Chapter 13 Riemann Integrability

Chapter 13 Riemann Integrability

CIIAL'TER 13 RTEbIANN INTEGRABILITY C o n s i d e r t h e c l a s s i c a l Lebesgue t h e o r e m : a bounded f u n c t i o n o n a r e a l i n t ...

598KB Sizes 0 Downloads 149 Views

CIIAL'TER

13

RTEbIANN INTEGRABILITY

C o n s i d e r t h e c l a s s i c a l Lebesgue t h e o r e m : a bounded f u n c t i o n o n a r e a l i n t e r v a l i s Ricmann i n t e g r a b l c i f a n d o n l y i f i t s s e t o f p o i n t s o f d i s c o n t i n u i t y h a s (Lebesgue) measure z e r o . While q u i t e a t t r a c t i v e , t h e t h e o r e m h a s an u n s a t i s f a c t o r y f e a t u r e : i t r e q u i r e s f i r s t d e f i n i n g "Lebesgue measure z e r o " ,

a

c o n c c p t o u t s i d e t h e domain o f Riemann i n t e g r a t i o n . T h i s u n s a t i s f y i n g f e a t u r e can be e l i m i n a t e d . s u b j e c t o f m e a s u r e on o u r r e a l i n t e r v a l . Lebcsgue m e a s ure.

I-lerc m e a s u r e means

C o r r e s p o n d i n g t o "measure"

i n t h e same way

t h a t "Riemann i n t e g r a l " c o r r e s p o n d s t o " L e b e s g u e have t h e concept of " c o n t c n t " .

Consider t h e

integral",

we

The t h e o r e m f o r s e t s c o r r e s p o n d -

i n g t o the Lebesgue theorem above r e a d s : a s e t h a s c o n t e n t ( i s q u a d r a b l e ) i f and o n l y i f i t s f r o n t i e r h a s measure z e r o .

But

t h e f r o n t i e r o f a s e t i s c l o s e d , and f o r a c l o s e d s e t , h a v i n g measure z e r o i s e q u i v a l e n t t o having c o n t e n t z e r o .

Thus t h e

theorem can he s t a t e d : a s e t h a s c o n t e n t i f and o n l y i f i t s f r o n t i e r has content zero. The way t o e l i m i n a t e m e a s u r e f r o m L c b e s g u e ' s t h e o r e m i s

now c l e a r .

We r e p l a c e t h e s e t o f p o i n t s o f d i s c o n t i n u i t y o f a

f u n c t i o n f by t h e s a l t u s f u n c t i o n o f f , which g i v e s t h e p o i n t s

of discontinuity.

The s a l t u s f u n c t i o n i s a l w a y s p o s i t i v e a n d

uppersemicontinuous,

and f o r s u c h a f u n c t i o n , h a v i n g Lebesgue 31 5

Chapter 1 3

316

i n t e g r a l z e r o i s e q u i v a l e n t t o h a v i n g Riemann i n t e g r a l z e r o . Thus t h e L e b e s g u e t h e o r e m b e c o m e s : a bounded f u n c t i o n i s Riemann i n t e g r a b l e i f a n d o n l y i f i t s s a l t u s f u n c t i o n h a s Riemann i n t e g r a l zero. T h i s w i l l b e o u r a p p r o a c h t o Riemann i n t e g r a b i l i t y , u s i n g t h e f a c t t h a t f o r an element f o f C " ( X ) ,

6(f) is the gencraliza-

tion of the saltus function of a function.

560. Riemann i n t e g r a b l e e l e m e n t s

We f i r s t d e f i n e Riemann i n t e g r a b i l i t y w i t h r e s p e c t t o a band J o f C l ( X ) .

I n 5 6 1 , we e x a m i n e i t w i t h r e s p e c t t o a

s i n g l e e l e m e n t 1-1 o f C ' ( X ) . Given a b a n d J o f C l ( X ) , an

e l e m e n t f o f C"(X) w i l l b e

s a i d t o b e Riemann i n t e g r a b l e w i t h r e s p e c t t o J i f 6 ( f ) E t J L . We w i l l d e n o t e t h e s e t o f s u c h e l e m e n t s b y

B(J).

Thus X ( J )

=

6 - l (.JL). From ( S O - l l ) , we h a v e :

(60.1)

F o r e v e r y band J o f C ' (X),

3 (J)

(i)

i s an Ma-subspace o f C"(X),

(ii)

c o n t a i n s C(X),

( i i i ) i s closed under t h e operations u ( - ) , a ( - ) ,

a(.).

I t i s e a s y t o s e e from t h e d e f i n i t i o n t h a t i f f C % ( J ) and

Riemann I n t e g r a b i l i t y

a(f) 5

g 5 u ( f ) , t h e n gE.2 (J).

31 7

A c t u a l l y , from ( 5 0 . 1 3 1 , we have

a much s t r o n g e r r e s u l t :

(60.2)

If A,B c X(J), A

In p a r t i c u l a r ,

a(J)

5 f 5 B , and (AA

- VB)EJL,

then f € x ( J ) .

i s Dedekind c l o s e d .

561.

u-Riemann i n t e g r a b i l i t y

Given p E C ' ( X ) , an e l e m e n t f o f C''(X) w i l l be s a i d t o be Riemann i n t e g r a b l e w i t h r e s p e c t t o IJ,o r 1-1-Riemann i n t e g r a b l e , if ( 6 ( f ) ,

14) =

0.

( 6 1 . 1 ) Given p E C ' ( X ) , t h e n f o r e v e r y f E C " ( X ) , t h e f o l l o w i n g a r e equivalent :

'1

f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o 1-1;

2'

f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o C ' ( X )

Fi'

T h i s f o l l o w s from t h e e a s i l y v e r i f i a b l e f a c t t h a t f o r gEC"(X)+, g E ( C J ( X ) I . I y i f and o n l y i f ( 8 , 11-11)

=

0.

Thus t h e s e t o f 1-1-Riemann i n t e g r a b l e e l e m e n t s o f C"(X) precisely by

a (1-1).

a(C'(X) ) .

u

is

We w i l l a l s o d e n o t e t h i s (MI-)s u b s p a c e

Some c h a r a c t e r i z a t i o n s o f

2 (J):

31 8

Chapter 13

( 6 1 . 2 ) Given a b a n d J o f C l ( X ) , t h e n f o r f E C " ( X ) , t h e following are equivalent: 1'

f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o J ;

2'

f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o e v e r y u E L J :

3'

t h e r e e x i s t a u s c e l e m e n t u a n d an k s c e l e m e n t a. s u c h

that R < f 5 u and u - L E J ' :

'4

( ~ ( f ) , u )= ( f , p > = ( u ( f ) , p ) f o r e v e r y ~ E J .

The p r o o f i s i m m e d i a t e .

We n e x t g i v e some c h a r a c t e r i z a t i o n s o f x ( p ) .

For s i m p l i c -

i t y , we t a k e p > 0.

(61.3)

Given u € C ' ( X ) + , t h e n f o r f E C " ( X ) , t h e f o l l o w i n g a r e

equivalent:

1'

f i s p-Riemann i n t e g r a b l e ;

h>f

g
t h e r e e x i s t s u b s e t s A , B o f C(X) s u c h t h a t A < f < B and ( f , ~ = )

'4

SUP

€5A

(g,p)

=

inf ( ~ , L O ; hEB .

t h e r e e x i s t s e q u e n c e s { g n l , { h n } i n C(X) s u c h t h a t

The p r o o f i s s t r a i g h t f o r w a r d .

Riemann I n t e g r a b i l i t y

319

I n t h e c l a s s i c a l t h e o r y o f Riemann i n t e g r a t i o n on a E u c l i d e a n s p a c e , Rieman i n t e g r a b i l i t y i s d e f i n e d b y o n e o f t h e properties 2

0

,

3 O , o r 4'

above, but using a d i s t i n g u i s h e d

family of "step functions" i n place of continuous functions. Among t h e p r o p e r t i e s p o s s e s s e d b y t h e s e s t e p f u n c t i o n s a r e t h e following.

Each s t e p f u n c t i o n i s a f i n i t e l i n e a r c o m b i n a t i o n

(I)

of f u n c t i o n s which can be o b t a i n e d as s p e c t r a l e l e m e n t s o f continuous functions ( c f . 517). ( 1 1 ) Each s t e p f u n c t i o n i s Riemann i n t e g r a b l e .

In ( 6 1 . 5 ) we generalize the classical procedure t o t h e p r e s e n t c a s e i n t h e f o r m o f a c o n d i t i o n f o r p-Riemann i n t e g r a b i l i t y i n terms of s p e c t r a l elements o f continuous f u n c t i o n s . F i r s t , h o w e v e r , we m u s t a n s w e r t h e f o l l o w i n g q u e s t i o n .

Are t h e

s p e c t r a l e l e m e n t s o f c o n t i n u o u s f u n c t i o n s Riemann i n t e g r a b l e ( b y o u r d e f i n i t i o n ) ; a n d i f n o t , a r e s u f f i c i e n t l y many Riemann integrable t o enable us t o carry out the classical process? The q u e s t i o n was a n s w e r e d b y Loomis

[32].

Indeed, he proved a

more g e n e r a l r e s u l t , w h i c h r e d u c e s , i n o u r c o n t e x t , t o t h e

f o 1l o w i n g :

(61.4) Theorem (Loomis).

Given p E C ' { X ) ,

then f o r every fEC"(X),

the following are equivalent:

'1

f i s p-Riemann i n t e g r a b l e ;

2'

a l l b u t a c o u n t a b l e number o f t h e s p e c t r a l e l e m e n t s o f

f a r e p-Riemann i n t e g r a b l e .

Chapter 1 3

320

Proof.

We c a n assume p > 0 , IIui1

=

1, and 0 < f < n(X).

F o r t h e r e m a i n d e r o f t h e p r o o f , we w i l l d e n o t e n(X)

s i m p l y b y I]

and e a c h s p e c t r a l e l e m e n t e f ( X ) s i m p l y b y e ( 1 ) . Assume 1' h o l d s . (6(e(x)),p) e s t a b l i s h 2'.

2

E

We show t h a t f o r e v e r y E > 0 ,

f o r o n l y a f i n i t e number o f A ' s , w h i c h w i l l S p e c i f i c a l l y , we p r o v e t h e

Then

We show t h e e q u i v a l e n t i n e q u a l i t y

Note f i r s t t h a t f A X n n - f A A n - l n we w o r k w i t h t h i s l a t t e r f o r m .

= (fAXnn -

An-ln)'

;

Riemann I n t e g r a b i l i t y

This i s t h e f i r s t i n e q u a l i t y i n ( i i ) .

T h i s i s t h e second i n e q u a l i t y i n ( i i ) , s o we have ( i i ) , and

with it, ( i ) .

I t follows f r o m ( i ) t h a t f o r n = l,.-.,m,

321

Chapter 1 3

32 2

(Here we have used t h e a s s u m p t i o n t h a t f - hence e a c h g n i s Riemann i n t e g r a b l e ; c f . 4'

i n (61.2).)

Then

Since l E = l ( 6 ( e ( ~ n ) ) , 2 ~ )m E , t h i s g i v e s u s m < 1 / ~ and , comp l e t e s t h e p r o o f o f t h e Lemma.

Now assume 2'

holds.

I t i s c l e a r t h a t t h e proof of

F r e u d e n t h a l ' s s p e c t r a l theorem (17.10) can be m o d i f i e d ( f o r o u r f ) s o t h a t t h e s p e c t r a l e l e m e n t s a r e u-Riemann i n t e g r a b l e . Thus f i s i n t h e norm c l o s u r e o f j ; ! ( u ) .

Since

x(u)

i s norm

c l o s e d , f E j;! ( p ) .

QED We can now g i v e o u r g e n e r a l i z a t i o n o f t h e c l a s s i c a l cond i t i o n f o r Riemann i n t e g r a b i l i t y .

( 6 1 . 5 ) Given p E C ' ( X ) + , t h e n f o r f € C t t ( X ) , t h e f o l l o w i n g a r e equivalent:

' 1

f i s u-Riemann i n t e g r a b l e ;

2'

t h e r e e x i s t s e q u e n c e s { g n } , {h,}

satisfying:

Riemann I n t e g r a b i l i t y

323

t h e g n ' s and h n ' s a r e l i n e a r combinations o f

(i)

u-

Riemann i n t e g r a b l e s p e c t r a l e l e m e n t s o f e l e m e n t s

of C ( X ) ; gl 5 g 2

(ii)

2 * *-* f<-< * . * I

( i i i ) supn(gn,v)

Proof.

(f,v)

S u p p o s e 1' h o l d s .

t o s a t i s f y 4'

(*)

=

h2 < h1 , =

infn(hn,p).

Choose s e q u e n c e s { g ; } , { h , l }

of (61.3).

For e a c h n , t h e r e e x i s t g n , h n , l i n e a r combinations o f p -

Riemann i n t e g r a b l e s p e c t r a l e l e m e n t s o f e l e m e n t s o f C ( X ) , s u c h t h a t gn 5 g;

,

hn

2

hA

and

[ I g n - gA[19 IIhn - hA[I

5

l/n.

I n e f f e c t , gn c a n b e o b t a i n e d b y t h e m o d i f i c a t i o n o f t h e proof of (17.10)

p o i n t e d o u t a t t h e end of t h e p r e c e d i n g p r o o f ,

a n d s i m i l a r l y f o r hn ( t h e a p p r o x i m a t i n g s t e p e l e m e n t s i n ( 1 7 . 1 0 ) can b e chosen above t h e g i v e n a ) . Applying (17.12) and ( 6 0 . 1 ) , w e can assume, i n a d d i t i o n , t h a t t h e s e q u e n c e {g,} descending.

They t h u s s a t i s f y ( i ) a n d ( i i ) o f 2'.

f o l l o w s f r o m 4' T h a t 2'

i s a s c e n d i n g and t h e sequence {hn} i s

i n ( 6 1 . 3 ) a n d t h e norm c o n t i n u i t y o f

i m p l i e s 1'

f o l l o w s f r o m 5'

(iii) p.

i n (61.3). QED

Remark. p-Riemann i n t e g r a b i l i t y i n o r d i n a r y a n a l y s i s i s d e f i n e d f o r f u n c t i o n s on X C''(X)a.

- i n our context, f o r elements of

I t i s easy t o v e r i f y t h a t the space of functions

w h i c h a r e p-Riemann i n t e g r a b l e i n t h e o r d i n a r y s e n s e i s

Chapter 13

324

2 (u),

precisely

562. Riemann n e g l i g i b l e e l e m e n t s

We r e t u r n t o a g e n e r a l band J o f C ' ( X ) . R(J)

n J'

We w i l l c a l l

t h e s e t o f Riemann n e g l i g i b l e ( w i t h r e s p e c t t o J )

e l e m e n t s , an d w e w i l l d e n o t e i t b y f X ( J 1 . w i l l also write

,TX

I f J = C'(X )

I.r'

we

(1-1).

( 6 2 . 1 ) Given a b a n d J o f C ' ( X ) , t h e n f o r f € C " ( X ) , t h e f o l l o w i n g are equivalent: 1'

fCh%(J);

2'

u ( f ) ,k(f)EJ1:

'3

u(/fl)EJ'.

S u p p o s e 1' h o l d s , t h a t i s , 6 ( f ) E J '

Proof. f - 6(f), f

w e h a v e 2'. 3'

holds.

+

6(f)EJL. T h a t 2'

h'?, (J)

Then

Since f - 6cf) < tcf) < u(f) < f + 6(f),

i m p l i e s '3

f o l l o w s from (49.12).

Th en, a g a i n by ( 4 9 . 1 2 1 ,

u ( f ) , t ( f ) E J L , hence G(f)EJ'. fE

and fEJ'.

(u(f)I,

T h a t fEJ'

Suppose

l t ( f ) IEJL, hence

is trivial.

Thus

. QED

(62.2)

C o r o l l a r y 1.

Given a b a n d J o f C ' ( X ) ,

t h e n f o r fEC"(X),

Riemann Integrability fE Jvx (J) if and only if

1 f( -<

325

u for some usc element u in J L .

I t follows , f $ ( J ) is the Riesz ideal of C " ( X )

generated by the

usc elements in (J'),.

Proof.

Suppose g € l X ( J ) and 0 5 If1 5 /gl. Then u(lf/) 2

~ ( / g / ) .Since,

by '3

hence, again b y '3 ideal.

above,u(jgj)EJL, it follows u(lfl)EJL.

above, fcJY*x(J).

Thus J v x ( J ) is a Riesz

The rest of the Corollary is clear.

Remark. Note that, since h?$?(J)= X ( J )

n

QED JL,

,qx(J) is norm

closed.

It follows from (62.1) that Riemann negligibility can be defined first, and then used to define Riemann integrability. Specifically, define g to be Riemann negligible if u(lgl)EJL, then (since 6(f) is a positive usc element) define f to be Riemann integrable if 6 ( f ) is Riemann negligible.

(As

we

pointed out in the introduction to the present chapter, this eliminates the mention of Lebesgue negligibility in Lebesgue's characterization of Riemann integrability. By definition X ( J )

=

6-'(JL).

Contained in the above dis-

cussion is the fact that actually X ( J )

=

&-lWX(J)).

This

gives us:

(62.3) Given a band J of C' (X), let H be the Riesz ideal

C h a p t e r 15

326

g e n e r a t e d Oy Sa(J)). Then (i)

S-'(H)

=

g(H

1

) , a n d H i s t h e s m a l l e s t Riesz i d e a l of

Clt(X) w i t h t h i s p r o p e r t y ; ( i i ) jZ(HI)

=

J ( J ) , and H

1

i s t h e l a r g e s t b a n d o f C1(X )

with t h i s property

The b a n d H 1 g e n e r a t e d by S ( ( R ( J ) )

(that is, the order clos-

u r e o f t h e above H) i s o f c o u r s e t h e smallest band o f C"(X) s u c h t h a t S-'(H1) t h a n J'

=

T h i s band may b e s t r i c t l y s m a l l e r

X(J).

- equivalently,

H

I

may b e s t r i c t l y l a r g e r t h a n J .

an example, l e t X b e a f i n i t e s e t .

Then Cll(X)

=

As

C(X), s o

S ( C t l ( X ) ) = 0 , s o f o r e v e r y band J o f Cll(X), H = 0 , s o H1

=

0.

We e m p h a s i z e ( i i ) a b o v e . : f o r e v e r y band J o f C l ( X ) , t h e r e

i s a l a r g e s t b a n d ( i t c o n t a i n s J ) w i t h t h e same Riemann i n t e g r a b l e e l e m e n t s i n C"(X).

We c l o s e t h i s 9 w i t h a n i n t e r e s t i n g r e s u l t .

(62.4)

Giv e n a band J o f C t ( X ) , e v e r y Riemann i n t e g r a b l e e l e -

ment o f C1l(X)d i s Riemann n e g l i g i b l e :

g(J) n

Proof.

C"(X)d

c&?,(J).

Consider f €$(J)

we show f E J'. a ( f ) = 6 ( f ) EJ'.

By ( 5 4 . 1 2 ) ,

n C 'l (X )d,

L(f)

=

and we c a n t a k e f > 0;

0 , hence u ( f )

Thus 0 < f < u ( f ) € J',

=

u(f) -

whence f EJ'. QED

327

Riemann I n t e g r a b i l i t y

563. Riemann i n t e g r a b i l i t y and Riemann s u b s p a c e s

Let J be a band o f C'(X) Then

J(J),

=

a n d I its d u a l band i n

Cll(X).

J ( J ) / J ~ % ( J ) A. r e a s o n a b l e e x p e c t a t i o n i s t h a t I n ( 6 3 . 2 ) , we l i s t

R ( J ) , = R(1) t h e Riemann s u b s p a c e o f I . some common b a n d s f o r which t h i s i s t r u e . p r i n c i p a l b a n d s {C'(X)

Among them a r e t h e

l ~ € C ' ( X ) l , which a r e t h e o n e s d e a l t w i t h

LJ i n ordinary integration theory.

We w i l l s e e below, however,

t h a t f o r a g e n e r a l band o f C'(X),

t h e e x p e c t a t i o n need n o t be

born o u t . First,we record:

( 6 3 . 1 ) For e v e r y band J o f C'(X),

w i t h d u a l band I ,

nJ),= R ( I ) -

Proof. f - R(f)EJ'.

Suppose f E J ( J ) .

Then 6 ( f ) E J ' ,

I t follows a ( f ) , = f I

=

so u ( f ) - f ,

u ( f ) I , whence f I E R ( I )

(57.6). QED

( 6 3 . 2 ) L e t J b e a band of Cl(X),

w i t h d u a l band I .

f i e s any o f t h e f o l l o w i n g c o n d i t i o n s , t h e n X ( J ) ,

If J satis-

= R(1):

( i ) J i s a p r i n c i p a l band; (ii) J i s vaguely c l o s e d - e q u i v a l e n t l y , I i s a u-band;

Chapter 1 3

328

( i i i ) Jd i s v a g u e l y c l o s e d - e q u i v a l e n t l y , I i s a n R-band; (iv)

J i s v a g u e l y d e n s e i n C'(X) - e q u i v a l e n t l y ,

U(1)

=

Cll(X).

I n e a c h c a s e , i t o n l y r e m a i n s t o show t h a t

Proof. R(1) c a ( J ) , .

Assume ( i ) h o l d s , t h a t i s , J

=

C'(X)

f o r some u E C ' ( X ) .

I-r

By ( 2 7 . 4 ) , t h e r e e x i s t s e q u e n c e s { ( g ) I , n P I ( h n ) l - r l i n C(X) s u c h t h a t ( g ) + f , ( h ) + f . LJ n1-1 n1-1

Consider f E R ( 1 ) .

To show t h i s , we r e p l a c e Cgn3,thn3 by s e q u e n c e s

C1711> k i t h t h e d e s i r e d p r o p e r t y . -

g1

=

-

gl,

then s e t hl

= hlvgl.

h e prmceed i n d u c t i l e l y .

We h a v e (gl)l-l

= (gl)p,

and (E1I-r 1 = (hlll-lv(Fl)l-l = ( h l ) l - l v ( g l ) u = ( h l l V .

-

-

g l , - ..,gm, El,..-,En

Ti

< * - *

n Set

{En},

have been chosen s o t h a t

of course,

Assume

El z - -+ -gn* <<

5Kl a n d (Ek)l-l = =

Set

( g k ) l - l , (Ek)l-l = ( h ) ( k = l , . . . , n ) k1-1 (gn+lVzn)AEn. C o n t i n u i n g i n t h i s f a s h i o n , we

.

f -<

obtain (*), N o w s e t R = Vn g n' u = An hn '

T h e n R-< u a n d R = f = u . 1-1 1-1

To e s t a b l i s h t h a t f E J ? j ( J ) I , we n e e d o n l y show t h a t uE%'(J). T h i s f o l l o w s from u - I! EJ'

( s i n c e (u

-

a) I

=

0 ) a n d 3'

in

(61.2). Assume ( i i ) h o l d s .

Then by ( 5 9 . 5 ) a n d ( 6 0

C(X), c 2 ( J ) , . Assume ( i i i ) h o l d s , a n d c o n s i d e r f E R ( 1 ) .

We c a n assume

Riemann I n t e g r a b i l i t y

We show t h a t i n t h i s c a s e , n o t o n l y i s f i n

0 < f < ll(X)I.

but is actually i n

je(J),,

329

J ( J ) . By ( 5 7 . 6 ) , t h e r e e x i s t a n Rsc 2 f 5 uI.

element k and a u s c element u such t h a t k I (uV0)A

l l ( X ) ; t h e n (u,) I = f a l s o .

S e t El

= ( k V 0 ) A U ( X ) I (by

a s s u m p t i o n , l l ( X ) l i s a n Rsc e l e m e n t ) ; t h e n ( R 1 ) I

R I E I , s o we a c t u a l l y have R1 We t h u s have R1 - R1 € I d =

=

I t follows

hence f € X ( J ) .

, ' J

Assume ( i v ) h o l d s .

Then i t f o l l o w s e a s i l y from t h e f a c t

t h a t p r o j , mgps C ( X ) MU-isomorph c a l l y o n t o C(X), again, R(I) c

But

f also.

= f.

f < u l , w i t h ( u , ) ~= f . I 1

=

S e t u1 =

XCJ)

(not j u s t

B(J

(52.3) that,

,

I)

QED

The r e m a i n d e r o f t h i s s e c t i - n i s d e v o t e d t o a n example t o show t h a t f o r a g e n e r a l band J o f C l ( X ) , w i t h d u a l band I ,

X(J), #

For c l a r i t y , we f i r s t c o n s t r u c t a n example i n

R(1).

o r d i n a r y f u n c t i o n t h e o r y , t h e n show t h a t we a c t u a l l y h a v e a n example i n C ' l ( X ) . Let w = t h e f i r s t i n f i n i t e o r d i n a l ; o1 = t h e f i r s t u n c o u n t a b l e o r d i n a l ; t h e s e t o f o r d i n a l s { B 16 < w ) ;

N

=

fi

= the s e t of ordinals

{ B I B 5 01;

IN1 = t h e s e t o f o r d i n a l s t a l a < w l l ;

-

N1

=

t h e s e t o f o r d i n a l s Icxlci

We e n d o w m and

ml

5

with t h e order topology.

p a c t Hausdorff. Let X =

N1

Z =

m1

Q

WEjl

=

all.

fl

x x

X

(product topology);

w) IJ (wl W)

x

m);

U ( ~ 1W)

They a r e t h e n com-

330

So

Chapter 13

Z is a closed subset of X, and Q c Z. Consider the function f on Q with value 1 on the points of

N1x w

and 0 on the points of w1

x

istic function of the closed set W, istic function of the open set X \ ( w ,

Let u be the character-

IN.

w,

x x

and

m).

il

the character-

Then u is upper-

semicontinuous, R is lower semicontinuous, and

Note that we do not have

2 u ; we show there exist no

R

R lower-

semicontinuous and u uppersemicontinuous such that R < u and ( * ) is satisfied.

u(wl,n)

=

Suppose such a pair R,u exists.

0 for all n E N .

Now

Since u is uppersemicontinuous, i t

follows that limsupa+w u(a,n) < 0 for all n E N . Hence, since 1 N1 is uncountable, there exists a. such u(a,n) < 0 for all c1L c1 0

and nEl?i.

By assumption, R < u , so we also have

R(a,n) < 0 for all a

2

a.

and n C N . R being lowersemicontinuous,

< 0 for all a > a o , which conthis gives in turn that R ( a , w ) -

tradicts the definition of R . The above construction has been carried out in identify this with C r r ( X ) a .

k"(X).

X is dispersed, so C " ( X )

=

It f o l l o w s u above is a usc element of C " ( X )

(37.12).

an Rsc element. R l Q = RI,

Let I be the band R"(Q)

so by ( * ) , f E R ( I ) ,

.

Then ulQ

=

Cll(X). and k u I and

but it is easily shown, using the

above argument, that there is no gEC"(X) such that ( k ( g ) ) I (u(g)),

= f.

Now

=

Riemann I n t e g r a b i l i t y

331

5 6 4 . Examples

Consider t h e c a s e J

=

C(X)

u'

and we c a n t a k e p

2

We

0.

have no s p e c i a l comment t o make a b o u t x ( p ) beyond t h e s t a t e m e n t i n ( 6 3 . 2 ) , b u t we t a k e t h i s o c c a s i o n t o remark on s t a n d a r d We r e l a t e i t t o o u r

Riemann i n t e g r a t i o n i n f u n c t i o n t h e o r y .

a p p r o a c h by - a s u s u a l - i d e n t i f y i n g L"(X)

with CII(X)u

" f u n c t i o n " will mean an e l e m e n t o f C l f ( X ) a ) .

I t i s e a s y t o show

(SO

t h a t t h e s e t o f f u n c t i o n s which a r e Riemann i n t e g r a b l e ( w i t h respect to

u)

i n the standard sense i s precisely

X ( U ) ~ ,and

the

s e t o f t h o s e which a r e Riemann n e g l i g i b l e i n t h e s t a n d a r d s e n s e is precisely

y x ( ~ =)$ ~ X(p)

CII(X)u.

And r e m a r k a b l y , by ( 6 2 . 4 ) .

Thus, by ( 6 3 , 2 ( i ) ) , t h e s p a c e o f Riemann i n t e g r a b l e f u n c t i o n s modulo t h e s p a c e o f Riemann n e g l i g i b l e o n e s c a n be i d e n t i f i e d w i t h t h e Riemann s u b s p a c e

) - otherwise s t a t e d , LJ This i s t h e Caratheodory

R(C"(X)

w i t h t h e Riemann s u b s p a c e o f L m ( p ) . theorem. We l o o k a t o t h e r e x a m p l e s .

(64.2)

X ( C ' (X)) = C(x) = .R(C"(X)).

332

Chapter 1 3 Proof.

( C * ( X ) ) ' = 0 , s o I ( c ~ ( x ) )= 6

-1

(0) = c(x).

We

have a l r e a d y n o t e d t h e s e c o n d e q u a l i t y i n 5 5 9 ( c f . ( 4 6 . 3 ) ) . QED

We have remarked e a r l i e r ( 5 5 9 ) t h a t t h i s g e n e r a l i z e s t h e c l a s s i c a l theorem f o r a r e a l i n t e r v a l : a f u n c t i o n f i s RiemannS t i e l t j e s i n t e g r a b l e w i t h r e s p e c t t o e v e r y f u n c t i o n o f bounded v a r i a t i o n i f and o n l y i f f i s c o n t i n u o u s .

The above i s a s t r o n g s t a t e m e n t .

For f EC"(X) t o be

Riemann i n t e g r a b l e w i t h r e s p e c t t o e v e r y a t o m i c Radon m e a s u r e , f must l i e i n C(X); i t i s n o t enough t h a t i t be c o n t i n u o u s on X .

The o n l y r e s u l t we have t o o f f e r a t p r e s e n t on x ( C l ( X ) d ) i s a c h a r a c t e r i z a t i o n due t o C . Goffman f o r t h e c a s e where X i s

m e t r i c and d e n s e - i n - i t s e l f ( o r a l c o m m u n i c a t i o n ) .

( 6 4 . 4 ) Lemma.

First, a

I f X i s a compact m e t r i c s p a c e , a p o s i t i v e u s c

e l e m e n t u l i e s i n Cii(X)u i f and o n l y i f ( u , x ) = 0 f o r a l l b u t

a c o u n t a b l e number of

XIS.

Riemann I n t e g r a b il i t y Proof.

333

The s u f f i c i e n c y f o l l o w s from ( 5 4 . 1 6 ) .

Comversely,

s u p p o s e U E C " ( X ) ~and t h a t ( u , x ) > 0 f o r a n u n c o u n t a b l e number of x ' s .

Then t h e r e e x i s t s 1 > 0 and a c l o s e d u n c o u n t a b l e s u b > 1 €or a l l xEZ 0'

s e t Zo o f X ,

such t h a t ( u , x )

take X

S i n c e X i s compact m e t r i c , Z o c o n t a i n s a c l o s e d

=

1.

d e n s e - i n - i t s e l f subset 2.

For s i m p l i c i t y ,

L e t e be t h e c h a r a c t e r i s t i c e l e m e n t

Then ( e , x ) < ( u , x ) f o r a l l x , s o t h e Isomorphism theorem

of Z .

gives us e < u. L e t I be t h e band o f C"(X) g e n e r a t e d by e , and J i t s d u a l band i n C'(X).

Then J i s t h e v a g u e l y c l o s e d band g e n e r a t e d

by Z ( c f . (51.10) and ( 3 6 . 7 ) ) , h e n c e , b y ( 3 7 . 1 0 ) , c o n t a i n s a d i f f u s e measure ~ > 0 . But t h e n ( e , u ) > 0 , s o ( u , ~ )> 0 , c o n t r a d i c t i n g u EC'l(X)u. QED

S i n c e f o r e v e r y f EC"(X), 6 ( f ) i s a p o s i t i v e u s c e l e m e n t , t h e sbove g i v e s us o u r v e r s i o n o f Goffman's t h e o r e m :

( 6 4 . 5 ) I f X i s compact m e t r i c , t h e n f o r f E C " ( X ) , i f and o n l y i f ( 6 ( f ) , x )

=

f Ex(C'(X)d)

0 f o r a l l b u t a c o u n t a b l e number o f

X I S .

Goffman's s t a t e m e n t i s a s f o l l o w s :

(64.6)

(Goffman).

A bounded r e a l f u n c t i o n on a c l o s e d i n t e r v a l

i s Riemann i n t e g r a b l e w i t h r e s p e c t t o e v e r y p u r e l y n o n a t o m i c

3 34

Chapter 13

measure if and only if its set of points of discontinuity is countable.