Chapter 2 Canonical Sequences of Singular Cauchy Problems 2.1
The rank one situation.
In t h i s chapter we will
develop the group theoretic version of the EPD equations studied i n Chapter 1.
This leads t o many new classes of equations and
results parallel t o those of Chapter 1 as well as t o some i n teresting new situations.
Moreover i t exhibits the main results
of Chapter 1 i n t h e i r natural group theoretic context.
The
ideas of spherical symmetry, radial mean val'ues and Laplacians, etc. inherent i n EPD theory have natural counterparts i n terms of geodesic coordinates and one can obtain recursion relations,
Sonine formulas, etc. group theoretically.
The results are
based on Carroll [21; 221 in the semisimple case and were anticipated i n p a r t by e a r l i e r work of Carroll [18; 191, CarrollSilver [l5; 16; 17) and Silver [ l ] f o r some semisimple and Euclidean cases.
The group theory i s "routine" a t the present
time and r e l i e s heavily on Helgason's work (cf. Helgason [ l ; 2 ; 3; 4 ; 5; 6; 7; 8; 9; 101) b u t one must of course refer t o basic
material of Harish-Chandra (cf. Warner [ l ;
21
for a sumnary) as
well as lecture notes by Varadarajan, Ranga Rao, e t c . ) ; other specific references t o Bargmann [ l ] , Bargmann-Wigner [2], Bhanu-Munti [l], Carroll [27; 281, Coifman-Weiss [l], EhrenpreisMautner [ l ] , Flensted-Jensen [1], Furstenberg [ l ] , Gangolli [ l ] , Gelbart [ l ] , Gelfand e t a l , [ l ; 2 ; 3; 41, Godement [ l ] , Hermann 89
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
[ l ] , Jacquet-Langlands [l], Jehle-Parke [l], Kamber-Tondeur [l], Karpelevic" [ l ] , Knapp-Stein [l], Kostant [l], Kunze-Stein [ l ; 23, Lyubarskij [ l ] , Maurin [l], McKerrell [l], Miller [ l ; 23, Naimark [ l ] , Pukansky [ l ] , RGhl [l], Sally [ l ; 23, S i m s [ l ] , Smoke [ l ] , Stein
113,
Takahashi [l], Talman [ l ] , Tinkham [ l ] ,
Vilenkin [ l ] , Wallach [ l ] , Wigner [ l ] , etc., as well as the fundamental work of E. Cartan and H. Weyl, are t o be taken f o r granted, even i f n o t mentioned explicitly.
The basic Lie theory
i s developed somewhat concisely i n t h i s section; for a rather more leisurely treatment we refer t o Bourbaki [5], Carroll [23], Hausner-Schwartz [l], Helgason [ l ; 2; 31, Hochschild [ l ] , Jacobson [1], Loos [ l ] , Serre [ l ;
21,
V
Tondeur [ l ] , Zelobenko
Ell, etc. W e will s t a r t o u t w i t h the f u l l machinery f o r the rank one semisimple case, following Carroll [21; 221, and l a t e r will give extremely detailed examples f o r special cases.
T h i s avoids
some repetition and presents a "clean" theory immediately; the reader unfamiliar w i t h Lie theory m i g h t look a t the examples f i r s t where many d e t a i l s and definitions are covered.
We delib-
erately omit the treatment of invariant differential operators acting in sheaves o r i n sections of vector bundles even t h o u g h t h i s i s one of the more important subjects i n modern work (some references are mentioned above).
The preliminary material will
be expository and specific theorems will n o t be proved here. The Eucl idean group cases have been covered in Carroll -Si 1 ver [15; 16; 171 and especially Silver [ l ] s o that we will only give
90
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
a few remarks l a t e r about t h i s a t t h e end o f t h e chapter; t h e b a s i c r e s u l t s a r e i n any event i n c l u d e d i n Chapter 1.
Thus
l e t G be a r e a l connected noncompact semisimple L i e group w i t h f i n i t e c e n t e r and K a maximal compact subgroup so t h a t V = G/K -
.
-
d
L e t g = k + p be a
i s a symmetric space o f noncompact type.
Cartan decomposition, a c p a maximal a b e l i a n subspace, and we
-
-
w i l l suppose u n t i l f u r t h e r n o t i c e t h a t dim a = rank V = 1. One s e t s A = exp a, K = exp k, and
IsA for
N
-
= exp n where n =
A > 0 where t h e gA a r e t h e standard r o o t spaces corres-
ponding t o p o s i t i v e r o o t s a and p o s s i b l y 2a i n t h e rank one case.
1
One s e t s p = - c m A f o r 2 x element Ho
E
X > 0 where mA
= dim gA and we p i c k an
a such t h a t a(Ho) = 1. Thus p =
1 (H ma
+ m2a)a and
we can i d e n t i f y a Weyl chamber as a connected component a + C I
a c a w i t h (o,m) to
u
E
*
a
i n w r i t i n g a ( t H o ) = t where
by u ( t H o ) = U t .
u
E
R corresponds
The Iwasawa decomposition o f G i s G =
KAN which we w r i t e i n t h e form g = k ( g ) exp H(g) n ( g ) where t h e n o t a t i o n at = exp t H o i s used.
I
L e t M (resp. M ) denote t h e
c e n t r a l i z e r (resp. n o r m a l i z e r ) o f A i n K so t h a t t h e Weyl group I
i s W = M /M and t h e maximal boundary o f V i s B = K/M ( t h u s M = {k
E
H
K; AdkH = H f o r
E
a) and M
I
=
{k
E
K; Adka c a )
-
see
t h e examples f o r s p e c i f i c d e t a i l s ) . There are n a t u r a l p o l a r c o o r d i n a t e s i n a dense submanifold o f V a r i s i n g from t h e decomposition G = (kM,a)
-+
G+K (A+
=
exp a+) p r o v i d e d by t h e diffeomorphism
kaK : B x A+-+ V (one c o u l d a l s o work w i t h t h e decom-
p o s i t i o n G = KAK).
Thus t h e p o l a r coordinates o f ~ ( g )=
91
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
ak2)
V a r e (klM,a)
E
g i v e n v = gK -1
E
where
:G
IT
V and b = kM
+ .
V i s t h e n a t u r a l map.
B one w r i t e s A(v,b)
E
k ) and t h e F o u r i e r t r a n s f o r m o f f
=
2 L ( V ) i s d e f i n e d by
E
Y
F f = f where ( u s i n g Warner's n o t a t i o n ) Y
f(u,b)
(1.1) for
u
E
a
*
and b
= E
r 1, f(v) B.
exp (iu+p)A(v,b)dv
--
A l l measures a r e s u i t a b l y normalized i n
t h i s treatment. T h i s s e t s up an i s o m e t r i c isomorphism f f 2 * between L ( V ) and t h e space L2(a: x B) ( c f . here below f o r a+) w i t h i n v e r s i o n formula
Here t h e 1 / 2 comes from t h e o r d e r o f t h e Weyl group (which i s two) and c ( u ) i s t h e standard Harish-Chandra f u n c t i o n .
For a
general expression o f C(M) we can w r i t e ( c f . a l s o (3.14)) c ( u ) = I(ip)/I(p)
where ( c f . G i n d i k i n - K a r p e l e v i c [l],Helgason
[3; 81, Warner [l;21)
Here B(x,y)
= I'(x)r(y)/I'(x+y)
i s t h e Beta f u n c t i o n and one
d e f i n e s (v,a) i n t h i s c o n t e x t i n terms o f t h e K i l l i n g form B(-,*)
as B(H ,Ha)
A(h) = B ( j , H )
V
where f o r X
for H
E
l i n e a r maps o f a i n t o
E
*
aC, HA
E
*
aC i s determined by
a ( n o t e here t h a t aC i s t h e space of R w h i l e aC i s t h e c o m p l e x i f i c a t i o n o f a
which i s f o r m a l l y t h e s e t o f a l l sums A + i u f o r
92
A,u
E
a).
Then
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
*
a+ i s t h e preimage o f a+ under t h e map A chamber i n a later.
* . *
HA and i s a Weyl
S p e c i f i c examples o f c ( p ) w i l l be w r i t t e n down
Now a / W
- a+* (.recall W
= (1,s)
o r e q u i v a l e n t l y sat = a-t = a t ’ )
where, f o r $
+.
where sH = -H f o r
H
E
a
and one can w r i t e
L2 (B),
E
The q u a s i r e g u l a r r e p r e s e n t a t i o n L o f G on L2 (V), d e f i n e d by L ( g ) f ( v ) = f(g-’v)
(1.5)
L =
decomposes i n t h e form
r Ja*,W
‘plC(w)
dp
where L a c t s i n H by t h e same r u l e as L. L i s i n f a c t i r P Fc 1-1 r e d u c i b l e and u n i t a r y and i s e q u i v a l e n t t o t h e s o - c a l l e d c l a s s one p r i n c i p a l s e r i e s r e p r e s e n t a t i o n induced from t h e p a r a b o l i c subgroup MAN by means o f t h e c h a r a c t e r man
-f
a”
= exp i p l o g a.
We r e c a l l here a l s o t h e d e f i n i t i o n o f t h e mean value o f a f u n c t i o n @ over t h e o r b i t o f g r ( h ) = gu under t h e i s o t r o p y = gKg-’ subgroup Iv
Thus w r i t i n g MhC$ = Mu$ we have
a t v = .rr(g).
( r e c a l l i n g t h a t r ( h ) = u)
93
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
( c f . Helgason [l]) when D
D(G/K).
E
The symbol D(G/K) denotes
t h e l e f t i n v a r i a n t d i f f e r e n t i a l o p e r a t o r s on G/K which a r e d e f i n e d as follows.
If $ : G
G i s a diffeomorphism and f i s
-+
a f u n c t i o n on G one sets f $ ( g ) = ( f
while i f D i s a -1 l i n e a r d i f f e r e n t i a l o p e r a t o r we w r i t e DQ : f + (Of$ )$. Thus
G o r on V = G/K.
$-')(g)
W r i t i n g akg = gk f o r g
G and k T
space of d i f f e r e n t i a l o p e r a t o r s on G such t h a t D D i s denoted by D(G/K);
E
K, t h e
= D and D"k =
t h i s i s i d e n t i c a l w i t h t h e space o f
l i n e a r d i f f e r e n t i a l o p e r a t o r s on G/K ( c a l l e d l e f t i n v a r i a n t ) such t h a t
T
D
= D (the condition
proof obvious).
Dak
D i s automatic on G/K
=
-
Now t h e zonal s p h e r i c a l f u n c t i o n s on G a r e
d e f i n e d by t h e formula
(u
E
*
a )
. ..,
and we can w r i t e by i n v a r i a n t i n t e g r a t i o n 41 (9) = $ (gK) (ac-
u
..,
u
..,
t u a l l y t h e $ (9) a r e K b i i n v a r i a n t i n t h e sense t h a t $ ( 9 ) =
u
* -
..,
$ ( k g k ) ) and K i s u n i m d u l a r
u
-
u
c f . Helgason [l], Maurin [l],
-
Nachbin [2], Wallach [l],o r Weil [l] and thus
.,K CI$
f(k-')dk
-u
f(ikk)dk = ..,
f(k)dk. I t i s known f u r t h e r t h a t $,(g) = K ( g - l ) ( c f . Harish-Chandra [2] o r Warner [l;21) w h i l e t h e
E
=
C"(G/K),
@u X ($ ) u ..,u of
1
I,
for D
and a r e c h a r a c t e r i z e d b y t h e i r eigenvalues AD = E
D(G/K), w i t h $u(n(e)) = 1, p l u s t h e b i i n v a r i a n c e
(I~.We now demonstrate a lemma which has some i n t e r e s t i n g
consequences.
94
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
h The F o u r i e r t r a n s f o r m o f 1.1 = MU
Lemma 1.1
.rr(h)) i s g i v e n b y FMh = (M‘f)(v)
-
A
1-I
(h) and i f h = kak w i t h a
Proof:
A+ then
o f u = .rr(h).
h The a c t i o n o f M o r MU as a d i s t r i b u t i o n i n E ’ ( V )
determined by ( c f . (1.6)) b e i n g t h e i d e n t i t y i n G).
h
h
,$> = (14 $ ) ( w )
Thus i n (1.6)
A
is
where w = r ( e ) ( e
take Q = exp (ill+ p )
A
where b = kM.
Since A(ekhK,kM)
t h e u n i m o d u l a r i t y o f K ( c f . (1.8) (1 -9)
E
(u =
( M a f ) ( v ) so t h a t (Muf)(v) depends o n l y on t h e r a d i a l
=
component a i n t h e p o l a r decomposition (kM,a)
A(w,b)
E’(V)
E
-
(Mh$)(w) =
I
= -H((kh)-’;)
one has by
and comments t h e r e a f t e r )
exp [-(ip+p)H(h -1 k -1,- k)dk
K
j
=
exp [-(ip+p)H(h -1 kk)dk =
K
,. = $
-1-1
(h-’)
=
-
0
1-I
j
e-(i’+p)H(h-lk)dk
K h (h) = FM
h One notes here t h a t M = MU works on f u n c t i o n s i n V such as exp (i’+p)A(v,b) placed by 14‘
= $
h
= M
h and i s p r e c i s e l y (1.1) w i t h f r e -
and $ = exp (iu+p)A(w,b);
no i n t e g r a t i o n over
V i s i n v o l v e d s i n c e v = w i n $, o n l y a d i s t r i b u t i o n e v a l u a t i o n A
i s o f concern here.
-
F i n a l l y we n o t e t h a t w i t h h = kak as above
t h e r e f o l l o w s from (1.6) (1.10)
(Mhf)(v) =
J K f(gkiaK)dk
=
i,
f(gkaK)dk = (Maf)(v)
T h i s l e a d s t o a symmetric space v e r s i o n o f theorem o f Zalcman [l],g e n e r a l i z i n g an o l d formula o f P i z z e t t i ; here G/K
95
QED
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
i s of a r b i t r a r y rank and we refer t o Helgason [l ; 23 o r Warner [ l ; 23 f o r general information on h i g h e r rank s i t u a t i o n s . Theorem 1.2
Suppose the o p e r a t o r s
(Pizzetti-Zalcman).
A k w i t h eigenvalues X k g e n e r a t e D(G/K) as an a l g e b r a ; then l o -
cal l y (1.11)
(MUf)(V)
=
bqu,
Ak)f)(V)
00
1 Pn(u,X k ( 4 v ) ) i s expressed i n terms o f i t s n=l eigenvalues a s $ (u,Xk).
where $,(u)
= 1 +
P
Zalcman [ l ] , i n an Rn c o n t e x t , has g e n e r a l i z e d t h i s kind o f theorem considerably Proof:
.
h
One n o t e s from Helgason [ l ] t h a t (M @,)(v)
-
i,
=
= z X ( g ) $ X ( h ) and the l o c a l expres$X(gk.rr(h))dk = ;Jgkh)dk K O3 sion (Muf)(v) = ([1 + 1 Pn(u,Ak)]f)(v) holds. Consequently n=l we o b t a i n $ X ( h ) = applying t h i s l o c a l e x p r e s s i o n t o
-
m
1 P , ( U , A ~ ( $ ~ ) =) $,(u) and (1.11) follows. One should n=l remark a l s o t h a t the polynomials P a r e without cons t a n t terms. 1 +
n
2.2
Resolvants.
The o b j e c t s o f interest n a g e n e r a l i z e d
EPD theory a r e the r a d i a l components o f a b a s i s f o r the H
v spaces
of (1.4), m u l t i p l i e d by a s u i t a b l e weight funct on, the r e s u l t
o f w h i c h we w i l l denote by @ ( t , u ) ( c f . C a r r o l l [21; 221, C a r r o l l S i l v e r [15; 16; 171, S i l v e r [ l ] ) and we mention t h a t m can denote
96
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
a m u l t i i n d e x here.
F i r s t we remark t h a t V i s endowed w i t h t h e
Riemannian s t r u c t u r e induced by t h e K i l l i n g form B ( * , * )
(but
t h e Riemannian s t r u c t u r e does n o t p l a y an i m p o r t a n t r o l e here, e.g.,
$(*,*)
c o u l d serve
-
see Example 3.2) and f o r rank
V
=
1, D(G/K) i s g e n e r a t e d by a s i n g l e Laplacian A, determined by
-
t h e standard Casimir o p e r a t o r C i n t h e enveloping algebra o f g ( c f . Remark 3.15 about C).
We l o o k a t t h e r a d i a l component AR o f
passing t h i s from t h e coord n a t e t i n at E A t o r ( A ) i n an a obvious manner, and s e t t i n g Mt = M w i t h Ro(t,p) = FMt = $,,(at) A,
-
A
one o b t a i n s an eigenvalue e q u a t i o n ( c f . Helgason [5]) (2.1)
[of. +
(ma+mZa)cotht Dt + mZatanht D
141
t u
The s o l u t i o n o f (2.1), a n a l y t i c a t t = 0, i s e.g., A
(2.2)
^Ro(tyu) = (I (exp t H o ) = F(G,B,y,
u
"0
"0
where e v i d e n t l y R ( 0 , ~ =) 1 and Rt(o,p)
B
=
-
2
sh t )
0 ( 6 = (ma+2m2a+ 2 i p ) / 4 ,
= ( m +2mZa-2iu)/4,
and y =(ma+m2a+1)/2). The general EPD a "0 s i t u a t i o n i n v o l v e s embedding R i n a "canonical" sequence o f "m l l r e s o l v a n t s " R (t,p), f o r m > 0 a p o s i t i v e i n t e g e r o r a m u l t i index, such t h a t t h e r e s o l v a n t i n i t i a l c o n d i t i o n s (2.3)
"m R ( 0 , ~ =) 1;
are s a t i s f i e d .
"m Rt(oYp) = 0
There w i l l a l s o be "canonical" r e c u r s i o n r e l a t i o n s
97
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
“m between t h e R of i n d i c e s d i f f e r i n g by k1 o r k 2 which w i l l a r i s e group t h e o r e t i c a l l y f r o m c o n s i d e r i n g a f u l l s e t o f b a s i s elements i n the H
spaces.
1-I
2 Thus we must f i r s t determine a b a s i s f o r L ( B ) and t h i s i s w e l l known (thanks a r e due here t o R. Ranga Rao f o r some h e l p f u l information).
We l e t { I T ~ , V ~ Iw i t h dim VT = dT be a complete s e t
o f i n e q u i v a l e n t i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n s o f K and l e t
M VT C V T be t h e s e t o f elements f i x e d by M.
One knows by a r e -
s u l t o f Kostant [l]t h a t dim V y = 1 o r 0 i n t h e rank one case ( c f . a l s o Helgason [5]) and f o r t h e s e t
T E
we l e t w i be a b a s i s v e c t o r f o r VTM w i t h
T where dim
wY(1
2
normal b a s i s f o r VT under a s c a l a r p r o d u c t < example t h e c o l l e c t i o n o f f u n c t i o n s
(T E
T)kM
= 1
i 5 dT) an o r t h o >T.
-+
!V
Then f o r
T
is
2 known t o be a b a s i s f o r L ( B ) and we d e f i n e ( c f . (1.4) w i t h v = atK and b = kM) n -
(2.4)
$;,(atK)
= El 9T(BT:-ip:a -1 )w T
t
where BT
E
j
HomM(VT9$) i s determined by t h e r u l e Bw‘:
= 61,s
(Kronecker symbol) so t h a t B T r T ( k )-1 wT. = T = J J T <~~(k)-’w;,w;>~ (note t h a t $(k)dk = $(km)dm)db and K B M
J
I (I
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
H(g-’km)
= H(g-’k)
w i t h nT(km) = nT(k)nT(m)).
above
The
are E i s e n s t e i n i n t e g r a l s as d e f i n e d i n Wallach [l]and t h e A .
( a K) a r e t h e r a d i a l components o f b a s i s elements i n H t FC ( c f . below). I t i s p o s s i b l e t o o b t a i n an e x p l i c i t e v a l u a t i o n o f M,T
these f u n c t i o n s , u s i n g r e s u l t s o f Helgason [5;
111 as f o l l o w s .
One d e f i n e s ( c f . Helgason 151)
Then i t i s proved i n Helgason [5;
f o r x = gK.
111 ( t o whom we
g r a t e f u l l y acknowledge some conversation .on t h e m a t t e r ) t h a t
where Y
,T
( x ) i s d e f i n e d by
j
e (-iA-p)H(g-’k) < wl,T a T ( k ) w i >T dk K Thus r e c a l l i n g t h e p o l a r decomposition (kM,a) + kaK we have yA,T(x) =
(2.7)
Theorem 2.1
;’
(2.8)
MrT
h
General b a s i s elements i n
(iatK) =
1
K
e (iu-p)H(at k
dT- l l 2 fT,J -’.(katK)
I n p a r t i c u l a r one has s i n c e ti1
H me FC
-1^-1
A
=
A
G’
k ) ., T
dk
A T = < w i , ~ ~ ( k ) w Y-FC,T(atK) ~>~
;’
-’
( a K) = ( a K) = Y (atK) t 1-I.T t ,T ( t h i s “ c o l l a p s e ” was observed i n VaT
= ,j J T 1 T s p e c i a l cases by S i l v e r [l]). A
Now l e t KO = {nT,VTl f o r T ET (i.e.,
dim VTM = 1 ) and f o l l o w -
i n g Helgason [5] we use a p a r a m e t r i z a t i o n due t o Johnson and
99
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Wallach (see Helgason [5] f o r references and c f . a l s o Kostant h
[l]).I f mZcl = 0, KO = {(p,q)> w i t h p ..
1, KO = {(p,q)> w i t h (p,q)
E
E
Z+ and q = 0; i f mZa =
Z+ x Z where p
f
q
E
i f mZa =
22,;
h
3 o r 7, KO = {(p,q)>
w i t h (p,q)
E
Z+ x Z+ where p
&
q
E
One
22.,
s e t s R = (ip+p)(HO) and then ( c f . Helgason [5; 111) Theorem 2.2
The r a d i a l components o f b a s i s elements i n
H
IJ
are given by
= cI.1'
STt h P t
ch-'tF(-,--p
R+
where t h = tanh, ch = cosh, and
+
R+p-q+l -m2a
+
ma+m
+1
,th2t)
F i s t h e standard hypergeometric
function. Note here t h a t o u r R i s t h e n e g a t i v e o f t h e R i n Helgason [5;
111 where R = ( i A - p ) ( H ) = ( - i p - p ) ( H
i n (1.1))
0
0
) ( c f . here o u r n o t a t i o n
and r e c a l l t h a t a(Ho) = 1 w i t h at = exp tHo.
now sets dZa = -4q(q+mZcl-1) and da = -p(p+m +mZa-l) i t i s shown i n Helgason [5] t h a t Y ( t ) = Y
the d i f f e r e n t i a l equation
100
-1-I ,T
I f one
+ q(q+mZcl-l)
(atK) a l s o s a t i s f i e s
2.
(2.11)
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
ytt
+ (ma+in2a)coth t Yt + m2a tanh t i t
+
[d sh-2t + d2ash-22t + p(Ho) 2 + v(Ho) 2 19' = 0 a
where sh = s i n h , and we have used t h e i d e n t i t y c o t h 2 t = h c o t h t + tanh t). R e c a l l i n g t h a t p ."(-in21 a+m 2a ) one sees t h a t the t r i v i a l representation 1 g i v e s r i s e t o (2.1),
T, corresponding t o p = q = 0,
E
so t h a t (since c
R+I-M,
.w
1) we should have +I 2a , a 2a , t h t). This =
m +m
(atK) = +(at) = ch-'t F(L/2, ,1 i s borne o u t b y t h e Kummer r e l a t i o n F(a,b,c,z)
y-lJ
w i t h z = -sh 2 t, a = 6
c,z/z-1)
( l - ~ ) -= ~ch-'t
and c
-
b = y
B
=
(l-z)-aF(a,c-b,
b , = 8 , and c = y, so t h a t
= R/2,
-
=
(ma+2+2iv)/4 = (R+1-m2a)/2;
. "
hence Y
-v,1
2.3 h
(atK) = +(a ) as i n d i c a t e d . t = 0.
Examples w i t h
Now t o c o n s t r u c t r e s o l v a n t s
A
( a K) one m u l t i p l i e s t h e t by a s u i t a b l e f a c t o r i n o r d e r t o o b t a i n t h e r e s o l v a n t i n i -
Rm(t,v) = RPsq(t,p) from t h e Y
y-v ,T
-!J,T
. "
t i a l c o n d i t i o n s (2.3)
and t o produce I$ (a,)
v
when p = q = 0.
These requirements are n o t alone s u f f i c i e n t t o produce t h e "cano n i c a l " r e s o l v a n t s s i n c e one needs t o i n c o r p o r a t e c e r t a i n group t h e o r e t i c r e c u r s i o n r e l a t i o n s i n t o t h e t h e o r y which serve t o " s p l i t " t h e second o r d e r s i n g u l a r d i f f e r e n t i a l equation f o r t h e A
Rp,q
a r i s i n g from (2.11)
i n t o a composition o f two f i r s t o r d e r
equations ( c f . here I n f e l d - H u l l [ l ] ) .
Even then we remark t h a t
t h e r e s o l v a n t s w i l l n o t be unique since one can always m u l t i p l y ^Rm(t,p) by a f u n c t i o n $, I+
0
( t ) E 1.
E
C2 such t h a t $,(o)
=
1, $ i ( o ) = 0,
T h i s w i l l simply g i v e a d i f f e r e n t second o r d e r
101
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
s i n g u l a r d i f f e r e n t i a l equation f o r t h e new r e s o l v a n t and d i f -
-
ferent s p l i t t i n g recursion r e l a t i o n s b u t the resolvant i n i t i a l c o n d i t i o n s w i l l remain v a l i d and t h e r e d u c t i o n t o 0 (a ) f o r m = U
0 i s unaltered.
t
Thus we w i l l choose the s i m p l e s t form o f r e s o l -
vant f u l f i l l i n g t h e s t i p u l a t i o n s imposed w h i l e r e f e r r i n g t o these r e s o l v a n t s and equations as canonical. Example 3.1 -p
2
, d2,
Take t h e case where ma = 1 , mZa = 0, da =
= 0, and p = 1/2.
T h i s corresponds t o G = SL(2,IR)
with
K = S O ( 2 ) and t h e r e s o l v a n t s a r e given i n C a r r o l l [18; 19; 223,
C a r r o l l - S i l v e r [15; 16; 171, S i l v e r [l]as
where 5 = c h t and P i m denotes t h e standard associated Legendre f u n c t i o n o f t h e f i r s t kind.
Now we r e c a l l a formula ( c f . Snow
111, P. 18)
2 S e t t i n g z = t h t i n (3.2) and n o t i n g t h a t 1 have fi = sech t and 1 as above.
-
-
2 2 t h t = sech t we
n / ( l + Z ) = 5-1/<+1 w i t h 5 = c h t
Now one observes t h a t
102
(t,U)
i n (3.1)
i s symmetric
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
t h i s i s e x h i b i t e d f o r example i n the form of
i.n !J (and t ) and
t h e r e s o l v a n t (3.1) when one uses t h e formula ( c f . Robin [l]) 1 1 2-mshmt m+-+ip m+--ip 2 2 (3.3) P-m (cht) = F( , ,m+l,-sh t ) ip-
'2
z
= F(b,a,c,z))
Hence (3.1) can be w r i t t e n ( r e c a l l t h a t F(a,b,c,z) (3.4)
1 1 "m m+T+ip m+q-ip R (t,u) =F( , , m + 1, -sh 2 t ) Now, r e t u r n i n g t o (3.2) and (2.9)
T
-
-
(2.10), we w r i t e f o r and R = i u
( p , ~ ) w i t h ct = i d 2 , B = 1/2(p + 1/2),
= c
R
-!J,T
t h P t ch- t (
1 t sech t ) -
1/2
2(ct+B)
1
+2 + p,
= c-!J ,Ts h P t ( y ) - ' - P F ( i p
+
ill +
1
7, p+l,
5- 1
5+1)
R e w r i t i n g t h e f i r s t equation i n (3.1) w i t h p replaced by -!J i n t h e r i g h t hand s i d e we o b t a i n (3.6)
i m ( t , p ) = ($!-)
-R-m F (1z + ip,z+ 1 ip+m,m+l,-) 5-1
5+1
Then i d e n t i f y i n g p w i t h m we can say from (3.5) h
(3.7)
RP(t,p) =
sh-Pt Y
-!J,T
103
( a K) t
-
(3.6)
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
For completeness we check t h e d i f f e r e n t i a l e q u a t i o n s a t i s f i e d by t h e Rp o f (3.7),
g i v e n t h a t (2.11) holds.
An elementary c a l c u l a -
t i o n y i e l d s then
which agrees w i t h p r e v i o u s c a l c u l a t i o n s ( c f . C a r r o l l [21; C a r r o l l - S i l v e r [15;
223,
16; 171, S i l v e r [l]).The canonical r e c u r s i o n A
r e l a t i o n s a s s o c i a t e d t o t h e Rp o f (3.1),
(3.4),
(3.6),
o r (3.7)
can o f course be r e a d o f f from known formulas f o r t h e associated Legendre f u n c t i o n s f o r example b u t t h e y can a l s o be o b t a i n e d group t h e o r e t i c a l l y ( c f . Example 3.5 o f b a s i s elements i n t h e
-
Theorem 3.8)
H spaces. P
by u s i n g a f u l l s e t
For now we s i m p l y l i s t them
i n t h e form
i!
+ 2p c o t h t
^Rp
= 2p csch t
iP-'
E v i d e n t l y t h e composition o f these two r e l a t i o n s y i e l d s (3.8) and t h i s i s t h e sense i n which we speak o f " s p l i t t i n g " t h e r e s o l v a n t equation (3.8). Example 3.2 Example 3.1.
We g i v e now e x p l i c i t m a t r i x d e t a i l s t o c l a r i f y
(The E u c l i d i a n case can a l s o be t r e a t e d group
t h e o r e t i c a l l y as i n C a r r o l l - S i l v e r [15;
16; 171 and e s p e c i a l l y
S i l v e r [1] and a s i m p l e example i s worked o u t a t t h e end o f t h i s chapter; t h e r e s u l t s o f course agree w i t h those o f Chapter 1.)
104
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
-
Thus l e t G = SL(2,lR)
-
and K = SO(2) w i t h L i e algebras g = sR(2,R)
We r e c a l l t h a t G i s connected and semisimple,
and k = so(2).
-
c o n s i s t i n g o f r e a l 2 x 2 matrices o f determinant one, w h i l e the
- -
matrices i n t h e compact subgroup K a r e orthogonal; g consists o f r e a l 2 x 2 m a t r i c e s o f t r a c e zero and k c g i s composed o f skew We w r i t e V = G/K and s e t
symmetric matrices.
X =
(3.10)
1 7
-
O
1 1 ., Y = 1z
1
0
so t h a t k = lR Z and we w r i t e p = { J R X +.lRY) f o r the subspace
-
--
( o f v e c t o r spaces) w i t h [k,k] Cartan i n v o l u t i o n 8 :
-
5 +n
b r a automorphism o f g.
- -
One has a Cartan decomposition g = k + p
o f g spanned by X and Y.
-t
-
- -
c k, [p,p] c k , [k,p] c p and the
6-
Q
-
(6 E
k,
n
E
p ) i s a L i e alge-
Recall here t h a t i f P = exp p then G =
PK i s t h e standard p o l a r decomposition o f g
E
G i n t o a product The K i l l i n g
o f a p o s i t i v e d e f i n i t e and an orthogonal m a t r i x . form B(5,n) = t r a c e ad5
adn
(=4 t r a c e
"
CQ)
-
i s negative d e f i n i t e
on k and p o s i t i v e d e f i n i t e on p ( w i t h B(k,p) = 0).
One checks
e a s i l y t h a t X and Y form an orthonormal basis i n p f o r t h e s c a l a r product
1 ((6,~))= p(5,n); we
repeat t h a t t h e 1/2 f a c t o r
i s o f no p a r t i c u l a r s i g n i f i c a n c e here i n c o n s t r u c t i n g resolvants, etc. and i s used mainly t o be c o n s i s t e n t w i t h some previous work and w i t h t h e e x p o s i t i o n i n Helgason [l]. Now s e t t i n g Xa = X
+
Z, X-a
= X
- Z, and Ha
standard ( o r "canonical") t r i p l e ( c f . Serre [ l ] )
105
= 2Y we have a
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
= RX,
where t h e r o o t subspaces g,
(5
i z e d by t h e r u l e gA = w h i l e t h e map a : t Y r o o t ) i n t h e dual a
*
and g
.-E
-a
RX
=
are character-,
g; ad H< = X(H)S f o r a l l H
a = RY),
E
t determines then an element ( c a l l e d a
-+
( n o t e t h a t ,(Ha)
-a i s a l s o a Cartan subalgebra of g.
= 2 and
R
N
a
*
=
Ra).
Here a i s a maximal a b e l i a n subspace o f p and i n t h i s case a = .--
{I,,g,
> 01,
.--
N = exp n, and A
g = k a n
(3.13)
e t t
-
< IT)
= exp B Z exp t Y exp
[b
=
The Iwasawa decomposi-
= exp a.
e
t i o n o f G can be w r i t t e n ( 0 2
-.
Set now n = g,
exa
which we express as b e f o r e i n t h e form g = k(g) exp H(g)n(g).
[-:
Next we s e t M = {+ 1
I4 = M {k
E
u {+
:]I
f o r t h e c e n t r a l i z e r o f A i n K and
w i l l be t h e n o r m a l i z e r o f A i n K ( t h u s M =
K; AdkH = H f o r H
- . - -
I
E
a and M = { k
E
K; Adk a c a) ).
Again
I
W = M /I4 has o r d e r two and B = K/M i s e s s e n t i a l l y K w i t h t h e angle v a r i a t i o n c u t i n h a l f . b = kM
E
B A(v,b)
= -H(g-lk)
We r e c a l l t h a t f o r v = gK and here p = 1/2
106
l m A A (A>O)
E
V and equals
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
1
Thus p ( t Y ) = t / 2 and f o r 1-1
p.
R, 1-1
E
"* a
E
i s determined again
-*
by t h e r u l e u ( t Y ) = tu(Y) = 1-1t (such l~ o f course exhaust a ct
- 1-1
(1.1)
= 1).
The F o u r i e r t r a n s f o r m F f o f f
E
and
L2 ( V ) i s given by
and a+ i s d e f i n e d as i n S e c t i o n 1, as i s t h e s c a l a r prod-
u c t (X,v) = B(HA,HV).
When 1-1
E
-* a
= 2 i t follows t h a t H
s i n c e B(Y,Y)
i s c h a r a c t e r i z e d as above then = p1
*
Y
and o b v i o u s l y a+ can 1-1 "*" thus be i d e n t i f i e d w i t h ( 0 , ~ ) . E v i d e n t l y f o r 1-1, v E a one has
Example 3.3
A geometrical r e a l i z a t i o n o f t h e present s i t u a -
t i o n can be described i n terms o f G a c t i n g on t h e upper h a l f a b p l a n e I m z > 0 by t h e r u l e g z = (az+b)/(cz+d) f o r g = ( c d) G.
E
Then K i s t h e i s o t r o p y subgroup o f G a t t h e p o i n t z = i
(i.e.,
K
i = i ) and t h e upper h a l f plane can be i d e n t i f i e d
w i t h G/K under t h e map gK d e s i c p o l a r coordinates
-+
g
(T,e)
i ( c f . Helgason [ l ] ) .
I n geo-
a t i t h e Riemannian s t r u c t u r e i s
2 2 2 2 described by ds =d-c + s i n h .cde where we use t h e m e t r i c tensor determined by gv(<,q)
for
= $(C,q)
5,
q
E
p.
I f w = r ( e ) (which
corresponds t o i under o u r i d e n t i f i c a t i o n s i n c e r ( e ) = K) then, denoting l e f t t r a n s l a t i o n i n G by
t h e Riemannian s t r u c t u r e i s g' determined b y g V ( ( T )*<,(T~)*T-I) = gw(S,q) ( f o r t h e n o t a t i o n ( T )* 9 9 see e.g. Kobayashi-Nomizu [ l ; 21). The geodesics on V through
w =.rr(e) a r e o f t h e form y : s
t h e square .rr(exp
T'
-+
T
(exp sC)w and i f
5
= aX
+ BY
E
o f t h e geodesic d i s t a n c e from w t o (exp <)w =
5 ) i s equal t o
a2
+ B2 ( s i n c e X and Y form an orthonormal
b a s i s f o r p under t h e s c a l a r product ((<,q)) = 1/2 B(5,n)) 107
and
p
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
the polar angle i s determined by tan 8 = B/a.
Many calculations
can easily be made using standard formulas and one can describe the action g
i for example i n general (relevant material for
the computations appears i n Gangolli [l], Helgason [ l ; 2 ; 31, and
21).
Kobayashi-Nomizu [ l ;
We will spare the reader the results
of o u r computations since they are essentially routine.
Let us
however remark that the volume element dv i n (1.1) can be written i n this example as dv = shT d.r d8 ( u p t o a normalization factor). F i r s t we refer back t o the formula for c(v)
Example 3.4
given a f t e r ( 1 . 2 ) and mention t h a t i n general (cf. Helgason [2; 31, Warner [Z])
where
n=
Y
On = g-ahere,
c(-ip) = 1.
for 5
exp
n, and
dii i s normalized by
Here 8 i s the Cartan involution 8 : 5 + rl
Y
E
K=
k and rl
E
+
E
- rl
p and one observes t h a t i t is an involutive
Y
automorphism of g such that
-.-.
(c,rl)
-+
-B(€,,Orl)
i s s t r i c t l y positive
definite on g
x
Since
1 / 2 , ( i p , a ) = i p , and ( p , a ) = 1/4 there results
(cl,a) =
g.
In terms of Beta functions we obtain
(cf. Bhanu Murti [l])
108
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
-
Thus we can r e c o v e r f ( v ) f r o m f ( u , b ) Example 3.5
u s i n g (3.16)
and (1.2).
We now want t o show how t h e r e s o l v a n t s (3.1)
can be o b t a i n e d by a cumbersome and " c l a s s i c a l " method i n o r d e r t o f u r t h e r c o n f i r m (.3.7) as a l e g i t i m a t e r e s o l v a n t ( t h e equival e n c e o f (3.1)
and (3.7)
has a l r e a d y been e s t a b l i s h e d ) .
The
t e c h n i q u e has a c e r t a i n i n t e r e s t and moreover we w i l l o b t a i n a
H
w h i l e showing how t h e r e c u r s i o n r e l a t i o n s (3.9) 1-1 can be o b t a i n e d group t h e o r e t i c a l l y . Some o f t h e more t e d i o u s f u l l basis f o r
c a l c u l a t i o n s w i l l be o m i t t e d .
We remark t h a t Theorem 2.1
does
n o t seem c o n v e n i e n t h e r e t o o b t a i n a f u l l s e t o f b a s i s elements
in
Hu s i n c e t h e u n i t a r y i r r e d u c i b l e r e p r e s e n t a t i o n s o f K
(see V i l e n k i n [l]).Thus
a r e one dimensional o f t h e form ein4 h
h
= SO(2)
h
h
f i r s t we can remark t h a t atk0 = k a n where a = as w i t h (3.17)
es = ( c h t t sh t cos 0 )
(cf..Helgason
[l]and Warner [l;23).
Thus pH(atke) = p(sY) =
s/2 and f o r ~ ( s V ) = us one has (iu-p)H(atkg) (3.18)
e
(i1-1-
2I) s
= e
=
(ch t
-+ sh
t
COS
0)
ill-
I
Now, g i v e n b a s i s v e c t o r s $m(b) = exp im(0-n) f o r example i n
LL(B) (recall t h a t B t i o n o f (3.13), in
-
K w i t h t h e a n g l e v a r i a t i o n , i n o u r nota-
c u t f r o m ( 0 , 4n) t o (0, IT)), we g e t b a s i s v e c t o r s
H by means o f (1.4) ( t h e f a c t o r o f exp ( - i m ) i s i n s e r t e d f o r
u
convenience i n c a l c u l a t i o n ) . o b j e c t s " when v = atK i n (1.4)
I n p a r t i c u l a r we o b t a i n " r a d i a l and s i n c e A(gK,kOM) = -H(g-'kO)
109
we
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
where s ' i s determined as i n
consider H(ailkg) = s'Y i n (1.4). (3.17) b u t w i t h t replaced by -t. b a s i s vactors i n H
(3.19)
9
u =
u
w i l l be I
( i u - p ) s Yeimede
e
-imr
=
Thus the r a d i a l p a r t o f the
21T
1
TT
(ch t
-lT
-
I iv- 7 e irned0 sh t cos 0 )
'
iv- 1 - m' .o (ch t ) (see V i l e n k i n [ l ] ) .
%l
I n order now t o produce r e s o l v a n t s R ( t a u )
as i n Section 2.2 from Pm
a0
-
1/2(ch t ) o f (3.19)
consider t h e growth o f these f u n c t i o n s as t
+ .
one must f i r s t
0 and i n t r o d u c e
s u i t a b l e weight f a c t o r s i n o r d e r t o s a t i s f y t h e r e s o l v a n t i n i t i a l c o n d i t i o n s (2.3)
(note t h a t
a / a t = ( ~ ~ - 1 ) 3/22). l/~
L e t us r e c a l l
i n t h i s d i r e c t i o n t h a t ( c f . V i l e n k i n [l]and Robin [l]) (3.20)
where P!
P:am(~) =
r ( k t m t l ) r ('R-mtl r2(R+i)
)
R
pm,o(z)
i s the standard associated Legendre f u n c t i o n o f the
f i r s t kind.
Then we can e x h i b i t t h e r e s o l v a n t s i n t h e form
110
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
z + l R-m
z-1 F( -R ,m-R ,m+l -,)z+l
= (T)
where z = c h t, R = -1/2 + i p , rn
2 0 i s an i n t e g e r , and F denotes
a standard hypergeometric f u n c t i o n ( c f . C a r r o l l - S i l v e r [15; 171 and C a r r o l l [18;
191).
16;
R e c a l l i n g t h a t r(R+m+l)Pim(z) =
r ( a - m + l ) P ~ ( z ) f o r m 2 0 an i n t e g e r , we remark i n passing t h a t , for m
E
C n o t a n e g a t i v e i n t e g e r , r e s o l v a n t s can be determined
b y t h e formula
(which reduces t o (3.21)
when m i s an i n t e g e r ) and t h i s should be *
taken as t h e generic expression f o r Rm i n t h i s case ( c f . (3.1)). Evidently the
^Rm
o f (3.21)
s a t i s f y (2.3).
We r e c a l l t h e n e x t w e l l known formulas
(3.23)
,
dP! mz ( ~ ~ - 1 )" ~ + /2 dz (22-1)
P!
=
(a+m) (R-m+l )P!-'
( c f . V i l e n k i n [l]and Robin [l])and these, w i t h (3.22), (3.9),
where p i s r e p l a c e d by m ( n o t e t h a t R(R+1) =
lead t o
- ( 1B + u 2 ) ) ;
consequently (3.8) w i l l f o l l o w as before. The most i n t e r e s t i n g f a c t however about (3.9)
i s t h a t these
r e c u r s i o n r e l a t i o n s have a group t h e o r e t i c s i g n i f i c a n c e (cf. 111
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
-
C a r r o l l - S i l v e r [15; 16; 171) and t h e v a r i a b l e t i n (3.8)
(3.9)
may be i d e n t i f i e d w i t h t h e geodesic d i s t a n c e T o f Example 3.3. For purposes o f c a l c u l a t i o n i t i s convenient t o c o n s i d e r X+ = -X + i Y ;
(3.25)
X
and t o n o t e t h a t (H, X+,
-
-
= -X
iY;
-
H = -2iZ
X-) form a "canonical" t r i p l e r e l a t i v e -.
t o t h e r o o t space decomposition gt = kt
Y
+ t X + + CX - , kt
= (CH, i n
t h e sense t h a t (3.26)
= 2X+;
[H,X+]
[H,X-]
= -2X
[X+,X-]
;
(one notes t h e d i f f e r e n c e here between (3.12) -.
9Q; = Q;Ha
+ t$ +
(H,X+,X-)
tX,
= H
c o m p l e x i f i e d as
and t h e decomposition above r e l a t i v e t o
based on (3.26)
-
such decompositions occur r e l a t i v e
t o any Cartan subalgebra such as (CH o r ICY as i n d i c a t e d i n Serre
[l]f o r example).
It w i l l be u s e f u l t o e x p l o i t t h e isomorphism
Q between S L ( 2 , R ) and t h e group SU(1,l)
o f unimodular q u a s i u n i 1 i t a r y m a t r i c e s g i v e n by Q(g) = g = m-lg m where m = (i l). Thus A
g =
(y E)
+
6
=
a b (6:)
w i t h a = 1/2[a+6+i(B-y)]
and b =
A
1 / 2 [ ~ + y + i ( a - 6 ) ] w h i l e d e t g = d e t g = 1 ( c f . V i l e n k i n [l]). There i s a n a t u r a l p a r a m e t r i z a t i o n o f SU(1,l) a l i z e d E u l e r angles
h
(I$,T,$)
so t h a t any g
w r i t t e n i n t h e form
112
E
i n terms o f gener-
SU(1,l)
can be
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
where 0 I cp < ZIT, 0 5
<
T
h
pressed as g = (cp,~,$).
I: $ < ZIT;
and -2n
m,
t h i s w i l l be ex-
I n p a r t i c u l a r , s e t t i n g wl(s)
=
exp sX,
wz(s) = exp sY, and w3(s) = exp sZ, we have Qwl(s) = (o,s,o), = (IT/Z, s, -v/Z),
Qw,(s) that
to,.,$)-’
and Qw ( s ) =(s,o,o) 3
= (o,o,s).
We n o t e
and ( ~ ~ , o , o ) ( o , T , o )(o,o,$)
= (IT-$,T,-IT-@) A
A
(+,T,$) w h i l e ifg1 = (0, T ~ , O ) and g2 =
(cp2,~2,~)
= A
h
t h e n gigz =
with
(cp,T,$)
t a n cp = ch
(3.28)
= chTl
ch T
’
tan
T~
sh -rz s i n cpz sh -r2 cos cp + sh T 1 ch 2
+ sh
ch T~
T~
sh
T~
Tz ’
cos cpZ ;
sh T, s i n cpz = sh -r1 ch T~ cos
cpZ + ch
T~
sh
‘c2
A
Now g o i n g t o t h e n o t a t i o n o f Example 3.3 w i t h p = exp (ax = a2 +
T‘
$,
and t a n
e
= @ / aan
+
BY),
easy c a l c u l a t i o n shows t h a t
A
Q ( p ) = (O,-r,-O). A
Consequently t h e geodesic p o l a r c o o r d i n a t e s o f A
h
~ ( p )= pK can be r e a d o f f d i r e c t l y f r o m t h e E u l e r angles o f Q(p). Now t h e r e p r e s e n t a t i o n L
!J
H
o f G on
u
a r e p r e s e n t a t i o n , which we a g a i n c a l l L
W
u’
u
E
( c f . (1.5))
induces
o f i o n dense subspaces
H o f d i f f e r e n t i a b l e f u n c t i o n s by t h e r u l e
u
R e c a l l h e r e t h a t L,,(h)f(n(g)) a p p l y (3.29) f(n(gi(s)))
= f(h-lv(g))
=
f(v(h-lg))
and t o
f o r 5 = X, Y , o r Z one wants t h e n t o d i f f e r e n t i a t e w i t h r e s p e c t t o s where gi(s) 113
= wi(-s)g
=
wil(s)g
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(and v
=
W e work i n the geodesic polar coordinates
T(g)).
( ~ ( s ) , e(s)) o f .rr(g(s))
A
=
A
T ( p ( s ) k ( s ) ) = ~ ( p ( s ) )and consider
therefore Q ( g ( s ) ) = Q ( ; ( s ) ) Q ( k ( s ) ) = (e(s), ~ ( s ) , -e(s))
(o,o,ds)) =
(W, ~ ( s ) ,+(s)-e(s))
=
( e ( s ), T ( s ) ,$ts)).
In par-
t i c u l a r Q ( g l ( s ) ) = Q(exp(-sX))Q(g)=(o,-s,o)(8,T,o)(o,o,u-8) where Q ( g ) = Q ( p ) Q ( k ) = (O,T,-e)(o,o,u).
Then one uses (3.28)
t o compute (o,-s,o)(O,T,o) w i t h
T =
T~ = T,
and 0,
e
=
S imi 1arly Q( g2 ( s ) )
$ = e(s),
~ ( s ) , T~ = -s,
(evidently $ ( s ) i s of no i n t e r e s t here). ( ~ / ,-s 2 ,- ~ / 2 )(8, T ,-8) ( o ,o,
=
U)
= ( ~ / ,o 2 ,o)
(o,-s,o)(~-T/~,T,o)(o,o,u-~) and (3.28) can be applied t o the middle two terms.
Finally Q ( g 3 ( s ) ) = (-s,o,o)(B,T,o)(o,o,u-8)
e write H+ = which lends i t s e l f immediately t o calculation. W 1 Lv(X+), H- = L ( X ), and H3 = 4 ( H ) and using the relation u 2 v I d/ds f(T(s),e(s))ls=O = f T T ( 0 ) + f e 0 ( 0 ) a routine calcula-
tion yields (cf. Carroll-Silver [16]) In geodesic polar coordinates (.r,8) on V
Proposition 3.6 one has (3.30)
H+ = e-ie [-i coth
T
a/ae
+
a/aT]
(3.31)
H- = e i e
T
a/ae
+
a1a-c-j
(3.32)
H3
=
i
From genera
[i coth
a/ ae known facts about irreducib e unitary principal
series representations o f G , o r SU(1,1), and t h e i r complexifications (see e.g.
Miller [ l ;
21 o r
Vilenkin [l])
114
-
other
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
representations contribute nothing new i n t h i s context
-
it is
natural now t o look f o r "canonical" dense d i f f e r e n t i a b l e basis vectors in H of the form
u
(3.33)
H+f:
satisfying
fk(T,e)
= (m-R)f:+
H3fi = mfi
where R = -1/2 + i p ( u > 0 ) and m = 0 , k l , k2,
....
( I t seems
excessive here t o go i n t o the general representation theory of SL(2, R ), o r SU(1,l); the references c i t e d here -and previously a t the b e g i n n i n g of t h e chapter
-
a r e adequate and accessible.)
I t i s then easy t o v e r i f y , using (3.30)
-
(3.32), t h a t the f o l -
lowing proposition holds. Proposition 3.7
Canonical b a s i s vectors i n H can be taken
u
i n the form
(3.34)
f i ( T , e ) = ( - l ) m exp(-im8) P
where R = -1/2
t
R 0 ,m
(ch
ip(u > 0) and m = 0, 21,
T)
k2,
....
In view of (3.20) and the d e f i n i t i o n (3.21) ( o r (3.22)) of
8 we
can write f o r m 2 0, z = ch
Using (3.30)
-
T,
and R = -1/2 + iu
(3.31) one can then e a s i l y prove ( c f . Carroll-
S i l v e r [16])
115
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Theorem 3.8
The " c a n o n i c a l " r e l a t i o n s (3.33)
a r e e q u i v a l e n t t o t h e r e c u r s i o n r e l a t i o n s (3.9)
and H-
f o r H,
"m for R
.
I n par-
t i c u l a r t h e v a r i a b l e t i n Example 3.1 can be i d e n t i f i e d w i t h t h e geodesic d i s t a n c e Proof:
T,
from w = K t o k a K. UJt
The r e c u r s i o n r e l a t i o n s (3.9)
low immediately from (3.30)
-
(3.31)
(and hence (3.8))
and (3.34)
suggests o f course t h e i d e n t i f i c a t i o n o f
T
-
(3.35).
A
n
This
and t b u t one can g i v e
We w r i t e k , a k 2 = pk
a computational p r o o f also.
fol-
n
so t h a t kla =
3
pk4 and f o r p = exp (aX+BY) we o b t a i n from Example 3.3 t h e d i s -
tance r 2 = a2 + B
2
n
between w = T ( e ) = K and pK t o g e t h e r w i t h
angle measurements cos
e
=
a/T
and s i n 8 =
B/T.
Set now kl =
a = aty and k4 = kg, u s i n g t h e n o t a t i o n o f (3.13); kJ, r e s u l t a number o f equations connecting t h e v a r i a b l e s
there
( T y t , $ y $ y a y f 3 ) y t h e s o l u t i o n o f which i n v o l v e s t h e i d e n t i f i c a t i o n o f t w i t h T.
Thus t h e r a d i a l v a r i a b l e t i n t h e n a t u r a l p o l a r
expression ( k M y a ) f o r u = T(h) = kUJatK i s i n f a c t t h e geoJ , t d e s i c r a d i u s T o f T ( h ) = pK. The a c t u a l c a l c u l a t i o n s a r e someA
what t e d i o u s b u t completely r o u t i n e so we w i l l o m i t them. We n o t e now t h a t t h e second e q u a t i o n i n (3.9) i n t h e form (shZmt @ ) ' = 2mshzm-lt.
QED
can be w r i t t e n
8-l which y i e l d s ,
i n view
of (2.3), (3.36)
shZmt i m ( t y u )= 2m
1:
sh2m-1
One r e w r i t e s t h e i n t e g r a n d i n (3.36),
116
rl
In-1 R (rlyil)drl
i n terms o f (3.36)m-1
and
2.
CANONICAL SEQUENCES OF SINGUALR CAUCHY PROBLEMS
i n t e g r a t e s o u t t h e rl v a r i a b l e ; i t e r a t i n g t h i s procedure we o b t a i n I f in 2 k 2 1 a r e i n t e g e r s t h e "Sonine" formula
Theorem 3.9 (3.37)
shZmt km(t,p) =
r
m-k+l
r
i s a d i r e c t consequence o f (3.9). have
jt(cht-chrl)k-'
I n p a r t i c u l a r f o r m = k we
t
(3.38)
shZmt @(t,p)
=
2%
0
(cht-chn)m-lsho
s p h e r i c a l f u n c t i o n s (1.8)
and u s i n g t h e n o t a t i o n o f (3.17)
we see t h a t ( c f . (3.19))
,.,
(3.39)
+v(at)
where P
=
&
I
27T
( c h t + s h t cose)
ip-
0
'
-
1
dB = P o
,(cht)
1v-7
1 ip- '(cht) l ( c h t ) = Po
'p-7
We r e c a l l
io(q,u)do
R e f e r r i n g back t o t h e formula f o r t h e zonal
Remark 3.10
(3.18)
I
k
i s t h e standard Legendre f u n c t i o n . ,.. a l s o by Lemma 1.1 t h a t FMat = FMt = ( a ), which SO
+U
t
equals i o ( t , p ) . Using (3.38)
we can d e f i n e Rm(t,-)
integrating i n E'(V)
=
F
-l*m
R (t,v)
E I ( V ) and
E
( c f . C a r r o l l 1141) we have f o r m
2
1 an
integer, (3.40)
shZmt Rm(t,-) = Zmm
(cht-cho)m-lshn
We r e c a l l t h a t i n t h e p r e s e n t s i t u a t i o n D(G/K)
M drl rl
i s generated by
t h e Laplace-Beltrami o p e r a t o r A which a r i s e s from t h e Casimir
117
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
.
o p e r a t o r C i n t h e enveloping a l g e b r a E(g) (here A corresponds t o 2C due t o o u r choice o f Riemiannian s t r u c t u r e determined by 2 2 2 and C = 1/2(X +Y -Z )
1/2B(-,*)
-
see Remark 3.15 below on Casi-
-3
m i r operators).
I n E(g ) we have then a l s o 2C = ($1)'
B
+ X-X,)
$X+X-
+
and i n geodesic p o l a r coordinates ( c f . Proposi-
t i o n 3.6) (3.41)
A = H:
+ $H+H-
+ H-H,)
a2
=
+ coth
T
a/a-c
+ csch2T a2/ a 0 2 We n o t e here t h a t an a l t e r n a t e expression f o r A i s given by A = H+H
.
+ H'3 -
-
H3 (cf.
Theorem 3.11
C a r r o l l - S i l v e r [15;
16; 171 and S i l v e r
Ill).
For v f i x e d (Muf)(v) depends o n l y on t h e geo-
d e s i c r a d i u s T = t o f u = n ( h ) = k a K and can be i d e n t i f i e d
9 t
w i t h t h e geodesic mean value M(v,t,f). Proof:
T h i s can be proved b y t e d i o u s c a l c u l a t i o n based on
t h e coordinates i n t r o d u c e d i n p r e v i o u s examples b u t i t i s simply a consequence o f Lemma 1.1 and Theorem 3.8. A
Indeed, s e t t i n g
AA
A
h
g = k ak w i t h h = k a k we have v = n ( g ) = k aK and u = n ( h ) = 1 2 1 t 2 1 klatK w i t h (3.42)
a ( M u f ) ( v ) = (M t f ) ( v ) = ( M t f ) ( v )
A
A
A
A
We n o t e t h a t t h e d i s t a n c e from v = klaK t o k aka K i s t h e same as 1 t
118
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS A
t h e d i s t a n c e from w = n ( e ) = K t o katK = (exp E ) w = pw, which as
n d i c a t e d i n Theorem 3.8, ~n
V '
Hence as k
d e s c r i b e a geodesic " c i r c l e " around
v a r es t h e p o i n t s klak.rr(at) n
w i l l s i m p l y be T = t.
h
k aw o f r a d i u s T = t; (3.42) i s , upon s u i t a b l e normal z a t i o n
1 a l r e a d y provided, t h e d e f i n i t i o n o f M(v,t,f). Remark 3.12
QED
The v a l i d i t y o f t h e Darboux equation ( .7) f o r and D = A i n spaces o f constant
geodesic mean values M(v,t,f)
n e g a t i v e curvature, harmonic spaces, etc. has been discussed, u s i n g p u r e l y geometrical arguments by G h t h e r [l],O l e v s k i j [l], and Willmore [l]( c f . a l s o Fusaro [l],G'u'nther [2;
31, Weinstein
and Remark 5.6).
[12],
We can now define, f o r m c o n v o l u t i o n ) o f Rm(t,.) means o f (3.40).
E
2 1 an i n t e g e r , a composition ( o r
E'(V) w i t h a f u n c t i o n f ( - ) on V by
Thus f o r v = n ( g ) we w r i t e
(3.43) where <
,>
denotes a d i s t r i b u t i o n p a i r i n g as i n Lemma
( c f . He gason [2] f o r a s i m i l a r n o t a t i o n ) . (Rm(t,=
1.1
Then, s e t t i n g
# f ( * ) ) ( v ) = um(t,v), we have from (3.40) a Sonine
formula (3.44)
sh2mt urn(t,v)
Since F
= R(R+l)FT w i h
Ehrenpre s-Mautner [1])
R
=
-1/2 + i u when T
I
E
t h e r e f o l l o w s from (3.8),
119
E (V) (cf. (3.9),
(3.43)
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
and t h e d e f i n i t i o n o f u" = u"(t,v)
F o r m 2 1 an i n t e g e r and f
Theorem 3.13
= um(t,v)
t i o n um(t,v,f)
= um(t,v,f)
=
(Rm(t,-)
E
2 C ( V ) t h e func-
# f(*))(v) satisfies
qq)sh [A-m(m+l)]~"+~
(3.45)
u;
(3.46)
uy + 2m c o th t um = 2m csch t urn-'
(.3.47)
utt + (2m+l) c o th t uy + m(m+l)um = Aum
(3.48)
um(o,v) = f ( v ) ;
=
m
where (3.45),
and (3.48)
=
0
h o l d f o r m 2 0.
The n o t a t i o n here d i r e c t s t h a t (AMt # f ) ( v ) =
Proof: Av(Mtf)(v)
(3.47),
uT(o,v)
= (MtAf)(v)
(see e.g.
(1.7)
and r e c a l l a l s o t h a t A =
6d + d6 i n t h e n o t a t i o n o f de Rham [1] i s f o r m a l l y symmetric) w h i l e (3.48) example.
i s immediate fro m t h e d e f i n i t i o n s and (3.45)
for
One can a l s o prove Theorem 3.13 d i r e c t l y from t h e de-
f i n i t i o n (3.44)
and t h e Darboux e q u a ti o n (1.7) w i t h o u t u s i n g t h e
F o u r i e r t r a n s f o r m a t i o n ( c f . C a r r o l l - S i l v e r [15; (3.46)
f o l l o w s immediately from (3.44)
(3.45)
and (3.47)
16; 173).
by d i f f e r e n t i a t i o n w h i l e
r e s u l t then by i n d u c t i o n u s i n g (1.7)
r a d i a l Laplacian DU = A = m = 0 t oget her w i t h (3.46)
a 2/ a t 2 +
Indeed
coth t
and t h e
a / a t ( c f . (3.41)) f o r
(see C a r r o l l - S i l v e r [16] f o r d e t a i l s ) . QED
D e f i n i t i o n 3.14
The sequence o f s i n g u l a r Cauchy problems
120
2.
(3.47)
-
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
sequence. (3.8)
f o r m 2 0 an i n t e g e r w i l l be c a l l e d a canonical
(3.48)
The canonical r e s o l v a n t sequence corresponding t o
under i n v e r s e F o u r i e r t r a n s f o r m a t i o n i s ( c f . a l s o (2.3))
+ ( 2 1 ~ 1 c) o t h
(3.49)
RTt
(3.50)
Rm(o,*) = 6 ;
t RY + rn(m+l)Rm = ARm m
= 0
Rt(0,*)
where 6 i s a D i r a c measure a t w = .rr(e). t i o n s (3.9)
S i m i l a r l y from t h e equa-
we have
2(m+l) sh [A-m(m+l)]Rm+’
(3.51)
Rt =
(3.52)
R Y + 2m c o t h t R” = 2m csch t Rm-’ Remark 3.15
We r e c a l l a t t h i s p o i n t a few f a c t s about .-.
Casimir o p e r a t o r s f o r a semisimple L i e algebra g ( c f . Warner [l]).
. . ., Xn i s any b a s i s f o r gE l e t gij .-.
I f X1,
= B(Xi,X.)
where J be t h e elements o f
B(=,*) denotes t h e K i l l i n g form and l e t gij the matrix (g’j)
i n v e r s e t o (g..). 1J
The Casimir o p e r a t o r i s then
d e f i n e d as
T h i s o p e r a t o r C i s independent o f t h e b a s i s {Xi} .-.
c e n t e r Z o f t h e enveloping algebra E(gt).
Another f o r m u l a t i o n
. “ -
can be based on a Cartan decomposition g = k
Cartan subalgebra j o f g
.-.
.
such j always e x i s t .
(i.e.,
. - . . - . - . . - .
j = j f) k +
L e t a b a s i s Hi
121
and l i e s i n t h e
+ p and a e s t a b l e
jfl p
= j- + jp);
k ( 1 <, i 5 m) f o r j-. and a k
SINGULAR AND DEGENERATE CAUCHY PROBLEMS = -6ij for b a s i s H.(m+l
t
Then
When G has f i n i t e c e n t e r w i t h K a maximal compact subgroup then the operator i n D ( G / K )
determined by C i s the Laplace-Beltrami
operator f o r the Riemannian s t r u c t u r e induced by t h e K i l l i n g form B(*,-)
(see Helgason [l]and cf.
Example 3.16
(3.41)).
We consider now the case where G = SOO(3,1) =
SH(4) i s the connected component o f the i d e n t i t y i n t h e Lorentz group L = SO(3,l)
and K = SO(3) x SO(1) Z SO(3).
The r e s u l t i n g
Lobazevskij space V = G/K has dimension 3 and rank 1.
I n R4 G
c o n s i s t s o f so c a l l e d proper Lorentz transformations which do n o t
2 2 reverse the time d i r e c t i o n . Thus s e t [x,x] = -r (x,x) = -xo + 2 2 2 + x2 + x3 and t h i n k o f xo as time. Then G corresponds t o 4 x 4 x1 matrices o f determinant one l e a v i n g [x,x] t h e s i g n o f xo.
I n particular i f
2 p o s i t i v e l i g h t cone r (x,x)
i n v a r i a n t and p r e s e r v i n g
n4 denotes
the i n t e r i o r o f the
> 0, xo > 0, then G : R4
+
R4.
The
LobaEevskij space V can be i d e n t i f i e d w i t h t h e p o i n t s o f t h e 2 "pseudosphere" r (x,x) = 1, xo > 0 (which l i e s w i t h i n R4). coordinates
122
If
2.
(3.55)
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
x1 = r sh
e3
s i n €I2 s i n
-
e 1’
x3 = r sh €I3 cos €I
x2 = r sh €I3 s i n €I2 cos €I1; with 0
5
€I1 <
ZIT, 0 5 O 2 <
IT, 0
s c r i b e d i n R4 then coordinates
5
ei(i
x0 = r ch €I3
e3
<
m,
and 0 5 r <
= 1,2,3)
m
are pre-
can be used on V and
t h e i n v a r i a n t measure dv on V i s g i v e n by dv = sh
(i= 1,2,3).
2;
2
e3
s i n O2lIdei
We w i l l now f o l l o w Takahashi [l]i n n o t a t i o n because
o f h i s more “canonical” f o r m u l a t i o n b u t r e f e r a l s o t o V i l e n k i n
[l]f o r many i n t e r e s t i n g geometrical i n s i g h t s . ,.. Thus as a b a s i s o f t h e L i e algebra g o f G we t a k e
Io (3.56)
Y1 =
Y3 =
‘1 3
1
0
O 0
0’ 0 Y
Y2 =
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)
0
0
0
1’
0
0
0’
0
0
0
0
0
1
0
-1
0
0
3
‘12
=
0
0
0
0
1
0
0
0,
0
0
0,
0
0
0
0’
0. 0
0’
0
0
0
1
0
0
0
0
0
1
0
-1
0,
0
0
0
0
0
-1
0
0,
Y
‘23
Y
3
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Note t h a t i f E
denotes the matlrix w i t h 1 i n the (p,q) Pq (pth row and qth column) w i t h zeros elsewhere then Y P E ( p = 1,2,3) and X E (p
-
position
+
EoP Then
Y
R Y 3 we
~
Y
.
.
,
+ p and K
have a Cartan decomposition g = k
Y
= exp k.
Take now
a = R Y 1 as a maximal a b e l i a n subspace o f p and s e t X
P
+ X
= Yp
1P
(p = 2,3) so t h a t
(3.57)
x2
=
’0
0
1
0’
0
0
1
0
1 - 1
0
0
0
0,
,o
0
;
x3 =
0
0
0
1
0
0
0
0
1
-1
0
0,
-
Then w r i t i n g n = RX, + R X an Iwasawa decomposition o f g i s 3 ,.L given b y g = k + a t n and w r i t i n g A = exp a w i t h N = exp n one
- -
has G =
KAN.
We w i l l use the n o t a t i o n at = exp t Y 1 so t h a t
-
sh t
0
0
sh t
ch t
0
0
0
0
1
0
( 0
0
0
1
‘ch
(3.58)
at =
One can take Y1 = Ho i n the general rank one p i c t u r e w i t h a(Ho) = 1 since [Yl,X2]
= X2 and [Y, ,X3]
= X3.
Thus a, which i s the
1 o n l y p o s i t i v e r o o t , has m u l t i p l i c i t y two and p = -in a = a 2 a p(tY1) = t.
We r e c a l l t h a t M = (kek; AdkH = H f o r H
t h a t Mi = (kEk; Adka C a).
E
with
a1 and
Since exp AdkH = k exp Hk-’ we see
124
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
t h a t AdkH = H f o r H a for H
E
a i m p l i e s k exp Hk-l = exp H w h i l e AdkH
a i m p l i e s k exp Hk”
E
mediate t h a t M = {exp
m =
(3.59)
0
= exp Hi f o r H I
E
a.
E
It i s im-
c o n s i s t s o f matrices
1
0
A
m
;
E
SO(2)
A
whereas M
I
exp I T X ~ ~ ) where , exp ITX
= M U {exp vXl2,
( p = 2,3) 1P Thus W = M /M has the p r o p e r t i e s i n d i c a t e d beI
sends at t o a,t.
f o r e i n t h e general rank one s i t u a t i o n and B = K/M can be i d e n t i -
2
f i e d w i t h the two sphere S c R
3
.
This i d e n t i f i c a t i o n can be
s p e l l e d o u t i n a t l e a s t two ways and we w i l l adopt the one leadi n g t o the s i m p l e s t i n t e g r a l expressions l a t e r .
Thus, f o l l o w i n g
Takahashi [l], we w r i t e u = exp 0X12 and v = exp I$X23 f o r 0 5 0 I$ 0 5 IT and -IT < I$ 5 TI ( i n p a r t i c u l a r v E M). Then any k E K can
0
be w r i t t e n i n t h e form k = m u v f o r m E M so t h a t i f m = v 0 0 JI then kll = cos 0 , k12 = s i n 8 c o s b k13 = s i n 0 s i n I$, kZ1 = -sin 8
COSI),
(kll,k21,k31)
and k31 = s i n 8 s i n +
:k
+
One can pass the map k
R3 t o q u o t i e n t s t o o b t a i n a map K/M
+
+
S
x =
2
v u M and x + ( J I , 0 ) ; here -IT < JI < TI and 0 < 0 < IT $ 0 2 on the domain o f uniqueness. The i n v a r i a n t measure on S corres-
where k
+
l ponding t o t h i s i d e n t i f i c a t i o n i s given by ds = ( 4 1 ~ ) - sined0dJI and the f u n c t i o n s
125
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
with c = [(2n+l)(n-1n)!/(n+m)!]"~, -n 5 m 5 n, and n = 0,1,2, m ,n 2 2 form a complete orthanormal system i n L ( S ) ( c f . Talman
. . .,
[l]and V i l e n k i n [ l ] ) . We can now g i v e e x p l i c i t formulas f o r a canonical s e t o f radial objects i n
H, ( c f . (1.4)).
Thus l e t v = atK and b = kM
w i t h k = v+ue and consider ( c f . (3.19)) IT
A
(3.61)
@;"(atK)
=
-IT
I
(iP-l)H(a;'k)
IT 0
e
'n ,m
( e , $ ) s i n 8 dOd$
It f o l l o w s from general formulas i n Takahashi [l]t h a t
-
exp H(a-'v u ) = ch t t $ 0
I
1
2
IT
(ch t
-
sh t cos e)ip-lPn(cos
f 0 and P:(cos
reduces t o R (t,w)
=
u
io(t,p)
."
0 ) = Pn(cos 0 ) .
FMt = @ (a,)
= 1 and Po(cos 0 ) = 1 whereas,
calling that @
e ) s i n e de
o
"0
t h a t (3.62)
(3.63)
IT
= 0 for m
eimd$
-IT
0 3 0
,
h~
= 2 '0 n
c
becomes
"m 0', n (atK) = @ 'n (atK) = Z n ( t ) 1-I
(3.62)
since
sh t cos 8 and t h e r e f o r e (3.61)
1-I
when n = 0 since
s e t t i n g k = v, u v
+ @ @
and r e -
i s an even f u n c t i o n o f t, t h e expression f o r
can be w r i t t e n i n t h e form ( c f . Takahashi [l])
"0
We n o t e
R (t,p) =
I
(iu-l)H(ai'k)
e K
126
dk
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
=
1 JrO( c h t - s h t
cose)iv-l sinede = Z o ( t )
v
-
2ipsh t [(cht + s h t ) ”
=
sinpt/vsht
-
(cht
-
~ht)~’]
To evaluate (3.62) i n general one has recourse t o various formulas for special functions and we are grateful here t o R. G. Langebartel for indicating a general formula for such integrals i n terms of Meijer G functions (cf. Luke [l]).
The details are some-
what complicated so we simply s t a t e the r e s u l t here.
We note that f o r n
=
Thus, since
0 t h i s formula yields (cf. Magnus-
Oberhettinger-Soni [l])
(3.65)
=q
Z;(t)
sh-’t
=
1
1
l(ch t ) i v-7L
P-’
(L) sh-’t[(ch 21 v 1 21U
= (-)
t + sh t ) i v
sh-’t(e i v t
i n accordance w i t h (3.63).
-
-
(ch t + sh t)-iv]
e-ivt)
Further l e t us remark that (cf.
Robin [l])
127
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(3.66)
P
--1
1/2 t F l +( i vv 7 l-ill 2, 3 -sh 2 t )
l(ch t)=&sh 2
ill7
and hence from (3.65)
one has Z E ( t ) =
F(Y),Y, $
-sh 2 t)
as r e q u i r e d by (2.2). "n To o b t a i n r e s o l v a n ts R (t,p) m u l t i p l y t he Z n ( t ) o f (3.64) ll Since one has f o r example
(3.67) (cf.
P
--
:(ch
t) =
ip-7
n+21
'sh(t3)
2
r(n +
$
F (n +r l,+Fi p, n ++l - -i p, - s 3h 2
-
i t i s n a t u r a l t o ta k e ( c f . (3.21) n+l+iu n+l-iu
h
Rn(t,u)
We now use (3.23) Some r o u t i n e in. Theorem 3.17
3
= F ( T F n + p h
-
(3.24)
2
t o obtain recursion relations f o r the
c a l c u l a t i o n y i e l d s then The re s o l v a n ts
in for the
case o f t h r e e dimen-
iu-1)
^R!
(3.22)
t)
s i o n a l Lobazevskij space a re d e fi n e d by (3.68)
(3.69)
2t )
Robin [l]), i n o r d e r t o s a t i s f y t h e r e s o l v a n t i n i t i a l condi-
t i o n s (2.3), (3.68)
by an a p p ro p r i a t e w e i g h t f a c t o r .
-n 1
-n- 1
. . . we now
f o r n = 1, 2,
+ (2n+l) c o t h t
in = (2 n + l ) 128
csch t
and s a t i s f y (v
=
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
h
Rt:
(3.71)
+(2n+2) c o th t
s:
+ n(n+2)^Rn = v(v+2)^Rn
These equations a re i n agreement w i t h S i l v e r [l]where they are obt ained i n a d i f f e r e n t manner and t h e r e s o l v a n t s a r e exof B ,Y V i l e n k i n [l]. One can now proceed as b e f o r e t o determine r e s o l -
pressed somewhat d i f f e r e n t l y i n terms o f t h e f u n c t i o n s Pa
vants Rn and canonical sequences o f s i n g u l a r Cauchy problems. S i m i l a r l y one can expand t h e m a t r i x th e o r y t o deal w i t h h i g h e r dimensional Lobazevskij spaces ( c f . S i l v e r [l])b u t we w i l l n o t s p e l l t h i s o u t here ( c f . Se c ti o n 4). i n g t h e r e c u r s i o n r e l a t i o n s (3.69)
-
The q u e s t i o n o f deduc-
(3.70)
from group t h e o r e t i c
i n f o r m a t i o n about t h e i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n s o f G i n t h e f-l
u
w i l l be d e f e r r e d f o r t h e moment.
Remark 3.18 2.1
-
Going back t o th e general format o f Sections
2.2, Example 3.16 corresponds t o t h e case ma = 2 , mZa = 0,
p = 1, da = -p(p+l),
dpa = 0, and n = p.
Then u s i n g t h e Kumner
r e l a t i o n i n d i c a t e d a t t h e end o f S e c ti o n 2.2 w i t h z = t h L t now,
- (p,o)
2 we have z/z-1 = -sh t and f o r T (3.72
Y
-u,T
(a K) t = c
-uYT
t h P t ch-iu-lt
129
F(+,
ip+l+
iu+2+p
3 2 ,p+Z,th t )
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Hence we can write from (3.68) (3.73)
A
R P ( t , u ) = c-l
-uYT
exactly as i n (3.7).
shePt Y
-u ,'c (atK)
P u t t i n g this i n (2.11) yields (3.71) and
the recurrence relations follow as before from (3.23)
2.4
Expressions f o r general resolvants.
m and m2a = 0 so t h a t d2a = 0, while
T
Theorem 4.1
p =
- (p,o).
m/2, R = i v +
T, da
-
(3.24).
Let f i r s t ma = = -p( p+m-1)
, and
Resolvants f o r the case ma = m and m2a = 0 are
given by A
(4.1)
R P ( t , u ) = c-l
-uYT
= ch-P-R
s h w P t Y -u
,f(atK)
R+p+l +m+l 2 ,p 7 t h t )
t F(+,R+
These s a t i s f y the resolvant i n i t i a l conditions as well as the differential equation and sDlittinq recursion relations below. (4.2)
A
A
(4.4)
A
RtPt + (2p+m) coth t R! + [p(p+m) + p
A
2
+ ($m 2 ]R" p - - 0
A
R! + (2p+m-1) coth t Rp = (2p+m-l)csch t RP-'
130
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
Proof: and (3.73)
Equation (4.1)
f o l l o w s from d e f i n i t i o n s ( c f .
f o r m o t i v a t i o n ) , (2.9)
(3.7)
t h e Kumner r e l a t i o n F(a,b,c,z)=
(l-z)-aF(a,c-b,c,z/z-l),
and an extended v e r s i o n o f (3.67);
r e c u r s i o n formulas (4.3)
-
( c f. Robin [l]f o r d e t a i l s ) . o r (4.3)
-
(4.4)
the
f o l l o w from t h e known r e l a t i o n s
F i n a l l y (4.2)
r e s u l t s from (2.11)
(4.4).
QE D
I n t h e s i t u a t i o n now when mZa = 1 t h e s i t u a t i o n becomes somewhat d i f f e r e n t .
We r e c a l l t h a t
T
-+
(p,q) w i t h (p,q)
E
Z+
x
Z and
2 We take ma = m so t h a t da = -p(p+m) + q and dpa = q E 22., 2 m For t h e r e s o l v a n t s we use (3.7) again ( c f . -4q w i t h p = 2 + 1.
p
2
(3.73)
a l s o ) w i t h (2.9)
t o obtain
= ch-P-2XF(x+y,
x +
y,
y, t h 2 t )
where x = -1( i p + 2 + 1 ) = R and y = p + 2 + 1. An elementary 2 2 2 computation now y i e l d s th e re s o l v a n t e q u a t i o n from (2.11) i n t h e form (4.8)
*R;iq
+ [(Pp+m+l)coth t + tht]c!7q
+ [p(p+m+2) + p 2 + (!)+1)2 131
+ q 2 ~ e c h 2 t ] " R 9 q= 0
SINGULAR AND DEGENERATE CAUCHY PROBEMS
Theorem 4.2 given’by (4.7)
For the case
= 1 with
%
= in resolvants a r e
s a t i s f y i n g the resolvant i n i t i a l conditions
a
(2.3) and (4.8).
There a r e various spl i t t i n g recursion r e l a t i o n s
which we l i s t below.
(4.9)
p
-
^Rp’q
2x1 t h t
sh2t t h t
(4.10)
A
RPtYq = 2(y-l)coth t sech2t
ip-2sq
2(x+-l)(y-x
+ [ 2 ( 1 - 6 ) ~ 0 t ht + 1
-y-1)
Y-2
(4.11)
(4.12)
A
Rp’q
t
= -q t h
t
SPsq -Z(y-l)coth tiPsq
+ Z(y-l)csch t ^Rp-lSq-’ (4.13)
(4.14)
A
Rp’q
t
= qth
t
iPsq -Z(y-l)coth
+ E(y-l)csch t
t
iPsq
ip-l’q+l 132
6p+zq
- qlth
t]
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2 coth t iPsq + -=x+y) 9+ 1
h
RPtSq = q t h t
(4.15)
h
R!’q
(4.16)
= -q t h t
(y-x Proof: mula
d
iPsq + 2 coth t ( X + Y ) q-1
-
The r e c u r s i o n r e l a t i o n s are derived using the f o r -
F(a,b,c,z)
= (ab/c)F+ = (ab/c)F(a+l ,b+l ,c+1 ,z)
and var-
i o u s c o n t i g u i t y r e l a t i o n s f o r hypergeometric f u n c t i o n s ( c f . Magnus-Oberhettinger-Soni
[l].Thus t o o b t a i n (4.9)
-
(4.10) one
uses the e a s i l y derived formulas (4.17)
( l - z ) F + = F + w ,cz c+l F(a+l,b+l,c+2,z)
(4.18)
abz(1-z)F+ = c(c-l)F(a-1 ,b-1 , c - ~ , z )
+ For (4.11)
-
c
[
J
-
( z
-
(c-bz-l)]F
(4.12) one uses t h e formulas
(4.19)
b(1-z)F+ = CF + (b-c)F(a+l ,b,c+l ,z)
(4.20)
abz(1-z)F+ = c ( c - l ) F ( a - 1 ,b,c-1,z)-c(c-bz-l)F
whereas f o r (4.13) (4.21)
-
(4.14)
we u t i l i z e
abz(1-z)F+ = c(c-l)F(a,b-1,c-1
133
,z)
-
c(c-aa-1)F
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(4.22)
-
a(1-z)F+ = CF
and f i n a l l y f o r (4.15)
-
(c-a)F(a,b+l ,c+1 ,z) (4.16) one has
(4.23)
bZ(l-z)F+ = c ( z (b-c))F + ~ - ~ +- ~
(4.24)
abz(1-z)F+
=
F(a+l ,b-1 ,c,z)
-bco F(aa-b-1
Let us a l s o remark b r i e f l y about the s p l i t t i n g phenomenon.
Thus
f o r example (4.19) y i e l d s (4.25)
F
I
=
c(1 a -z)-[cF
+ (b-c)F(a+
whereas (4.20), a f t e r an index change (4.26)
I
[cF
F (a+l,b,c+l ,z) = z ( l
gives
-
(c-bz)F(a+l ,b,c+l ,z)]
Now d i f f e r e n t i a t e (4.25), insert (4.26), and then use (4.25)
Multiplying by z(1-z) one
again t o eliminate F ( a + l , b , c + l , z ) .
obtains then the hypergeometric equation z(1-z)F [c
-
(a+b+l)z]F
I
-
abF
=
I 1
+
I t i s easy t o show t h a t i f t h e
0.
hypergeometric equation s p l i t s i n t h i s manner then so does (4.8) under the composition of (4.11)
-
(4.12), f o r example.
QED
For completeness we will write down some formulas f o r t h e = 3 o r 7 b u t will omit t h e recursion r e l a t i o n s s i n c e 2a the pattern i s exactly as above. T h u s f o r m2a = 3 we s e t ma = m
cases m
and r e c a l l t h a t (p,q)
E
Z+
x
Z+ w i t h p
134
?
q
E
22.,
One has
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
p =
-m2 + 3 and R
q(q+2).
(2.9)
=
iu +
We use (3.7)
p w i t h d2a = -4q(q+2) and da = -p(p+m+2) + h
and (3.73)
again t o d e f i n e R p y q and from
this yields
1 where x = R/2 = $ i u
+%+ 3)
and y = p +
e q uat ion a r i s i n g from (2.11) *
R!tq
(4.28)
m -i+
2.
The d i f f e r e n t i a l
i s then
+ [(2p+m+3)coth t + 3 t h t]i!yq = [p(p+m+6)
+ p 2 + =(!)+3)
For mZa = 7 one has p = !+
2 + q(q+2)sech2t]RPyq = 0 A
7 and s e t t i n g ma = m i t f o l l o w s
2
t h a t da = -p(p+m+6) + q ( q t 6 ) w i t h dZa = -4q(q+6). and (2.9)
from (3.7)
again R+
h
(4.29)
+
RPYq(t,u) = ch-P-a t F ( 9 ,
R;tq
,p+%+4,
2 th t )
th e d i f f e r e n t i a l e q u a ti o n f o r R P y q i s
h
+ [(Ep+m+7)coth t + 7th 2
+ [p(p+m+l4) + p +
Theorem 4.3 by (4.27)
Rtp-q-6
*
and from (2.11) (4.30)
I n t h i s case
t]6!’q
m 2 (9+ 7) + q ( q + 6 ) s e ~ h ~ t ]= ~0~ ’ ~
For m2a = 3 (resp. 7) t h e r e s o l v a n t s a r e given
(resp. (4.29))
and s a t i s f y (4.28)
135
(resp. 4.30)).
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
These r e s u l t s completely s o l v e t h e rank 1 case and t h e conn e c t i o n o f t h e F o u r i e r t h e o r y t o t h e associated s i n g u l a r p a r t i a l d i f f e r e n t i a l equations has been i n d i c a t e d a l r e a d y ( c f . Theorem 3.13 and Chapter 1). 2.5
The Euclidean case p l u s g e n e r a l i z a t i o n s .
here C a r r o l l - S i l v e r [15;
We f o l l o w
16; 171 and w i l l i n d i c a t e r e s u l t s o n l y
f o r one simple Euclidean case; a complete e x p o s i t i o n appears i n S i l v e r [l]. Thus l e t G = R2xySO(2) and K = SO(2) where (;,a)
(;,8)
=
(&y(ct)?,ct+B)
'cos ct (5.2)
g =
s i n ct
, o
i s a semidirect product w i t h
- s i n ct cos
ct
0
and m u l t i p l i c a t i o n i s f a i t h f u l .
."
xl' x2
1, As generators o f t h e L i e alge-
b r a g o f G we t a k e
136
2.
1 l;i 1; ; b;; j
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
0
(5.3)
al =
0
0
0
0
0
a2
0
a3 =
0
0
-1
0'
1
0
0
0
0
0,
with multiplication table
."
Thus g i s s o l v a b l e ( b u t n o t n i l p o t e n t , n o r semisimple).
Now s e t
V = G/K and s i n c e (;,a)(;,@) = (z,a+B) t h e r e i s an obvious g l o b a l a n a l y t i c diffeomorphism V f(g-%)
g-';
R
2
.
One d e f i n e s as b e f o r e L ( g ) f ( x ) =
where g = (;,a) and g - l = (y(-a)(-;),-a).
= f(y(-a)(;-;))
One t h i n k s here o f
-+
;;as
= g - l r ( h ) = IT(g-'h)
r ( h ) = IT(;,@) = = r(y(-a)(-;)
so t h a t
IT((;,O)(O,@))
+ y(-a);,@-a)
= y(-a)(;-G). . "
If f i s d i f f e r e n t i a b l e then L induces a r e p r e s e n t a t i o n o f g as i n we have f i r s t , f o r $ = ( x1 ) = x2 +. ( f o r s i m p l i c i t y o f n o t a t i o n ) , exp(-tal)x =
W r i t i n g Ai
(3.29). -+
r ( x , @ ) = (xl,x2) (xl-t,x2),
= L(ai)
e x p ( - t a 2 ) z = (xl,x2-t),
Consequently we o b t a i n A1 = -a/axl, x2 a/axl-xl
a/ax2.
(3.12)
and (3.26))
(5.5)
[H,H+]
A2 = -a/ax2,
W r i t i n g H+ = A1 + i A 2 , H
2iA3 i t f o l l o w s from (5.4)
= 2H+;
+.
and exp (-ta3);
= y(-t)x.
and A3 =
- = A1 -
iA2, and H =
t h a t ( n o t e t h e c o n t r a s t here w i t h
[H,H-]
= -2H ;
[H+,H-]
= 0
The Riemannian s t r u c t u r e on V i s described i n (geodesic) p o l a r c o o r d i n a t e s by ds2 = d t 2 + t 2d8 2 ( c f . Helgason [ l ] ) geometry i s " t r i v i a l . "
and t h e
There f o l l o w s immediately ( c f . V i l e n k i n
137
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Lemma 5.1 (5.6)
I n p o l a r coordinates ( t , e ) it3
H+ = -e
[a/at +
H- = -e (5.7)
A = H H
+-
[a/at
-
i
H = -2i
a/ae;
a/ael
1 a/at + a 2/ a t 2 + t
=
As b e f o r e (cf.
-i0
Lt a/ael;
on V
1 t
a 2/ae 2
P r o p o s i t i o n 3.7) we work w i t h (dense) d i f f e r -
e n t i a b l e b a s i s " v e c t o r s " f i i n H i l b e r t spaces tl a u n i t a r y i r r e d u c i b l e representation L
u
u
where G provides
and these are c h a r a c t e r -
i z e d by t h e c o n d i t i o n s ( c f . M i l l e r [l;23, V i l e n k i n [I]) =
iuf;+l;
H-f;
= ipfi-l;
= mfi
H3f;
where H3 = 1/2 H and 1-1 i s r e a l (see C a r r o l l - S i l v e r [15;
16; 171
Here we can w r i t e L =
and S i l v e r [ l ] f o r f u r t h e r d e t a i l s ) .
(1.5) ) , b u t emphasize t h a t t h e semi simp1 e t h e o r y does n o t apply. Theroem 5.2
There r e s u l t s (cf.
Vilenkin [l])
Canonical b a s i s v e c t o r s i n H
u
i n t h e form (5.9)
can be w r i t t e n
f i = (-i)m exp (ime)Jm(pt)
Proof:
Take f i = eimOwL(t)
requirement i n (5.8).
which w i l l assure t h e t h i r d
Then t h e w i must s a t i s f y
138
2.
(cf. (5.7
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
-
The solutions J,(ut)
(5.8)).
are chosen for f i n i t e -
ness cond tions and the factor ( - i ) mmakes valid the recursion relations indicated i n (5.8) (cf. Vilenkin [l]); the resolvants and s a t i s f y age given by "R(1-I,t)= (i)m2mr(m+l)(pt)-mwi(t) 2 (1.3.11) - (1.3.12) with A(y) replaced by u (resp. y by 1-11 similarly (1.3.4) Remark 5.3
-
(1.3.5) hold f o r
^Rm
with
?=
1.
QED
I t i s easy t o show that the mean value as de-
fined by (1.6) coincides i n t h i s case with the mean value u X ( t ) (cf. formula (1.2.1)
-
and see Carroll-Silver [16] for d e t a i l s ) .
Thus the results of Chapter 1 may be carried over t o t h i s group theoretic situation , which i s equivalent. W e conclude t h i s chapter with some "generalizations" of the
growth and convexity theorems (1.4.12) and (1.4.16) in the special case V = SL(2,R) /SO(2) Silver [15; 16; 173).
(cf. Theorem 3.13 and Carroll-
F i r s t i t i s clear that i f f _> 0 then,
referring t o (3.43), ( M t # f ) ( v ) teger (here we assume f
E
C'(V)
=
(Mtf)(v) 2 0 for m 2 0 an in-
f o r convenience l a t e r ) .
Hence
u m ( t , v , f ) = u m ( t , v ) 2 0 when f 2 0 by (3.44) f o r m > 0 an integer. Now write Am = A a M t, Theorem 5.4
- m(m+l) so Let A,f
t h a t by
3.45) we have
recall Mt
=
L 0, m 2 0 an integer; then u m ( t , v ) i s
monotone nondecreasing i n t f o r t 2 0. 139
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
AM f = M ( A f ) by (1.7)
Proof:
rl
rl
and Lemma 1.1.
QED
Now l e t $ be any f u n c t i o n such t h a t d$/dt = csch2m+1t so t h a t d/d$ = sh2m+1t d / d t ( c f . Weinstein [12]).
Then (3.47) can
be w r i t t e n
a 2/a$ 2 um ( t , v , f )
(5.11)
= ~
h um(t,v,A,f) ~
~
~
t
Consequently t h e r e f o l lows
L
Iff,A,,
Theorem 5.5
0 then um(t,v,f)
i s a convex f u n c t i o n
o f $. Working i n a harmonic space Hm(cf. Ruse-Walker-
Remark 5.6 Willmore [ l ] ) ,
Fusaro [l]proves (M = M(v,t,f)
3.11) (5.12)
Mtt
+
(w
+ log' g(t)'l2)Mt
where g = d e t (9. .), gij 1J
as i n Theorem
= AM
denoting t h e m e t r i c tensor, and g depends
on the geodesic distance t alone (A denotes t h e Laplace-Beltrami
I f A f 2 0, M w i l l be nondecreasing i n t and a convex
operator).
f u n c t i o n of $ where $ ' ( t ) = t'-m/g(t)'/2.
Weinstein 1123 works
2 i n spaces o f constant negative c u r v a t u r e -a (which a r e harmonic) and proves s i m i l a r theorems f o r (5.13)
Mtt
+
a(m-1) c o t h (at)Mt = A M
We r e f e r t o Helgason [4] f o r such "Darboux" equations i n a group context; t h e extension t o "canonical sequences" i s due t o C a r r o l l
140
2.
CANONICAL SEQUENCES OF SINGUALR CAUCHY PROBLEMS
[21; 221, Carroll-Silver [15; 16; 171, and Silver
141
113.