Chapter 11 Tidal Heights and Currents in Hudson Bay and James Bay

Chapter 11 Tidal Heights and Currents in Hudson Bay and James Bay

205 Chapter 11 TIDAL HEIGHTS AND CURRENTS I N HUDSON BAY AND JAMES BAY S.J. PRINSENBERG AND N.G. FREEMAN INTRODUCTION Although t h e t i d a l re...

655KB Sizes 0 Downloads 91 Views

205 Chapter 11

TIDAL HEIGHTS AND CURRENTS I N HUDSON BAY AND JAMES BAY S.J.

PRINSENBERG AND N.G.

FREEMAN

INTRODUCTION

Although t h e t i d a l regime along t h e southern coasts o f Hudson Bay and western James Bay coasts was described by Manning i n 1950 and 1951, i t was not u n t i l 1966 t h a t c o t i d a l c h a r t s f o r t h e e n t i r e Hudson Bay system were constructed by Dohler.

Dohler (1967) a l s o summarized t h e e a r l y v i s u a l observaGodin (1972) used a one-dimensional numer-

tions o f currents i n Hudson Bay.

i c a l model of James Bay and observations around t h e Bay t o prepare c o t i d a l charts f o r several t i d a l constituents. He f u r t h e r modified t h e r e s u l t s when more t i d a l height data became a v a i l a b l e (Godin, 1974).

H y d r o e l e c t r i c power

developments i n northern Quebec prompted studies t o be made o f t h e physical oceanography o f Hudson Bay and James Bay.

Numerical t i d a l modelling (Freeman

and Murty, 1976) provided t h e f i r s t c o t i d a l charts o f several c o n s t i t u e n t s f o r the t o t a l area.

Later, o f f s h o r e c u r r e n t meter and t i d a l height data

became a v a i l a b l e f o r comparison w i t h model r e s u l t s . This chapter presents results o f the t i d a l model, comparison t o t h e o f f s h o r e observations, and a discussion o f t h e e f f e c t o f t h e i c e cover on t i d a l heights and currents. Also, an analysis i s presented o f t h e mixing and s t r a t i f i c a t i o n e f f e c t s caused by the i n t e r a c t i o n o f t h e t i d e s and freshwater plumes near t h e mouths o f rivers. TIDAL HEIGHTS The mainly semidiurnal t i d e enters Hudson S t r a i t w i t h an amplitude o f about 3 meters, and reaches t h e entrance t o Hudson Bay and Foxe Basin about 3 t o 4 hours l a t e r .

The M, t i d e i s a K e l v i n wave t h a t propagates a n t i c l o c k w i s e

around Hudson Bay, p a r t o f which enters i n t o James Bay and p a r t proceeds north along t h e east coast.

It i s reduced t o 10% i n amplitude and j o i n s t h e

incoming t i d e some 25 hours l a t e r (Fig. 11.1; Freeman and Murty, 1976).

As

the Kelvin wave propagates around Hudson Bay, i t s o f f s h o r e components i n t e r f e r e and cancel each o t h e r out a t two l o c a t i o n s (amphidromic points); westcentral and east-central Hudson Bay.

I n between these amphidromic p o i n t s ,

the offshore t i d a l components t h a t t r a v e l along t h e northern and southern shores r e i n f o r c e each o t h e r and produce a small t i d e (10-25 cm) i n t h e c e n t r e o f Hudson Bay.

The t i d a l wave propagates south around t h e Belcher Islands

206 where r e f l e c t i o n from t h e shallow bar t o t h e south produces a standing wave pattern. The maximum M, t i d a l amplitude o f 1.25 metres occurs along t h e west coast o f Hudson Bay: i t decreases t o 10 cm near t h e degenerate node along

950

800

75

65O

65

60

60'

55

550

Offshore M2 Tidal D a t a stn.

1

51'

phase

ampl.

deg

cm

196

101

2

35

64

3

337

59

4

310

36

51°

Figure 11.1. M c o - o s c i l l a t i n g t i d a l r e s u l t s from Freeman and Murty (1976) w i t h copiase l i n e s i n GMT +5 (degrees) as s o l i d l i n e s and co-amplitude l i n e s (cm) as dashed l i n e s . Data l i s t e d on f i g u r e i n s e r t i s o f o f f s h o r e t i d e gauge l o c a t i o n s represented by

*.

the east coast o f James Bay and t h e southeast coast o f Hudson Bay. t i d a l charts f o r t h e o t h e r semidiurnal t i d e s (S, and N,)

The co-

do not d i f f e r s i g -

n i f i c a n t l y from t h e M, c o t i d a l chart, although t h e i r amplitudes are o n l y 1/4 t h a t o f t h e M, t i d e .

S e n s i t i v i t y a n a l y s i s o f t h e model t o f r i c t i o n a l v a r i a -

tions indicates t h a t t h e r e i s a n e g l i b l e change i n t h e l o c a t i o n o f t h e cophase l i n e s and t h e amphidromic p o i n t s when t h e small l i n e a r f r i c t i o n c o e f f i c i e n t i s decreased by an order o f magnitude.

However, an order o f magnitude

increase i n t h e f r i c t i o n c o e f f i c i e n t a l t e r s t h e l o c a t i o n o f t h e amphidromic points.

High water a r r i v e s e a r l i e r w h i l e t h e amplitude i s reduced.

Model r e s u l t s compared favourably w i t h shore-based s t a t i o n data from around Hudson Bay.

The M, phase agreed g e n e r a l l y w i t h i n loo and t h e ampli-

tude t o w i t h i n a few percent (Freeman and Murty, 1976).

Exceptions occurred

i n James Bay, where t h e r e was about a 30% reduction i n amplitude due t o t h e lack o f r e s o l u t i o n i n t h e t i d a l model.

The o f f s h o r e t i d a l data, c o l l e c t e d i n

the e a r l y 1980's a l s o agrees w i t h t h e model r e s u l t s except i n two areas: (1) James Bay where t h e M, t i d a l model amplitude i s underestimated by about 40%; and (2) around Coates and Manse1 Islands where t h e model phase lags t h e o f f shore t i d a l data by 15' t o 30" and amplitude i s l a r g e r by 30%. I n t h e f i r s t area the model i s d e f i c i e n t as both t h e shore-based and o f f s h o r e data show consistently higher amplitudes than those produced by t h e model.

A finer

g r i d r e s o l u t i o n i n t h e model f o r James Bay should obviate t h i s problem. I n the second area, t h e problems causing t h e discrepancies i n phase and amplitude between o f f s h o r e and inshore records can o n l y be corrected by a much denser network o f o f f s h o r e t i d e gauges i n t h e entrance t o Hudson Bay so t h a t the proper phase and amplitude f o r c i n g can be a p p l i e d a t t h e open boundary. Figure 11.2 shows t h e cophase and coamplitude l i n e s f o r t h e K, c o n s t i -

A s i n g l e amphidromic p o i n t i s l o c a t e d near t h e center o f Hudson Bay as would be expected, since t h e f r e e g r a v i t y wavelength o f 2700 km f o r t h e K, tuent.

frequency equals t h e circumference o f t h e Bay.

The model p r e d i c t s t h e

degenerate node i n t h e northeastern corner o f James Bay as described e a r l i e r by Godin (1972). Observed o f f s h o r e K, t i d a l c o n s t i t u e n t s a t t h e p o i n t s shown on Figure 11.2 agree g e n e r a l l y w i t h t h e model r e s u l t s but have s i m i l a r s i z e discrepancies as described above f o r t h e M, t i d e except t h a t f o r t h e K , t i d e the observed t i d e i s now l a r g e r and comes i n l a t e r a t a l l o f f s h o r e locations. The t i d a l model o f Freeman and Murty (1976) was a l s o used t o p r e d i c t t h e independent t i d e s o f Hudson Bay t h a t are generated d i r e c t l y by t h e t i d a l forcing functions r a t h e r than by t h e t i d e progressing i n t o t h e Bay from t h e A t l a n t i c Ocean.

The amplitude o f t h e M, independent t i d e i s an order of

magnitude l e s s than t h a t o f t h e c o - o s c i l l a t i n g t i d e w h i l e t h e amplitude o f the K, independent t i d e i s about 30% t h a t o f t h e c o - o s c i l l a t i n g t i d e .

208

950

800

65'

60'

55'

stn.

phase

ampl.

deg

cm

51 95'

900

850

800

K, c o - o s c i l l a t i n g t i d a l r e s u l t s from Freeman and Murty Figure 11.2. (1976) presented as M, r e s u l t s were i n Figure 11.1. TIDAL CURRENTS

Observations a t o f f s h o r e l o c a t i o n s i n Hudson Bay i n d i c a t e t h a t t h e major I n t h e chapter

p o r t i o n o f t h e current energy i s associated w i t h t h e t i d e s .

on c i r c u l a t i o n (Chapter 10) a time s e r i e s o f c u r r e n t meter data was shown f o r a l o c a t i o n 150 km northeast o f C h u r c h i l l (Fig. 10.6;

Prinsenberg, 1986a).

209 The major feature o f t h e c u r r e n t i n t h i s area i s t h e semidiurnal t i d a l o s c i l l a t i o n which reaches amplitudes o f 30 cm s-l (Prinsenberg and Weaver, 1983). Larger semidiurnal t i d a l c u r r e n t s are observed a t t h e entrance t o Hudson Bay (90 cm 5 - l ) and a t the entrance t o James Bay (50 cm s - l ) . S i m i l a r currents, on the order of 100 cm s - l , were observed by Dohler (1967) from s h i p ' s d r i f t at the entrance t o Hudson Bay.

Wind generated i n e r t i a l c u r r e n t s (13.8 h period) can reach d a i l y maximum amplitudes o f up t c 30 cm s-l which equal t h e

t i d a l amplitudes observed w i t h i n Hudson Bay i t s e l f (Table 10.3; Prinsenberg, 1986a). However, t i d a l currents recur d a i l y w h i l e i n e r t i a l currents occur only a f t e r storms.

T i d a l c u r r e n t s a l s o decrease slowly w i t h depth whereas i n e r t i a l currents are r e s t r i c t e d t o t h e surface layer. '

Tidal stream analysis has been used t o p a r t i t i o r ! t h e observed c u r r e n t s

i n t o t i d a l and short- and long-period residual comronents.

For Hudson Bay,

the t i d a l components are mainly made up o f t h e semidiurnal t i d a l c o n s t i t u e n t s M,,

S,, and N, analogously w i t h t h e t i d a l heights. The d i u r n a l c o n s t i t u e n t s (K, and 0,) are an order o f magnitude smaller, t y p i c a l l y 5 t o 10% o f t h e

t o t a l predictable t i d a l c u r r e n t (Table 10.1;

Prinsenberg, 1986a).

Like the

t i d a l heights, t i d a l c u r r e n t s are c l a s s i f i e d as semidiurnal (Dohler, 1966). Observed (summer) and model (Freeman and Murty, 1976) v e l o c i t y amp1 i t u d e s along the major and minor axes o f t h e M, t i d a l c u r r e n t e l l i p s e s are shown i n Figure 11.3.

The observed values are a mean o f surface and subsurface (70

-

100 m) current meter values (Prinsenberg and Deys, 1979 and Prinsenberg and

The strongest M, c u r r e n t s occur a t the entrance t o Hudson

Fleming, 1982).

Bay where averaged magnitudes o f up t o 45 cm

5-l

were measured.

They a l i g n

with the channel a x i s owing t o t h e strong i n f l u e n c e o f t h e topography on t h e current d i r e c t i o n .

I n t h e i n t e r i o r o f Hudson Bay, t h e two observed t i d a l

e l l i p s e s show weaker t i d a l currents (20 cm s - l ) s i m i l a r t o model predictions. A t the shallow entrance t o James Bay, t h e observed t i d a l c u r r e n t s increase t o

22 and 29 cm s-l, values not predicted by t h e model because o f t h e lack o f g r i d resolution. SEASONAL VAR IAT1 ONS The annual i c e cover o f Hudson Bay and other l o c a t i o n s i n t h e Canadian Arctic a l t e r s t h e t i d a l signal. Some s t a t i o n s are apparently unaffected while those i n Hudson Bay and t h e Beaufort Sea experience smaller t i d e s during t h e ice-covered season and t h e phase o f t h e t i d e i s a l t e r e d (Godin and Barber, 1980). I n Hudson Bay, t h e phase o f t h e t i d e i s advanced during t h e ice-covered season w h i l e i n t h e Beaufort Sea t h e t i d e i s retarded (Henry and Foreman, 1977).

Further i n v e s t i g a t i o n o f p o s s i b l e m o d i f i c a t i o n o f t h e t i d e

i n Hudson Bay showed t h a t t h e d i s t o r t i o n increased as t h e t i d e propagated around Hudson Bay and i n t o James Bay.

65

60'

....

\

... ....... . . . . . . . . -

.....

... ..

....

55 '

M2 TIDAL

CURRENTS

observed

,+,

0model scale cms-' 0

. 40 .

80

51a

9 5'

Figure 11.3.

900

850

800

Predicted and observed M, t i d a l currents.

To determine t h e annual changes i n magnitude and phase o f t h e height o r

current due t o t h e i c e cover, cross spectral a n a l y s i s was c a r r i e d out w i t h t h e observed data and data from a reference s t a t i o n located i n a year-round i c e - f r e e area.

The parameter used i s t h e amplitude and phase o f t h e admit-

tance which i s t h e r a t i o o f t h e cross spectrum and t h e power spectrum o f t h e reference s t a t i o n f o r a given t i d a l frequency band (Godin and Barber, 1980).

211 If the components o f t h e observed data f l u c t u a t e r e l a t i v e t o those a t t h e reference s t a t i o n , t h e admittance should r e f l e c t these f l u c t u a t i o n s .

For

t i d a l currents and heights, both t h e d i u r n a l and semidiurnal frequency bands were used t o f o l l o w t h e seasonal change i n amplitude and phase f o r monthly record lengths. The reference s t a t i o n data used was t h e predicted t i d e a t Halifax, although o t h e r ice-free l o c a t i o n s could have been used, as l o n g as they had energy spectra s i m i l a r t o those o f t h e observed data.

Tidal height

r e s u l t s show t h a t t h e semidiurnal t i d a l amplitude decreases i n t h e w i n t e r c o n t i n u a l l y anticlockwise around Hudson Bay r e l a t i v e t o t h e summer t i d a l amplitudes (Godin and Barber, 1980).

A t C h u r c h i l l , t h e t i d a l height de-

creased by 7% and advanced by 20 minutes during the w i n t e r compared t o summer data.

S i m i l a r seasonal changes i n phase and amplitude were found i n the o f f -

shore current meter data (Prinsenberg and Weaver, 1983).

The admittance

results o f t h e t h r e e current meter records from t h r e e depths (25, 53, 90 in) were averaged t o o b t a i n a mean change i n amplitude and phase advance.

These

results are presented i n Figure 11.4 and show t h a t t h e amplitude o f t h e semidiurnal t i d a l current decreases i n amplitude by 10% and comes i n 20 minutes e a r l i e r r e l a t i v e t o t h e s u m e r t i d a l currents.

The a n a l y s i s o f t h e d i u r n a l

currents shows t h e same seasonal pattern; amplitudes are reduced by 30% and the phase i s advanced by 30 minutes during t h e winter.

However, t h i s l a t t e r

analysis i s not as accurate since t h e d i u r n a l signal i s weak and a l o c a l l y generated t i d e o f comparable amp1 i t u d e i s present. The a r r i v a l times o f t h e t i d e and t i d a l c u r r e n t s are advanced i n Hudson Bay during the w i n t e r w h i l e i n t h e Beaufort Sea t h e t i d e a r r i v e s l a t e r .

The

difference i n t h e t i d a l response t o t h e i c e cover i s due t o t h e wave form o f the t i d e i n each area.

I n t h e Beaufort Sea, t h e K e l v i n wave propagates more o r less along a s t r a i g h t coast and f o l l o w s t h e general theory o f a damped

Kelvin wave whose amplitude and phase v e l o c i t y decrease when f r i c t i o n i n creases (Prinsenberg, 1986b).

The decrease i n phase v e l o c i t y w i l l cause a

delay i n t h e a r r i v a l t i m e o f t h e t i d e and t i d a l currents. I n Hudson Bay t h e phase v e l o c i t y o f t h e r e f l e c t i n g K e l v i n wave a l s o decreases due t o increased f r i c t i o n , but now t h e sumnation o f an i n c i d e n t and a r e f l e c t i n g K e l v i n wave causes t h e phase and amplitude p a t t e r n s (amphidronic point) t o move southward as f r i c t i o n increases.

One sees p r o p o r t i o n a l l y more

o f the i n c i d e n t wave than t h e r e f l e c t e d wave which causes an advancement o f the a r r i v a l time o f t h e i r sum ( t i d e o r c u r r e n t s ) and o f f s e t s t h e small delay

o f a r r i v a l time o f each c o n t r i b u t o r due t o t h e decrease i n phase v e l o c i t y . Along a s t r a i g h t coast such as i n t h e southern Beaufort Sea t h i s does not occur and only a delay i n a r r i v a l t i m e i s seen i n t h e w i n t e r due t o the decrease i n phase v e l o c i t y .

However i n t h e southeastern corner o f t h e

212

T

AMPLITUDE SEMIDIURNAL

0.6I < SEP

40

SEP

NOV

1

1

NOV

JAN

1

1

JAN

MAR

1

1

MAY

*

MAR

1

1

MAY

JUL

1

1

JUL

1

F i g u r e 11.4. Seasonal v a r i a t i o n i n phase and amplitude o f semidiurnal and d i u r n a l t i d a l c u r r e n t northeast o f C h u r c h i l l .

Beaufort Sea some t i d a l wave r e f l e c t i o n must occur as no change i n a r r i v a l time o f t h e t i d e was n o t i c e d t h e r e by Godin and Barber (1980). TIDAL M I X I N G AT FRONTS AND PLUMES The s t r a t i f i c a t i o n i n Hudson Bay varies from v e r t i c a l l y well-mixed zones such as t i d a l f r o n t s , t o h i g h l y s t r a t i f i e d zones such as freshwater plumes l o c a t e d o f f r i v e r mouths. Using a two-dimensional model o f t h e semidiurnal t i d e G r i f f i t h s e t al. (1981) c a l c u l a t e d t h e r a t i o o f t h e s t a b i l i z i n g e f f e c t o f the surface buoyancy f l u x on t h e production o f t u r b u l e n t k i n e t i c energy t o p r e d i c t where f r o n t a l regions separate zones o f v e r t i c a l t i d a l m i x i n g from zones where summer s t r a t i f i c a t i o n exists.

These f r o n t a l regions are o f

213 p a r t i c u l a r importance as they are thought t o increase t h e b i o l o g i c a l product i v i t y as a r e s u l t o f t h e upward n u t r i e n t f l u x ( G r i f f i t h s e t al.,

1981).

The r e s u l t s show t h a t c e n t r a l Hudson Bay has no t i d a l f r o n t s as i t s t i d a l currents are t o o weak.

The o n l y well-mixed zones r e s u l t i n g from strong t i d a l

currents occur i n t h e shallow regions o f James Bay and along t h e southeast coast o f Hudson Bay.

Small-scale f r o n t s a l s o occur near headlands and i n

channels where l o c a l l y increased t i d a l c u r r e n t s cause v e r t i c a l l y mixed conditions i n areas t h a t would otherwise be w e l l s t r a t i f i e d . o f G r i f f i t h s e t al.

However, t h e model

(1981) was based on North Sea experience, and exclude

wind stress as a source f o r mixing and r u n o f f as a source f o r t h e buoyancy flux; thus it i s o n l y a p p l i c a b l e t o o f f s h o r e regions o f Hudson Bay.

Wind

mixing and r u n o f f are important c o n t r i b u t o r s t o t h e pycnocl i n e development and thus s t r a t i f i c a t i o n o f Hudson and James bays (Prinsenberg, 1983). Wind mixing may e s p e c i a l l y become important i n exposed areas such as t h e Belcher Islands where much b i o l o g i c a l a c t i v i t y occurs. Runoff, on t h e other hand, increases t h e s t a b i l i t y parameter i n protected areas such as i n southern James Bay where s t r a t i f i e d c o n d i t i o n s do occur i n t h e summer. Freshwater plumes are observed o f f r i v e r mouths i n Hudson and James bays, both i n the summer and t h e winter.

The plumes remain coherent up t o 70 km

from t h e i r source and reach widths o f 20 t o 30 km.

The existence o f an i c e

cover i n t h e w i n t e r i n h i b i t s wind-induced mixing and allows t h e plumes t o spread out f u r t h e r than under t h e i c e - f r e e c o n d i t i o n s o f t h e summer.

Even

though the r u n o f f r a t e s are an order o f magnitude l e s s i n w i n t e r than i n t h e suinner, the w i n t e r plumes a t t a i n t w i c e t h e surface area o f t h e summer plumes, p r i n c i p a l l y due t o t h e i n s u l a t i o n from wind-induced turbulence by t h e i c e cover (Freeman, 1982).

During t h e ice-covered period t i d a l d i s s i p a t i o n i s

the main source o f plume mixing. One o f t h e plunes, o f f t h e La Grande River, was e x t e n s i v e l y s t u d i e d as i t s r i v e r discharge r a t e was a1 t e r e d by h y d r o e l e c t r i c development (Freeman e t a l . , 1982 and Messier e t al., 1986). The buoyant La Grande River p l m e spreads out under t h e i c e l a t e r a l l y over about 20 km, and i s p u l l e d northward by the mean c i r c u l a t i o n t o a distance o f 40 t o 50 km. (Fig. 11.5 from Freeman, 1982).

It varies i n thickness from 2 t o 5 m and acquires s a l t as i t

moves away from t h e r i v e r mouth. Maximum t i d a l v e l o c i t i e s w i t h i n t h e plume are less than 10 cm s - l , which t r a n s l a t e s i n t o a h o r i z o n t a l plume motion o f only 1.5 km (Fig. 11.5).

The l a r g e v e l o c i t y a t t h e r i v e r mouth (43 cm 5 - l )

drops t o 12 cm s-l i n t h e f u l l y s t r a t i f i e d region some 3.5 km downstream and i n t h e f r o n t a l region some 40 kin downstream. I n t h e f u l l y s t r a -

t o 5 cm s'l

t i f i e d region t h e r e i s l i t t l e exchange w i t h t h e bottom layer.

The freshwater

spreads out due t o buoyancy and advection over t h e slow moving bottom layer. Farther downstream, i n t h e f r o n t a l region, t h e plume undergoes t h e maximum

214

54:

30

54 10

54

oc

FULLY STRATIFIED REGION

F i g u r e 11.5. Surface s a l i n i t y contours f o r LaGrande R i v e r plume during March 1-9, 1980 (from Freeman, 1982). I n s e r t s show 25-hr averaged p r o f i l e s o f c u r r e n t s , d e n s i t y and temperature s t r u c t u r e f o r t h r e e regions whose l o c a t i o n s along t h e plume's a x i s a r e shown by t h e l a r g e arrows.

215 r a t e o f s a l t exchange.

I n t h e middle region, t h e t i d a l k i n e t i c energy below

the plume i s much l a r g e r than i n t h e plume i t s e l f (Fig. 11.5),

which shows

how the S t r a t i f i c a t i o n i s o l a t e s t h e t i d a l current (and mixing) from t h e plume even though t h e plume moves up and down w i t h t h e t i d e .

Seaward o f t h e

f r o n t a l region, a well-mixed region e x i s t s where t h e t i d a l k i n e t i c energy i n and below t h e plume increases. V e r t i c a l mixing increases, breaking down t h e stratification.

I n t h i s area t h e r e i s evidence o f a bottom r e t u r n f l o w as

found i n estuarine c i r c u l a t i o n (Fig. 11.5).

I n t h e well-mixed region a l a r g e increase i n dissolved n u t r i e n t s near t h e i c e occurs and an i c e b i o t a comnuni t y i s observed which i s not observed inshore.

Since t h e areal extent o f

surface plumes seems t o be s t r o n g l y dependent on t h e discharge r a t e s as found by numerical plume model 1i n g (Freeman, 1982), t h e increased LaGrande River discharge w i l l l i m i t n u t r i e n t supply t o t h e surface l a y e r over a l a r g e r area and s i m i l a r e f f e c t s should be expected i n plumes whose r u n o f f r a t e s are modif i e d by h y d r o e l e c t r i c developments. CONCLUSION Tides i n Hudson Bay are c l a s s i f i e d as semidiurnal and o n l y a small r e g i o n along the eastern shore i s c l a s s i f i e d as mixed but s t i l l mainly semidiurnal. The semidiurnal t i d a l amplitude ranges from 1.25 m along t h e western shore t o 0.10 m along t h e eastern shore. values o f 8 cm.

The d i u r n a l t i d a l amplitude only reaches

The maximum t i d a l currents are observed a t t h e entrance t o

Hudson Bay where they reach v e l o c i t i e s o f 90 cm s-l; smaller maximum values

of 30 cm 5-l occur w i t h i n Hudson Bay.

During t h e winter, t h e i c e Cover

dampens the t i d a l c u r r e n t s and heights and advances t h e i r a r r i v a l times. Tidal and wind-generated c u r r e n t s determine t h e l o c a t i o n where strong mixing occurs and where t h e strong s t a b i l i t y o f freshwater plumes breaks down. Further oceanographic research should c o l l e c t o f f s h o r e t i d a l height and current meter data a t t h e entrances t o Hudson Bay and James Bay i n order t o resolve phase questions r a i s e d by t h e present data and provide b e t t e r boundary conditions f o r f u t u r e t i d a l modelling.

The modelling research should

address not only t h e e f f e c t t h e i c e cover has on t h e t i d e but a l s o t h e d i s crepancy now seen i n t h e o f f s h o r e data r e l a t i v e t o model r e s u l t s . Year-round offshore data w i t h i n Hudson and James Bays are required i n order t o o b t a i n r e l i a b l e amplitudes and phases o f o f f s h o r e t i d a l heights and currents. ACKNOWLEDGEMENTS The authors thank Drs. G. Ingram, D. Wright and D. Greenberg f o r t h e i r helpful comments on t h e manuscript, and t h e s t a f f o f the B a y f i e l d Laboratory, D.F.O.,

i n Burlington, Ontario f o r t h e i r e f f o r t s i n c o l l e c t i n g t h e data dur-

ing the f i e l d programs and processing t h a t are used i n t h i s manuscript.

216 Mr. R.E.

Walker and Mr. A.D.

graphy, i n Dartmouth, N.S.,

Cosgrove o f t h e Bedford I n s t i t u t e o f Oceanoa s s i s t e d w i t h t h e c a r t o g r a p h i c work and Dr. P.

M a r t i n i w i t h t h e e d i t o r a l work. REFERENCES Dohler, G.C., 1966. Tides i n Canadian Waters. Dept. Mines Tech. Surv., Can. Hydrogr. Serv., Mar. Sci. Branch, Rep. M54-966: 17 pp. Dohler, G.C., 1967. Tides and t i d a l c u r r e n t s i n Hudson Bay. I n : C.S. Beals ( E d i t o r ) , Science and H i s t o r y o f Hudson Bay, Dept. Energy, Mines and Resources, Ottawa, pp. 824-837. Freeman, N.G., 1982. Measurements and m o d e l l i n g o f freshwater plumes under an i c e cover. Ocean Science and Surveys, Dept. o f F i s h e r i e s and Oceans, B u r l i n g t o n , Manus. Rept. Ser. No. 14, 155 pp. Freeman, N.G. and Murty, T.S., 1976. Numerical m o d e l l i n g o f t i d e s i n Hudson Bay. J. Fish. Res. Bd. Canada, 33: 2345-2361. Roff, J.C. and P e t t , R.J., 1982. Physical, chemical, and Freeman, N.G., b i o l o g i c a l f e a t u r e s o f r i v e r plumes under an i c e cover i n James and Hudson Bays. Le N a t u r a l i s t e canadien, 109(4): 745-764. G r i f f i t h s , D.K., Pingree, R.D. and S i n c l a i r , M., 1981. Summer t i d a l f r o n t s i n t h e n e a r - a r c t i c regions o f Foxe Basin and Hudson Bay. Deep-sea Res. 28A: 865-876. Godin, G., 1972. The t i d e s o f James Bay. Dept. Environ., Mar. Sci. Branch, Tech. Rep. 24: 97-142. Godin, G., 1974. The t i d e i n e a s t e r n and western James Bay, A r c t i c 27: 104-110. Godin, G. and Barber, F.G., 1980. V a r i a b i l i t y o f t h e t i d e a t some s i t e s i n t h e Canadian A r c t i c . A r c t i c 33: 30-37. Henry, R.F. and Foreman, M.G.G., 1977. Numerical model s t u d i e s o f semid i u r n a l t i d e s i n t h e southern Beaufort Sea. P a c i f i c Marine Sc. Rept. 77-11. I n s t . o f Ocean Sciences, V i c t o r i a , B.C. 71 pp. Manning, T.H., 1950. Notes on t h e t i d e s along t h e south Hudson Bay and west James Bay coast. A r c t i c 3: 95-100. Manning, T.H., 1951. Remarks on t h e t i d e s and d r i f t w o o d s t r a n d l i n e s along t h e east coast o f James Bay. A r c t i c 4: 122-130. Messier, D., Ingram, R.G., D. and Savard, J.P., 1986. Physical and b i o l o g i c a l oceanographic m o d i f i c a t i o n s i n response t o La Grande H y d r o e l e c t r i c Complex. I n : I.P. M a r i t i n i ( E d i t o r ) , Canadian I n l a n d Seas, E l s e v i e r , Amsterdam. Prinsenberg, S.J., 1983. E f f e c t s o f t h e h y d r o e l e c t r i c developments on t h e oceanographic s u r f a c e waters o f Hudson Bay. Atmosphere-Ocean, 21: 418430. Pr nsenberg, S.J., 1986a. C i r c u l a t i o n p a t t e r n and c u r r e n t s t r u c t u r e o f Hudson Bay. In: I.P. M a r t i n i ( E d i t o r ) , Canadian I n l a n d Seas. E l s e v i e r , Amsterdam. P r nsenberg, S.J., 1986b. E f f e c t s o f t h e annual i c e cover on t h e t i d a l c u r r e n t s and freshwater content o f Canadian i n l a n d seas. I n : Canadian East Coast Workshop on Sea Ice, January 7-9, 1986. Can. Tech. Rept. o f Fish. and Aquat. Sci., Dept. o f F i s h e r i e s and Oceans, Dartmouth, N.S. Pr nsenberg, S.J. and Deys, F.W., 1979. Hudson Bay oceanographic data r e p o r t 1975, volume 2. Ocean and Aquatic Sc., Dept. o f Fish. and Oceans, B u r l i n g t o n , Data Rep. Ser. No. 82-1, 255 pp. P r nsenberg, S.J. and Fleming, B.M., 1982. Hudson Bay/James Bay oceanographic survey 1976 Data Report, Volume 1. Ocean Sci. and Surv., Dept. o f Fish. and Oceans, B u r l i n g t o n , Data Rep. Ser. No=-1, 255 p. P r nsenberg, S.J. and Weaver, R.K., 1983. Hudson Bay oceanographic data r e p o r t 1982. Ocean Sci. and Surv., Dept. o f Fish. and Oceans, B u r l i n g t o n , Data Rep. Ser. No. 83-5, 221 pp.