Chapter 14 From Species and Geometric Moduli to Defining Equations

Chapter 14 From Species and Geometric Moduli to Defining Equations

CHAPTER 1 4 FROM SPECIES AND GEOMETRIC M O D U L I TO DEFINING EQUATIONS Introduction 14.10 Y Let - is IR, b e a r e a l e l l i p t i c c u ...

749KB Sizes 0 Downloads 47 Views

CHAPTER 1 4

FROM SPECIES AND GEOMETRIC M O D U L I TO DEFINING EQUATIONS

Introduction

14.10

Y

Let

-

is

IR,

b e a r e a l e l l i p t i c c u r v e whose f i e l d of c o n s t a n t s

IR;

e q u i v a l e n t l y , assume t h a t

boundary,

of

or t h a t it i s non-orientable.

aY,

s p e c i e s of

( 1 2 . 2 0 ) and l e t

Y

(512.3).

Y

7'

to be (2)

Let

Let

: ti 1/2 K

t

+

s = 2

if

ti/2 if

that

Yslt

and

Y

s

Let

be t h e

b e t h e g e o m e t r i c modulus

W e have s e e n (512.3)

YsIt.

equivalent t o

(1) L e t

h a s a non-empty

Y

0,

or

is dianalytically

Y

be i d e n t i f i e d . and l e t i t b e d e f i n e d

s = 1.

if

1, and l e t i t b e

or

s = 2

K

+

if

1/2

s = 0.

b e t h e a n t i - a n a l y t i c i n v o l u t i o n of

6

Let

then

YsIt Let

i s d e f i n e d t o be E(YsIt)

(or

for short)

Ys

,

(512.3).

Let

[6,1.3].

F(XT1) (or

F

b e t h e f i e l d o f a l l meromorphic f u n c t i o n s o n

We h a v e s e e n [ 6 , p p . 9 5 - 1 0 4 1 ,

is an a l g e b r a i c function IR.

,/i

XTl.

and r e s t a t e d i n (11.401, t h a t

f i e l d , o f a l g e b r a i c g e n u s 1,

Thus t h e r e e x i s t e l e m e n t s

x

and

y

in

E

such t h a t

IR, y

E = IR(x,y).

s a t i s f i e s an a l g e b r a i c equation with

coefficients i n

y

IR(x).

i s algebraic over

IR(x),

Such a n e q u a t i o n w i l l be c a l l e d a 251

E

over

is transcendental over Hence

-5 ;

i n d u c e d by

f o r s h o r t ) b e t h e f i e l d o f a l l mero-

E

morphic " f u n c t i o n s " on

XT

XTl

and

x

252

Norman L. A l l i n q

defining equation f o r

R c E.

There are

-

-

of course

an

i n f i n i t e number o f s u c h d e f i n i n g e q u a t i o n s ; t h u s w e s e e k a deFurther, we

f i n i n g e q u a t i o n o f a p a r t i c u l a r l y " n i c e " form. would l i k e t o e x p r e s s i n Chapter 7 t h a t i f lattice

=

y

analytically.

W e have s e e n

i s t h e Weierstrass 3 - f u n c t i o n f o r t h e

cn

then

Lrl,

(3)

and

x

4p

3

- g2r)

-

and t h a t

g3,

F =

C(piq').

T h i s w i l l s e r v e a s a model f o r t h e c o r r e s p o n d i n g p r o b l e m f o r E

A s w e w i l l see ( 3 ) q i v e s u s a s o l u t i o n t o

i n t h i s chapter.

s = 2 o r 1,

t h e p r o b l e m i n case

-

essence

t o Weierstrass.

a r e s u l t t h a t g o e s back

The case o f s p e c i e s

0

-

in

does not

seem t o h a v e b e e n t r e a t e d b e f o r e i n t h e l i t e r a t u r e , beyond what i s u i v e n i n [ 6 ] .

Since

we must look elsewhere f o r

x

p'

and

'p

and

y.

are not i n

E(YOIt),

This search lead the

a u t h o r b a c k t o J a c o b i e l l i p t i c f u n c t i o n s , a s w e w i l l see i n

514.3.

I n general, given (4) U ( f ) then

a

f

Kfc;

i s a n I R - l i n e a r automorphisrn o f

V i r t u a l l y by d e f i n i t i o n , (5)

F(LTl) let

E

Let

L

7

Let

of o r d e r 2.

is t h e fixed f i e l d of

a.

LTl.

Species

14.20

E

F,

2 and 1

b e t h e Weierstrass p - f u n c t i o n f o r

L

(7.32).

First note that

(1)

E

=

Indeed i f

L s = 2,

-

T' =

-

ti = - t i .

If

s

-

= 1, T '

= 1/2

-

ti/2.

253

S p e c i e s , Geometric Moduli, Defininq Equations

- 1) i s

t i (= 2 ( 1 / 2 + t i / 2 )

Since

in

-

L,

is i n

T'

L;

e s t a b l i s h i n g (1). Lemma.

Z

_ -1 Z

are i n

'p'

(( Z - a )

R€L*

~ ( z ) ; hence

is i n

3

Similarly 3

E.

q21Q3

and

(9) E I R " p 1 .

'

is i n

F = C@,v').

Since

By ( 7 . 3 3 : 1 9 ) ,

is i n

The0 r e m

2

and

(9') =475

A ( :g 2

IR

g2'93

3

-

PI.

-

-g$

g3

(7.33)

g3 =

is i n

IR*

.

By Theorem 7 . 4 2 ,

IR ( ' p I p l )

w e see t h a t Since

and

g2

A # 0,

IR. By ( 7 . 3 3 : 4 a n d 2 2 ) ,

.

3

27g32)

E.

c

@,'#I)

[F:E] = 2 ,

(S')2 = W

and

q2

S i n c e (1)

E.

IR, p r o v i n g t h e lemma.

E

Further,

By t h e Lemma,

Proof.

IR, A

g3

E = IR(?\,3'),

Theorem.

W

g2

IR.

(1) w e see t h a t t h i s i s

a2

h o l d s w e may u s e i t a n d t h e d e f i n i t i o n o f

t o prove t h a t

are i n

g3

&

R

I).U s i n g

-

( z - n 2

L L * (

g2

'I))

-

1 2

1

+

and

El

K ~ ( Z=)

a(?) ( z ) E

Proof.

.(;+I

and

9

= E.

g3

are i n

proving t h e

As n o t e d i n ( 7 . 3 3 : 2 0 a n d 21) ,

(3)

thus

e

1

+

e2

+

e 3 = 0 , ele2 + e2e3 + e 3 e l = - g 2 / 4 ,

and

ele2e3 = g 3 / 4 .

14.21.

IR+ n t i / 2

(i)

Theorem.

and

its values i n

IRi IRu

+

n/2,

{a}

on

rp

takes its values i n

for each

IR+nti/2

n

E

2.

IRu

(ii) p '

{a}

on

takes

and it t a k e s i t s v a l u e s

254 in

Norman L . A l l i n g Riu

p

thus

f o r each

E, 9

is i n

ti

Since

1R.

I R i + n/2,

Since

Proof.

on

on

{m)

E

IR u

ti

on

{m]

IR + ( n + 1 / 2 ) t i ,

w e see t h a t each

n

Since

E

f o r each

-

Since

N.

Z;

E

x

Let

IR.

E

and hence

IR+ t i / 2 ,

Z.

Combining t h e s e r e s u l t s

IRu

{m}

on

IR+ n t i / 2 ,

for

K?)(xi) = ' ! ? ( - x i ) .

i s an even f u n c t i o n ( 7 . 3 2 : 6 ) , t h e l a s t q u a n t i t y i s

9

takes its values i n

thus

n

t h e same i s t r u e o n

L,

c

(14.20:1),

L = L

?(xi); E

n

assumes v a l u e s i n

W

n

{a}

R(x+ti/2) =

i s r e a l - v a l u e d on

~ ? ( x + t i / 2 ) ; thus on

IR+ n t i .

IRu

the latter quantity equals

L,

E

f o r each

= p(z),

Using t h e Schwarz r e f l e c t i o n p r i n c i p l e , ~ ' p ( ~ - t i / 2 ) .S i n c e

Z

E

takes its values i n

L, I n ( z + n t i )

t a k e s on v a l u e s i n

n

'p

IF.i

+

IRu

on

{m)

n, f o r e a c h

n

Since

IRi. E

Z.

Using

t h e Schwarz r e f l e c t i o n p r i n c i p l e , as w e d i d a b o v e , o n e sees that

n assumes i t s

each

n

E

x

E

3'

{m}

IR; t h e n

on

IRi.

y'

above, t h a t f o r each

14.22

n

E

IRi+

Z;

IRu

n/2,

on

{ m l

~ V ' ( x i )= ' p ' ( - x i ) = - y ' ( x i ) ,

for

Thus

'p'

IR+ i n / 2 . since

9'

is

assumes i t s v a l u e s i n

From t h i s i t f o l l o w s , from t h e a r g u m e n t takes its values i n

IRiu

{m}

on

I R i + n/2,

p r o v i n g t h e Theorem.

Assume t h a t

Theorem.

on

Cm)

take its values i n

a n odd f u n c t i o n ( 7 . 3 2 ) . IRi u

IRu

e s t a b l i s h i n g ( i ) . The same a r g u m e n t c a n b e u s e d

Z;

t o show t h a t Let

values i n

( i ) el,e2,

s = 2.

a r e real and d i s t i n c t . 3 is p o s i t i v e , zero, or neaative and

e

(ii) A > 0 .

(iii) g3

according as

t > 1, t = 1, o r t < 1.

(iv)

g2 > 0.

(v)

'p

maps t h e p e r i m e t e r o f t h e r e c t a n g l e whose v e r t i c e s a r e 0 , 1/2,

S p e c i e s , Geometric Moduli, Defining Equations

+

1/2

ti/2

and

ti/2,

injectively onto

255 (vi)

[-m,ml.

goes through t h i s s e t , counterclockwise s t a r t i n g a t

0,

avoiding

el

p(z)

+ ti/2)

but

> e3 ( i n ( t i / 2 ) ) .

)

e l , e 2 , and e 3

By Theorem 1 4 . 2 1 ,

Proof.

z

is s t r i c t l y decreasing; thus

p ( 1 / 2 ) ) > e2 ( :l p ( 1 / 2

(

0,

As

are real.

By

(7.33:4) t h e y are d i s t i n c t , proving ( i ) . Since 2

A = 16(e -e ) 1 2

( i i ) . For

i

-6

s

= -s

6

zero.

(e2-e,)

t = 1,

Recall t h a t

Hence

3

thus

g3(ti)

s

, A

(7.33:5)

6

and hence

s6, L

1 = 27g3/A

t > 1

> 0,

equals (7.33:18)

q6

(9.11:7)

,

proving

is

and t h a t

( C o r o l l a r y 5 , 99.28); t h u s

t > 1.

for a l l

t > 0,

-

(7.33:22)

1

i L = L;

J

for a l l

g3(ti) # 0,

(1) F o r

( e -e ) 2

showing t h a t

6'

J(ti) > 1

2

(i/t)Lti

= Lilt;

t = 1.

changes s i g n a t

Since

T

CD

I+

g3(LT)

i s a n a l y t i c (Theorem 9 . 2 2 1 ,

g3(ti)

shown t h a t

e x i s t s a n d i s p o s i t i v e [ 1 9 , p p . 6-

Limt++m

s6(Lti)

i s continuous.

7, a n d p p . 3 3 - 3 4 ] ; p r o v i n g ( i i i ) . S i n c e t > 1

(Corollary 5, 99.28))

for a l l

(3)

t > 1.

g2(Li,t)

proving ( i v ) .

,

and s i n c e

J(ti)> 1,

U s i n g (1) w e see t h a t 4

= t q2(Lti)

I

To see t h a t ( v ) a n d ( v i ) h o l d ,

Note i n p a s s i n g t h a t ( 2 ) and ( 3 ) i m p l y A(Li,t) 14.23

for a l l

3 J = g 2 /A, g 2 ( Lt l- 1 > 0 ,

F i g u r e 11, p r o v i n g t h e Theorem.

(4)

I t can be

= t

12

A(Lti)

Assume t h a t

,

for a l l

s = 1.

t > 0.

see [ 1 9 , p . 38

256

Norman L . A l l i n g

( i ) el

Theorem.

is real.

r e a l complex c o n j u g a t e s .

are distinct,non-

is positive,

( i i i ) g3

t > 1, t = 1, o r

t < 1.

(iv)

i s p o s i t i v e , zero, negative, zero, o r p o s i t i v e according

a s t > 3'12,

x

(v)

(O,l),

E

,

t = 3

> t > 0.

3-1/2, for

e3

and

2

(ii) A < 0 .

zero, o r negative according a s g2

e

t = 3- 1 / 2

3112 > t > 3- 1 1 2 ,

I

or

i s t h e r e l a t i v e minimum of

1/2

-

t h e r e l a t i v e minimum v a l u e b e i n g

b (x)

of c o u r s e

-

e 1' el E ? ( 1 / 2 ) .

Proof.

el

By Theorem 1 4 . 2 1 ,

is real.

fi p ( 1 / 4 + t i / 4 ) . (Note: w e have 3 a d o p t e d t h e c o n v e n t i o n of numbering t h e e I s u s e d by [ 3 6 1 . )

e2

15 ( 3 / 4 + t i / 4 )

and

p

By Theorem 1 4 . 2 1 ,

e

i s r e a l - v a l u e d on

of r e f l e c t i o n about t h i s l i n e , a r e symmetric p o i n t s ; t h u s

3/4

-

+

e3 = e 2 ;

7Ri

ti/4

+

1/2.

and

I n terms

1/4

+

ti/4

p r o v i n g ( i ) . By ( 7 . 3 3 : 2 2 ) ,

2 2 2 A = 1 6 ( e -e 1 ( e 2 - e 3 ) (e3-el) , a n d by ( 7 . 3 3 : 4 ) t h e e I s a r e 1 2 j U s i n g (i) o n e e a s i l y sees t h a t A 5 0 , d i s t i n c t ; thus A # 0. proving ( i i ) . C l e a r l y L(

LT ,) ;

thus

(1)

( i / t ) L T I = L1/2

(2)

Hence

(3)

92 ( ~ 1 / 2t i / 2 t )

If

t = 1

'3 ( L 1 / 2

then

g3(L1/2+i/21

+ti/2)

equals

2 3 27g3 / ( 9 2

i/2tI

for a l l

= t 4 g 2 ('112

+

-

i/2

# 0.

< 1;

27g3)

t > 0.

6 = -t g 3 ( L 1 / 2 t t i / 2 )

+i/2t)

thus

,

+ti/2)

= T'.

As w e saw,

= 0.

J(1/2

+ti/2

+

1/2

t > 1,

93 (L1/2

is a basis of

{ti, 1/2-ti/21

I

and

*

( 2 ) t h e n shows t h a t

i n C o r o l l a r y 5 , 59.28, f o r J(LlI2

+

ti/2)

- 1,

0;

a n d so

i s less than

Using ( 2 ) w e see t h a t

which

t = 1 is t h e only

Species, Geometric Moduli, Defining Equations 93 (L1/2 + ti/2)

zero of

the rest of (iii).

DuVal [19, p. 33 ff.] establishes

Since

J(1/2+ti/2)

(Corollary 5, §9.28)), and since for all

t > 1.

Now let

T E Q

let

< 1

for

t > 1

J = g2 3/A,g2(1/2+ti/2)

> 0

J ( p ) = 0 (9.28:7), g2(1/2+ 31i2i/2 = 0.

Since

such that

1 ~ =1

1

and

0 < Re-r < 1/2:

J ( T )E

be in case 3 of 512.3; then

T

257

i.e.,

(9.28).

(0,l)

Using the Schwarz reflection principle, reflecting across the circle of radius J(1/2+ti/2)

1

and center

(0,lI

E

[19, p. 451.)

for all

1, we know that

31i2 > t > 3

(see e.9.

Using (3), we can establish the rest of (iv).

Using [19, pp. 38-391, (v) can be established, proving the Theorem. 14.24

Vorlesungen

Bibliographic note.

...

[64,

In Chapter 30 of Weierstrass's

pp. 264-2751 he applies some of his earlier

derived results and formulas to the case in which the numbers q2

and

q3

are real.

Many of the results presented thus far

in this Chpater can be found there.

For example, Weierstrass

notes that the study naturally breaks into two cases:

A

>

0,

el > e

and (11) A < 0. > e3.

In case (I) he noted that

is pure imaginary.

one of the

R

Further he noted that a basis

the period lattice could be chosen so that w2

e.'s 3

(I)

w1

5

(wp 2 )

t

of

is real and

In case (111, Weierstrass noted that

is real and that the others are a pair of

conjugate complex numbers. chosen so that it was

He further noted that Q could be (1 1/2 + ti/2) t , for some t > 0.

Most of the function theory theorems thus far presented in this chapter are well known.

See e.g., Chapter 2 and 3 of

DuVal's very useful little book [191.

Norman L . A l l i n g

258

- a s elsewhere i n P a r t

What may be n o v e l h e r e

-

monograph

I11 o f t h i s

i s t h e a s s o c i a t i o n of t h e a n a l y t i c function theory

o f r e a l e l l i p t i c f u n c t i o n s , a s found by E u l e r , L e g e n d r e , Gauss,

-

Abel, J a c o b i , W e i e r s t r a s s , Klein e t a l l w i t h t h e a l g e b r a i c

g e o m e t r i c t h e o r y o f K l e i n s u r f a c e s a s d e v e l o p e d by K l e i n , Witt, S c h i f f e r and S p e n c e r , A l l i n g and G r e e n l e a f , e t a l .

14.30

Species 0

Assume now t h a t

t > 0,

with

by u s i n g

9

and

s = 0; 5 K

and

+

1/2.

it i s

9'

t h u s by ( 1 4 . 1 0 : l

and 2 )

T I

5

ti,

Having m e t w i t h s u c h s u c c e s s

perhaps

a l i t t l e surprising to

learn that (1) 9

Indeed,

p

and

o ( ' p )( 2 )

a r e not i n 5

p e r i o d i c of period t r u e of

9I

,

( z +1 / 2 )

~'p

1/2,

E. = 'p ( z

+ 1/2).

w e see t h a t

Since

o (lp) # 'p

.

'p

is not

The same i s

e s t a b l i s h i n g (1).

Pedagogical

note.

I t seems t h a t o n e o f t h e g r e a t d i f f i -

c u l t i e s s t u d e n t s have when t h e y f i r s t b e g i n t o t r y t o do research i s t h a t mathematics, a s i t appears i n t e x t s , i n lect u r e s , and even i n r e s e a r c h j o u r n a l s , i s n o t o n l y p o l i s h e d ; b u t t h a t t h e i n v e n t o r s ( o r d i s c o v e r e r s ) o f t h e mathematics have been so t h o r o u g h a b o u t c o v e r i n g up t h e way i n which t h e i d e a s came t o them.

I n a n e f f o r t t o s h e d a l i t t l e l i g h t on how

some o f t h e r e s e a r c h was c o n d u c t e d i n a r r i v i n g a t t h e r e s u l t s o f t h e t h i r d p a r t o f t h i s monouraph, which may be of u s e t o s t u d e n t s and may a l s o b e of i n t e r e s t t o o t h e r s , 5914.31

-

14.33

a p p e a r s h e r e u s i n g t h e methods and t h e o r d e r o f t o p i c s a s t h e y a p p e a r e d i n t h e f i r s t d r a f t o f t h i s monouraph.

(Of c o u r s e

t h e y were much messier and more c o n f u s e d t h e r e , b u t t h i s i s

S p e c i e s , Geometric Moduli, Defining Equations

259

how t h e i d e a s e v o l v e d . )

One o f t h e s t a n d a r d a p p l i c a t i o n s o f t h e Riemann-

14.31

Roch Theorem i s t o show t h a t c e r t a i n e l e m e n t s e x i s t i n a n a l gebraic function f i e l d .

510.50 f o r a s t a t e m e n t of

(See e . g . ,

t h e Riemann-Roch Theorem i n t h e complex c a s e a n d e . g . , f o r t h e g e n e r a l t r e a t m e n t i n t h e complex c a s e .

[ 2 9 , 571

See e . g . ,

[ 1 6 , C h a p t e r 111 f o r t h e Riemann-Roch Theorem f o r g e n e r a l a l -

[4, 531 f o r t h e t h e o r e m i n

gebraic function f i e l d s , o r e.g.,

Our n o t a t i o n w i l l b e c o m p a t i b l e w i t h [ 4 ] . )

the r e a l case. yo

Let

be a p o i n t i n

y t i c Klein b o t t e ; thus f i e l d of c o n s t a n t s , field a t

yo

(1) L e t

b

then at

b yo

is not i n

yo

-

of

R,

is

E

i s IR- i s o m o r p h i c t o :-

i s of d e g r e e

ord b,

(3

The g e n u s

aY.

Even t h o u g h t h e

IR,the residue c l a s s (11.20).

C

X! y o 1 ;

i s a d i v i s o r on

(2

w h i c h w e know i s a d i a n a l -

Yo,t'

2

over

t h e o r d e r of g

b,

Yo,t

of

Since t h e residue c l a s s f i e l d

Yo,t'

IR, [ 4 , p.26 1 .

i s -2

i s , by d e f i n i t i o n , i (b)

To compute t h e i n d e x o f s p e c i a l t y

of

1.

b

(see e . g .

,

[4, p . 31]), w e may u s e t h e u s u a l d e v i c e , The S e r r e D u a l i t y Theorem (see e . g . ,

Yo,t (4)

such t h a t

[4,

3.91).

Given a d i f f e r e n t i a l

-

b > 0,

then

(w)

w

w

on

i s zero: t h u s

i ( b ) = 0.

By t h e Riemann-Roch

(5)

k(b) = 2:

(6)

i.e.,

L(b)

{f

Theorem (see e . g . ,

E

E(Y):

(f)

+

b

2

[ 4 , 3.81)

0)

, w e see

that

i s of d i m e n s i o n

260

Norman L . A l l i n g

2 over

IR.

Clearly

1 is i n

Clearly

{l,fj

element

h

and

b

(7)

h

7

poles a t

x

p

Let

-1

for

=

and

0

and

1,

Clearly

Xti,

a

E

being

i s a map

h

A s a consequence,

( 1 0 . 4 0 ) o r [ 6 , p p . 95-1041,

[ C ( h ) : IR(h) ]

= 2

and

for

[F:E] = 2 ;

IR(h)] = 2 .

[E:

k

Let k

14.32

E

E - IR(h);

then

E = IR(h,k)

i s algebraic over

.

xo,

L e t us choose

and l e t

yo

i t s poles i n where

Thus w e h a v e

IR(h) o f d e g r e e 2 .

in

Yo,t

.

E (Yo, t)

t o be

let

pg(O),

q ( 1 / 2 ) = xl.

(1) W e want t o d e f i n e a n e l l i p t i c f u n c t i o n P(R) simple poles a t

R : (1 t i )t

0

Q

in

having

E

and 1 / 2 ,

.

I n 514.31 w e saw t h a t s u c h f u n c t i o n s e x i s t .

Fleierstrass zeta

f u n c t i o n s ( ( 7 . 3 0 : l ) and ( 7 . 3 4 ) ) a r e p a r t i c u l a r l y w e l l s u i t e d f o r t h i s p u r p o s e (Theorem 7 . 4 3 ) . (2)

Let

IR*

has its only

h

l e a r n e d s o m e t h i n g a b o u t d e f i n i n g e q u a t i o n s of

q(0)

with

and x1

xo

( ( 6 . 4 1 ) and ( 6 . 4 2 ) ) .

2

more d e t a i l s . )

Clearly

b

each being simple; t h u s

xl,

(See e . g . ,

(8)

+

( 1 2 . 3 6 ) and ( 1 3 . 1 5 ) ;

{xo,x,}

(yo) =

j = 0

[F: C ( h ) 1 = 2 .

thus

Hence a n y o t h e r

IR.

af

L ( b ) - IR.

0'

of o r d e r

Xti

E

t h a t pole being a simple

Yo,t'

As a meromorphic f u n c t i o n o n

distinct.

of

y

F(Xti).

S(x.1

over

i s of t h e form

h a s o n l y o n e p o l e on

is i n

then

L ( b ) - IR

L(b)

f

Clearly

pole a t h

i s a b a s i s of

in

7R.

E

thus there exists

L(b);

Q ( z ) : i [ < ( z )- 5 ( 2

- 1/2)

- q1/2I,

for a l l

z

E

C,

S p e c i e s , Geometric M o d u l i , D e f i n i n o E q u a t i o n s

<

where

nl

and

261

is Weierstrass's zeta function f o r t h e lattice = 2<(1/2)

zero, i t s pole i n poles on

is

P(Q),

(7.34:2).

1

these being a t

P(Q),

i

these pointsare

-i

and

0

and

Lti

c(z) at

The r e s i d u e of

(7.34:9 and 1 0 ) .

has only simple

Q

The r e s i d u e s a t

1/2.

r e s p e c t i v e l y ; t h u s by Theorem

7.43,

is i n

(3)

Q

Let

L :L

(4)

S(X)

ti ' E

F.

-

Since

IRU

L = L,

for all

Cml,

x

IR.

E

I n d e e d , u s e t h e e x p a n s i o n ( 7 . 3 4 : 2 ) t o show t h i s . that

(14.10:4)

i s t h e IR-automorphism o f

o

a ( Q ) ( z ) = K Q ( Z +1 / 2 )

its fixed field. 11,/2I)

- i ( Z + 1/21 +

= i[T(Z)

is real.

+

5 ( z - 1 / 2 + 1) = (5)

is i n

Q

(z

-

+

1/2)

-

Since (6)

Q(-z)

= -Q(z)

,

q1/2].

1

By ( 7 . 3 2 : 7 )

,

<(2+1/2) =

proving t h a t

ql,

for all

(14.31),

is i n

Q

E

z

@:

E

i.e.,

i s a n odd

Q

U s i n g ( 4 ) o n e sees t h a t for all

Q(K(z)) = -KQ(z),

Q

( = 25 (1/2)

rll

(z)-

E.

values i n

(8)

5

i s a n odd f u n c t i o n ( 7 . 3 4 : 2 )

5

n

since

-

IR.

function.

(7)

= ~ ( i [ ( cZ + 1 / 2 )

as

E

C ( z ) = ~ ( z; ) t h u s

I n d e e d , i n terms of t h e n o t a t i o n o f L(b)

having

_ _

U s i n g ( 4 ) w e see t h a t

a ( Q )( z ) = i [ < ( z ) - < ( 2 + 1 / 2 )

,

n1/2]

F

Recall

IRi u

{m}

on

z

E

@;

thus

IR, a n d h e n c e o n

Q

takes its IR+ n t i ,

for

Z.

takes its values i n

Indeed, l e t

x

E

IR; t h e n

IRi

on

Q ( x +t i / 2 )

IR+ t i / 2 . = Q(K (x- ti/2))

equals,

262

Norman L . A l l i n g

by ( 7 )

- ~ Q ( ~ - t i / 2 ) . Since

t h i s l a s t quantity equals Q

is p e r i o d i c of period

(9)

each

n

E

+

-KQ(x

proving ( 8 ) .

ti/2),

ti,

Since

w e t h e n have

ti

takes i t s values i n

Q

i s p e r i o d i c of period

Q

IRi u

{m)

on

IR+ n t i / 2 ,

for

2.

Combining ( 6 ) and ( 7 ) w e f i n d t h a t (101

Q(-z)= on

Indeed, = KQ(z)

I R i + n/2,

,

f o r each

n

of period

1 2.

E

IRu

i t i s odd.

o n lRi i s o b v i o u s .

~Q(n+1/2+iy= )

y

That Since

IR and l e t

be i n

KQ(c(n-iy)) =

a q u a n t i t y which i s i n

IR u

-Q(F)

Using ( 7 1 ,

assumes

Q Q

i s periodic

i t assumes v a l u e s i n t h i s s e t on e a c h Let

{m}

Z.

E

establishing the f i r s t result. IRu {ml

n

takes i t s values i n

Q

Q(-z)= -Q(z), s i n c e

values i n

where

thus

KQ(z);

n

be i n

IRi+n, 2.

o(Q)(n-iy) = Q(n-iy), establishing (10).

{a};

By

construction,

(11) t h e p o l e s o f 1/2

Thus

+

L,

Q

on

C

a r e a t t h e p o i n t s of

and

each being simple.

h a s two s i m p l e p o l e s i n

Q

L

P(Q),

U s i n g ( 9 ) and (10) w e

see t h a t (12)

t h e zeros of

Q

+ ti/2 +

L,

1/2 Since

(13)

5' = -'p.

ti/2

+

L

and o f

each being simple.

(7.34:4),

Q ' ( z ) = i " p ( z - 1/21 -!p(z)l

(14) t h e p o l e s of

Q'

(15) Q '

on

Q'

t h e p o i n t s of Since

a r e a t t h e p o i n t s of

C

and

L

a r e e a c h d o u b l e and t h e y a r e a t 1/2

+

h a s two d o u b l e p o l e s o n

i s of o r d e r

4

L.

P(Q),

( ( 6 . 4 1 ) and ( 6 . 4 2 ) ) .

S p e c i e s , Geometric Moduli, D e f i n i n g E q u a t i o n s h a s 4 z e r o s on

As a c o n s e q u e n c e , Q'

1/41]

-

1/41

I,

9

since

Since

=

- ti/2)

0 (1/4 + t i / 2 )

ti

Since

; thus

takes its values i n

Q'

= 0.

= i['p(1/4

'p(1/4 + t i / 2 1

i s a n even f u n c t i o n .

+ (1/4 - t i / 2 )

= 0.

9,

p(3/4)] = i [ ~ ( 1 / 4 )- ?(-1/4)1

+ti/2) -

p,

Q'(1/4) =

1 i s a period of

Since

:i[+(-1/4

is a period of Q(l/4 +ti/2)

0.

=

L e t u s f i n d them.

P(fi).

i s an even f u n c t i o n ( 7 . 3 2 : 6 ) ,

Since

26 3

on

Wi

[19, p . 3 8 , F i g u r e 1 1 , w e c a n u s e t h e Schwarz re-

IRi+ 1/2

flection principle t o reflect doing s o w e f i n d t h a t

1/4,

shown t h a t z e r o s of

Q'

across t h i s line.

Q'(3/4 + t i / 2 )

+

1/4

3/4,

in

Q'

ti/2,

Since

P(fi).

found a l l o f t h e z e r o s o f

in

Q'

each of t h e s e z e r o s i s simple.

Hence w e h a v e

= 0.

a n d 3/4

+

P(Q)

are a l l

ti/2

has order 4

Q'

On

(15) w e have

a n d w e know t h a t

Thus w e h a v e e s t a b l i s h e d t h e

following. (16)

The z e r o s o f t h e p o i n t s of

u (17)

(3/4

(1/4

+ t i / 2 ) + L)

The numbers Q3/4)

on

Q'

c

+ L)

a r e a l l s i m p l e and t h e y a r e a t

u

+ L)

u

(1/4

+ t i / 2 + L)

.

Q(1/4), Q(1/4

are a l l i n

(3/4

IRi.

+ti/2) ,

Q(3/4 + t i / 2 ) ,

and

F u r t h e r , t h e f i r s t and f o u r t h

are c o n j u g a t e , a s a r e t h e s e c o n d and t h i r d . I n d e e d , by ( 9 ) t h e y a r e a l l i n v a l u e d on

I R i + 1/2.

IRi.

By (10)

Q

i s real-

U s i n g t h e Schwarz r e f l e c t i o n p r i n c i p l e

w e o b t a i n t h e rest. (18) Since P(Q)

The f o u r numbers g i v e n i n ( 1 7 ) a r e d i s t i n c t . Q

i s o f o r d e r 2 (11) i t c a n assume t h e s a m e v a l u e i n

only t w i c e , counting m u l t i p l i c i t y .

Since

1/4,

264

Norman L . A l l i n g

1/4+ti/2, Q

3/4+ti/2,

and

3/4

a r e t h e zeros of

in

Q'

P(Q),

a s s u m e s e a c h o f t h e s e p o i n t s d o u b l y ; h e n c e t h e v a l u e s of

Q

a t those four points a r e d i s t i n c t .

(i) (Q')

Theorem

2

= -(Q-Q(1/4))

(Q-Q(3/4+ t i / 2 ) ) ( Q - Q ( 3 / 4 ) ) :g(Q) in

-(x

IR[Q].

E

i s not

(ii) Q '

(iii) E ( Y O I t ) = I R ( Q , Q ' ) . (iv) g(x) = 2 + b ) , where a = Q ( 1 / 4 ) / i and b = Q ( 1 / 4

IR(Q).

2

(Q-Q(1/4+ti/2))

2

2 + a ) (x

are in

IR. Since

Proof.

p o l e s on

and of

(18) ,

map o f hence

1, Q'

Xti

g(Q)

and t o t h e same o r d e r ,

U:

must b e

and

(Q')2

z e r o complex number

(Q')2

+ti/2)/i

(6.31).

g(Q)

at

0

onto

C

( Q ' ) 2/g (Q)

each s t a r t o u t with g(Q)

IR(Q), proving

o f o r d e r 2 (11),

[ E ( Y O I t ) : IR(Q) ] = 2 .

:X

i s a non-

Since t h e Laurent expansion of

proving ( i ) . Since

cannot be i n

h a v e t h e same z e r o s and

-l/z

4

, X

has 4 d i s t i n c t r o o t s i i ) . Since

Q

is a

[F(Xti) : @ ( Q )1 = 2 ;

U s i n g ( i i ) w e see t h a t ( i i i ) h o l d s .

( i v ) f o l l o w s d i r e c t l y from ( 1 7 ) .

14.33

W h i t t a k e r and Watson w r i t e a s f o l l o w s a t t h e

b e g i n n i n g of C h a p t e r X X I I , t h e i r c h a p t e r on J a c o b i ' s e l l i p t i c functions:

" I n t h e course of proving g e n e r a l theoremconcern-

i n g e l l i p t i c f u n c t i o n s a t t h e b e g i n n i n g o f C h a p t e r X X , i t was shown t h a t two c l a s s e s o f e l l i p t i c f u n c t i o n s were s i m p l e r t h a n any o t h e r s s o f a r a s t h e i r s i n g u l a r i t i e s were c o n c e r n e d , namely t h e e l l i p t i c functions of order 2 .

The f i r s t c l a s s c o n s i s t s o f

those w i t h a s i n g l e double p o l e (with zero r e s i d u e ) i n each

c e l l , t h e s e c o n d c o n s i s t s of t h o s e w i t h t w o s i m p l e p o l e s i n e a c h c e l l , t h e sum o f t h e r e s i d u e s a t t h e s e p o l e s b e i n g z e r o .

S p e c i e s , Geometric Moduli, Defining Equations "An example o f t h e f i r s t c l a s s , namely

cl? ( z ) ,

265

was d i s -

cussed a t l e n g t h i n Chapter XX; i n t h e p r e s e n t c h a p t e r w e s h a l l d i s c u s s v a r i o u s examples o f t h e s e c o n d c l a s s , known a s J a c o b i a n e l l i p t i c functions."

p . 4911

[69,

Clearly

is i n t h e

Q

s e c o n d c l a s s o f t h e s e f u n c t i o n s ; t h u s i t is n a t u r a l t o t r y t o

write

i n terms o f s t a n d a r d J a c o b i a n e l l i p t i c f u n c t i o n s .

Q

W e d e s c r i b e d J a c o b i ' s work on h i s e l l i p t i c f u n c t i o n s i n I t w i l l b e h i s s i n a m f u n c t i o n ( 4 . 2 0 : 3 ) t h a t w i l l b e most

94.2.

concerned. W e w i l l u s e Gudermann's n o t a t i o n , function (4.23).

sn,

t o denote t h i s

The most c o n v e n i e n t way t o d e f i n e t h e J a c o b i a n

e l l i p t i c f u n c t i o n s f o r a g e n e r a l complex modulus i s by means of t h e t a functions ( 5 . 3 1 : l ) . [361 l e t

F o l l o w i n g most of t h e n o t a t i o n a l c o n v e n t i o n s of

(1) w then

5

1/4

and l e t

w'

Z

is defined ( 5 . 3 1 : l ) .

sn

then

ti/2;

T

= 2ti

By Theorem 5 . 3 1 ,

[36,

sn

p 190 f f . ] ;

is i n

F (Xti) has zeros a t t h e p o i n t s of

(2)

L

and

1/2

+

L , each being

si m p l e ; (3)

and 1/2

sn

+

h a s i t s p o l e s a t t h e p o i n t s of

ti/2

+

ti/2

+

and o f

L

L, each being simple.

Comparing ( 2 ) and ( 3 ) , on t h e o n e h a n d , w i t h t h e d e s c r i p t i o n o f t h e p o l e s and z e r o s o f Qsn = A ,

f o r some

A

in

has a simple pole a t

0

which h a s r e s i d u e

(4) Q

( 1 4 . 3 2 : 1 1 and 1 2 ) w e see t h a t

Q

simple zero a t

0.

W e have s e e n ( 5 . 3 1 : 2 )

(5)

@*.

L e t u s compute

sn'(0).

that

2 2 2 ( s n ' ) 2 = ( 1 - s n ) (1-k s n ) ,

where

i.

sn

has a

Norman L . A l l i n g

266

k

i s L e g e n d r e ' s modulus ( 5 . 3 1 : 3 ) ;

(6)

s n ' ( 0 ) = i- 1.

thus

sn'(0) = 1

Indeed,

sn'(u) = cn(u)dn(u).

169, p. 4921.)

Since

[36, p. 2161 o r

(See e . u . ,

( 6 ) is established.

cn(0) = 1 = dn(O),

Thus w e h a v e proved t h e f o l l o w i n g :

Q

Theorem.

-

i/sn.

Having d i s c o v e r e d t h a t

Remark.

course

=

have d e f i n e d

Q

t o be

i/sn

Then w e c o u l d have d e r i v e d ( 1 4 . 3 2 : 2 ) . the species

0

w e could

Q = i/sn,

-

of

i n the f i r s t place. Note a l s o t h a t t o t r e a t

case w e a r e n a t u r a l l y l e a d t o s t u d y t h e

Jacobian e l l i p t i c functions.

14.34

From Theorem 1 4 . 3 3 and ( 1 4 . 3 3 : 5 ) w e o b t a i n

Reca 11 ( 5 .3 1:3 ) t h a t (2)

2

k

02/0,

2

e2

One c a n see d i r e c t l y from t h e d e f i n i t i o n o f

and

[ 3 6 , p . 1961 t h a t t h e y a r e r e a l and p o s i t i v e ; t h u s

O3 0 < k.

However, i n g e n e r a l (3)

k2 = ( e 2 - e 3 ) / ( e l - e 3 )

W e have s e e n i n Theorem 1 4 . 2 2 k'

> 1

(4)

[ 3 6 , p . 2281. (vi) that

thus

and h e n c e ,

0 < k < 1,

i n t h e case u n d e r c o n s i d e r a t i o n .

I n Theorem 1 4 . 3 2 w e f o u n d t h a t where

e1 > e2 > e3;

a

w a s d e f i n e d t o be

Q(1/4)/i

Using Theorem 1 4 . 3 3 w e know t h a t b = l/sn(1/4+ti/2).

(Q') and

=

- ( Q2 + a 2

(Q

2

+ b2

b E Q(1/4+ti/2)/i.

a = l/sn(1/4)

and

T h e s e q u a n t i t i e s a r e w e l l known (see e . g . ,

I

S p e c i e s , Geometric M o d u l i , D e f i n i n g E q u a t i o n s [ 6 9 , p . 498 f f . a n d p . 502 f f . ] w h e r e

K' = t / 4 ) : (5)

K = w = l j 2

267 and

namely

a = 1 and

b = k.

I t w i l l be convenient t o d e f i n e a n o t h e r f u n c t i o n i n E(Yort) 1 (6)

,

namely

-1/Q = i s n .

3

Clearly w e have t h e following: T h e o r e m . E = l R ( 3 ,3

(7) Let L

and

I ) ,

= -(l+rX2)(l+k%'2).

urvl

UIVIW

and

w

be i n

and r e c a l l (3.21:lO)

{0,1)

w 2 2 ( x , k ) 5 ( - l ) u ( lk-1 ) v x 2 ) (1- (-1) k x ) .

that

Thus ( 7 ) i s i n

t h e f o l l o w i n g g e n e r a l i z e d L e g e n d r e form

14.40

Other q u a r t i c d e f i n i n g equations

Having f o u n d t h a t o u r s e a r c h f o r a d e f i n i n g e q u a t i o n f o r species

0

l e a d s us q u i t e n a t u r a l l y t o q u a r t i c d e f i n i n g equations

(Theorem 1 4 . 3 2 a n d ( 1 4 . 3 4 : 7 a n d 8 ) ) , a n d t o J a c o b i a n e l l i p t i c f u n c t i o n s , it i s n a t u r a l t o look f o r q u a r t i c d e f i n i n u e q u a t i o n s f o r the other species.

let

-5

14.41.

:K;

Let

then

s = 2

Y2,t

and l e t

:X

t h i s Chapter f o r d e t a i l s . )

t > 0.

ti/s. Let

Let

L

z

L

ti

and

(See t h e e a r l y s e c t i o n s of sn

be d e f i n e d as i n ( 1 4 . 3 3 ) ;

then

(1)

2 2 2 (sn')2 = (1-sn ) ( l - k sn ) = L

(See (14.33:5) and ( 3 . 2 1 : 1 0 ) . )

0 ,0 ,0 ( s n , k l

As n o t e d i n 514.33,

sn

is i n

268

Norman L . A l l i n g

F(X~-)

(2)

=

a: ( s n , s n ' ) .

I n d e e d , o n e may a r g u e a s w e d i d i n t h e p r o o f o f Theorem 1 4 . 3 2

(iii); e s t a b l i s h i n g ( 2 ) . (3)

sn(u)

IR, f o r a l l

E

u

E

IR.

I n d e e d , t h i s may b e c h e c k e d ( e . g . ,

i n [ 3 6 , pp. 1 9 0 - 2 1 3 1 ) , j u s t

by l o o k i n g a t t h e v a r i o u s d e f i n i t i o n s ; s i n c e

are a l l r e a l [36, p. 1901.

h , u , and v

20, @ o f eo(v), @,(v),

0

thus

A s a consequence

Hence

tween Jacobi

.

14.42

5

s

Let

+ ti/2

:1 / 2

( s n ' ) 2= L O , O , O ( ~ n , k )

The case i n w h i c h

k

i s r e a l and be-

1 i s t h e c l a s s i c a l case t h a t i n i t i a l l y c o n c e r n e d

and

0

where

1.

k

H i s t o r i c a l note.

Yl,t

2ti;

a l l r e a l [36, p.1961.

= IR(sn, s n ' ) ,

E(Y2,t)

Theorem.

T'

is

i s r e a l [ 3 6 , p . 2131.

sn(u)

and

@ia r e

and

T

xT,./5.

and

= 1

and l e t

-

L :L

as always T"

-

-

let

5 :K ;

Let

t > 0.

Let

then

( S e e t h e e a r l y s e c t i o n s o f t h i s c h a p t e r f o r more

details.

W'/W

'I

= 1

136, p . 1901 (2)

and

w 5 1/4

(1) L e t

sn

is i n

+

w'

: ~ ' / 2= 1 / 4

h = -e -llt ,

ti,

sn(u)

E

IR, f o r a l l

m

1 + 2

u

E

u (sn) (u) : csn(u) = sn(u),

W e have s e e n (5.31:3) t h a t

=

then

a n d z = ei n v = e 2 r i u

L e t u s now c o n s i d e r L e g e n d r e ' s m o d u l u s

e3

ti/4;

iR.

E(Yl,t);

s i n c e (1) h o l d s ,

(3)

+

In=1 hn

2

k

f

2 2 R2/e3.

[36,p. 1961.

k.

establishing (2).

S p e c i e s , G e o m e t r i c Moduli, D e f i n i n g E q u a t i o n s

o3

(1),

h = -e -'t

Since

269

is real.

C l e a r l y t h i s can be w r i t t e n a s follows:

e2

(5)

= 2h

h = ei r

e- t r

thus

;

e-tr/4f

( 6 ) h1l4 = ei'/l (7)

k

E

2 hn -n

m

1/4

and h e n c e

lRi

proving t h e following:

k2 < 0.

k L = ( e 2- e 3 ) / ( e l - e 3 )

Since

are d i s t i n c t ( 7 . 3 3 : 4 )

, we

(14.34:3)

,

and s i n c e t h e

e 's j

have proved t h e following;

k2 < 0.

Lemma.

I t i s very easy t o prove t h a t

(8)

t h u s w e have

F(X . ) = C ( s n , s n ' ) ;

tl

E = IR(sn,sn'),

Theorem.

where

It is interesting t o notice t h a t t h i s differential

equation i s a s p e c i a l c a s e of Abel's d i f f e r e n t i a l equation. (10) where

2 2

c

e

and

14.43.

(1) c

2 2

( w ' ) ~= ( 1 - c w ) ( l + e w )

1

are

(4.12:3),

non-zero r e a l numbers.

Let

and

2 1/2

e : (-k )

;

t h e n A b e l ' s d i f f e r e n t i a l e q u a t i o n ( 4 . 1 2 : 3 ) becomes

Norman L . A l l i n g

270

( a s d e f i n e d i n ( 1 4 . 4 2 ) ) i s a meromorphic s o l u t i o n o f

sn (u

Abel s e l l i p t i c f u n c t i o n t o (2).

r :: m i n ( 1 , e )

Let

r

radius

@

about

In

0.

(94.1)

i s another global solution

and l e t V

s i n g l e valued square r o o t .

be t h e open d i s c o f

V

t h e r i g h t hand s i d e o f ( 2 ) h a s a 2 2 2 1/2 be Let [ ( l - w ) ( l + ew ) I

t h e s q u a r e r o o t t h a t i s p o s i t i v e on

(0,r).

e q u a t i o n t h a t Abel c o n s i d e r e d on

is

$

s a t i s f i e s ( 3 ) [l, V o l .

sn'(u) = cn(u)dn(u)

[36, p. 2181; t h u s (3).

Since

w'

= 1/4

V

The d i f f e r e n t i a l

1, p . 2 6 8 1 .

[ 6 9 , p . 4921 and s n ' ( 0 ) = 1;

cn(0) = 1 = dn(0)

hence

sn

also satisfies

$ ( 0 ) = 0 = s n ( O ) , w e have p r o v e d t h e f o l l o w i n g :

r$ = s n ,

Theorem.

and

(2).

+

ti/4,

where and where

E(YlIt)

Corollary Historical

note.

=

sn

is defined f o r

r$

w = 1/4

c = 1

i s defined f o r

n(@i@')

Since A b e l ' s paper i s w r i t t e n i n a

s t y l e t h a t i s n o t i n conformity with p r e s e n t standards of r i g o r i t c o u l d p e r h a p s b e a r g u e d t h a t Abel d i d n o t p r o v e t h a t h e had found a g l o b a l meromorphic s o l u t i o n o f (2).

After a l l

t h e n o t i o n o f a meromorphic f u n c t i o n h a s n o t b e e n f u l l y f o r m a l i z e d by 1 8 2 7 .

A t t h e very l e a s t it can be a s s e r t e d t h a t

sn,

as d e f i n e d h e r e w i t h t h e t a f u n c t i o n s , i s a s o l u t i o n o f ( 2 ) which e n j o y s a l l t h e p r o p e r t i e s t h a t Abel a s s e r t e d t h a t

$

had.

a u t h o r i s i n c l i n e d t o f e e l t h a t v i r t u a l l y e v e r y t h i n g on t h i s s u b j e c t a s s e r t e d by Abel and Gauss c a n b e p r o v e d w i t h o n l y a few a d d i t i o n a l comments.

A t t h e t i m e of p u b l i c a t i o n Abel's

The

S p e c i e s , Geometric Moduli, D e f i n i n g E q u a t i o n s

... was

Recherches

regarded,

271

for example by G a u s s , a s b e i n g

w r i t t e n a t a v e r y h i g h l e v e l of r i g o r .

(See O r e [ 5 2 ]

for

details. )

14.44

I n SVIII o f A b e l ' s R e c h e r c h e s

....

he t u r n s h i s

a t t e n t i o n t o t h e l e m n i s c a t e i n t e g r a l , 51.3, which Gauss h a d s t u d i e d e x t e n s i v e l y by 1 7 9 7 ( 4 . 3 1 ) .

lets

e = c = 1

function

9

To do t h i s A b e l m e r e l y

[l, V o l . I , p . 352 f f ] .

On d o i n g t h i s A b e l ' s

e q u a l s G a u s s ' s s i n l e m n (4.31:l).