i n the
2-20 keV range, s t r i k e s t h e sample surface, p e n e t r a t e s t h e subsurface l a y e r s
and l o s e s energy by i n e l a s t i c c o l l i s i o n s w i t h t h e atoms. The energy t r a n s f e r r e d f r o m t h e l a t t i c e causes p a r t i c l e e j e c t i o n f r o m t h e s u r f a c e . Most o f t h e s e w i l l be n e u t r a l s , b u t a small f r a c t i o n a r e p o s i t i v e o r n e g a t i v e i o n s , which can be e a s i l y analyzed by a quadrupole mass spectrometer. The SIMS techniques, as a p p l i e d t o s u r f a c e a n a l y s i s , have been t h e s u b j e c t o f s e v e r a l r e v i e w s ( 6 4 , 210213). A comparison o f t h e advantages and disadvantages o f S I M S i n r e s p e c t t o t h e o t h e r i o n s c a t t e r i n g t e c h n i q u e s i s shown i n Table 1.6. SIMS analyses a r e performed i n e i t h e r o f two d i s t i n c t modes, i . e . s t a t i c o r dynamic. I n t h e s t a t i c mode, t h e p r i m a r y c u r r e n t d e n s i t y i s s u f f i c i e n t l y low t o ensure a small s p u t t e r i n g r a t e as compared t o t h e d a t a a c q u i s i t i o n r a t e (214). I n t h i s case, t h e r e l a t i v e i n t e n s i t i e s of a l l t h e monomer a n d c l u s t e r i o n s a r e recorded. From t h i s i n f o r m a t i o n , a p a r t from elemental c o m p o s i t i o n , chemical
TABLE 1.6.
Comparison of the Advantages and Disadvantages of the Ion Scattering Technique I ss
RBS
Advantages
-
Disadvantages Scattering cross sections not well understood; only semiquantitative - i n t r i n s i c a l l y destructive moderate l a t e r a l resolution ( 0 . 1 mm) - poor mass resolution f o r heavier el ements
-
-
-
Accurately known Rutherford crosssections - a t 100-300 keV quantitative with submonolayer s e n s i t i v i t y - beam damage very small ~~
SIMS
-
Single binary c o l l i s i o n interaction probing depth r e s t r i c t e d t o mono1ayer 0.01-0.001 monolayer s e n s i t i v i t y isotope separation detection of a l l elements except H and He
- Extreme surface s e n s i t i v i t y ( -
-
-
mono1 ayer) detection of a l l elements and isotopes good l a t e r a l resolution (1 urn) simultaneous depth profiling in the dynaini c mode limited chemical information; from peak i n t e n s i t i e s
An accelerator i s required
- no d i r e c t chemical information
~~~~
poor l a t e r a l resolution (-1 m) ~
- I n t r i n s i c a l l y destructive - SIMS intensity strongly dependent on the environment, making quantitative analysis d i f f i c u l t
A65
s t a t e and s h o r t range s u r f a c e o r d e r d a t a can u s u a l l y be o b t a i n e d . F o r i n s t a n c e , f o r CO a d s o r p t i o n on N i , Hopster and B r u n d l e (215) found CO c o n t a i n i n g secondary i o n s i n SIMS s p e c t r a , i f CO was m o l e c u l a r l y adsorbed, whereas no such s p e c i e s were observed i n t h e case o f d i s s o c i a t i o n o f CO m o l e c u l e s . I n dynamic S I M S t h e s p u t t e r i n g r a t e i s k e p t h i g h , t h u s t h e i n f o r m a t i o n corresponds t o a p r o f i l e t h r o u g h o u t t h e s p u t t e r e d depth. Thus, t h e o b j e t i v e o f t h i s t y p e o f experiment
is t o o b t a i n an a t o m i c c o m p o s i t i o n depth p r o f i l e . An i m p o r t a n t p o i n t t o be cons i d e r e d h e r e is t h a t t h e secondary i o n y i e l d s a r e s t r o n g l y dependent on t h e chem i c a l s t a t e o f t h e elements a t t h e s u r f a c e . T h e r e f o r e , i f t h e chemical s t a t e o f a g i v e n element changes w i t h depth, t h e n i t s a t o m i c c o n c e n t r a t i o n p r o f i l e w i l l be d i s t o r t e d by changes o f t h e secondary i o n y i e l d s . S t a t i c SIMS nieasurements were used r e c e n t l y t o c h a r a c t e r i z e s u p p o r t e d metal o x i d e c a t a l y s t s (216, 217). The h i g h s u r f a c e s e n s i t i v i t y o f t h e s t a t i c SIMS t e c h n i q u e has been e x p l o i t e d by Rodrigo e t a l . (216) t o r e v e a l t h e changes i n t h e d i s p e r s i o n o f molybdena i n s i l i c a and alumina-supported molybdena c a t a l y s t s s u b j e c t e d t o c a l c i n a t i o n and w a t e r t r e a t m e n t s . They found a r e v e r s i b l e v a r i a t i o n o f t h e MOO'/MO+
r a t i o s on Mo/Si02 c a t a l y s t s as a f u n c t i o n o f t h e c a l c i n a t i o n -
h y d r a t i o n t r e a t m e n t s , w h i l e t h e s e r a t i o s remained e s s e n t i a l l y unchanged i n Ho/Al 203 p r e p a r a t i o n s . These r e s u l t s i n d i c a t e i m p o r t a n t d i f f e r e n c e s i n t h e nat u r e o f supported nlolybdena s p e c i e s s t a b i l i z e d by t h e s e s u p p o r t s . On Mo/A1203 c a t a l y s t s t h e s t r u c t u r e s o f supported molybdena s p e c i e s a r e s t a b l e , w h i l e t h e y undergo d r a s t i c m o d i f i c a t i o n s as a f u n c t i o n o f c a l c i n a t i o n - h y d r a t i o n t r e a t m e n t s on Mo/Si02 c a t a l y s t s . S t a t i c SIMS was a l s o used by Takahashi e t a l . (217) t o probe t h e l o c a l a t o m i c environment o f vanadium oxide-promoted r u t h e n i u m c a t a l y s t s used i n t h e Fischer-Tropsch r e a c t i o n , S I M S s p e c t r a f o r an
unpromoted and vanadium o x i d e -
promoted 10% Ru/A1203 c a t a l y s t a r e shown i n F i g . 1.22. The A l t and Rut s i g n a l s appear f o r b o t h c a t a l y s t s , w h i l e t h e V-promoted c a t a l y s t g i v e s t h e a d d i t i o n a l s i g n a l s o f Vt and VO
+
i o n s a r i s i n g from t h e promoter. I n a d d i t i o n , t h e RuO' s i g -
n a l is a l s o observed i n t h e S I M S spectrum o f V-promoted p r e p a r a t i o n . The absence o f t h e RuO' s i g n a l i n e i t h e r t h e unpromoted c a t a l y s t o r t h e mechanical m i x t u r e (Ru/A1203 t V205j was taken by Takahashi e t a l . (217) as c o n c l u s i v e t h a t t h e source o f t h e oxygen atom i n t h e RuO'
species must be t h e vanadium o x i d e , which
c o n t a c t s i n t i m a t e l y w i t h Ru metal p a r t i c l e s . T h i s model has been f u r t h e r supp o r t e d by t h e s t r o n g i n h i b i t i o n o f t h e a d s o r p t i o n o f CO on promoted vanadium o x i d e ruthenium c a t a l y s t s . Since t h e metal d i s p e r s i o n was e s s e n t i a l l y s i m i l a r f o r b o t h unpromoted and vanadium oxide-promoted Ru c a t a l y s t s , t h e marked decrease o f t h e a d s o r p t i o n s i t e s f o r CO must be a s c r i b e d t o blockage o f Ru s i t e s by p a r t i a l coverage of Ru p a r t i c l e s by VOx e n t i t i e s .
A66
1
1
40
1
1
80
1
1
120
1
mle
1
160
F i g . 1.22. SIMS spectra o f a prereduced unpromoted ( a ) and vanadium oxide-promoted ( b ) Ru/A1203 c a t a l y s t . Readapted from r e f . (217). 1.4.6.
In-going E l e c t r i c F i e l d s We t u r n now t o another cathegory o f s u r f a c e techniques based on t h e a p p l i -
c a t i o n o f e l e c t r i c f i e l d s , e s s e n t i a l l y d.c.
f i e l d s , as opposed t o electromagne-
t i c r a d i a t i o n . The techniques i n v o l v e d here a r e F i e l d Emission Microscopy (FEM), F i e l d I o n i z a t i o n Microscopy (FIM), and I n e l a s t i c E l e c t r o n Tunnel 1 i n g Spectroscopy (IETS). These techniques a r e b r i e f l y examined below. 1.4.6.1. 1.4.6.1.1.
Out-going E l e c t r o n s F i e l d Emission and F i e l d I o n i z a t i o n Microscopy
Two o f t h e most p r e c i s e s u r f a c e a n a l y s i s approaches a r e r e l a t e d t o t h e well-known FEM (218-221) and FIM (222-225) techniques. They b a s s i c a l l y i n v o l v e t h e a p p p l i c a t i o n o f h i g h e l e c t r i c f i e l d s t o a surface, so t h a t e l e c t r o n s can tunnel through t h e s u r f a c e work f u n c t i o n b a r r i e r . Because t h e tunnel1 i n g probab i l i t y depends on t h e e x a c t s t a t e o f t h e atom where t h e e l e c t r o n passes, t h e number o f these e l e c t r o n s w i l l vary from p o i n t t o p o i n t , as a f u n c t i o n of s u r f a c e topography v a r i a t i o n . Therefore, i n t e r e s t i n g i n f o r m a t i o n about s p a t i a l v a r i a t i o n s , which produce p i c t u r e s of t h e surface, can be o b t a i n e d w i t h r e s o l ut i o n s approaching t h e atomic scale. D e t a i l s on t h e p o t e n t i a l c o n f i g u r a t i o n of
A67
t h e atoms a t t h e s u r f a c e can a l s o b e r e v e a l e d b y measuring t h e number o f t u n n e l 1 ing e l e c t r o n s . The FEM t e c h n i q u e c o n s i s t s e s p e c i f i c a l l y o f t h e removal o f e l e c t r o n s t h r o u g h surface t u n n e l l i n g as a r e s u l t o f t h e a p p l i c a t i o n o f e x t e r n a l e l e c t r i c f i e l d s . The number of e l e c t r o n s t u n n e l l e d o u t a r e measured o r a c c e l e r a t e d t o a f l u o r e s c e n t screen t o p r o v i d e a p i c t u r e o f t h e s u r f a c e v a r i a t i o n s i n t h e work f u n c t i o n . The FIM t e c h n i q u e i s s l i g h l t y d i f f e r e n t . I n t h i s l a t t e r case, t h e f i e l d i s r e v e r s e d and t h e e l e c t r o n s a r e t u n n e l l e d o u t from gas atoms on t h e s u r face, t h e r e b y p r o d u c i n g p o s i t i v e i o n s . These i o n s a r e t h e n a c c e l e r a t e d t o a f l u o r e s c e n t screen t o p r o v i d e t h e same p i c t u r e s as i n
FEM. The most i m p o r t a n t d i s a d -
vantage o f b o t h t e c h n i q u e s i s t h a t v e r y h i g h e l e c t r i c f i e l d s ( > 10' V cm-')
are
r e q u i r e d t o produce measurable e l e c t r o n o r i o n c u r r e n t s , t h u s b e i n g u n p r a c t i c a l w i t h f l a t s u r f a c e s . T h i s problem has been p a r t i a l l y overcome by t h e use o f ext r e m e l y narrow needle-shaped e m i t t e r s , w i t h p o i n t r a d i i i n t h e neighborhood o f a few t e n t h s nm. The techniques a r e , t h e r e f o r e , r e s t r i c t e d t o t h o s e m a t e r i a l s which can be prepared i n t h i s f o r m and dimensions. The p r e p a r a t i o n o f f i e l d e m i t t e r s i s u s u a l l y c a r r i e d o u t by e l e c t r o l y t i c e t c h i n g . Many d i f f e r e n t mater i a l s have been t e s t e d t o d a t e i n FIM. and t h e p r e p a r a t i o n t e c h n i q u e s f o r t h e s e have been p u b l i s h e d
(222, 223, 226).
One f u r t h e r s t e p was t a k e n w i t h t h e a d v e n t o f t h e atom probe f i e l d i o n m i croscope, which i s capable o f d e t e c t i n g s i n g l e atoms (227, 228).
T h i s develop-
ment t o o k advantage o f t h e unique c a p a b i l i t y o f FEM t o examine t h e specimen atom by atom u s i n g t h e process o f f i e l d e v a p o r a t i o n . T i m e - o f - f l i g h t (TOF) of t h e e f f l u e n t i o n s t h e n p r o v i d e s an m/e a n a l y s i s w i t h s i n g l e i o n s e n s i t i v i t y . There a r e , however, s e r i o u s l i m i t a t i o n s i n a p p l y i n g t h i s t e c h n i q u e t o t h e s t u d y o f g a s - s o l i d i n t e r a c t i o n s . For i n s t a n c e , atoms and molecules o f t e n cannot b e f i e l d desorbed w i t h o u t f i e l d e v a p o r a t i o n o f t h e s u b s t r a t e atoms o c c u r r i n g a t t h e same t i m e . T h i s l a t t e r problem has been l a r g e l y overcome by t h e i n c o r p o r a t i o n o f t h e p u l s e d - l a s e r t e c h n i q u e i n t o t h e TOF atom probe (228, 229). I n p u l s e d - l a s e r f i e l d d e s o r p t i o n , a t o m and molecules a r e e i t h e r t h e r m a l l y desorbed f i r s t and subseq u e n t l y f i e l d i o n i z e d , o r t h e y a r e s i m p l y i o n i z e d by t h e r m a l l y enhanced f i e l d d e s o r p t i o n . The t r u e desorbed s p e c i e s and t h o s e species r e s u l t i n g from f i e l d d i s s o c i a t i o n can be d i s t i n g u i s h e d by t h e i o n energy d i s t r i b u t i o n . I n general, n e i t h e r FEM n o r F I M found w i d e a p p l i c a t i o n . T h i s i s due t o t h e f o l l o w i n g reasons. F i r s t l y , t h e t y p e s o f s u b s t r a t e q u a l i f y i n g f o r c o n s i d e r a t i o n a r e l i m i t e d . Secondly, one must e x t r a p o l a t e i n f o r m a t i o n f r o m v e r y f i n e needleshaped e m i t t e r s t o t h e p o s s i b l e b e h a v i o u r o f l a r g e and r e l a t i v e l y f l a t s u r f a c e s . F i n a l l y , t h e t i p s used a r e d e l i c a t e , and experiments must b e conducted i n a c a r e f u l l y c o n t r o l l e d UHV environment. T h i s means t h a t , a l t h o u g h t h e systems a r e r e l a t i v e l y s i m p l e , t h e y r e q u i r e optimum UHV c o n d i t i o n s . The above f a c t o r s are, t h e r e f o r e , r e s p o n s i b l e f o r t h e 1 i m i t e d use o f t h e s e t e c h n i q u e s .
A68
u
0
1
2
3
4
v (Volts)
5
F i g . 1.23. I n f u s i o n i n e l a s t i c e l e c t r o n t u n n e l i n g s p e c t r a f o r d e u t e r a t e d f o r m i c a c i d . Spectrum a was o b t a i n e d f r o m an A1-Pt j u n c t i o n doped i n s i d e t h e vacuum system, and s p e c t r a b and c were o b t a i n e d by vapour i n f u s i o n o v e r s o l u t i o n s o f 500 and 10 ppm of DCOOD i n D20. Readapted f r o m r e f . ( 2 3 4 ) . 1.4.6.1.2.
I n e l a s t i c E l e c t r o n Tunnel 1 i n g Spectroscopy (IETS)
The IETS t e c h n i q u e i s a s o l i d s t a t e method f o r o b t a i n i n g v i b r a t i o n s p e c t r a o f adsorbed molecules (230-232). About one monolayer i s adsorbed on t h e o x i d e t u n n e l l i n g l a y e r on t h e i n s i d e o f a t u n n e l j u n c t i o n i n t h e t y p i c a l f o r m o f A1-A1 oxide-mol e c u l a r 1ayer-Pb. The c u r r e n t - v o l t a g e c h a r a c t e r i s t i c s o f t h i s device, measured a t l i q u i d h e l i u m temperature, y i e l d s an IET spectrum d i r e c t l y r e l a t e d t o t h e v i b r a t i o n a l e n e r g i e s o f t h e molecule. I n c o n v e n t i o n a l IETS i t i s necess a r y t o d e p o s i t t h e m o l e c u l a r l a y e r as an i n t e r m e d i a t e s t e p i n t h e j u n c t i o n f a b r i c a t i o n sequence ( 2 3 3 ) . However, s m a l l metal p a r t i c l e s may be evaporated on t h e o x i d e l a y e r t o s i m u l a t e a s u p p o r t e d c a t a l y s t and t h e s e can be t h e a d s o r p t i o n s i t e s ( 2 3 2 ) . C h e m i s o r p t i o n u s u a l l y t a k e s p l a c e b e f o r e t h e second m e t a l ( e l e c t r o de) i s i n c o r p o r a t e d , a l t h o u g h t h e a d s o r b a t e can be i n t r o d u c e d i n t o t h e complete t u n n e l j u n c t i o n by an i n f u s i o n procedure ( 2 3 4 ) . To i l l u s t r a t e t h i s l a t t e r method, F i g . 1.23 shows t h e s p e c t r a o f d e u t e r a t e d f o r m i c a c i d (DCOOD) i n f u s e d i n t o t h e t u n n e l j u n c t i o n s ( 2 3 4 ) . Spectrum ( a ) was o b t a i n e d f r o m c o n v e n t i o n a l doping a d s o r p t i o n i n s i d e t h e vacuum system and i s compared w i t h spectrum ( b ) , o b t a i n e d when t h e j u n c t i o n was exposed t o t h e vapour o f a 5uO ppm s o l u t i o n o f DCOOD i n D20, and w i t h spectrum ( c ) , o b t a i n e d a f t e r
A69
exposure t o 10 ppm. The c h a r a c t e r i s t i c peaks a t ca. 269 and 114 mV a r e t h e CD s t r e t c h i n g and d e f o r m a t i o n modes, r e s p e c t i v e l y , w h i l e t h e b r o a d e r peaks a t 167 and 198 mV a r e CO v i b r a t i o n s , s i n c e t h e y a r e n o t s h i f t e d b y d e u t e r a t i o n . I n spectrum ( c ) , even though o n l y a 10 ppm s o l u t i o n was used, t h e CD peak i s s t i l l observed, i n d i c a t i n g a h i g h d e t e c t a b i l i t y f o r t h i s m o l e c u l e . A CH s t r e t c h i n g a t ca. 360 mV i s a l s o p r e s e n t due t o i m p u r i t i e s . I t i s i n t e r e s t i n g t o n o t e t h a t t h e OH peaks a r e v e r y weak f o r t h e s e s p e c t r a i n d i c a t i n g t h a t t h e r e s p e c t i v e s i t e s a r e p r o b a b l y taken up by t h e a d s o r p t i o n o f f o r m a t e groups. 1.4.7.
I n - g o i n g Heat
1.4.7.1.
Out-going N e u t r a l s
The thermal d e s o r p t i o n t e c h n i q u e (Temperature-programmed D e s o r p t i o n (TPD) and F l a s h F i l a m e n t ( F F ) ) i s w i d e l y used t o s t u d y s u r f a c e r e a c t i o n s , t h e energet i c o f s u r f a c e species and k i n e t i c s o f d e s o r p t i o n . The e a r l i e r a p p l i c a t i o n s o f TPD t o metal c a t a l y s t s were reviewed by Cvetanovic and Amenomiya (235), and a
more r e c e n t overview o f t h e work done s i n c e 1972 on TPD can be f o u n d i n t h e r e v i e w o f F a l c o n e r and Schwarz ( 2 3 6 ) . B r i e f l y , a gas i s adsorbed o n t o a c l e a n e d surface a t a g i v e n temperature and c o n t r o l l e d pressure, and t h e n a t e m p e r a t u r e programme, e.g.,
l i n e a r w i t h t i m e , i s a p p l i e d t o remove t h e adsorbate c o n t i -
nuously by pumping from t h e r e a c t i o n chamber. The r e s u l t i n g d e s o r p t i o n spectrum c o n s i s t s o f m o n i t o r i n g t h e gas p r e s s u r e o r a d e r i v e d p r o p e r t y , of a g i v e n spec i e s as a f u n c t i o n o f t i m e o r sample temperature. I n g e n e r a l , i t i s assumed t h a t t h e d e s o r p t i o n r a t e o f a s u r f a c e s p e c i e s f r o m a s i n g l e b i n d i n g s t a t e f o l l o w s an A r r h e n i u s - t y p e e q u a t i o n s : (1.11) where e i i s t h e coverage i n t h e adsorbed s t a t e i, A i s t h e p r e e x p o n e n t i a l f a c t o r , ni t h e
r e a c t i o n o r d e r f o r d e s o r p t i o n ( u s u a l l y 1 o r 2). and Ei r e p r e s e n t s
t h e a c t i v a t i o n energy f o r d e s o r p t i o n f r o m t h e s t a t e i. The values o f t h e a c t i v a t i o n energy f o r t h e d e s o r p t i o n (Ei)
and t h o s e o f
t h e r e a c t i o n o r d e r ni can be e s t i m a t e d f r o m t h e d e s o r p t i o n s p e c t r a . A good est i m a t e o f Ei v a l u e s can be made f r o m t h e peak temperature. Some i n f o r m a t i o n about t h e n a t u r e o f t h e a d s o r p t i o n o f d i a t o m i c (or p o l y a t o m i c ) molecules can be i n f e r r e d from t h e ni v a l u e . However, i f Ei and ni a r e coverage-dependent, t h e s e parameters cannot be used t o d e f i n e t h e adsorbed s t a t e . The d e s o r p t i o n s p e c t r a a r e u s u a l l y complex, o v e r l a p p i n g and broad peaks a r e a t t r i b u t e d t o more t h a n one b i n d i n g s t a t e , i n d i c a t i n g d i s t i n c t s u r f a c e adsorpt i o n s i t e s . I n t h i s case, t h e o v e r a l l d e s o r p t i o n process i s t h e summatory o f t h e i n d i v i d u a l processes. However, t h e appearance o f mu1 t i p l e thermal d e s o r p t i o n peaks, and/or i m p o r t a n t broadening can have a q u i t e d i f f e r e n t o r i g i n . O t h e r
A70
superimposed phenomena, may account f o r t h e complex d e s o r p t i o n s p e c t r a namely, domain growth, induced h e t e r o g e n e i t y by i n c r e a s i n g t h e number of adsorbed molecules, and t r a n s i t i o n s i n t h e s t r u c t u r e i n t h e adsorbed l a y e r as induced by l a t e r a l i n t e r a c t i o n s between adsorbed species. S t i l l considering these spureous e f f e c t s , owing t o t h e i r r e l a t i v e simp1 i -
c i t y and g r e a t s e n s i t i v i t y , thermal d e s o r p t i o n methods a r e commonly used t o i n v e s t i g a t e t h e g a s - s o l i d i n t e r f a c e . Other processes, such as i s o t o p i c exchange and s u r f a c e r e a c t i o n s may be monitored by thermal desorption
methods. The j o i n t
use o f thermal d e s o r p t i o n and o t h e r p h y s i c a l methods f o r fundamental s t u d i e s o f chemisorption and c a t a l y s i s on w e l l d e f i n e d surfaces, e.g.,
s i n g l e c r y s t a l s and
t h i n metal f i l m s , i s a powerful t o o l f o r t h e understanding o f surface processes a t an almost atomic scale. A p a r t o f these fundamental s t u d i e s , thermal desorpt i o n i s i n c r e a s i n g l y used t o c h a r a c t e r i z e l e s s d e f i n e d surfaces than adsorbents and porous c a t a l y s t s . An exhaustive t r e a t m e n t o f t h e TPD technique and i t s app l i c a t i o n s t o c h a r a c t e r i z e many c a t a l y t i c systems i s g i v e n i n chapter 6, p a r t B . 1.5. CONCLUSION I n t h i s i n t r o d u c t o r y chapter t o s u r f a c e spectrsocopic methods 1 i t t l e more can be done than p r o v i d e a c a t a l o g o f t h e r e l e v a n t techniques and s t r e s s those which i l l u s t r a t e t h e i r u n d e r l y i n g p h y s i c a l b a s i s . The author has chosen a c l a s i f i c a t i o n o f these methods based on t h e Propst diagram ( F i g . 1.1). T h i s approach may seem very simple and i n t u i t i v e , y e t i t accounts
f o r a l a r g e number o f
e x i s t i n g spectroscopic techniques, as t h e s o l e combination of an i n g o i n g arrow and an outgoing arrow may l e a d t o several
, quite
d i s s i m i l a r methods, depending
on what f e a t u r e o f t h e probe is made prominent t o measure what p r o p e r t y o f t h e emitted p a r t i c l e . Changes i n t h e chemical s t a t e o f t h e samples a r e expected t o take p l a c e when subjected t o a n a l y s i s . I n some cases, t h e use o f h i g h l y e n e r g e t i c probes may i n v o l v e i r r e v e r s i b l e sample damage, which can i n c l u d e minimal changes, such as t h e a l t e r a t i o n i n t h e o x i d a t i o n s t a t e o f t h e atoms. Nowadays, t h e improvement i n d e t e c t i o n and data a c q u i s i t i o n methods g i v e r i s e t o t h e hope t h a t t h e damage can be minimized by u s i n g lower dosage l e v e l s . While i t was deemed
i n a p p r o p r i a t e t o attempt a c r i t i c a l r e v i e w o f a l l t h e
techniques, i t i s , however, p e r t i n e n t t o e n q u i r e about t h e i r impact, p a s t and present i n t h e development o f c a t a l y t i c processes. From t h e p l e t h o r a o f methods t h e reader i s bound t o d e r i v e t h e common message: t h e r e does n o t e x i s t an i d e a l spectroscopy, t h e u n i v e r s a l s o l u t i o n t o a1 1 t h e problems. Several spectroscopic methods w i l l have t o be adequately combined, one complementary o f t h e other, t o remove a m b i g u i t i e s and r e f i n e i n t e r p r e t a t i o n s . As many of t h e methods presented i n t h i s chapter r e q u i r e v e r y w e l l - d e f i n e d surfaces, e.g.,
s i n g l e c r y s t a l s , one m i g h t q u e s t i o n t h e e x t e n t t o which such
A71 probes have i n c r e a s e d o u r u n d e r s t a n d i n g o f t h e c a t a l y t i c phenomena i n r e a l cat a l y s t s . It i s c l e a r t h a t c a t a l y s i s
i s c o n f i n e d t o t h e topmost l a y e r o f t h e
c a t a l y s t , so t h a t d e t a i l e d c h a r a c t e r i z a t i o n o f t h e s u r f a c e r e g i o n i n c l u d i n g s t r u c t u r e , s t o i c h i o m e t r y and s t a b i l i t y , as we1 1 as r e a c t i o n i n t e r m e d i a t e s ,become a m a t t e r o f prime importance. I n t h e l i g h t o f what has been s a i d i n t h i s chapter, i t i s l e g i t i m a t e t o conclude t h a t , even i f i n - d e p t h s t u d i e s o f t h e s e i d e a l i z e d systems do n o t i n m e d i a t e l y m a t e r i a l i z e i n t h e development o f more e f f i c i e n t conc e p t u a l models and guidance f o r f u t u r e a c t i v e research. LIST OF ACRONYMS AND DEFINITIONS
AAS
= Atomic A b s o r p t i o n Spectroscopy
ABS
= Atom Beam Spectroscopy
AEAPS
= Auger
AES
= Auger E l e c t r o n Spectroscopy
APS
= Appearance P o t e n t i a l Spectroscopy
BE
= B i n d i n g Energy
CIS
= C h a r a c t e r i s t i c Isochromat Spectroscopy
E l e c t r o n Appearance P o t e n t i a l Spectroscopy
DAPS
= Disappearance P o t e n t i a l Spectroscopy
DRS
= D i f f u s e R e f l e c t a n c e Spectroscopy
EELS
= E l e c t r o n Energy Loss Spectroscopy
EID
= E l e c t r o n Induced N e u t r a l D e s o r p t i o n
EIID
= E l e c t r o n Induced I o n D e s o r p t i o n
EPMA
= E l e c t r o n Probe M i c r o a n a l y s i s
ESD
= Electron Stimulated Desorption
ESDIAD = E l e c t r o n S t i m u l a t e d D e s o r p t i o n I o n Angular D i s t r i b u t i o n ESR
= E l e c t r o n S p i n Resonance
EXAFS
= Entended X-ray A b s o r p t i o n F i n e S t r u c t u r e
FEM
= F i e l d Emission Microscopy
FF
= Flash Filament
FIM
= F i e l d I o n i z a t i o n Microscopy
FTIR
= F o u r i e r Transform I n f r a r e d Spectroscopy
HEED
= High Energy E l e c t r o n D i f f r a c t i o n
HREELS = High R e s o l u t i o n E l e c t r o n Energy Loss SpeCtrOSCOpY IETS
= I n e l a s t i c E l e c t r o n Tunnel 1 i n g Spectroscopy
IEXR
= I o n Emission X-rays
IMFP
= I n e l a s t i c Mean Free Path
INS
= I o n N e u t r a l i z a t i o n Spectroscopy
IR
= I n f r a r e d Spectroscopy
IRR
= I n t e r n a l R e f l e c t i o n Raman
ISS
= I o n S c a t t e r i n g Spectroscopy
A72 LEED
= Low Energy E l e c t r o n D i f f r a c t i o n
LMMS
=
Laser Microprobe Mass Spectrometry Laser Raman Spectroscopy
LRS MAS
= Magnetic Angle Spinning
MBS
=
Molecular Beam Spectroscopy
MS
=
Mijssbauer Spectroscopy
NEXAFS
= Near Edge X-ray A b s o r p t i o n F i n e S t r u c t u r e
NMR
=
NS
= Neutron S c a t t e r i n g
PAS
= Photoacoustic Spectroscopy
PDBS
= Photothermal D e f l e c t i o n Beam Spectroscopy
PIXE
= Photon Induced X-ray Emission
RAIRS
= R e f l e c t i o n - A b s o r p t i o n I n f r a r e d Spectroscopy
RBS
= Rutherford B a c k s c a t t e r i n g Spectroscopy
RHEED
= R e f l e c t i o n High Energy E l e c t r o n D i f f r a c t i o n
SAM
= Scanning Auger Microscopy
SAS
= Small Angle S c a t t e r i n g
SEM
=
Scanning E l e c t r o n Microscopy
SERS
=
Surface Enhanced Raman Spectroscopy
SEW
= Surface Electromagnetic Waves
SEXAFS
= Surface Extended X-ray A b s o r p t i o n F i n e S t r u c t u r e
SIMS
= Secondary I o n s Mass Spectrometry
SRG
=
SXAPS
= Surface X-ray Apperance P o t e n t i a l Spectroscopy
Nuclear Magnetic Resonance
S t i m u l a t e d Raman Gain
TEM
= Transmission E l e c t r o n Microscopy
TPD
= Temperature-Programmed Desorption
UHV
=
U l t r a h i g h Vacuum U1 t r a v i o l e t P h o t o e l e c t r o n Spectroscopy
UPS
UV-Visible = U1 t r a v i o l e t - V i s i b l e Spectroscopy X-ray D i f f r a c t i o n
X RD
=
XRF
= X-ray Fluorescence
XPS
= X-ray Photoelectron Spectroscopy
REFERENCES G.A. Somorjai, i n "Proceedings 8 t h I n t e r n a t i o n a l Congress on C a t a l y s i s " , 1. B e r l i n , 1984, Verlag-Chemie, Weinheim 1984, Vol. I p. 113. I n F. Delannay, Ed., " C h a r a c t e r i z a t i o n of Heterogeneous C a t a l y s t s " , Marcel 2. Dekker, New York, 1984. M.W. Roberts, Pure U Appl. Chem., 53 (1981) 2269. 3. C.B. Duke, i n L.A. Casper and C.J. Powell, Eds. " I n d u s t r i a l A p p l i c a t i o n s of 4. Surface A n a l y s i s " , ACS Symposium S e r i e s 199, Am. Chem. SOC. Washington, 1982 p. 1. G.A. H a l l e r , Appl. Surf. S c i . , 20 (1985) 351. 5. 6. C.J. Powell, Appl. S u r f . Sci., 1 (1978) 143.
A 73
7. 8. 9. 13. 11.
12. 13. 14. 15. 16. 17. 18. 19.
20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42.
G.A. Soniorjai and M.A. Van Hove, "Adsorbed Monolayers on S o l i d Surfaces", Springer-Verlag, B e r l i n , 1979. J.L.G. F i e r r o and J.F. Garcia de l a Banda, Cat. Rev.-Sci. Eng. 2 (1986) 265. I n R.B. Anderson and P.T. Dawson, Eds. "Experimental Methods i n C a t a l y t i c Research", Academic Press, New York, 1976. D. Briggs, i n C.R. Brundle and A.D. Baker, Eds., " E l e c t r o n Spectroscopy, Theory, Techniques and A p p l i c a t i o n s " , Academic Press, New York, 1979, p.305 L.R. Austermann, D.R. Denley, D.W. Hart, P.B. Himelfarb, R.M. I r w i n , M. Narayana, R . Szentirmay, S.C. Tang and R.C. Yates, Anal. Chem., 59 (1987) 68 R. D.C. Silverman and M. Boudart, J. Catal., 77 (1982) 208. D.W. Goodman, J. Vac. Sci. Techno1 20 (1982) 522. A.L. Cabrera, N.D. Spencer, E. Kozak, P.W. Davies and G.A. Somorjai, Rev. S c i . Instrum., 53 (1982) 1888. J.M. Thomas and J. Klinowski, Adv. Catal., 33 (1985) 200. G.T. Kokotailo, C.A. Fyfe, G.C. Gobbi, G.J. Kennedy, C.T. Deschutter, R.S. Ozubko and W.J.Murphy, Stud. Surf. S c i . Catal., 24 (1985) 219. K . I . Zamaraev and V.M. Mastikhin, C o l l o i d s Surf., 12 (1984) 401. F.W. L y t l e , G.H. Via and J.H. S i n f e l t , i n H. Winick and S. Doniach, Eds., "X-ray Absorption Spectroscopy: C a t a l y s t A p p l i c a t i o n s " , Synchrotron Radiat i o n Research, Plenum, New York, 1980. N.Y. Topsae, H . Topsfie, 0. Sorensen, S. B i j e r n a and R. Candia, B u l l , SOC. Chim. Belg., 93 (1984) 727. C. Defoss6, i n F. Delannay, Ed. " C h a r a c t e r i z a t i o n o f Heterogeneous Catal y s t s " , Marcel Dekker, New York, 1984. F.P. J.M. Kerkhof and J.A. M o u l l i j n , J. Phys. Chem., 83 (1979) 1612. S. Kaliaguine, A. Adnot and G. Lemay, J. Phys. Chem., 9 1 (1987) 2886. H.M. Gager and M.C. Hobson, Jr., Catal. Rev.-Sci. Eng., 11 (1975) 117. F.J. Berry, i n G.J. Long, Ed. "Mossbauer Spectroscopy A p p l i e d t o I n o r g a n i c Chemistry", Plenum, New York, 1984, Vol. 1, Chap. 13, p . 391. R.L. Park, i n R.B. Anderson and P.T. Dawson, Eds. "Experimental Methods i n C a t a l y t i c Research", Academic Press, New York, 1976, Vol. 3, p. 1. L.H. L i t t l e , " I n f r a r e d Spectra o f Adsorbed Species", Academic Press, New York, 1966. M.L. H a i r , " I n f r a r e d Spectroscopy i n Surface Chemistry", Marcel Dekker, New York, 1967. A.T. B e l l and M.L. Hair, Eds. " V i b r a t i o n a l Spectroscopy f o r Adsorbed Spec i e s " , ACS Symposium Series, Vol 137, American Chemical Society, Washingt o n , 1980. R.P. Eischens and W.A. P l i s k i n , Adv. Catal., 10 (1958) 1. S.A. F r a n c i s and A.H. E l l i s o n , J. Opt. S O C . Am., 49 (1959) 131. H.L. P i c k e r i n g and H.C. Eckstrom, J. Phys. Chem., 63 (1959) 512. B.A. Morrow, J . Phys. Chem., 81 (1977) 2663. K.C. Thompson and R .J , Reynolds, "Atomic Absorption, F1uorescence and F1ame Emission Spectroscopy", Charles G r i f f i n and Co. Ltd., London, 1978. J.A. Dean and T.C. Rains, "Flame Emission and Atomic Absorption Spectrometry", Vol. 2, Marcel Dekker, New York, 1971. G. Kortum, " R e f l e x i o n s p e k t r o s k o p i e " , Springer-Verlag, B e r l i n , 1969. A. Rosencwaig, "Photoacoustics and Fhotoacoustic Spectroscopy", Wiley, New York, 1980. Y .H. Pao,"dptoacoustic Spectroscopy and Detection", Academic Press, New York. 1977. A.C.-Boccara, D. Fournier and J. Badoz, Appl. Phys. L e t t . , 36 (1980) 130. M.J.D. Low, C. Morterra, A.G. Severdia and M. L a c r o i x , Appl. S u r f . Sci., 13 (1982) 429. A. G u i n i e r , "X-ray D i f f r a c t i o n " , Freeman, San Francisco, 1963. J.L. Lemaitre, P.G. Menon and F . Delannay, i n F, Delannay, Ed. " C h a r a c t e r i z a t i o n o f Heterogeneous C a t a l y s t s " , Marcel Dekker, New York, 1984. B.D. C u l l i t y , "Elements o f X-ray D i f f r a c t i o n " , Addison Wesley, Reading, Mass., 1956.
.,
.
A14 43. 44. 45. 46. 47. 48. 49. 50.
51. 52.
53. 54. 55. 56. 57.
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82
P. Kronauer, and 0. Menzel, i n F. Ricca, Ed. "Adsorption-Desorption Phenomena", Academic Press, New York. 1972, p. 313. J . Peavey and D. Lichtman, Surf. Sci., 27 (1971) 649. H. Galron, Vacuum, 22 (1972) 229. R.A. Bingham and P.L. S a l t e r , Anal. Chem., 48 (1976) 1735. A.J. Braundmeier, M.W. Williams, E.T. Arakawa and R.H. R i t c h i e , Phys. Rev., 85 (1972) 2754. R.L. Gerlach, Surf. Sci., 28 (1971) 648. S.J.B. Reed, " E l e c t r o n A n a l y s i s " , Cambridge U n i v e r s i t y Press, Cambridge, 1975. F. Delannay. i n F. Delannay, Ed. " C h a r a c t e r i z a t i o n o f Heterogeneous Catal y s t s " , Marcel Dekker, New York, 1984, p. 71. I n J . I . G o l d s t e i n and H. Yakowitz, Eds., " P r a t i c a l Scanning E l e c t r o n M i croscopy", P1enum Press, New York, 1975. D.H. Maher, " I n t r o d u c t i o n t o A n a l y t i c a l E l e c t r o n Microscopy", Plenum Press, New York, 1979, p. 223. H.B. Lyon and B.A. Somorjai, J . Chem. Phys., 46 (1967) 2539. H.B. Pendry, "Low Energy E l e c t r o n D i f f r a c t i o n " , Academic Press, London, 1974. P.B. Sewell and M. Cohen. Appl. Phys. L e t t . , 11 (1967) 298. T.E. Madey and J.T. Yates, Jr., J . Vac. S c i . Technol., 8 (1971) 525. J.T. Yates, Jr. and T.E. Madey, i n G.A. Somorjai, Ed. "The S t r u c t u r e and Chemistry o f S o l i d Surfaces", Wiley. New York, 1969, p. 59. D.A. King, C.G. Goymour and J.T. Yates, Jr., Proc. Roy. SOC. London, A331 (1972) 361. F.W. Saris, "Physics o f E l e c t r o n i c and Atomic C o l l i s i o n s " , Northon H o l l a n d Pub1 , Amsterdam, 1972. S.A.W. Johansson and T.B. Johansson, Nucl. Instrum. Methods, 132 (1976) 472 H.D. Hangstrum, i n R.F. Bunshah, Ed., "Metals", Wiley, New York, 1972, Vol. 6, P a r t 1. H.H. Brongersma and T.M. Buck, Nucl. Intrum. Methods, 149 (1979) 569. D.P. Smith, J . Appl, Phys., 38 (1967) 340. A. Benninghoven, S u r f . Sci., 35 (1973) 427. G. B l a i s e , Rad. E f f e c t s , 18 (1973) 235. 0. Meyer, J . G y u l a i and J.W. Mayer, Surf. Sci., 22 (1970) 263. R.L. Palmer and J.N. Smith, Jr., C a t a l . Rev.-Sci. Eng., 12 (1975) 279. J.N. Smith, Jr., i n R.B. Anderson and P.T. Dawson, Eds. "Experimental Methods i n C a t a l y t i c Research", Vol. 111, Chap. 4, Academic Press, New York, 1976. P.G. H a l l and R.T. Williams, J . C o l l o i d I n t . Sci., 104 (1985) 151. W . Smatz, Proc. Conf. Neutron S c a t t . , 2 (1976) 1037. H. Ibach, i n " E l e c t r o n Spectroscopy f o r Chemical A n a l y s i s " (Topics i n C u r r e n t Physics, Vol 4 ) , Springer-Verlag, B e r l in-Heidelberg, 1977. J . Szajman and R.C.G. Lockey, Jr., J . E l e c t r o n Spectros. R e l a t . Phenom., 23 (1981) 63. J . Szajman, J . Liesegang, J.G. Kenkin and R.C.G. Lockey, Jr., J . E l e c t r o n Spectrosc. R e l a t . Phenom. 23 (1981) 97. M.P. Seah and W.A. Dench, S u r f . I n t e r f a c e Anal 1 (1979) 1. C.R. Brundle, J. Vac. S c i . Technol., 11 (1974) 212. I. Lindau and W.E. Spicer, J . E l e c t r o n Spectrosc. R e l a t . Phenom., 3 (1974) 409. C.J. Powell, S u r f . Sci., 44 (1974) 29. I n S. Dushnian, Ed.,Vacuum Technique, John Wiley and Sons, New York, 1949. C.R. Brundle, i n L.A. Casper and C.J. Powell, Eds. " I n d u s t r i a l A p p l i c a t i o n s o f Surface A n a l y s i s " , ACS Symposium Series, Vol. 199, American Chem i c a l Society, Washington, 1982. C.S. Paik, S.H. Lee and N.H. Sung, Polym. S c i . Technol., 12 B (1980) 757. G.A. Somorjai , "Proceedings 9 t h I n t e r n a t i o n a l Conference on Atomic Spectrosocpy". Tokyo, 1982, Recent Advances i n A n a l y t i c a l Spectroscopy (K. Fuka, Ed.), Pergainon Press, 1982, p. 211. W. Schottky, Ann. Phys., 57 (1918) 541.
.
.
.,
A75
83. 84. 85. 86. 87. 88.
K.W. van V l i e t and R.R. Johnson, J. A p p l . Phys., 35 (1964) 2039. J.E. Houston, Rev. S c i . Instrum., 45 (1974) 897. C.R. B r u n d l e , J. Silverman and R.J. Madix, J. Vac. S c i . T e c h n o l . , l 6
474.
(1979)
N. Winograd and B.J. G a r r i s o n , Acc. Chem. Res., 13 (1980) 406. A. B y l i n a , J.M. Adams, S.H. Graham and J.M. Thomas, J. Chem. SOC., Chem. Commun. , ( 1980) 1003. J.A. B a l l a n t i n e , J.H. P u r n e l l and J.M. Thomas, C l a y M i n e r a l s , 18 (1483)
347.
92.
M. Mehring, "NMR: B a s i c P r i n c i p l e s and Progress", S p r i n g e r , New York 1976, p. 1. E.R. Andrew, I n t l . Rev. Phys. Chem., 1 (1981) 195. J.M. Thomas, i n "Proceedings 8 t h I n t e r n a t i o n a l Congress on C a t a l y s i s " , B e r l i n , 1984, Verlag-Chemie, Weinheim, 1984, Vol. I, p. 31. K . I . Zaniaraev and V.M. M a s t i k h i n , Proc. I n d i a n N a t l . Acad. Sci., P a r t A,
93. 94.
J. K l i n o w s k i , Prog. NMR Spectrosc., 16 (1984) 237. G. Engelhardt, U. Lohse, M. Magi and Lippmaa, Stud. S u r f . S c i . C a t a l . ,
95.
J.M. S e r r a t o s a , J.A.
96.
T.J.
97. 98.
W. Jones, J.M. Thomas, T.B. Tennakoon, B. T i l a k , R. S c h l o g l and P. Diddams, ACS Symp. Ser., No. 288 ( 1985) 472. D. Plee, F. Borg, L. Gatineau and J.J. F r i p i a t , J. Am. Chem. SOC., 107
99.
M.W. Anderson,
89. 90. 91.
51 (1985) 180. 18 (1984) 23.
225.
P i n n a v i a , M.S.
27 (1984) 195.
Rausell-Colom and J. Sanz, J. Mol. C a t a l . ,
TSOU, S.D.
Landau and R.H.
27 (1984)
Raythatha, J. Molec. Catal.,
(1985) 2362.
J. K l i n o w s k i , and L. Xinsheng, J. Chem. SOC., Chem. Commun., 23 (1984) 1596.
100. P.A. Jacobs, M. T i e l e n , J.B.
Nagy, G. Debras, E.G. Derouane and Z. Gabel i c a , Proceedings 6 t h I n t e r n a t i o n a l Z e o l i t e Conference, Tokyo, 1984, p.
783. 101. J .M. Thomas, J . Molec. C a t a l , 27 (1984) 59. 102. J.M. Thomas, J. K l i n o w k s i , S. Ramdas, B.K. H u n t e r and D.T.B. Tennakoon, Chem. Phys. L e t t . , 102 (1983) 158. 103. C.A. Fyfe, J.M. Thomas, S. Ramdas, J. K l i n o w s k i and B.C. Gobbi, N a t u r e (London), 296 (1982) 530. 104. S. Nakata, S. Asaoka and H . Takahaski, Nippon Kagaku K a i s h i , 7 (1985)1372. 169. 105. P.N. A u k e t t . S. C a r t l i d a e and I.J.F. P o o l e t t , Z e o l i t e s .. 6 (1986) . 106. M. Hunger, 0. Freude, H: P f e i f e r , H. Bremer,-M. Jank and K.P. Wendlandt, Chem. Phys. L e t t . , 100 (1983) 29. 107. D. Freude, M. Hunger, H. P f e i f e r , G. S c h e f e r , J. Hoffmann and W. Schimtz, Chem. Phys. L e t t . , 265 (1984) 417. 108. D.W. S i n d o r f and G.E. M a c i e l . J. Phvs. Chem.. 87 (1983) 5516. 109. R.M. Dessau and G.T. K e r r , Z e o l i t e s " 4 (1984)-315.' 110. M.L. O c c e l l i , R.A. I n n e r , T.M. Apple and B.C. G e r s t e i n , Proceedin s 5 t h I n t e r n a t i o n a l Z e o l i t e Conference, 1984, p. 674. 111. E.G. Derouane, L . B a l t u s i s , R.M. Dessau and K.D. S c h m i t t , S t u d i e s S u r f . S c i . Catal., 20 (1985) 135. 112. K.F.M.G.J. S c h o l l e and W.S. Veeman, Z e o l i t e s . 5 (1985) 118. 113. J.H. L u n s f o r d , W.P. R o t h w e l l and W. Shen, J. Am. Chem. SOC., 107 1985) 1540. Nakata, S. Asaoka and H. Takahashi, J. C a t a l , 114. K. Seqawa, Y . Nakajima, . S. 101 (i986) 81. 115. M.J. Ledoux, 0. Michaux, G. A g o s t i n i and P. Panissod, J. C a t a l . , 96 (1985) 189. 116. M. Che and Y. Ben T a a r i t , Adv. C o l l o i d I n t e r f a c e Sci., 23 (1985) 235. 117. M. Narayana and L. Kevan, Langmuir, 1 (1985) 553. 118. J. M i c h a l i k , M. Narayana and L. Kevan, J. Phys. Chem., 88 (1984) 5236. 119. M. Narayana, J. M i c h a l i k , S. C o n t a r i n i and L . Kevan, J. Phys. Chem., 89 (1985) 3895.
.
.
A76
120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151.
152. 153. 154. 155. 156. 157. 158. 159. 160.
A.K. Ghosh and L. Kevan, J. Phys. Chem., 92 (1988) 4439. M. Zina, D. O l i v i e r and A. Ghorbel, Rev. Chim. M i n e r . , 22 (1985) 321. H.G. Karge, Y. Zhang, S. T r e v i z a n de Suarez and M. Z i o l e k , Stud. S u r f . S c i . C a t a l . , 18 (1984) 49. V.K. Sharma, A. Wokaun and A. B a i k e r , J. Phys. Chem., 90 (1986) 2715. C.V. CBceres, J.L.G. F i e r r o , J. Ldzaro, A. LBpez Agudo and J. S o r i a . To be p u b l i s h e d . R. Kyi, Phys. Rev., 128 (1962) 151. C . L o u i s and M. Che, J. Phys. Chem., 91 (1987) 2875. T. Yamazoe, J. Chem. SOC. D a l t o n Trans., (1982) 1987. Y.J. Chabal, S u r f . S c i . Rep., 8 (1988) 211. R.W. R i c e and G.L. H a l l e r , J . C a t a l . , 40 (1975) 249. D.L. A l l a r a , i n M.L. H a i r and A.T. B e l l , Eds., V i b r a t i o n a l S p e c t r o s c o p i e s f o r Adsorbed Species, Symposium S e r i e s , Vol. 137, American Chemical SOC. Washington, 1980, Chap. 3. J . P r i t c h a r d , T. C a t t e r i c k and R.K. Gupta, S u r f . S c i . , 53 (1975) 1. A.M. Bradshaw and F. Hoffman, S u r f . Sci., 52 (1975) 449. W.G. Golde, D.S. Dunn and J. Overend, J. Phys. Chem., 82 (1978) 843. H.G. Tompkins, i n A.W. Czandena, Ed., Methods o f S u r f a c e A n a l y s i s , E l s e v i e r , New York,1975, V o l . 1, Chap. 10. F.L. Bandais, A.J. Borschke, J.D. Fedyk and M.J. Dignam, S u r f . S c i . , 100 (1980) 210. D.B. Chase, Appl. Spectrosc., 35 (1981) 77. R.J. B e l l , R.W. Alexander and C.A. Ward, i n A.T. B e l l and M.L. H a i r , Eds., V i b r a t i o n a l S p e c t r o s c o p i e s f o r Adsorbed Species, ACS Symposium S e r i e s , V o l . 137, American Chemical S o c i e t y , Washington, 1980, Chap. 6. Y.J. Chabal and A.J. S i e v e r s , Phys. Rev. B, 24 (1981) 2921. D.L. A l l a r a , i n L.A. Casper and C.J. P o w e l l , Eds., I n d u s t r i a l A p p l i c a t i o n s o f S u r f a c e A n a l y s i s , ACS Symposium S e r i e s , V o l . 199, American Chemical S o c i e t y , Washington, 1982, Chapt. 3. J.D.E. M c I n t y r e , i n 6.0. Seraphin, Ed., O p t i c a l P r o p e r t i e s o f S o l i d s : New Developments, E l s e v i e r , New York, 1976, Chap. 11. R.M.A. Azzam and N.M. Bashara, E l l i p s o m e t r y and P o l a r i z e d L i g h t , N o r t h H o l l a n d , Amsterdam, 1976, Chap. 15. W.E.J. Neal, Appl. S u r f . Sci., 2 (1979) 445. F.R. Brown, L.E. Makovsky and K.H. Rhee, J . C a t a l . 50 (1977) 162; I b i d , 50 (1977) 385. J . Medema, C. van Stam, V.H.J. de Beer, A.J.A. Konings and D.C. Koningsb e r g e r , J . C a t a l , 53 (1978) 386. A.J. van Hengstum, J.G. van Ommen, H. Bosch and P.J. G e l l i n g s , A p p l . Catal., 5 (1983) 207. I. M i c h i d a , T. Nakashima and H. F u j i t s u , B u l l . Chem. SOC. Japan, 57 (1984) 1449. I . E . Wachs, R.Y. Saleh, S.S. Chan and C.C. Chersich, Appl. Cat., 15 (1985) 339. E.J. Loader, J . C a t a l . , 22 (1971) 41. D.M. Adams, I . R . Gardner and N.D. P a r k i n s , J . C a t a l ., 45 (1976) 145. B.A. Morrow and A.H. H a r d i n , J. Phys. Chem., 83 (1979) 3135. M. Fleischman, P.J. Hendra and A.J. M c Q u i l l a n , Chem. Phys. L e t t . , 26 (1974) 163. H. Yamada and Y. Yamamoto, Chem. Phys. L e t t . , 77 (1980) 520. W. Krasser, H. Ervens, A Fadimi and A.J. Reriouprez, J . Raman Spec., 9 (1980) 80. T.E. F u r t a k and J . Kester, Phys. Rev. L e t t . , 45 (1980) 1652. H. Matsuta and K. Hjrokawa, Appl. S u r f . S c i . , 35 (1988) 10. T. Nanba and T.P.Martin, Phys. S t a t u s S o l i d i , 76 (1983) 235. K.U. von Raben, P.B. D o r a i n , T.T. Chen and R.K. Chang, Chem. Phys. L e t t . , 95 (1983) 269. E.M. Stuve, R.J. Madix and B.A. Sexton, S u r f . S c i . , 111 (1981) 11. T. A l l e n , P a r t i c l e S i z e Measurement, John W i l e y & Sons., 1974. A.J. Renouprez, C. Hoang Van and P.A. Compagnon, J. C a t a l . , 34 (1974) 411.
.
A77
161.
172. 173. 174. 175. 176. 177. 178.
P. G a l l e z o t , A. AlarcBn Diaz, J.A. Damon, A.J. Renouprez and B. I m e l i k , J. C a t a l , 39 (1975) 334. D.E. Sayers, E.A. S t e r n and F.W. L y t l e , Phys. Rev. L e t t . , 27 (1971) 1204. J.H. S i n f e l t , G.H. Via and F.W. L y t l e , C a t a l . Rev.-Sci. Eng., 26 (1984) 8L R.B. Gregor and F.W. L y t l e , J . C a t a l . , 63 (1980) 476. R.K. Nandi, F. M o l i n a r o , C. Tang, J.B. Cohen, J.B. B u t t and R.L. B u r w e l l , Jr., J. Catal., 78 (1982) 189. R.L. Park and J.E. Houston, J . Vac. S c i . Technol ,, 10 (1973) 176. R. Castaing, Advan. E l e c t r o n . E l e c t r o n Phys., 13 (1960) 317. I n J . I . G o l d s t e i n and H. Yakowitz, Eds., " P r a c t i c a l Scanning E l e c t r o n Microscopy", Plenum Press, New York, 1975. W.H. S t r e h l o w and D.P. Smith, Appl. Phys. L e t t . , 13 (1968) 34. D.P. Smith, S u r f . S c i . , 25 (1971) 171. P.B. H i r s c h , A. Howie. R.B. N i c h o l s o n , D.W. Pashley and M.J. Whelan, E l e c t r o n Microscopy o f T h i n C r y s t a l s , B u t t e r w o r t h , Washington, 1965. P.E. H o j l u n d N i e l s e n , S u r f . S c i . , 35 (1973) 194. H . Ibach, H. Hopaster and B. Sexton, Appl. S u r f . S c i . 1 (1977) 1. N. van H i e u and H.J. Craig, Jr., A p p l . S u r f . Sci., 20 (1984) 121. J.L. Hock, J.H. C r a i g , J r . and D. Lichtman, S u r f . S c i 87 (1979) 31. J.H. C r a i g , Jr., S u r f . S c i . , 134 (1983) 745. N. van H i e u and J.H. Crajg, Jr., S u r f . S c i . , 160 (1985) L483. 0. Graham, J. Howard and T.C. Waddington, J. Chem. SOC., Faraday Trans. I ,
179. 180.
C. Nyberg and C.G. T e n g s t a l , S u r f . Sci., 126 (1983) 163. J.J. Rush, R. Cavanagh, R.D. K e l l e y and J.M. Rowe, J. Chem. Phys., 83
181.
P.A.
162. 163. 164. 165. 166. 167. 168. 169. 170. 171.
182.
.
.,
79 (1983) 1281. (1985) 5339.
Karlsson, A.S.
175 (1986) L759.
Martensson. S. A n d e r s o n and P. Nordlander, S u r f . Sci.,
P.A. W r i g h t , J.M. Thomas, S. Ramdas and A.K. Cheetham, J. Chem. SOC., Chem. Commun.. (1984) 1338. 183. H. J o b i c , J.P. Candy, V. P e r r i c h o n and A.J. Renouprez, J. Chem. SOC., Faraday Trans I,81 (1985) 1955. 184. H. Conrad, M.E. Kordesch, W. S t e n z e l , M. S u n j i c and R. T r n i n i c - R a d j a , S u r f . S c i . , 126 (1983) 163. 185. A.J. Renouprez and H. J o b i c , J. Catal., 113 (1988) 509. 186. P. Nordlander, S. Holloway and J. Ndrskov, S u r f . Sci., 136 (1984) 59. 187. P.J. Feibelman and D.R. Hamann, S u r f . S c i . , 182 (1987) 411. 188. R.H. Jones, D.R. Orlander, W.J. Siekhaus and J.A. Schwarz, J. Vac. S c i . Technol , 9 (1972) 1429. 189. J.N. Smith, J r . , S u r f . Sci., 34 (1973) 613. 190. D.R. O r l a n d e r , J . C o l l o i d I n t e r f a c e S c i . , 57 (1977) 169. 19 (1981) 40. 191. H.H. Sawin and R.P. M e r r i l l , J. Vac. S c i . Technol 192. E.A. Kurz and J.B. Hudson, Appl. S u r f . Sci., 17 (1984) 485. 193. R.G. Musket and W. Bauer, A p p l . Phys. L e t t . , 20 (1972) 411. 194. H.D. Hagstrum and G.E. Becker, Phys. Rev. B, 4 (1971) 4187. 195. E. Taglauer and W. Heiland, Appl. Phys., 9 (1976) 261. 196. M. S h e l e f , M.A.Z. Wheeler and H.C. Yao, S u r f . Sci., 47 (1975) 697. 197. M. Wu and E.M. Hercules, J. Phys. Chem., 83 (1979) 2003. 198. D.S. Zingg, L.E. Makovsky, R.E. T i s c h e r , F.R. Brown and D.M. H e r c u l e s , J. Phys. Chem. 84 (1980) 2898. 199. F. Delannay, E.N. Haeusseler and B. Delmon, J. C a t a l . , 66 (1980) 469. 200. R.L. Chin and D.M. Hercules, J . C a t a l . 74 (1982) 121. 201. H. J e r z i o r o w s k i , H . KnBzinger, E. T a g l a u e r and C . Vogdt, J. C a t a l . , 80
- .
.
.,
202. 203. 204. 205.
(1983) 286.
R. Prada, J.M. Beuken, P . B e r t r n d , B.K. Hodnett, F. Delannay and B. D e l mon, B u l l . Sco. Chim. Belg. 93 (1984) 775. R. Prada, J.M. Beuken, J.L.G. F i e r r o , P. B e r t r a n d and B . Delmon, Surf. I n t e r f a c s Anal., 8 (1986) 167. B.A. H o r r e l l and D.L. Cocke, C a t a l . Rev.-Sci. Eng., 29 (1987) 447. W.K. Chu, J.W. Mayer, M.A. N i c o l e t , T.M. Buck, G. Amsel and F. Eisen, T h i n S o l i d F i l m s , 17 (1973) 1.
A78
206. 207. 208. 209 * 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236.
W.K. Chu, J.W. Mayer and M.A. N i c o l e t , B a c k s c a t t e r i n g Spectrometry, Academic Press, New York, 1978. J.W. Mayer and J.M. Poate, i n J.M. Poate; K.M. Tu and J.W. Mayer, Eds. "Thin F i l m s - I n t e r d i f f u s i o n and Reactions , The Electrochem. SOC., John W i l e y li Sons, New York, 1978. L.R. D o o l i t t l e , Nucl. Instrum. Meth., B9 (1985) 344. C.R. Gosset, i n L.A. Casper and J.C. Powell, Eds. " I n d u s t r i a l A p p l i c a t i o n s o f Surface Analysis", ACS Symposium S e r i e s 199, Am. Chem. SOC., 1982 p. 49. G. C a r t e r and J.S. C o l l i g o n , I o n Bombardment o f S o l i d s , Heinemann Educat i o n a l Books, London, 1968. Ya.M. Fogel, I n t . J . Mass Spectrom. I o n Phys., 9 (1972) 109. C.A. Evans, Jr., Anal. Chem. , 44 (1972) 67A. R.E. Honig, Adv. Mass Spectrom., 6 (1974) 337. A. Benninghoven, C r i t i c a l Reviews i n S o l i d S t a t e Sciences, CRC Press, I n c . Cleveland, Ohio, 1978. H. Hopster and C.R. Brundle, J. Vac. S c i . Techno1 16 (1979) 518. L. Rodrigo, A. Adnot, P.C. Roberge and S. K a l i a g u i n e , 3. Catal., 105 (1987) 175. N. Takahashi,T. Mori, A. Furuta, S. Komai, A. Miyamoto, T. H a t t o r i and Y. Murakami , J. Catal , 110 (1988) 410. E.W. M u l l e r , Ergeb. Exakt. Naturw., 27 (1953) 290. R. Gomer, R. Wortman and R. Lundy, J . Chem. Phys., 26 (1957) 1147. For an e x t e n s i v e l i s t o f references, see M. Mundschau and R. Vanselow, S u r f . Sci., 155 (1985) 121. A.J. Melmed, i n R. Vanselow and R. Howe, Eds., Chemistry and Physics o f Sol i d Surfaces V I , Vol 5, S p r i n g e r Verlag, B e r l in-Heidel berg and New York, 1986, p. 325. E.W. M u l l e r and T.T. Tsong, F i e l d I o n Microscopy:Principles and A p p l i c a t i o n s , E l s e v i e r , New York, 1969. K.M. Bowkett and D.A. Smith, F i e l d I o n Microscopy, N o r t h Holland, Amsterdam, 1970. W.R. Graham, F. Hutchinson and D.A. Reed, J. Appl. Phys., 44 (1973) 5155. A.J. Melmed, R.T. Tung, W.R. Graham and G.D.W. Smith, Phys. Rev. L e t t . , 43 (1979) 1521. H. Saure and J.H. Block, I n t . J. Mass Spectrom. I o n Phys., 7 (1971) 145. E.W. M i l l e r and S.V. Krishnaswamy, Rev. S c i . Instrum., 45 (1974) 1053. T.T. Tson,g S.B. McLane and T.J. Kinkus, Rev. S c i . Instrum., 53 (1982) 1442. T.T. Tsong, Surf. Sci., 70 (1978) 211. T. Wolfram, Ed. , I n e l a s t i c E l e c t r o n Tunnel1 i n g Spectroscopy, S p r i n g e r , New York, 1978. P.K. Hansma, Phys. Rep.-Phys. L e t t . , 30C (1977) 745. R.M. Kraeker and P.K. Hansma, J . Chem. Phys., 72 (1980) 4845. R.G. K e i l , T.P. Graham and K.P. Roenker. Appl. Spectr. , 30 (1976) 1. R.C. J a k l e v i c and M.R. G a e r t t n e r , Appl. S u r f . Sci., 1 (1978) 479. R.J. Cvetanovic and Y. Amenomiya, C a t a l . Rev.-Sci. Eng., 6 (1972) 21. J.L. Falconer and J.A. Schwarz, C a t a l . Rev.-Sci. Eng., 25 (1983) 141.
.,
.
.