or Sufficient Conditions for the Existence of Sequential Solutions

or Sufficient Conditions for the Existence of Sequential Solutions

CHAPTER 2 NECESSARY A N D / O R SUFFICIENT CONDITIONS FOR THE EXISTENCE OF SEQUENTIAL SOLUTIONS 0 . Introduction The problem of t h e existence of ...

880KB Sizes 0 Downloads 63 Views

CHAPTER 2 NECESSARY A N D / O R SUFFICIENT CONDITIONS FOR THE

EXISTENCE OF SEQUENTIAL SOLUTIONS

0 . Introduction

The problem of t h e existence of sequential s o l u t i o n s of a PDE can be divided i n t o two parts. Given the m - t h order polynomial, nonlinear PDE in ( l ) , Chapter 1 , and a sequence of functions s E (C'm(n))N,t h e problem i s whether t h e r e e x i s t quotient spaces E = S/VEVST and quotient algebras A = A / l E A L G ,

m

<

with E

A,

F a vector subspace in

hl(R)

, G a subalgebra in M(R)

and G 3 C'(n), such t h a t s i s a sequential solution in E considered.

-+

,

A of t h e PDE

I n terms of the sequence of functions s , t h e problem - see Section 3 , Chapter 1 - i s whether t h e following two r e l a t i o n s can be s a t i s f i e d : (1)

s

(2)

wS

s

E

=

T(D)s - u ( f )

E

I.

A t f i r s t glance, t h e second r e l a t i o n seems t o be more d i f f i c u l t t o f u l f i l , since I has t o be an ideal in A , a n d moreover has t o s a t i s f y t h e r e l a t i o n (see ( 2 3 ) , C h a p t e r 1)

I n t h i s Chapter we s h a l l deal with t h a t p a r t of t h e existence problem r e l a = ted t o sequential s o l u t i o n s of polynomial nonlinear PDEs. More s p e c i f i c a l = ly, we s h a l l e s t a b l i s h necessary and/or s u f f i c i e n t conditions f o r the existence of quotient algebras A E AL such t h a t sequential s o l u t i o n s C" (a) i n E -+ A of t h e PDE in ( l ) , Chapter 1, e x i s t f o r c e r t a i n quotient spaces t . In o t h e r words - see Remark 2 , Section 5 , Chapter 1 - we s h a l l be in= t e r e s t e d only in t h e exactness p r o p e r t i e s of sequential s o l u t i o n s . More p r e c i s e l y , given the m - t h order polynomial nonlinear PDE in ( l ) , Chap= ter 1, and a sequence of functions s € ( C m ( n ) ) N , we s h a l l e s t a b l i s h neces= s a r y and/or s u f f i c i e n t conditions f o r t h e existence of quotient algebras such t h a t the ' e r r o r ' sequence ( s e e Section 4 , Chapter 1) A = A/lEAL c" (n) wS = T(D)s - u ( f ) s a t i s f i e s the condition

ws

E

7

37

38

E.E.Rosinger

as w e l l as p o s s i b l e a d d i t i o n a l ones. I t w i l l be convenient t o deal here w i t h a more r e s t r i c t e d n o t i o n o f sequen= t i a l s o l u t i o n , which besides t h e a l g e b r a i c c o n d i t i o n s i n S e c t i o n 3, Chapter 1, w i l l a l s o s a t i s f y c e r t a i n c o n d i t i o n s o f t o o l o g i c a l n a t u r e , w i t h o u t how= e v e r t h e necessary presence o f a t o p o l o g y on t e spaces o f f u n c t i o n s i n = volved. An example o f such a t o p o l o g i c a l - t y p e c o n d i t i o n i s t h a t r e q u i r i n g a l l t h e subsequences o f a s e q u e n t i a l s o l u t i o n o f a c e r t a i n PDE t o be a l s o s e q u e n t i a l s o l u t i o n s o f t h a t PDE.

+

1.

Subsequence Q u a s i - I n v a r i a n t Sequential S o l u t i o n s

F i r s t , we s h a l l c o n s i d e r s e q u e n t i a l s o l u t i o n s s a t i s f y i n g a r a t h e r weak t o p o l o g i c a l - t y p e c o n d i t i o n , c a l l e d subsequence q u a s i - i n v a r i a n c e and d e f i n e d next. Given t h e m-th o r d e r polynomial n o n l i n e a r PDE i n ( l ) , Chapter 1, a sequence n))N i s c a l l e d a subsequence q u a s i - i n v a r i a n t s e q u e n t i a l o f f u n c t i o n s SE (P( s o l u t i o n o f t h e PDE considered, o n l y i f f o r any subsequence s ' i n s, t h e r e e x i s t s a q u o t i e n t a l g e b r a A ' = A ' / I ' E AL co,n), such t h a t

wS1

E

ri.

A u s e f u l , simple c h a r a c t e r i z a t i o n o f t h e above t y p e o f s e q u e n t i a l s o l u t i o n s i s now presented. Given a sequence w E ( C o ( Q ) ) N o f continuous f u n c t i o n s , define = %/Iw

where

$

i s t h e subalgebra i n ( C " ( f 2 ) )

N generated b y {wlu

Uco(n),

while

generated b y w.

Iw i s the ideal i n Proposition 1

N

A sequence o f f u n c t i o n s s E (Cm(Q)) i s a subsequence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n o f t h e PDE i n (l), Chapter 1, o n l y i f A

ws '

E

AL

C" ( f2)

f o r each subsequence s ' i n s . Proof T h i s f o l l o w s from Lemma 1 below. Lemma 1 Ifw E

( c " ( Q )N) t h e n

Aw E ALCe(n), o n l y i f w

E

I for a certain

A = A/IEALC0(,). Proof Assume A = A / I E A L P ( Q ) and w E I .

Then i n view o f ( 2 3 ) , Chapter 1, we

39

CONDITIONS FOR SOLUTIONS have UC" ( R )

{w) hence

c A. w

c 7 vAcA,

Now

1 * w.A c 1

E

".Aw

c 1

=)

1,

c 7;

hence, again i n view o f ( 2 3 ) , Chapter 1, we have lW n uC O ( R )

t h e r e f o r e A,

AL

E

C"

(a)

=

2;

C" ( n) *

The converse i s obvious, s i n c e w E lw, Denote now b y

R t h e s e t o f a l l sequences w the condition

E

(C"(n))N o f continuous f u n c t i o n s t h a t s a t i s f y

V R' c R non-void, open, w ' subsequence i n w,

$'

E

Co(n') :

(3) w ' = u ( + ' ) on R' * $ ' Obviously, w E

R, o n l y i f

w'E

=

0 on

R'.

R , f o r each subsequence w ' i n w.

The b a s i c c h a r a c t e r i z a t i o n o f a subsequence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n i s g i v e n i n t h e f o l l o w i n g theorem. Theorem 1 N A sequence o f f u n c t i o n s s E ( C m ( R ) ) i s a subsequence q u a s i - i n v a r i a n t se= q u e n t i a l s o l u t i o n o f t h e PDE i n ( l ) , Chapter 1, o n l y i f

(4)

ws

E

R.

Proof T h i s f o l l o w s from P r o p o s i t i o n 1 above and P r o p o s i t i o n 2 below.

U

Prooosition 2 N Given a sequence w E(c(Q)) o f continuous f u n c t i o n s , t h e n w E R , o n l y i f ,A, E ALcD(Q), f o r each subsequence w ' i n w. Proof

Assume t h a t w

E

R.

Then i t s u f f i c e s t o

show t h a t A,

= Aw/Zw E AL c"(n), i . e .

E . E . Rosinger

40

I t i s easy t o see t h a t an element o f t h e i n t e r s e c t i o n i n ( 5 ) has t h e form

... + w R+ 1. U ( Q ..~ .,, qJk E C o ( Q ) .

u ( + ) = w.u(qJo) +

(6)

where R

E

N and $, q ~

+

i t s u f f i c e s t o show t h a t = 0 on R. R'C n i s non-void, open, such t h a t

(7)

# 0, v x

$(X)

E

Therefore i n o r d e r t o prove ( 5 ) ,

Assume t h a t t h i s i s n o t t h e case and

R'.

Denoting by w , w i t h v E N, t h e continuous f u n c t i o n s on R t h a t a r e t h e terms i n t h e Yequence w, t h e r e l a t i o n ( 6 ) w r i t t e n term-by-term, y i e l d s (8)

(w,(x))

kt 1

.qJg(x) t

... t

+ (-$(x))

w,(x).+,(x)

= 0,V v E N ,

XE

R.

Therefore ( 7 ) w i l l i m p l y t h a t t h e i n f i n i t e m a t r i x

(wo j x ) ) R+l

/

I I

I

I I I I

I I I I

I

\

....... wo(x)

I I I I I I

(wv(x))

I

Rt 1

I I

....... w v p

I I

\

I

I I

I

; I

\ ,

I I

I I I I

I I I

I I

-.I

has rank a t most

I

1 I I

"

I I I

I I

I I I I

1

I

I I

/

I I

I

I I I

I I

1

//

R t l , f o r any g i v e n x E R'.

NOW, a well-known p r o p e r t y o f Vandermonde determinants i m p l i e s t h a t t h e i n f i n i t e sequence o f numbers wo(x),.

.. ,wv(x),. .....

c o n t a i n s a t most k l d i f f e r e n t terms, f o r any g i v e n x E 0,'. T h e r e f o r e Lemma 2 below w i l l g r a n t t h e e x i s t e n c e o f a closed, nowhere-dense subset rl C R', such t h a t each x E R' \ r ' possesses an open neighbourhood R" C R' \ r ' , w i t h t h e p r o p e r t y t h a t t h e i n f i n i t e sequence o f f u n c t i o n s

wo

.... ,w v y ..........

when r e s t r i c t e d t o R", c o n t a i n s o n l y a f i n i t e number o f d i f f e r e n t func= t i o n s . I n o t h e r words, t h e r e e x i s t s a subsequence w " i n w and $" E co(nlo) such t h a t

(9)

w" = u ( q ~ " ) on

R".

41

CONDITIONS FOR SOLUTIONS Now, w E R w i l l i m p l y t h a t w i l l contradict (7).

J," = 0 on

6 R.

Conversely, assume t h a t w

a".

And then ( 9 ) t o g e t h e r w i t h (8)

Then

non-void, open, w ' subsequence i n w; J,' E Co(n') :

(10)

3 R' c R

(10.1)

w ' = u(J,') on

(10.2)

J,'(x) # 0,

v

a'; x

E

R'.

We n o t i c e t h a t i n view o f (10.1) i t may, b y t a k i n g J,' = w ' , f o r any v E N, be assumed t h a t $' E C" (R). Then f o r any $ E C" (R), withvzupp J, c R' , we have W'.U($) = u ( $ ' . $ )

E

Now as )I i s a r b i t r a r y , t h e r e l a t i o n (10.2) w i l l i m p l y lWl n Uco(R) hence Awl F ALCo(n), c o n t r a d i c t i n g t h e h y p o t h e s i s .

# Q ,

0

Lemma 2

....

Suppose t h e sequence w = ( w ,w i s such t h a t f o r any g i v e n 9 E R, he&! W,(X)

Y . .

......)

o f continuous f u n c t i o n s on R sequence o f numbers

. YWV( x ) f . . ...

c o n t a i n s o n l y a f i n i t e number o f d i f f e r e n t terms. Then t h e r e e x i s t s a closed, nowhere-dense subset r c R, such t h a t t h e sequence o f f u n c t i o n s W o,..

. ,wv,. ......

r e s t r i c t e d t o a s u i t a b l e neighbourhood o f any g i v e n x E R \ o n l y a f i n i t e number o f d i f f e r e n t terms.

r,

contains

Proof Denote by

r

wo

t h e s e t o f a l l p o i n t s x E R such t h a t t h e sequence o f f u n c t i o n s

.... ,wv

9 . .

......

when r e s t r i c t e d t o any neighbourhood o f x, c o n t a i n s i n f i n i t e l y many d i f = f e r e n t terms. I t i s easy t o see t h a t r i s c l o s e d . T h e r e f o r e i t o n l y remains t o prove t h a t r has no i n t e r i o r . I t s u f f i c e s t o show t h a t Indeed, denote R' = i n t r and assume R ' # 4 . Then I-' c o r r e s p o n d i n g as above t o a',w i l l s a t i s f y r 1 = R ' , hence c o n t r a d i c t i n g (11). I n o r d e r t o o b t a i n ( l l ) , t h e B a i r e c a t e g o r y argument w i l l be used i n two successive steps. F i r s t , f o r p E N , define the closed s e t

42

E.E.

Rosinger

tlvEN, v >p+ 1 : A

P

(13)

= {X E R

R'

=

jhEN, X Q p :

u

A;.

PEN

Indeed, denote for x E R' Mx = {(A,v) E N x N and t a k e

P E

I

X < u Q p , w,(x)

N, such t h a t

I/(P+~)dmin then o b v i o u s l y x E

~ l w ~ ( x ) - w , ( x ) l /(x,V)

A;.

Now i n a d d i t i o n t o ( 1 3 ) , we show t h a t (14)

A; closed, tl P

E

N.

Indeed, d e n o t i n g

M = {(X,V) we have

# wv(x)}

E

NxN

X < u


E

M~};

43

CONDITIONS FOR SOLUTIONS Now ( 1 3 ) and ( 1 4 ) t o g e t h e r w i t h t h e B a i r e c a t e g o r y argument i m p l y t h a t i n t A; f 0 Denote then 62'' = i n t A[',. for a certain E N. o b v i o u s l y be complete i f we show t h a t ,)

(15)

R" c R

The p r o o f o f ( 1 2 ) w i l l

r.

\

Assume t h e r e f o r e x E R" and V c R" an open, connected neighbourhood o f x . We s h a l l prove t h a t t h e sequence o f f u n c t i o n s

. . ,w

wo,.

. . . ..

y . .

when r e s t r i c t e d t o V, c o n t a i n s a t most 1-1 + 1 d i f f e r e n t terms. Indeed, i f v 6 N, w 2 LI + 1, t h e n w V ( x ) = w,(x), f o r a c e r t a i n X E N , X < u , s i n c e

But then (16)

wv

wh

=

V.

on

Assume indeed t h a t ( 1 6 ) i s f a l s e . Denote

V'

=

ix' E

v

V"

=

Ix" E

v

1

V " = {x" E

1

V

/

1

for a certain y

V

E

W"(X') = w,(x')l W"(X") # w x ( x " ) 1 ;

then x E V ' , y E V", V = V ' u But V " i s a l s o c l o s e d , s i n c e

(17)

Then w ( y ) # w,(y),

V",

V' n

V"

and

= @

V'

i s obviously closed.

w I( X I ' ) - wx ( X ' ' ) l > 1 / ( 1 ' + 1 ) I

\

t h e i n c l u s i o n 3 b e i n g obvious, w h i l e t h e converse r e s u l t s as f o l l o w s . Take x" E V", t h e n t h e r e e x i s t s n E N, o < , such t h a t w ( x " ) = w ( x " ) , 0 s i n c e v > p t 1 and

Hence w,(x")

,

# w,(x")

x" E

v"

C

V

C

t h e r e f o r e n, A

R"

C

<

and

A'

P

w i l l imply t h a t

I wv ( x

'1

) -w A ( x " )

I

=

I wo ( x

"

) -wx ( x '1 ) I

> 1/ ( D t 1) ;

and t h i s completes t h e p r o o f o f ( 1 7 ) .

As t h e decomposition V = V ' U V " t h a t has been o b t a i n e d c o n t r a d i c t s t h e connectedness o f V, i t f o l 1ows t h a t ( 16) h o l ds . Now, ( 1 6 ) i m p l i e s ( 1 5 ) , which i m p l i e s ( 1 2 ) . proved.

Thus f i n a l l y ( 1 1 ) has been U

V.

44 2.

E.E.Rosinger

A p p l i c a t i o n s t o L i n e a r and N o n l i n e a r PDEs

We s h a l l p r e s e n t several a p p l i c a t i o n s o f t h e c h a r a c t e r i z a t i o n o f subse= quence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n s , o b t a i n e d i n Theorem 1 above.

I t f o l l o w s e a s i l y from t h a t theorem t h a t T(D)-'(u(f)

t

R) c (cm(n)lN

i s t h e s e t of a l l subsequence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n s o f t h e PDE i n ( l ) , Chapter 1. Therefore t h e e x i s t e n c e o f such s o l u t i o n s i s equi= valent t o the condition

(18)

V R'C

n non-void,

open, s'subsequence i n s, $ ' = 0 on

T s ' = u ( f t $ ' ) on R'

+'

E

f(n)

:

a'.

The PDO i n ( 3 ) Chapter 1, w i l l t h e r e f o r e be c a l l e d expansive o n l y i f

3 SE ( P ( n ) ) N :

(19)

tl s ' subsequence i n s: int

n

VYPE

N

Z(T(D)sb

where z ( g ) = { x E Ig(x) = f u n c t i o n g E C"(n).

-

T ( D ) s ' ) = I$ P

0) denotes t h e z e r o - s e t o f t h e continuous

Theorem 2 I f t h e PDO i n ( 3 ) , Chapter 1, i s expansive, then t h e corresponding PDE

T(D)u(x) = f ( x ) , x

E

R,

possesses a subsequence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n s E ( cm(n)) N f o r any g i v e n f E Co(n). Proof T h i s f o l l o w s e a s i l y from ( 1 9 ) and ( 1 8 ) .

n

We s h a l l now show t h a t several well-known l i n e a r o r n o n l i n e a r PDOs a r e expansive, and t h a t t h e r e f o r e t h e corresponding PDEs possess subsequence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n s f o r any g i v e n continuous r i g h t - h a n d term. F i r s t , l e t us c o n s i d e r t h e l i n e a r PDO o f (20)

L(D) =

a a t iaxl ax2

H. Lewy, h 2 0 1:

a, x =

2i(x t i x ) 1 2 ax3

which f o r c e r t a i n f E Cm(R3) g i v e s l i n e a r PDEs

( x x ,x ) 1' 2 3

E

R3,

CONDITIONS FOR SOLUTIONS (21)

L(D) + ( x ) = f ( x ) , x

E

45

R3

w i t h n o t even l o c a l d i s t r i b u t i o n s o l u t i o n s . We s h a l l show now, t h a t t h e o p e r a t o r L(D) : C 1 ( R 3 )

C "(R3)

-f

corresponding t o (20), i s expansive and t h a t t h e r e f o r e t h e e q u a t i o n ( 2 1 ) has subsequence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n s SE ( cl( R 3 ) )N, f o r any g i v e n f E c"(R3). Indeed, d e f i n e s

E

( C 1 ( R 3 ) ) N by

s V ( x ) = v(x1+x2+x3), V v E N, x = (x1,x2,x3)

E

R3;

t h e n a s i m p l e computation y i e l d s

-

Z(L(D)sv

L(D)s

1-I

1

= {($,

- by

x 3 ) I x3 E R 1 I y V v Y u E

N,

v

#

t h e r e f o r e t h e r e l a t i o n (19) h o l d s . As a second example, l e t us c o n s i d e r t h e n o n l i n e a r c o n s e r v a t i o n l a w (22)

ut(x,t)

+ a(u(x,t)).u,(x,t)

=

0, x E R1, t 2 0

and assume t h a t (22.1)

a

non-constant on any i n t e r v a l i n R1.

C'(R'),

E

We s h a l l show t h a t t h e n o n l i n e a r PDO T ( 0 ) : C1(R)

+

C"(n)

w i t h R = R' x(O,m), d e f i n e d b y t h e l e f t - h a n d t e r m i n (221, i s expansive. Indeed, d e f i n e S E (C'(R))N b y sv where h v y kv

(23)

+ kvt, V

(x,t) = h x V

E

R1\

h .k # hu.kvy v u We s h a l l show t h a t i n t Z(T(D)sv

E

R,

w i t h v E N, s a t i s f y t h e c o n d i t i o n

{O},

V

(23.1)

(24)

v E N, ( x , t )

-

V,

1-1 E N, v f

u.

T(D)sP) = 4 , V v, p

E

N, v

# u.

Indeed , assume t h a t T(D)sv = T ( D ) s

u

on R '

f o r a c e r t a i n R ' c R non-void, open and v, P E N , v f 1-1. computation y i e l d s kv

+

hva(hvx+kvt)

= k

!J

+

h a ( h x+k t ) , V ( x , t ) l

J

u

u

Then a d i r e c t E

R';

p;

46

Rosinger

E.E.

hence, a p p l y i n g t h e p a r t i a l d e r i v a t i v e s a/%, o f t h e above r e l a t i o n , we have = h k a'(h,,xtk

h,k,a'(h,xtk,t)

h:

uu

P

o r e l s e a/ax, t o b o t h terms

t)

v

(x,t)

E Q'

,

a'(h,xtk,t)

= h i a l ( h xtk,,t)

which w i l l o b v i o u s l y c o n t r a d i c t ( 2 3 . 1 ) and ( 2 2 . 1 ) , t h u s c o m p l e t i n g t h e p r o o f o f ( 2 4 ) . Now ( 2 4 ) o b v i o u s l y i m p l i e s t h a t t h e sequence o f f u n c t i o n s i n (23) s a t i s f i e s (19).

A f i n a l example i s t h e second-order n o n l i n e a r wave e q u a t i o n Utt(x,t)

(25)

-

u x X ( x , t ) + f(u(x,t),u,(~,t),u,(x,t))

x

6

R',

{dl

C

R3.

= 0,

t>O

where one assumes t h a t (25.1)

f

C'(R3) non-constant on any subset ( a , b ) x

E

Ccl

x

We s h a l l prove t h a t t h e n o n l i n e a r PDO (26)

T(D) : c 2 ( Q )

+

P(Q)

= R ' X(O,cu), d e f i n e d b y t h e l e f t - h a n d t e r m i n ( 2 5 ) , i s expansive. with Indeed, a d i r e c t computation w i l l show t h a t t h e o p e r a t o r (26) and t h e sequence o f f u n c t i o n s ( 2 3 ) s a t i s f y ( 1 9 ) .

As p a r t i c u l a r cases o f t h e PDE i n ( 2 5 ) , t h e n o n l i n e a r Klein-Gordon equa= tion

-

Utt

w i t h a, m

E

utt

uxx

t

R'\{O),

- uxx

au

m

= 0, x E

R ' , t >O,

as w e l l as t h e sine-Gordon e q u a t i o n t

a s i n u = 0, x

E

R',

t 20,

w i t h a E R ' \ l o ) , o b v i o u s l y s a t i s f y t h e c o n d i t i o n (25.1); hence t h e corresponding n o n l i n e a r PDOs, d e f i n e d b y t h e i r l e f t - h a n d terms, a r e a l s o expansive. 3.

Subsequence I n v a r i a n t Sequential S o l u t i o n s

As can be seen from t h e examples i n S e c t i o n 2, t h e n o t i o n o f subsequence q u a s i - i n v a r i a n t s e q u e n t i a l s o l u t i o n i s r a t h e r t o o general. We s h a l l t h e r e f o r e i n t r o d u c e a more r e s t r i c t e d v e r s i o n o f t h e above n o t i o n b y demanding a c e r t a i n u n i f o r m i t c o n d i t i o n on t h e subsequence i n v a r i a n c e . The r e s u l t i n g n o t i o n o so u t i o n w i l l t u r n o u t t o have a t l e a s t p a r t l y customary p r o p e r t i e s , such as t h a t i t s a t i s f i e s t h e PDE i n ( l ) , Chapter 1, on c e r t a i n subsets i n a. A b a s i c c h a r a c t e r i z a t i o n of these s o l u t i o n s w i l l a l s o be presented.

+

cm(Q))

N A sequence of f u n c t i o n s s E i s c a l l e d a subsequence i n v a r i a n t s e q u e n t i a l s o l u t i o n o f t h e PDE i n ( l ) , Chapter 1, o n l y i f t h e r e e x i s t s a q u o t i e n t a l g e b r a A = A / I E A L c o ( a ) , such t h a t

CONDITIONS FOR SOLUTIONS (27)

wSi

I,

E

47

V s ' a subsequence in s .

A useful, simple characterization o f the above type of sequential solu= tions i s now presented. Given a sequence w E ( c " ( ~ )of) ~continuous functions, define AW = Aw/Iw

where Aw i s the subalgebra i n (cD(n))N generated by U c" a l l the subsequences w' i n w , while 1' i s the ideal in the subsequences w' in w.

(a)together AW

with generated by a l l

ProDosition 3 A sequence of functions s E ( E " ( ~ )i)s ~a subsequence invariant sequential solution of the PDE in ( l ) , Chapter 1, only i f

AWS

E

ALP(,,.

Proof First we notice that for any subsequence w' in ws, there exists a subse= quence s ' in s such t h a t w' = w s l . W

Assume now t h a t (27) holds. Then obviously A ' c Therefore in view of ( 2 3 ) , Chapter 1, wS

I

('

(n) c ~ nc" u(Q)

A, hence

TS

c I.

=a

which means t h a t The converse i s immediate.

0

An a1 ternative, simple characterization can be obtained as follows. N Call a subset H c ( M ( R ) ) subsequence invariant, only i f 11 w E

H , w ' subsequence in w :

(28)

W'E H. subsequence invariant, only i f Call a quotient-algebra A = A / l E A L C" (a) T and A are subsequence invariant, and denote by

the set of a l l such quotient algebras.

w

E(CD(R))N

Obviously, for any given

E.E. Rosinger

48

1' and Aw a r e subsequence i n v a r i a n t .

(29)

Proposition 4

A sequence o f f u n c t i o n s s i s a subsequence i n v a r i a n t s e q u e n t i a l s o l u t i o n o f t h e PDE i n ( l ) , Chapter 1, n l y i f t h e r e e x i s t s a subsequence i n v a r i a n t q u o t i e n t a l g e b r a A = A j l E A L $(il) , such t h a t

ws

E 1.

Proof Assume A = A / I E A L

sB C"

(a)and

YE

W

Then o b v i o u s l y A

1.

S

W

c A, hence 1 c 1.

Therefore i n view o f (23), Chapter 1, we have

u ~ ~ c (I ~n u)c"(n)

7"s n i . e . Al's

E

ALCo(n).

= Q

Now P r o p o s i t i o n 3 i m p l i e s t h a t s i s t h e r e q u i r e d t y p e

o f solution.

The converse f o l l o w s f r o m (29) and P r o p o s i t i o n 3.

0

I n o r d e r t o o b t a i n n e x t i n Theorem 3 t h e b a s i c necessary c o n d i t i o n on sub= sequence i n v a r i a n t s e q u e n t i a l s o l u t i o n s , s e v e r a l d e f i n i t i o n s a r e needed.

A quotient algebra A = A / l EAL

n'c n non-void open (30)

A' = A'/l'

E

C"

(n)

i s c a l l e d h e r e d i t a r y , o n l y i f f o r any

ALCo(Rl)

where 7 ' and A ' a r e o b t a i n e d from 1 , o r e l s e A, b y r e s t r i c t i n g t o f u n c t i o n s i n t h e corresponding sequences o f f u n c t i o n s , i.e. 'I' = { w '

I

=

( w o,. '

. . yw;,.

. .)

1

w = (wo,.

. . ,w " , . . . . ) E

0' t h e

13

where w ' = w I ; s i m i l a r l y f o r A ' . When needed f o r t h e sake o f c l a r i = ty, we ? h a l l " e ! ? p l i c i t e l y s p e c i f y n' , u s i n g t h e n o t a t i o n s :

t h e s e t of a l l t h e h e r e d i t a r y q u o t i e n t algebras A = A / I E A L ~ ~ ( ~ ) . F u r t h e r , we s h a l l say t h a t t h e q u o t i e n t a l g e b r a A = A / l E A L C O ( n ) only i f

is full,

49

CONDITIONS FOR SOLUTIONS

a' c

V z E A,

R non-void, open:

(31)

where l / ( z t h e terms

1 R' l/zv,

) denotes t h e sequence o f continuous f u n c t i o n s on f o r v E N,

Q',

with

We s h a l l denote by

t h e s e t o f a l l t h e f u l l q u o t i e n t algebras A = pJ1 E A L ~ ~ ( ~ ) . Obviously

A

=

A/l EAL

C" ( Q)

(32)

-

A = A/I

n) *

E A C" L (~

A = (C"(Q))N F i n a l l y , we denote b y

-

R

t h e s e t o f a l l t h e sequences o f f u n c t i o n s w E ( C " ( Q ) ) vanishing condition

N

s a t i s f y i n g the

V Rl c R, non-void, open: ~ L J E N :

(33)

V v E

3 x

N,

E

>u:

v

R':

wv(x) = 0. Proposition 5 Indc

2

c R

(see ( 6 5 ) , Chapter 1 )

and a l l t h r e e s e t s of sequences o f f u n c t i o n s a r e subsequence i n v a r i a n t . Proof The i n c l u s i o n 'Indc

2

i s obvious.

Assume now w E R \ R. Then, t h e r e e x i s t S2' c S2 non-void, subsequence i n w and $ ' E c O ( R ' ) , such t h a t

(34.1)

w ' = u ( $ ' ) on

S2'

open, w ' a

E.E. Rosinger

50 (34.2)

+ ' ( x ) # 0, V x E

n'.

But i n view o f (33) i t f o l l o w s t h a t N , v 2 ~ :'3 xu E R ' : W ' ( X ) = 0. v v which c o n t r a d i c t s Now (34.1) w i l l i m p l y t h a t + ' ( x ) = 0, V v E N , v

3

N : V v

PIE

E

(34.2).

V

I t i m n e d i a t e l y f o l l o w s t h a t lnd, 2 and

+

R s a t i s f y (28).

0

We now discuss t h e b a s i c necessar c o n d i t i o n on subsequence i n v a r i a n t s e q u e n t i a l s o l u t i o n s , w h i c is an analog o f t h e corresponding p a r t o f Theorem 1, S e c t i o n 1. Theorem 3 i s a subsequence i n v a r i a n t Suppose t h e sequence o f f u n c t i o n s s E s e q u e n t i a l s o l u t i o n o f t h e PDE i n (l), Chapter 1, such t h a t

(35) f o r a c e r t a i n subsequence i n v a r i a n t , h e r e d i t a r y and f u l l q u o t i e n t a l g e b r a A = A/1 E ALSB H F.

c" I

d

Then ws s a t i s f i e s t h e v a n i s h i n g c o n d i t i o n

(36)

ws

E

2.

Proof Assume t h a t (36) i s f a l s e . Then i n view o f (33) t h e r e e x i s t v o i d , open and a subsequence s ' i n s , such t h a t

(37)

# 0, V v

w;(x)

E

N, x

E

R' c

n

non-

a'

where, f o r t h e sake o f s i m p l i c i t y , we have used t h e n o t a t i o n

w'

wsl.

As w ' i s o b v i o u s l y a subsequence i n ws, t h e c o n d i t i o n (35) w i l l i m p l y ( 38)

W'E

7

s i n c e A=M i s subsequence i n v a r i a n t . (38), (37) and (31) w i l l y i e l d u(1)

I?'

).(1/(w' = (w'iRl

But A = A / 1 i s a l s o f u l l , t h e r e f o r e ,

))

E

1

In. Aln' I;.

which o b v i o u s l y i m p l i e s t h a t

thus c o n t r a d i c t i n g t h e f a c t t h a t A = A/I i s h e r e d i t a r y .

c 7

CONDITIONS FOR SOLUTIONS

51

Next we have a simple sufficient condition on subsequence invariant sequen= t i a l solutions, which i s also an analog of the respective implication in Theorem 1 , Section 1. Theorem 4 Suppose the sequence o f functions s

E

(6"(Q ) ) ~s a t i s f i e s

the condition

Then s i s a subsequence invariant sequential solution of the PDE in ( l ) , Chapter 1. Moreover, there exists u sequence invariant, hereditary and , such t h a t full quotient algebra A = A/l E AL

r(n)

sBy'yp

ws

E

1

Proof

Taking A 4.

=

A n d , t h i s follows from (64), Chapter 1.

0

Resolvent Sets

The results i n the previous section establish an interest in subse uence invariant sequential solutions, and in view of Proposition 4 +e s ow t a t subsequence invariant quotient a1 gebras offer the natural framework for f i n d i n g such solutions. Let us use the notation R~~ = u

r

where the union i s taken over a l l the subsequence invariant quotient a l = SB gebras A = A j l E ALC,(n). Obviously (39)

T(D)-'(u(f)

+

RsB)

c

(C?(n))N

will be the s e t o f all subsequence invariant sequential solutions of the PDE in ( l ) , C h a p t e r T I t follows that the solution in the above sense of the PDE mentioned in= volves two steps. The i r s t , independent of the PDE, consists in suitable c h a r a c t z z a t i o n s of R SB The second, dependent on the PDE considered, consists in suitable characterizations of the inverse image in (39), primarily answering the question as t o whether t h a t inverse image i s nonvoid.

.

I t i s easy to see t h a t Theorem 1 yields the following:

Corollary 1 RsB

C

R.

I n view of the above, we shall next introduce a general definition.

52

E.E. Rosinger

Given a p r o p e r t y P, v a l i d f o r c e r t a i n q u o t i e n t algebras A = A / I E A L C O ( n ) , den0 t e by

t h e s e t o f a l l those q u o t i e n t a l g e b r a s h a v i n g t h e p r o p e r t y P. A sequence o f f u n c t i o n s S E w i l l be c a l l e d a P-sequential s o l u t i o n o f t h e PDE i n ( l ) , Chapter 1, o n l y i f

f o r a c e r t a i n A = A / l EAL

P C o p ) '

The s e t o f sequences o f continuous f u n c t i o n s on R

P

= U

a, given

by

I

where t h e u n i o n i s taken o v e r t h e q u o t i e n t a l g e b r a s A = A / r E A L P

,

is

c a l l e d the P-resolvent set. NOW, t h e necessary, o r e l s e s u f f i c i e n t c o n d i t i o n s on subsequence i n v a r i a n t s e q u e n t i a l s o l u t i o n s o b t a i n e d i n Theorems 3 and 4, w i l l r e s u l t i n t h e f o l 1owing c o r o l 1a r y .

Corol l a r y 2 I t f o l l o w s t h a t a b e t t e r c h a r a c t e r i z a t i o n o f t h e r e s o l v e n t s e t R SB ,H ,F

and R . pre-supposes a n a r r o w i n g o f t h e gap between Ind w i l l be presented i n Chapter 6.

Related r e s u l t s

However, i t should be n o t e d t h a t t h e simultaneous demand f o r t h e t h r e e p r o p e r t i e s 'subsequence i n i a r i a t ' , ' h e r e d i t a r y ' and ' f u l l ' c o n c e E i K j s e q u e n t i a l s o l u t i o n s s E(C ( Q ) ) [ m i g h t l e a d t o r a t h e r p a r t i c u l a r - s o l u = t i o n s . Indeed, i n view o f t h e v a n i s h i n g c o n d i t i o n ( 3 3 ) d e f i n i n g R , t h e inclusion

i n C o r o l l a r y 2 means t h a t t h e e r r o r sequence ws E R S B y H * F corresponding t o s , w i l l vanish r a t h e r o f t e n on R , v i z V fi' c R non-void, open :

3

(40)

P E N :

tt v

E

N, v 2 ~ :

R ' n Z(T(D)sV-f)

# 9.

I n o t h e r words, t h e zero-sets Z(T(D)sv-f) w i t h v

E

N, a r e ' a s y m p t o t i c a l l y

CONDITIONS

FOR SOLUTIONS

53

dense' i n R, a s i t u a t i o n which i n a way i s more p a r t i c u l a r t h a n t h e u n i = form convergence o f T(D)sv t o f on R, when v -+ m, as seen n e x t i n t h e r e l a = t i o n (48). Now among t h e above-mentioned t h r e e p r o p e r t i e s , t h e f i r s t two a r e o f topo= l o g i c a l n a t u r e , w h i l e t h e l a s t i s a l g e b r a i c . The demand f o r t h e f i r s t 3 2 t h e b s e q u e n c e i n v a r i a n t ' p r o p e r t y , seems t o be j u s t i f i e d , n o t l e a s t because t h e n o t i o n o f s o l u t i o n used i n S e c t i o n s 1 and 2 proves t o be r a t h e r general. T h e r e f o r e i f c o n d i t i o n (40) appears t o be t o o s t r o n g , t h e 'here= d i t a r y ' o r ' f u l l ' p r o p e r t i e s c o u l d be r e l i n q u i s h e d . I n t h i s case, i n view o f (31) and (32), t h e q u o t i e n t a l g e b r a s A = A / l i n v o l v e d , m i g h t have A n o t l a r g e enough, a s i t u a t i o n which i n view o f (43.2), Chapter 1, w i l l n o t be most f a v o u r a b l e t o t h e exactness o f t h e corresponding s e q u e n t i a l so= 1u t i o n s . Remark 1 The d i f f i c u l t y o f t h e problem concerning t h e r e l a t i o n between t h e r e s o l = vent s e t s encountered above i s i l l u s t r a t e d i n t h e r e l a t i o n s

F

(41)

RsB

I t A

proved b y t h e f o l l o w i n g examples. I t i s easy t o see t h a t i t i s p o s s i b l e t o con= Assume n = l and R = ( 0 , l ) . s t r u c t a sequence o f continuous f u n c t i o n s w €(C'(n))N, such t h a t

o

(43)

z(wV) = { ( 2 i t 1 ) / 2 ~ l /

(44)

W ~ ~ ( tXW) ~ * ~ ( X=) 1, tl v E N, x

v

< i<2"-1), E

v E N

n.

Then (45)

w

E

R

\ RsB.

f o l l o w s e a s i l y from (43) and ( 3 3 ) , w h i l e t h e Indeed, t h e r e t i o n w E relation w g R can be deduced as f o l l o w s . Assume i t i s n o t t r u e and t h a t w E Z, f o r a c e r t a i n A = A / ~ E R S B . Take w ' , w" subsequences i n w , given by

48

w\], = w ~ W:~ =, wZvtl

,V

v E N.

Then w ' , w" E 7 , s i n c e 7 i s subsequence i n v a r i a n t . w i l l yield

w'

t

w"

= u(1) E 7

NOW, t h e r e l a t i o n (44)

n Up (n),

c o n t r a d i c t i n g (23), Chapter 1, and c o m p l e t i n g t h e p r o o f o f ( 4 5 ) . Define

,A,

where ,A,

= Auc/7uc

N i s t h e a l g e b r a o f a l l t h e sequences z E (c" (n)) o f continuous

54

E.E.

Rosinger

a

f u n c t i o n s on R, u n i f o r m l y bounded on c mpacts i n R, w h i l e iyc i s the ideal i n ,A, o f a l l t h e sequences WE ( c " ( R ) ) o f continuous f u n c t i o n s on R, u n i = f o r m l y convergent t o zero, on compacts i n R. (46)

Auc = Auc/Iu,

Then o b v i o u s l y

SB ,H E ALCo

(n);

however (47)

,A,

D e f i n e now

wEiUC

e

= A,,/Z,~

by

= l/(v+l),

w,(x)

AL:~(~).

V v EN, x

E

R;

then obviously (48)

W

E

RSByH \

t.

The r e l a t i o n s (45) and ( 4 8 ) w i l l o b v i o u s l y y i e l d ( 4 1 ) and (42). C a r e f u l c o n s i d e r a t i o n o f t h e sequence o f continuous f u n c t i o n s g i v e n i n (43-45), leads t o t h e f o l l o w i n g r e s u l t . Denote b y R~~ t h e s e t o f a l l t h e N sequences w E (c0(n)) o f continuous f u n c t i o n s on R, s a t i s f y i n g V

(49)

R'

3x

E

lim v+m

C

R non-void, open :

R' : w,(x)

= 0.

Theorem 5 The f o l l o w i n g r e l a t i o n h o l d s Rdc C RSByH.

Proof Assume w

E Rdc.

We s h a l l show t h a t

I n view o f (23), Chapter 1, i t s u f f i c e s t o prove t h e r e l a t i o n

Now an element o f t h e above i n t e r s e c t i o n o b v i o u s l y has t h e f o r m

CONDITIONS FOR SOLUTIONS where a, ba E N \ l o } , follows that

J I , $a E "(R)

and w , ' ~ a r e subsequences i n w.

55 It

t h e r e f o r e , i n view o f ( 4 9 ) , we have non-void, open : 3 x E R' : $ ( x ) = 0

V 0' c

which r e s u l t s i n

v

$(X) = 0,

x

i s continuous on R.

E

R

T h i s completes t h e p r o o f o f ( 5 1 ) , and hence o f

t i s easy t o see t h a t ( 5 0 ) and ( 4 9 ) w i l l y i e l d

t h e r e f o r e w E RSByH. 5.

0

Domains o f S o l v a b i l i t y

The problem o f t h e r e g u l a r i t y o f s e q u e n t i a l s o l u t i o n s w i l l be approached i n t h i s s e c t i o n . The method i s r a t h e r d i r e c t as i t aims t o e s t a b l i s h p r o = p e r t i e s o f t h e s e t o f p o i n t s x E R which have neighbourhoods on which t h e s e q u e n t i a l s o l u t i o n s a r e c l a s s i c a l s o l u t i o n s . The main t o o l s used i n t h i s c o n n e c t i o n w i l l be Lemma2,Section 7, Chapter 1 and Lemma 2 , S e c t i o n 1. Suppose, t h e sequence o f f u n c t i o n s t E (?(a)) N i s a s e q u e n t i a l s o l u t i o n i n E + A o f t h e m-th o r d e r PDE i n ( l ) , Chapter 1, where m E = S / V E VS:m(n), A = A / 7 E AL e(n)' A Obviously, t i s a classical solution, only i f (52)

T(D)tv(x) = f ( x ) , V x

E

R, v

E

N

The aim o f t h i s s e c t i o n i s t o e s t a b l i s h a ' b e s t a p p r o x i m a t i o n ' o f t h e con= d i t i o n (52) i n t h e case o f s e q u e n t i a l s o l u t i o n s . We s h a l l denote by

n

E + A

the set o f a l l the points x E R s a t i s f y i n g the condition

S

,V

(53)

1 t

E

(53.1)

wt

T(D)t

-

neighbourhood o f x:

u(f) E 2

E.E.

56

Rosinger

(53.2)

VvEN,v>p:

T(D)tV(Y) = T ( W p ( Y ) The s e t RE

~

A w i l l be c a l l e d t h e domain o f l o c a l s o l v a b i l i t y i n E -+ A o f

t h e PDE i n ( l ) , Chapter 1, w h i l e t h e s e t rE

-+

A

=n\

QE+A

w i l l be c a l l e d t h e l o c a l s i n g u l a r i t y i n E

(55)

t e

''+A=

Wt

n

s n(cm(n))N

cl

E I

-+

A o f t h e mentioned PDE.

u u cNve N

A (T(D)tv

-

T(D)tp)

v>u

where we denoted A(g) = R \ Z ( g ) ,

f o r g E C" ( Q )

Proof It s u f f i c e s t o show (54), t h e r e s t o f P r o p o s i t i o n 6 r e s u l t i n g e a s i l y .

Assume t h a t x belongs t o t h e l e f t hand t e r m i n (54). t E S , w i t h wt E 1 , such t h a t x

E

int u p E

Then

n Z(T(D)t" N vEN v> p

-

Then t h e r e e x i s t s

T(D)tp)

v > p

w i l l be a neighbourhood o f x.

Moreover, i f y

3 p E N ; V V E

N ,v>u :

T ( D ) t V ( y ) = T(D)t,,(Y)

E

V then o b v i o u s l y

CONDITIONS FOR SOLUTIONS therefore x

E

RE

-+

57

A

Conversely, assume t h a t x obtain that

E

RE

+

A.

Then, w i t h t h e n o t a t i o n s i n (53), we

v2l-l

therefore

v2l.l The r e l e v a n c e o f t h e domain o f l o c a l s o l v a b i l i t y and o f t h e l o c a l s i n g u l a r < = ty w i l l be p r e s e n t e d i n Theorems 6 and 7.

F i r s t , we denote by

'E

-+

A

the set o f a l l the points x E

V neighbourhood o f x, p

(56)

3 t

E

(56.1)

wt

1

(56.2)

V v E N, v 2 p:

E

S,

T(D)tv = T(D)tp

-+

Qi

N :

E

on V

A w i l l be c a l l e d t h e domain o f s t r o n g l o c a l s o l v a b i l i t y i n A o f t h e PDE i n ( l ) , Chapter 1, w h i l e t h e s e t

The s e t E

satisfying the condition

~

w i l l be c a l l e d t h e s t r o n g l o c a l s i n g u l a r i t y i n

E

+

A o f t h e mentioned PDE.

Proposition 7

Ri

-+

A i s open,

i-;

+

A i s c l o s e d and

Proof Again i t s u f f i c e s t o show t h a t (57) i s v a l i d .

Assume t h a t x belongs t o t h e r i g h t - h a n d t e r m i n (57). Then t h e r e e x i s t s t E S n(Cm(Q))N, w i t h wt E 1 , as w e l l as p E N, such t h a t

58

E.E. x Eint

n

v E N v > p

Rosinger

- T(D)tp)

Z(T(D)t\,

Then

n

V = int

V E

N

- T(D)tp)

Z(T(D)tv

v > p

w i l l be a neighbourhood o f x, w i t h t h e p r o p e r t y t h a t T(D)tv = T ( D ) t u therefore x

S

RE

E

-+

on V, V v

n

N, v > p

A

Conversely, assume t h a t x E RE obtain that V C

E

v E N

Z(T(D)tv

A.

+

Then, w i t h t h e n o t a t i o n s i n (56), we

- T(D)tu)

v>u theref o r e x

int

E

n v E N v

Z(T(D)tv

-

T(D)tu)

>!J

0

Theorem 6

rE+A

$-+AcRE+A’ (59)

E‘

-+

c

r:

+

A and

r E + A i s nowhere dense i n R ,

A “ ~ - + A = ‘ ~ + A ‘

i n o t h e r words

(60)

$i

~

A i s dense i n R E

-+

A

Proof The i n c l u s i o n s as w e l l as t h e e q u a l i t y i n (59) a r e obvious. Therefore, i t o n l y remains t o show t h a t (60) i s v a l i d . B u t (60) f o l l o w s e a s i l y f r o m 0 Lemma 2, S e c t i o n 1. An example sented now.

o f r e g u l a r i t y p r o p e r t y o f s e q u e n t i a l s o l u t i o n s w i l l be p r e =

Call a subset H C (M(n))N c o f i n a l i n v a r i a n t , only i f V w E(M(Q))N :

(61)

3 w ’ E H , p E N (V;r:i~ap:

*

W E

H

CONDITIONS FOR SOLUTIONS

59

Theorem 7 Suppose t h e q u o t i e n t a l g e b r a A = A / 7 has I c o f i n a l i n v a r i a n t . I f x E Q;

A, t

~

E

c o n d i t i o n s (56.1-2)

S, an open neighbourhood

LI E

N s a t i s f y the

, then

T ( D ) t v = f on V, U v

(62)

V o f x and

E

N, v 2~

i n o t h e r words, t, E Cm(Q), w i t h v E N, v 2 p, a r e c l a s s i c a l s o l u t i o n s o f t h e PDE i n ( l ) , Chapter 1. Proof We d e f i n e $

E

C" (Q) b y $ = T(D)t

(63)

LI

Then, i n view of (56.2),

wtv = T(D)tv - f = $ - f on V, V v

(64) Assume now

i t follows t h a t

x

(65 1

E

E

N, v 2 L.

c" (a), such t h a t SUPP

x

v

c

Then (66)

wt.u(x)

E

7 . uco

C I.A C

7

B u t (64) and (65) w i l l i m p l y t h a t

(67)

W ~ . X= ( $ - f ) x

,V v

E

N, v 2

LI

Now, i n view o f t h e f a c t t h a t 7 i s c o f i n a l i n v a r i a n t , (66) and (67) w i l l yield u((dJ-f)x)

E

7

Then, a c c o r d i n g t o (23), Chapter 1, i t f o l l o w s t h a t

(VJ-f)

x

= 0

t h e r e f o r e , i n view o f t h e f a c t t h a t

x i s a r b i t r a r y , we can conclude t h a t

$ = f which t o g e t h e r w i t h (63) w i l l y i e l d ( 6 2 ) .

0

In view o f (60) i n Theorem 6, i t s u f f i c e s t o know t h e s i z e o f t h e domain o f l o c a l s o l v a b i l i t y nE -f A. I t i s obvious t h a t t h e s i z e o f RE

I f we denote

f

A i n c r e a s e s t o g e t h e r w i t h S and I.

E .E. Rosi nger

60

then ( 5 4 ) can o b v i o u s l y be w r i t t e n i n t h e form

therefore

u

n

A (wv

- wu )

i s dense i n R

P E N

vEN v >u

11 w

lTYf, R' c R non-void, open:

or, e q u i v a l e n t l y E

3 X E

R' :

Moreover, i n view o f t h e i n c l u s i o n

U

'T,f

l i m Z(wv) c RE int v -+m

-+

A

Concerning t h e p o s s i b l e n a t u r e o f t h e f a m i l y ( Z ( w ) I v E N ) o f subsets i n , where w E I i s given, t h e f o l l o w i n g two exampyes p r e s e n t i n t e r e s t i n g cases.

Q

(e( Q ) ) Nwhich s a t i s f i e s m Z(WV) = b

Example 1 : w E

(73)

v-+m

the conditions

CONDITIONS FOR SOLUTIONS U

(74)

61

R' c R non-void, open:

3 P E N :

UvGN,v>u: Z(WV) n R' # 0 We s h a l l c o n s i d e r t h e c a w R = R', s i n c e t h e c o n s t r u c t i o n can e a s i l y be ex= tended t o a r b i t r a r y R C Rn n o n - v o i d and open. Suppose ( x Iv E N) i s dense i n R and c r e a s i n g t8 zero, so t h a t

(75)

{xV +

Nln{xv V +

~ E~

E

E

E~

u IV E

> 0, w i t h v E N, a r e s t r i c t l y de=

N} = flyV A,p

f o r i n s t a n c e , ( x v l v E N) a r e t h e r a t i o n a l numbers and v E N. We d e f i n e w

= (x-x

w,(x)

o

-E

v

)...(X-X~-E~),

U x E R

,v

E

Then o b v i o u s l y

..

{ X ~ + E ~ , . , x ~ + E ~V ~v , E

Z(wW) =

N,

t h e r e f o r e , ( 7 3 ) r e s u l t s e a s i l y from ( 7 5 ) . Suppose now g i v e n R'

x

u'

f o r a certain X

u'

f o r a suitable

u' E +

C

R non-void and open.

Then

R'

E

N.

Ev

u"

~.r = max

E

E

N.

Therefore

R', U v

E N,

w >u''

Taking now

{u', ~ " 1

i t obviously follows t h a t X

1J-I

=

E~

(c" (R))N by

E

+

E Z(wv)

n a', Y

v E

N,

v 2

u

and t h e p r o o f o f (74) i s completed. Example 2 : w €(C?

(n))N which s a t i s f i e s t h e c o n d i t i o n s

l i m mes A (w,) = 0 v-+int l i m Z(wv) = D (78) v +m where ( x v l v E N) i s dense i n n.

N, X # 1-1

E

N

J2/(v+l), with

62

Rosinger

E.E.

We s h a l l c o n s i d e r t h e case R = ( 0 , l ) c R', C Rn non-void and open b e i n g obvious.

the extension t o a r b i t r a r y

R

Denote f o r v

E

N

t (XI, - xol

6\,= min and t a k e w

E

0

G v } /(v+l)

( C ' ( S ~ ) )such ~ that

u

(O,l)\

Z(wV)

(79)

0 Gp <

OQ,,,

Then, o b v i o u s l y mes Z(wv)

1

-


(x,,

-

6 v , xx

+

6 v ) y tl v E N

2(v+1)6,

hence

v

l i m mes Z(wv) = 1 + m

and t h e p r o o f o f (77) i s completed. Now, we s h a l l e s t a b l i s h t h e p r o p e r t y i n ( 7 6 ) . (79) w i l l y i e l d

If p

E

N i s given

, then

(xx - G v J x

+6J

therefore

v

l i m Z(wv) + m

= (O,l)\

u

0

E N

U v E N

v > p

"

OGXGv

which w i l l o b v i o u s l y imply (76), s i n c e

v

lim

6,,

= 0

+ m

F i n a l l y , (78) f o l l o w s f r o m (76), i n view o f t h e f a c t t h a t dense i n a .

{xVlv E N} i s

Connected w i t h Example 1 above, an i n t e r e s t i n g problem i s whether t h e r e e x i s t sequences o f c o n t i n u o u s f u n c t i o n s w E (Co ( R ) ) N which s a t i s f y (73) and (74), as w e l l as (see ( 2 3 ) , Chapter 1)

(80)

I(w) n

where

uco

(a)

=

!!

7 ( w ) i s t h e subsequence i n v a r i a n t i d e a l i n (C'

N (a)) generated

by

W.

6.

Remarks on Lemma 2

I t i s easy t o see t h a t Lemna 2, S e c t i o n 1, i s a c t u a l l y v a l i d f o r sequences o f continuous f u n c t i o n s d e f i n e d on l o c a l l y connected t o p o l o g i c a l spaces o f

CONDITIONS FOR SOLUTIONS

63

second B a i r e category and t a k i n g values i n m e t r i c spaces. W i t h i n the men= t i o n e d framework, Lemma 2, Section 1, i s an extension o f Lemma 1, Section 7, Chapter 1, which can be formulated as f o l l o w s :

I f E i s a 1ocall.y connected t o p o l o g i c a l space, o f second B a i r e category, E ' i s a m e t r i c space and f : E -+ E ' , fw: E + E l , w i t h v E N, are continuous functions w i t h t h e Pro0ert.v V

X E

E :3pE

then, there e x i s t s

Y x f

E

E

N : Y v E N, v > p

rc E \ r: 3

: fV(x) = f ( x )

closed and nowhere dense, such t h a t p E N, V neighbourhood o f x:

=fonV,VvEN,v>p

V

The n o n - t r i v i a l i t y o f the r e s u l t i n Lemma 2 w i l l be i l l u s t r a t e d i n two examples. Example 3 : w E (C" ( ~ 2 ) which )~ s a t i s f i e s the c o n d i t i o n s

NI

< 2, U

(81)

car{wv(x)lv

(821

U R' c $2, R' non-void, open,

E

lQ1

c a r twv

=

r = 0

(85)

v E > o :

carEwv

R'

3

r

:

C" (R) such t h a t supp w

=

I€ u

V E

and d e f i n e w E (C"

E

lw

NI

E

< 2,

NI

N

U x

E

R

= car N

(1/(2w+2),1/ 2vtl) ) by

1if x wv(x) =

,

Define

R1, which s a t i s f i e s the c o n d i t i o n s

Indeed, take

R

[O,ll

E N

R n (0,~).

=

=

{ O l and (81) as w e l l as (82) are v a l i d .

car{wv(x) Iw

(84)

where RE

E

w E (C' (n))N, w i t h R C

Example 4:

(83)

r

R

w((~tl)((~+2)~-l)),V x E R, w

=

Then obviously

E

I v E N 1 = car N

Indeed, take R = R ' and w w E (C' (Q))N by w,(x)

x

E

(1/ 2vt2),1/ (2w+l))

0 if x E n \ then i t i s easy t o see t h a t (83-85