365
Chapter 2 1 PEPTIDES AND PROTEINS P r o t e i n s , t h e e s s e n t i a l components o f l i v i n g m a t t e r , a r e composed o f p o l y p e p t i d e c h a i n s . Enzymes and a number o f hormones a r e s t r u c t u r a l l y based on p r o t e i n s . A knowledge o f t h e amino a c i d sequence i n p e p t i d e s and i n p r o t e i n s i s v e r y i m p o r t a n t i n b i o c h e m i c a l r e s e a r c h . The number o f p u b l i s h e d a p p l i c a t i o n s o f l i q u i d chromatography t o t h e s e p a r a t i o n o f p e p t i d e s and p r o t e i n s i s enormous and perhaps outnumbers t h e sum o f l i q u i d chromatography a p p l i c a t i o n s t o t h e s e p a r a t i o n o f a l l t h e o t h e r compounds. I t would be i m p o s s i b l e h e r e t o g i v e a r e v i e w o f a l l s e p a r a t i o n methods i n which g r a d i e n t e l u t i o n has been a p p l i e d t o t h e chromatography o f p e p t i d e s and p r o t e i n s . T h e r e f o r e , a b r i e f survey o f some g e n e r a l l y a p p l i c a b l e methods employing t h e g r a d i e n t e l u t i o n t e c h n i q u e i s g i v e n and i l l u s t r a t e d , b y o n l y a few examples, t o g i v e a p i c t u r e o f what g r a d i e n t e l u t i o n l i q u i d column chromatography means i n s t u d i e s o f t h e s e compounds. A s y s t e m a t i c , comprehensive survey o f l i q u i d chromatography a p p l i c a t i o n s i n t h i s f i e l d may be f o u n d elsewhere (see, f o r example, r e f s . 1 - 3 ) . A p p l i c a t i o n s o f l i q u i d chromatography t o t h e p r e p a r a t i v e p u r i f i c a t i o n and f r a c t i o n a t i o n o f p r o t e i n s a r e i m p o r t a n t . High-performance l i q u i d chromatography (HPLC) has b r o u g h t new dimensions t o t h e a n a l y s i s o f p r o t e i n s , p e p t i d e s and amino a c i d s w i t h r e s p e c t t o speed o f a n a l y s i s , s e p a r a t i o n e f f i c i e n c y and s e n s i t i v i t y , which makes i t p o s s i b l e t o a c h i e v e m i c r o - s c a l e s e p a r a t i o n s o f complex m i x t u r e s of p e p t i d e s i n s m a l l amounts o f samples i n l e s s t h a n 1 h, i n c o n t r a s t 133 t o e a r l i e r e l a b o r a t e and time-consuming methods g i v i n g l o w y i e l d s o f m a t e r i a l
.
To d e t e r m i n e t h e amino a c i d c o m p o s i t i o n o f p r o t e i n s and p e p t i d e s , i t i s necessary f i r s t t o s u b j e c t t h e s e compounds t o t o t a l o r s e q u e n t i a l h y d r o l y s i s . I n t o t a l h y d r o l y s a t e s t h e r a t i o o f t h e i n d i v i d u a l amino a c i d s can be determined, b u t s e q u e n t i a l h y d r o l y s i s a l l o w s t h e d e t e r m i n a t i o n o f t h e sequence o f amino a c i d s i n p e p t i d e c h a i n s . Edman d e g r a d a t i o n i s a n o n - d e s t r u c t i v e ,
subtractive
method o f p r o t e i n a n a l y s i s u s i n g r e p e a t e d d e g r a d a t i o n o f p e p t i d e s o r p r o t e i n s i n three-step cycles. I n the f i r s t step, t h e peptide o r p r o t e i n reacts w i t h phenyl i s o t h i o c y a n a t e t o g i v e t h e phenyl t h i o c a r b a m y l (PTC) d e r i v a t i v e . I n t h e second step, t h e d e r i v a t i z e d N - t e r m i n a l amino ac d i s h y d r o l y s e d f r o m t h e remainder o f t h e p r o t e i n o r p e p t i d e and i t s 2-an l i n o - 5 - t h i a z o l i n e d e r i v a t i v e i s formed and c o n v e r t e d i n t o t h e s t a b l e 3-phenyl 2 - t h i o h y d a n t o i n (PTH) d e r i v a t i v e References on p . 376.
366 i n t h e t h i r d step. Because o n l y t h e N-terminal amino a c i d i s cleaved i n t h i s procedure and t h e remainder o f t h e p e p t i d e o r p r o t e i n remains i n t a c t , t h e whole procedure can be repeated as many times as necessary t o f i n d t h e amino a c i d sequence. L i q u i d chromatography i s v e r y s u i t a b l e f o r combination w i t h Edman degradation as a r a p i d and r e l i a b l e a n a l y t i c a l technique t h a t makes i t p o s s i b l e t o p u r i f y and t o check t h e p u r i t y of o r i g i n a l p r o t e i n s o r p e p t i d e s and o f PTC d e r i v a t i v e s formed i n t h e f i r s t s t e p of Edman degradation, t o separate, i d e n t i f y and quant i t a t e PTH-amino a c i d d e r i v a t i v e s formed i n each t h r e e - s t e p Edman degradation cycle. I n a l l o f these l i q u i d chromatography a p p l i c a t i o n s g r a d i e n t e l u t i o n , e i t h e r continuous o r stepwise, may be used. I n t h e subsequent d e t e r m i n a t i o n o f t h e amino a c i d sequence i n p r o t e i n and p e p t i d e hydrolysates, t h e methods f o r amino a c i d a n a l y s i s a r e a p p l i e d ; t h e a p p l i c a t i o n s o f t h e g r a d i e n t e l u t i o n technique f o r t h i s purpose were t r e a t e d i n Chapter 20. P r i o r t o t h e d e t e r m i n a t i o n o f t h e amino a c i d r a t i o and/or sequence o r f o r o t h e r biochemical research, i t i s necessary t o p u r i f y and separate p r o t e i n s and peptides i n mixtures, and l i q u i d column chromatography i s u n i q u e l y s u i t e d f o r t h i s purpose. However, t h e s p e c i f i c f r a g i l e c h a r a c t e r o f t h e biopolymers should be borne i n mind when s e l e c t i n g t h e chromatographic c o n d i t i o n s , i n o r d e r t o avoid the r i s k o f possible denaturation o f proteins. This r i s k i s p a r t i c u l a r l y important w i t h enzymes, where t h e i r s p e c i f i c topography, which g i v e s r i s e t o t h e i r p a r t i c u l a r a c t i v i t i e s , may become l o s t by s t r u c t u r a l changes when t h e
.
enzyme i s brought i n t o c o n t a c t w i t h an u n s u i t a b l e column packing m a t e r i a l 3 I n numerous e a r l i e r a p p l i c a t i o n s o f l i q u i d chromatography t o t h e p u r i f i c a t i o n and f r a c t i o n a t i o n o f peptides and p r o t e i n s , f r a c t i o n s o f t h e e l u a t e were c o l l e c t e d and t h e amount o f compounds e l u t e d was determined u s i n g spectrophotom e t r i c methods, measurement o f t h e r a d i o a c t i v i t y o f l a b e l l e d compounds, measurement o f enzymatic a c t i v i t y , e t c . I n more r e c e n t a p p l i c a t i o n s , m a i n l y those u s i n g e f f i c i e n t columns, t h e e l u a t e s a r e monitored c o n t i n u o u s l y . The d e t e c t i o n o f aromatic peptides employs U V a b s o r p t i o n a t 280 nm. U V detect i o n a t 254 nm has o f t e n been u t i l i z e d i n t h e chromatography o f p r o t e i n s , hormones and enzymes based on p r o t e i n s . Non-aromatic peptides were detected i n t h e U V r e g i o n between 200 and 210 nm. Enzymes i n t h e e l u a t e can be detected by continuous measurement o f t h e i r enzymatic a c t i v i t y and l a b e l l e d compounds by continuous m o n i t o r i n g o f r a d i o a c t i v i t y , Post-column d e r i v a t i z a t i o n i s o f t e n used f o r t h e d e t e c t i o n o f p r o t e i n s and peptides. D e r i v a t i v e s w i t h o-phthalaldehyde o r o t h e r reagents a r e d e t e c t e d i n t h e column e f f l u e n t s employing flow-through r e a c t o r s connected w i t h f l u o r i m e t r i c d e t e c t o r s o r w i t h photometric d e t e c t o r s o p e r a t i n g i n t h e U V o r v i s i b l e region.
36 7 21.1.
ION-EXCHANGE CHROMATOGRAPHY
Ion-exchange chromatography has been most f r e q u e n t l y used i n t h e chromatography o f p e p t i d e s and p r o t e i n s . The s e p a r a t i o n o f p e p t i d e s and p r o t e i n s by ion-exchange chromatography i s based on e l e c t r o s t a t i c i n t e r a c t i o n s between t h e charged exchange groups o f t h e exchanger and t h e o p p o s i t e charge s i t e s o f t h e p e p t i d e o r p r o t e i n . The amphoteric c h a r a c t e r o f t h e s e compounds a l l o w s b o t h c a t i o n and a n i o n exchangers t o be used. A t t h e i s o e l e c t r i c p o i n t , t h e p o s i t i v e and n e g a t i v e charges o f t h e s o l u t e a r e i n e q u i l i b r i u m . A t a pH l o w e r t h a n t h a t c o r r e s p o n d i n g t o t h e i s o e l e c t r i c p o i n t , t h e p r o t e i n o r p e p t i d e i s r e t a i n e d on a c a t i o n exchanger owing t o t h e e l e c t r o s t a t i c f o r c e s , whereas i t i s u n r e t a i n e d on an a n i o n exchanger. The o p p o s i t e h o l d s t r u e a t a pH above t h a t c o r r e s p o n d i n g t o t h e i s o e l e c t r i c p o i n t . However, t h e use o f a n i o n exchangers i s o f t e n p r e f e r r e d owing t o t h e b e t t e r s t a b i l i t y o f p r o t e i n s i n t h e i r a n i o n i c forms. To improve t h e p o s s i b i l i t i e s o f p e n e t r a t i o n o f l a r g e p r o t e i n m o l e c u l e s i n t o t h e i n t e r i o r o f t h e p a r t i c l e s , exchangers w i t h wide pores a r e s e l e c t e d . Because t h e r i g i d i t y o f exchangers w i t h an o r g a n i c m a t r i x decreases and t h e i r s w e l l i n g i n c r e a s e s w i t h i n c r e a s i n g p o r e s i z e s , which i s o b v i o u s l y disadvantageous f r o m t h e p o i n t o f view o f column bed s t a b i l i t y and maximum t o l e r a b l e f l o w - r a t e s , narrow-pore i o n exchangers a r e sometimes p r e f e r r e d f o r t h e chromatography o f very l a r g e proteins. P o l y i o n s such as p e p t i d e s and p r o t e i n s a r e n o r m a l l y v e r y f i r m l y a t t a c h e d t o i o n exchangers by many i o n i c groups i n t h e i r molecules. To a c h i e v e t h e i r e l u t i o n , i t i s necessary t o employ a b u f f e r w i t h pH a b o u t 1 u n i t above ( i n c o n n e c t i o n
w i t h c a t i o n exchangers) o r below ( w i t h a n i o n exchangers) t h e i s o e l e c t r i c p o i n t o f t h e p r o t e i n o r p e p t i d e . T h e r e f o r e , optimum c o n d i t i o n s o f e l u t i o n s h o u l d be e s t a b l i s h e d f o r each compound and i t i s g e n e r a l l y necessary t o change t h e c o m p o s i t i o n o f t h e m o b i l e phase i n t h e c o u r s e o f e l u t i o n . Stepwise e l u t i o n can be used f o r t h i s purpose; however, a l l substances r e l e a s e d by a change o f b u f f e r c o m p o s i t i o n a r e e l u t e d t o g e t h e r , u n f r a c t i o n a t e d , u s u a l l y as peaks w i t h s h a r p f r o n t s and pronounced t a i l i n g . F a l s e peaks may o c c u r i f t h e b u f f e r c o m p o s i t i o n i s changed b e f o r e t h e complete e l u t i o n o f t h e t a i l i n g peak has been achieved. T h i s drawback i s a v o i d e d when u s i n g c o n t i n u o u s g r a d i e n t s f o r e l u t i o n , w h i c h y i e l d s symmetrical peaks, b e t t e r r e s o l v e d f r o m each o t h e r t h a n i n s t e p w i s e elution. During gradient e l u t i o n , t h e solutes a r e e l u t e d i n order o f t h e i r i s o e l e c t r i c p o i n t s . I n a g r a d i e n t o f i n c r e a s i n g i o n i c s t r e n g t h a t a pH c l o s e t o t h e i s o e l e c t r i c p o i n t s o f s o l u t e s , t h e s a l t i n t h e e l u e n t competes w i t h t h e s o l u t e s f o r t h e exchange groups o f t h e exchanger and t h i s competing e f f e c t i n c r e a s e s w i t h i n c r e a s i n g i o n i c s t r e n g t h o f t h e m o b i l e phase. References on p . 376.
368 The i o n i c s t r e n g t h can be changed b y changing t h e c o n c e n t r a t i o n o f t h e b u f f e r o r , more f r e q u e n t l y , by i n c r e a s i n g t h e c o n c e n t r a t i o n o f a n e u t r a l s a l t . I d e a l l y , t h e i o n i c s t r e n g t h o f t h e s t a r t i n g b u f f e r s h o u l d be low. However, b u f f e r s w i t h v e r y l o w i o n i c s t r e n g t h s have low b u f f e r i n g c a p a c i t i e s and l a r g e changes i n i o n i c s t r e n g t h may cause l a r g e changes i n t h e volumes o f s w o l l e n exchangers o f c e r t a i n t y p e s and, t h e r e f o r e , b u f f e r s w i t h v e r y l o w i o n i c s t r e n g t h s s h o u l d b e avoided. I f a pH g r a d i e n t i s a p p l i e d f o r chromatography o f p r o t e i n s o r p e p t i d e s on a cation-exchange column, t h e o r i g i n a l pH i s s e l e c t e d below t h a t c o r r e s p o n d i n g t o t h e l o w e s t i s o e l e c t r i c p o i n t o f t h e compound i n t h e sample m i x t u r e and t h e n i t i s i n c r e a s e d w i t h t i m e t o a c h i e v e t h e e l u t i o n and s e p a r a t i o n . I n c o n t r a s t ,
t h e o r i g i n a l pH above t h e i s o e l e c t r i c p o i n t s o f s o l u t e s i s s e l e c t e d i n a n i o n exchange chromatography and i t i s decreased d u r i n g t h e e l u t i o n .
resin^^-^"'
C a t i o n - o r an on-exchange polystyrene-divinylbenzene , ion exchangers based on m o d i f i e d c e l l u l ~ s e ~ -d ~e x~t r,a n (Sephadex) 24-32,130, agarose 32,33 o r g l y c o l m e t h a c r y l a t e (Spheron) g e l s 34-39 and i n o r g a n i c i o n (Sepharose) exchangers, such as h y d r o x y a p a t i t e w i t h anion-exchange
proper tie^^'-^*,
have
been w i d e l y appl ed f o r t h e p u r i f i c a t i o n and f r a c t i o n a t i o n o f p e p t i d e s and p r o t e i n s b y 1 i q u d chromatography. Most c l a s s i c a l i o n exchangers do n o t w i t h s t a n d e l e v a t e d p r e s s u r e s and t h e r e f o r e r a p i d analyses a t e l e v a t e d f l o w - r a t e s o f t h e m o b i l e phase a r e n o t p o s s i b l e . Spheron exchangers and some exchangers based on s t y r e n e - d i v i n y l b e n z e n e copolymers a r e e x c e p t i o n s f r o m t h i s r u l e . However, p r o t e i n s may become denatured by v i r t u e o f hydrophobic i n t e r a c t i o n s w i t h t h e p o l y s t y r e n e m a t r i x . R e a l l y r a p i d analyses o f p r o t e i n s and p e p t i d e s have become p o s s i b l e o n l y w i t h i o n exchangers based on m i c r o p a r t i c u l a t e i n o r g a n i c s u p p o r t s w i t h c h e m i c a l l y bonded ion-exchange f u n c t i o n a l groups, which a r e s u f f i c i e n t l y r i g i d and f o r m s t a b l e column beds a t h i g h p r e s s u r e s . An o r g a n i c s u r f a c e l a y e r bonded on t h e i n o r g a n i c s u p p o r t i s u s e f u l f o r p r o t e c t i n g p r o t e i n s f r o m d i r e c t c o n t a c t w i t h t h e i n o r g a n i c surface and c o n t r i b u t e s t o t h e chromatographic p a r t i t i o n i n g process i n a s i m i l a r manner t o ion-exchange r e s i n s o r m o d i f i e d g e l s . An i m p o r t a n t advance was t h e i n t r o d u c t i o n o f column p a c k i n g m a t e r i a l s p r e p a r e d by chemical bonding o f g l y c e r y l p r o p y l s i l a n e on t h e s u r f a c e o f c o n t r o l l e d p o r o s i t y glass. The p r o d u c t r e t a i n s i t s t e r m i n a l epoxy group, which can be s u b j e c t e d t o r e a c t i o n w i t h a n u c l e o p h i l i c reagent t o g i v e t h e required chemically modified m a t e r i a l . These m a t e r i a l s have been marketed under t h e name Glycophase/CPG. I o n exchangers o f t h i s t y p e (DEAE-, QAE-, SP- o r SM-Glycophase/CPG) 43-51 o r i o n exchangers c h e m i c a l l y bonded on a s i l i c a g e l s u p p o r t 52-55 made p o s s i b l e h i g h speed s e p a r a t i o n s o f p r o t e i n s and p e p t i d e s . Because ion-exchange chromatography can r e s o l v e p r o t e i n s w i t h s m a l l charge d i f f e r e n c e s , i t i s p o s s i b l e t o s e p a r a t e
369 isoenzymes t h a t have n e a r l y i d e n t i c a l amino a c i d sequences i n t h e s e h i g h l y s e l e c t i v e and e f f i c i e n t chromatographic systems. C o n c e n t r a t i o n ( i o n i c s t r e n g t h ) o r pH g r a d i e n t s i n m o b i l e phases a r e u s u a l l y formed f r o m s o l v e n t s c o n t a i n i n g d i f f e r e n t c o n c e n t r a t i o n s o f phosphate, a c e t a t e o r p y r i d i n e - a c e t a t e b u f f e r s i n water. J u s t t o o b t a i n an i n s i g h t i n t o t h e v a r i e t y o f a p p l i c a t i o n s p o s s i b l e , we can mention a few examples, such as chromatography o f serum p r o t e i n s on an a n i o n exchange r e s i n u s i n g a c o n c e n t r a t i o n g r a d i e n t o f a c e t a t e b u f f e r 8 ; t h e d e t e r m i n a t i o n o f reduced and o x i d i z e d g l u t a t h i o n e i n wheat f l o u r s and doughs on a c a t i o n exchange r e s i n w i t h a g r a d i e n t o f h y d r o c h l o r i c a c i d c o n c e n t r a t i o n 7 ; t h e s e p a r a t i o n o f p r o t e i n s i n human and animal s e r a by chromatography on DEAE-cellulose a n i o n exchanger u s i n g c ~ n c e n t r a t i o n lo~r pH12 g r a d i e n t s i n phosphate b u f f e r s , c o n c e n t r a t i o n gradients i n T r i s buffers16y22y23y131
o r gradients o f increasing concentration
o f sodium c h l o r i d e i n water2' ; t h e f r a c t i o n a t i o n o f t y r o s i n e - r i c h p r o t e i n s f r o m wool on a Q A E - c e l l u l o s e a n i o n exchanger u s i n g a g r a d i e n t o f i o n i c s t r e n g t h i n a l k a l i n e B-alanine buffer";
and t h e s e p a r a t i o n and p u r i f i c a t i o n o f t h e enzymes
8-glucan h y d r o l a s e 1 5 and B-N-acetyl -D-hexosaminidase19 on DEAE-cell u l o s e u s i n g an i o n i c s t r e n g t h ( c o n c e n t r a t i o n o f a l k a l i m e t a l c h l o r i d e ) g r a d i e n t i n a phosphate b u f f e r . We can f u r t h e r m e n t i o n t h e chromatography o f i n s u l i n and i t s d e r i v a t i v e s on a DEAE-Sephadex a n i o n exchanger u s i n g a c o n c e n t r a t i o n g r a d i e n t o f sodium c h l o r i d e i n a Tris-HC1 b u f f e r c o n t a i n i n g 7 m o l / l urea26; t h e chromatography o f t h y m o p o i e t i n s on QAE-Sephadex u s i n g a c o n c e n t r a t i o n g r a d i e n t of potassium c h l o r i d e 1 3 2 ; t h e f r a c t i o n a t i o n o f whey p r o t e i n s and c a s e i n i n cows' m i l k on t h e same m a t e r i a l u s i n g a c o n c e n t r a t i o n g r a d i e n t o f sodium c h l o r i d e i n a phosphate b u f f e r 2 4 ; t h e chromatography o f enzymes r i b o n u c l e a s e s on a CM-Sephadex c a t i o n exchanger u s i n g combined pH and i o n i c s t r e n g t h g r a d i e n t s i n a phosphate b u f f e r 3 1 ; t h e chromatography o f a - b u n g a r o t o x i n and o t h e r components o f snake venom on t h e same column p a c k i n g w i t h a l i n e a r c o n c e n t r a t i o n g r a d i e n t o f ammonium a c e t a t e i n w a t e r
(0.05-1 m ~ l / l ) ' ~and ~ ; t h e f r a c t i o n a t i o n o f human serum p r o t e i n s by a n i o n exchange chromatography on DEAE-Sepharose C1-6B u s i n g a l i n e a r g r a d i e n t o f i n c r e a s i n g sodium c h l o r i d e c o n c e n t r a t i o n i n 0.05 m o l / l Tris-HC1 b u f f e r a t pH 8.6
33
On Spheron i o n exchangers, s i m i l a r t y p e s o f compounds can be chromatographed as on c e l l u l o s e o r p o l y d e x t r a n exchangers, b u t Spheron m a t e r i a l s have t h e advantages o f b e t t e r mechanical r i g i d i t y and s t a b i l i t y a t h i g h e r p r e s s u r e s , which a l l o w s more r a p i d s e p a r a t i o n s t o be a c h i e v e d a t h i g h e r f l o w - r a t e s o f t h e m o b i l e phase. An example o f g r a d i e n t e l u t i o n chromatography o f human plasma on DEAE-Spheron column i s shown i n F i g . 21.1.
The e l u t i o n p r o f i l e h e r e i s s i m i l a r t o t h a t o b t a i n e d
on D E A E - c e l l ~ l o s e ~ O ~n. h y d r o x y a p a t i t e columns, f o r example, f r a c t i o n a t i o n o f myos in40y41 and
his tone^^^ was
achieved u s i n g i o n i c s t r e n g t h g r a d i e n t s i n phos-
p h a t e b u f f e r s . By chromatography on DEAE-Glycophase/CPG u s i n g 1 i n e a r c o n c e n t r a t i o n
References on p . 3 7 6 .
.
370
30
1.0
60
90
t(min) 120
[roo
70C
A,,,
100
0.6
0.2 10
40
70
F.N.
t
Y o0
%A
loo
F i g . 21.1. P r o t e i n mapping o f human plasma by ion-exchange l i q u i d chromatography on a m o d i f i e d diethylaminoethyl-Spheron anion exchanger. Column: DEAE-Spheron, 25-32 pm, 190 x 8 mm I.D. Gradient: m u l t i - l i n e a r , as i n d i c a t e d by t h e t h i n f u l l l i n e , from 0 t o 100% B i n A and then from 0 t o 100% C i n B. B u f f e r s : S o l v e n t A, 0.025 m o l / l phosphoric a c i d - T r i s (pH 8 . 5 ) ; s o l v e n t B, 0.5 m o l / l phosphoric a c i d T r i s (pH 3.5); s o l v e n t C, s o l v e n t B w i t h 1.0 m o l / l KC1. Flow-rate: 3.75 ml/min. F r a c t i o n s c o l l e c t e d a t 1.5-min i n t e r v a l s . F.N. = f r a c t i o n number; 4254 = absorbance a t 254 nm. Sample: 2 m l o f human plasma, c e n t r i f u g e d b e f o r e a p p l i c a t i o n . (Reproduced from r e f . 34 w i t h permission.) g r a d i e n t s o f sodium c h l o r i d e i n a c e t a t e o r Tris-HC1 b u f f e r s (pH 8 ) , i t was p o s s i b l e t o separate isoenzymes o f l a c t a t e dehydrogenase, hexokinase, etc.,
in
25-40 min45-50. Human serum p r o t e i n s and r a t kidney and r a t l i v e r isoenzymes c o u l d be r a p i d l y separated by anion-exchange chromatography on a P E I 6-LiChrospher S i 500-column ( a p e l l i c u l a r anion exchanger on a s i l i c a gel support) u s i n g l i n e a r
g r a d i e n t s o f sodium a c e t a t e c o n c e n t r a t i o n i n 0.02 m o l / l T r i s - a c e t a t e b u f f e r
21.2.
CHROMATOFOCUSING
pH Gradients may be generated i n an ion-exchange column i t s e l f , when i t i s o r i g i n a l l y e q u i l i b r a t e d w i t h a b u f f e r w i t h a pH d i f f e r e n t t o t h a t o f t h e b u f f e r used f o r e l u t i o n . Using a s p e c i a l b l e n d o f b u f f e r s w i t h even b u f f e r i n g c a p a c i t i e s over a wide pH range and s p e c i a l i o n exchangers, a smooth continuous pH g r a d i e n t ,,56-59
may be generated on t h e column. T h i s technique, s o - c a l l e d "chromatofocusing
i s t r e a t e d i n more d e t a i l i n P a r t 111. Very s i m i l a r i n p r i n c i p l e i s s o - c a l l e d "ampholyte-displacement
chromatography"60. An example o f t h e s e p a r a t i o n o f
s o l u b l e p r o t e i n s e x t r a c t e d from e l k muscle u s i n g t h e chromatofocusing technique on agarose-derived i o n exchangers ( P o l y b u f f e r exchangers) i s shown i n F i g . 21.2
59
.
371
0.5 A280
0.4
9 PH
0.3
8
0.2
7
0.1
0
50
100
150
200
. 6250
V(ml)
F i g . 21.2. F r a c t i o n a t i o n o f s o l u b l e p r o t e i n s e x t r a c t e d f r o m e l k muscle by c h r o matofocusing. Column: Pharmacia C 10/40; packed w i t h p o l y b u f f e r exchanger, PBE 94, bed h e i g h t = 45 mm. Column e q u i l i b r a t i o n b u f f e r , 0.025 m o l / l ethanol-amineaHC1 (pH 9.4); e l u t i o n b u f f e r , 0.0075 mmol/pH u n i t / m l P o l y b u f f e r 96 (pH 6 ) . Column s e l f - g e n e r a t e d pH g r a d i e n t i s i n d i c a t e d by t h e f u l l l i n e . F l o w - r a t e : 20 cm/h. D e t e c t i o n : UV a t 280 nm. A 0 absorbance a t 280 nm; V = e l u t i o n volume. Sample: 5 m l o f s u p e r n a t a n t f r o m ef! m i a t homogenate. (Reproduced f r o m r e f . 59 w i t h permi s s i o n . ) 21.3.
CHROMATOGRAPHY ON PDLYAMIDE GELS
Polyamide g e l s w i t h amide groups can behave as weak a n i o n exchangers and bond p e p t i d e s and p r o t e i n s by e l e c t r o s t a t i c f o r c e s . T h e r e f o r e , t h e s e compounds can be chromatographed on polyamide g e l s , such as Bio-Gel P, u s i n g e l u t i o n w i t h pH o r i o n i c s t r e n g t h g r a d i e n t s i n a c e t a t e , phosphate, Tris-HC1 o r o t h e r b u f f e r s . T h i s t e c h n i q u e was a p p l i e d , f o r example, t o s e p a r a t i o n s o f m e t h i o n y l p e p t i d e s
61
,
t h e chromatography o f i o d i n a t e d L - t y r o s y l - L - t y r o s i n e peptides6’ and t h e r e s o l u t i o n 63 o f venom p r o t e i n s
.
21.4.
CHROMATOGRAPHY ON POLAR ADSORBENTS AND ON POLAR BONDED PHASES
Chromatography on p o l a r adsorbents i s r e l a t i v e l y r a r e l y used f o r s e p a r a t i o n s o f p r o t e i n s and p e p t i d e s . UV-absorbing d e r i v a t i v e s o f p e p t i d e s ( p h e n y l t h i o h y d a n t o i n and benzoyl d e r i v a t i v e s ) were chromatographed on s i l i c a g e l u s i n g e l u t i o n w i t h a c o n t i n u o u s g r a d i e n t o f e t h a n o l i n c h l ~ r o f o r m ~p~r o, p a n o l , methanol and d i c h l o r o m e t h a n e i n n - h e ~ a n eo~r ~s t e p w i s e g r a d i e n t s o f anhydrous e t h a n o l and a c e t i c a c i d i n dichloromethane66. UV d e t e c t i o n a t 254 nm i s s u i t a b l e w i t h t h e s e systems. P e p t i d e s o f human f o e t a l g l o b i n and o f m u r i n e l a a n t i g e n s were s e p a r a t e d by chromatography on a n i t r i l e phase bonded on s i l i c a (Zorbax CN) u s i n g a c o n t i n u o u s g r a d i e n t o f o r g a n i c s o l v e n t i n aqueous a c i d i c medium (acetone i n phosphate b u f f 68 e r , pH o r propanol i n 0.1% t r i f l u o r o a c e t i c a c i d ) f o r e l u t i o n .
d7,
References on p . 376.
372 21.5.
HYDROPHOBIC INTERACTION CHROMATOGRAPHY
It has been observed t h a t i n chromatography on g e l s i n aqueous media, p r o t e i n s
and peptides a r e e l u t e d i n disagreement w i t h t h e i r expected e l u t i o n o r d e r acc o r d i n g t o t h e i r molecular s i z e s and t h a t t h e r e t e n t i o n i s i n f l u e n c e d by t h e mobile phase composition. Therefore', i t i s obvious t h a t , i n a d d i t i o n t o a p o s s i b l e s t e r i c e x c l u s i o n mechanism, o t h e r i n t e r a c t i o n s c o n t r o l t h e chromatographic process I t has been e s t a b l i s h e d t h a t these i n t e r a c t i o n s a r e hydrophobic, i.e.,
t h a t they
o r i g i n a t e i n a t t r a c t i o n f o r c e s between water molecules, by v i r t u e o f which t h e molecules of biopolymers a r e excluded from t h e m o b i l e phase on t o t h e gel surface. T h i s e f f e c t i s o f a s i m i l a r n a t u r e as i n reversed-phase chromatography on chemic a l l y bonded non-polar a l k y l o r a r y l phases. Peptides, p r o t e i n s and o t h e r b i o polymers c o u l d be separated on non-polar o r s l i g h t l y p o l a r o r g a n i c g e l s ( o r on m a t e r i a l s w i t h a c h e m i c a l l y bonded o r g a n i c l a y e r on an i n o r g a n i c support, such as G l y ~ o p h a s e - G / C P G ) ~u~s i n g t h i s s e p a r a t i o n mechanism and t h e corresponding chromatographic technique has been c a l l ed graphy" 6 9 y 7 0 .
'I
hydrophobi c i n t e r a c t i o n chromato-
As i n chromatography on c h e m i c a l l y bonded non-polar phases, r e t e n -
t i o n increases w i t h i n c r e a s i n g c o n c e n t r a t i o n o f a s a l t and decreases w i t h i n c r e a s i n g c o n c e n t r a t i o n o f an o r g a n i c s o l v e n t i n t h e mobile phase. Gels cont a i n i n g e t h e r e a l bonds and hydroxy o r e s t e r groups, such as unmodified Spheron gel72, can be used f o r t h e hydrophobic i n t e r a c t i o n chromatography o f p r o t e i n s and peptides, b u t agarose g e l s w i t h coupled hydrophobic groups, such as o c t y l , phenyl o r benzyl, have been s p e c i a l l y developed f o r t h i s purpose. The o r g a n i c s o l v e n t f o r t h e mobile phase g r a d i e n t should be s e l e c t e d w i t h c a r e and t h e s o l u b i l i t y o f p r o t e i n s i n t h e mobile phase should be borne i n mind. Most o f t e n , 73 g r a d i e n t s o f i n c r e a s i n g c o n c e n t r a t i o n o f e t h y l e n e g l y c o l (0-50%) i n a c e t a t e , phosphate74 o r T ~ ~ s - Hb uCf f e~r s~ or ~ o f decreasing c o n c e n t r a t i o n o f a s a l t (phosphate o r sulphate) i n water76 and combinations o f these g r a d i e n t s 7 4 y 7 5 a r e used, b u t a l i n e a r g r a d i e n t o f ethanol i n water77 and even o f urea i n a phosphate b u f f e r 7 8 have a l s o been employed. Various peptides, p r o t e i n s and enzymes have been chromatographed u s i n g t h i s technique. An example o f t h e s e p a r a t i o n o f O-amylase from b a r l e y meal i s shown i n F i g . 21.3. 21.6.
REVERSED-PHASE CHROMATOGRAPHY OF PEPTIDES AND POLYPEPTIDES
Recently, octadecyl and o c t y l s t a t i o n a r y phases c h e m i c a l l y bonded on a m i c r o p a r t i c u l a t e ( 5 o r 10
urn)
s i l i c a gel support have been used as column packing
m a t e r i a l s f o r reversed-phase chromatography. As i n hydrophobic i n t e r a c t i o n chromatography on o r g a n i c gels, t h e separation i s based on hydrophobic i n t e r a c t i o n s and t h e p e p t i d e s a r e separated on t h e b a s i s o f d i f f e r e n c e s i n t h e i r
373
100
200
400 Wml)
300
Fig. 21.3. F r a c t i o n a t i o n o f @-amylase from b a r l e y meal by hydrophobic i n t e r a c t i o n chromatography w i t h g r a d i e n t e l u t i o n . Column: Phenyl-Sepharose CL-4B, column K 16/20, bed volume 30 m l . Gradient: as i n d i c a t e d by broken l i n e . S o l v e n t s : A, 0.01 m o l / l sodium phosphate b u f f e r (pH 6.8), 25% s a t u r a t e d w i t h ammonium sulphate; B y 50% ( v / v ) e t h y l e n e g l y c o l i n water. Flow-rate: 0.417 ml/min. D e t e c t i o n : UV a t 280 nm. ,4280 = absorbance a t 280 nm; v = e l u t i o n volume. Sample: b a r l e y meal. B-Amylase enzymatic a c t i v i t y i s shown by t h e b r o k e n - l i n e peak. (Reproduced from r e f . 74 w i t h permission.) h y d r o p h o b i c i t i e s . T h i s technique has been a p p l i e d i n t h e high-speed chromatography o f a v a r i e t y o f peptides and s m a l l e r polypeptides. Gradients w i t h an i n c r e a s i n g c o n t e n t o f t h e organic s o l v e n t i n an aqueous m o b i l e phase a r e u s u a l l y used f o r e l u t i o n .
A l i n e a r g r a d i e n t o f a c e t o n i t r i l e i n water used f o r t h e chromatography o f c o l l a g e n peptides7’
i s an exception, because a c i d i c b u f f e r s o r aqueous s o l u t i o n s 80
o f a c i d s a r e u s u a l l y necessary f o r good separations. Gradients o f methanol acetoni t r i l e 30,81-87
,
o r propanol 6 8 y 1 0 2 i n a 0.1% aqueous s o l u t i o n o f phospho-
r i c 3 0 y 8 1 - 8 9 acetic8’,
f o r m i c l o 2 o r t r i f l u o r o a c e t i c acid68a87-89, a l i n e a r g r a d i e n t 90,91 o f a c e t o n i t r i l e i n a c i d i f i e d 0.155 m o l / l sodium c h l o r i d e s o l u t i o n (pH 2.1) , 101 o r isopropanol-2-methoxyethanol gradients o f acetoni trileg2-”, methanol loo 103-105 or i n phosphate b u f f e r s ( u s u a l l y a t pH 2-2.51, g r a d i e n t s o f a c e t o n i t r i l e methanol-acetic a c i d 106y107 i n 0.01 m o l / l ammonium a c e t a t e b u f f e r (pH 4-6), a l i n e a r g r a d i e n t o f methanol i n T r i s b u f f e r l o 8 , a l i n e a r g r a d i e n t o f n-propanol i n sodium c i t r a t e (pH 4.5)”’ i n p y r i d i n i u m formate b u f f e r ’ ”
I
and a l i n e a r g r a d i e n t o f n-propanol c o n c e n t r a t i o n have been used f o r e l u t i o n o f peptides.
The s e l e c t i v i t y o f reversed-phase separations o f peptides can sometimes be
‘,
improved by u s i n g i o n - p a i r f o r m a t i o n i n t h e mobile phase. 80th c a t i o n i c (such as t e t r a b u t y l ammoni um phosphate’
t r i e t h y l ammonium phosphate 13-’ l6and dodecyl-
amine117) and a n i o n i c (such as hexylsulphonate, decylsulphonate, p e n t a f l u o r o propanoic acid, h e p t a f l u o r o b u t y r i c a c i d and undecafluorocaproic a c i d ’ 18) i o n p a i r i n g reagents have been used f o r t h i s purpose. The i o n - p a i r i n g agent was References on p . 376.
374
u s u a l l y c o n t a i n e d i n t h e m o b i l e phase a t a c o n s t a n t c o n c e n t r a t i o n , w h i l e t h e c o n t e n t o f t h e o r g a n i c s o l v e n t ( a ~ e t o n i t r i l e l l ~ -methanol ~~~, o r i s o p r o p a n o l 'I6) changed 1 i n e a r l y d u r i n g g r a d i e n t e l u t i o n . Reversed-phase g r a d i e n t e l u t i o n chromatography on o c t y l - and o c t a d e c y l s i l i c a columns i s s u i t a b l e f o r t h e e f f i c i e n t and r a p i d a n a l y t i c a l and p r e p a r a t i v e mapping o f complex p e p t i d e m i x t u r e s and u s u a l l y y i e l d s b e t t e r s e p a r a t i o n s i n a s h o r t e r t i m e t h a n o t h e r l i q u i d chromatography t e c h n i q u e s . However, i t would be d i f f i c u l t t o a c h i e v e complete r e s o l u t i o n of a l l p e p t i d e s i n v e r y complex m i x t u r e s , such as i n t r y p t i c d i g e s t s o f l a r g e r p r o t e i n s , where i t c o u l d be necessary t o re-chromatograph a zone o f p a r t i a l l y r e s o l v e d p e p t i d e s i n a second, independent i s o c r a t i c run. To g i v e a few examples o f a p p l i c a t i o n s o f t h e reversed-phase chromatography
30
o f p e p t i d e s and small p r o t e i n s , we can mention chromatography o f p r o i n s u l i n , p e p t i d e s o f human f o e t a l g l o b i n 6 8 , n e ~ r o p e p t i d e s ~hypothalamic ~, 01 i g o p e p t i d e s 114 , enkephal i n peptides8' y 9 2 y 1 0 8 ,
argot ens in^"^,
parathyroid"
and a d r e n o c o r t i c o -
t r o p i c 9 2'1 l3hormones, pteroyl-oligo-y-L-g1utaminesg5, growth hormones8',
19-S
t h y l o g l o b u l i n 8 5 , o p i o i d peptides88 , o x y t o c i n , vasopressin, samostating6, t u f t s i n calcitonin112, a p o l i p r ~ t e i n s " ~ ,peptides o f r a t casein82y86, t r y p t i c d i g e s t o f
97
o f egg w h i t e l y s ~ z o m e ~o f~ sheep ~, 19-5 t h y r o g l o b u l i n and
haemoglobin8 4 y 1 0 3 y 1 0 4 ,
o f bovine thyrotrophin117. A h i g h - e f f i c i e n c y separation o f f o u r polypeptides i s shown i n F i g . 21.4 119
.
21.7.
AFFINITY CHROMATOGRAPHY OF PROTEINS
A f f i n i t y chromatography i s a h i g h l y s e l e c t i v e s e p a r a t i o n method t h a t a l l o w s t h e p u r i f i c a t i o n o f p r o t e i n s , p r o t e i n - b a s e d enzymes and hormones and o t h e r b i o p o l y m e r s on t h e b a s i s o f t h e i r b i o l o g i c a l f u n c t i o n s o r i n d i v i d u a l chemical s t r u c t u r e s . T h i s t e c h n i q u e makes i t p o s s i b l e t o remove l a r g e amounts o f cont a m i n a t i n g substances f r o m t h e s o l u t e s o f i n t e r e s t i n b i o l o g i c a l m a t e r i a l o r t o s e p a r a t e t h e a c t i v e f o r m f r o m t h e denatured forms o f t h e same substance. Theref o r e , t h e m e r i t s o f a f f i n i t y chromatography f o r b i o l o g i c a l r e s e a r c h a r e c o n s i d e r a b l e , and t h i s method has found wide acceptance s i n c e i t s f i r s t i n t r o d u c t i o n 120 about 15 y e a r s ago
.
I n p r i n c i p l e , t h e method i s based on t h e i n t e r a c t i o n s between a b i o s p e c i f i c l i g a n d c o v a l e n t l y bonded t o a s u i t a b l e s u p p o r t and t h e substance o f i n t e r e s t , t h e s p e c i f i c s t r u c t u r e o f which " f i t s " t h e s t r u c t u r e o f bonded ( i m m o b i l i z e d ) l i g a n d . F o r example, an enzyme bonded as t h e l i g a n d can be used f o r t h e p u r i f i c a t i o n o f a s u b s t r a t e analogue, i n h i b i t o r o r c o f a c t o r , o r an a n t i b o d y bonded as t h e l i g a n d may be s u i t a b l e f o r t h e p u r i f i c a t i o n o f an a n t i g e n o r o f a v i r u s , a n u c l e i c a c i d as t h e l i g a n d f o r p u r i f i c a t i o n o f n u c l e i c a t i d polymerase o r o f a b i n d i n g protein, etc.
375
2
I
0
1
8
I
16
t(min)
I
24
F i g . 21.4. S e p a r a t i o n o f f o u r p o l y p e p t i d e s by reversed-phase g r a d i e n t - e l u t i o n chromatography. Column: M i c r o Pak MCH, 150 x 5.4 mm I . D . G r a d i e n t : l i n e a r , 18-60% B i n 42 min (1% B/min). S o l v e n t s : A, triethylammonium phosphate b u f f e r (pH 2.2); B, a c e t o n i t r i l e . F l o w - r a t e : 1 ml/min. D e t e c t i o n : UV a t 210 nm. Peaks: 1 = bombesin; 2 = s o m a t o s t a t i n ; 3 = i n s u l i n ; 4 = glucagon. (Reproduced f r o m r e f . 119 w i t h p e r mission.) The use o f t h e method c o n s i s t s i n s e v e r a l c o n s e c u t i v e s t a g e s : ( a ) A s u i t a b l e b i o s p e c i f i c l i g a n d i s c o v a l e n t l y bonded t o a chromatographic bed m a t e r i a l ( m a t r i x ) , such as an agarose g e l (Sepharose 4B, Sepharose CL), p r e v i o u s l y a c t i v a t e d f o r e a s i e r c o v a l e n t attachment o f t h e l i g a n d . I t i s i m p o r t a n t t h a t the attached, "immobilized", l i g a n d r e t a i n s i t s s p e c i f i c b i n d i n g a c t i v i t y f o r t h e substance o f i n t e r e s t . ( b ) The g e l w i t h t h e " i m m o b i l i z e d " l i g a n d i s packed i n t o a column o f s u i t a b l e dimensions, t h e sample i s a p p l i e d , f r o m which substances c a p a b l e o f b i o s p e c i f i c i n t e r a c t i o n s w i t h t h e i m m o b i l i z e d l i g a n d become adsorbed on t h e column, w h i l e t h e non-sorbed i m p u r i t i e s a r e washed away f r o m t h e column w i t h a s t a r t i n g b u f f e r . References on p . 576.
376
( c ) E l u t i o n of t h e sorbed substances from t h e column u s i n g e l u e n t s t h a t decrease t h e a f f i n i t y f o r c e s between t h e substances and t h e immobilized l i g a n d . This i s u s u a l l y achieved by e i t h e r a stepwise o r a continuous change i n propert i e s of t h e e l u e n t and s e l e c t i v e o r n o n - s e l e c t i v e e l u e n t s can be employed, depending on t h e n a t u r e o f t h e b i n d i n g between t h e l i g a n d and s o l u t e s . Nons e l e c t i v e e l u t i o n methods i n v o l v e pH o r i o n i c s t r e n g t h g r a d i e n t s . A change ( u s u a l l y a decrease) i n pH d u r i n g g r a d i e n t e l u t i o n a l t e r s t h e degree o f i o n i z a t i o n of charged groups a t t h e b i n d i n g s i t e s and causes desorption. A g r a d i e n t o f i n c r e a s i n g i o n i c s t r e n g t h (e.g.,
o f sodium c h l o r i d e c o n c e n t r a t i o n ) a l s o leads
t o d e s o r p t i o n of sorbed s o l u t e s a t a c o n c e n t r a t i o n o f about 1 m o l / l . Urea and guanidine h y d r o c h l o r i d e a t h i g h c o n c e n t r a t i o n s a r e u s e f u l e l u e n t s , b u t they should be removed from t h e p u r i f i e d p r o t e i n s immediately a f t e r t h e e l u t i o n , otherwise they c o u l d cause d e n a t u r a t i o n o f p r o t e i n s . S e l e c t i v e ( a f f i n i t y ) e l u t i o n makes use o f 'an i n c r e a s i n g c o n c e n t r a t i o n g r a d i e n t o f an e l u t i n g agent t h a t e i t h e r competes f o r b i n d i n g t o t h e adsorbed substance o r f o r binding t o the ligand. To g i v e a few r a t h e r a r b i t r a r i l y chosen examples from t h e w e a l t h o f p u b l i s h e d i n f o r m a t i o n , we can mention chromatography o f phosphofructokinase on immobilized 121 Cibacron B l u e F 36-A u s i n g a l i n e a r g r a d i e n t (0-1.5 m o l / l ) o f ammonium s u l p h a t e , p u r i f i c a t i o n o f d i p e p t i d y l peptidase I V on t h e immobilized p e p t i d e Gly-Pro-NH(CH2)6-NH u s i n g a g r a d i e n t (0-0.2 m o l / l ) o f sodium c h l o r i d e 1 2 2 , f r a c t i o n a t i o n o f p r o t e o l y t i c enzymes t r y p s i n and chymotrypsin on immobilized a m i n o c a p r o y l p r o f l a v i n u s i n g a g r a d i e n t (0-0.08 m o l / l ) o f sodium chloride123, f r a c t i o n a t i o n o f Escker i c k i a coZi B aminoacyl-tRNA synthetases on immobilized hexylamine u s i n g a
g r a d i e n t (0-0.4 m o l / l ) o f potassium chloride124, p u r i f i c a t i o n o f a l k a l i n e phosphatase on immobilized t r i a z i n e dyes u s i n g a g r a d i e n t (0-1 m o l / l ) o f potassium c h l o r i d e 1 2 5 , f r a c t i o n a t i o n o f a complex m i x t u r e o f dehydrogenases on immobilized adenosine 5'-monophosphate u s i n g a pH g r a d i e n t (pH 6-10)Iz6, p u r i f i c a t i o n o f t r y p s i n and chymotrypsin on immobilized low-molecular-weight soybean protease i n h i b i t o r s u s i n g a pH g r a d i e n t (pH 8-4)127 and p u r i f i c a t i o n o f i n d o l ethylamine N-methyltransferase on immobilized S-adenosylhomocysteine128. I n most o f these a p p l i c a t i o n s , agarose g e l s were used as substrates. Comprehensive i n f o r m a t i o n about t h e v a r i o u s techniques and a p p l i c a t i o n s o f 129 a f f i n i t y chromatography can be found i n a monograph by Turkovd
.
21.8.
REFERENCES
1 I . Kluh, i n Z. Deyl, K. Macek and J. Jandk ( E d i t o r s ) , L i q u i d C o Z m Ckromato-
graphy, E l s e v i e r , Amsterdam, 1975, Ch. 34. 2 Z. P r u s i k , Ref. 1, Ch. 35. 3 0. Mikes, Ref. 1, Ch. 36.
377 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
174
A. C a s t e l , J.M. de Graaf and B. K r a a l , J . Chromatogr., (1979) 474. P. Johnson, J . Chromatogr. S e i . , 17 (1979) 406. R.A. Bradshaw, O.J. Bates and J.RTBenson, J . Chromatogr., 187 (1980) 27. F. Weber and W. Grosch, 2. Lebensm.-Unters.-Forseh., 167 ( l m ) 87. T.D. Schlabach and S.R. Abbott, C l i n . Ckem., 26 ( 1 9 8 0 m 5 0 4 . E.A. Peterson and H.A. Sober, J . Amer. Ckem. S e . , (1956) 751. J.M. G i l l e s p i e , J . Chromatogr., 72 (1972) 319. H. Determann, N. Mayer and T. W i T a n d , Nature (London), 223 (1969) 499. J. Wagner and H.J. Duck, J . Chromatogr., 66 (1972) 67. K. James and D.R. Stanworth, J . ChromatogK, 15 (1964) 324. Z. H r k a l , Z. Vodrdfka and J. Rejnkovd, J . C h r z a t o g r . , 72 (1972) 198. J.J. M a r s h a l l , J . Chromatogr., 71 (1972) 367. D.B. Ramsden and L.N. L o u i s , J.Thrornatogr., 8 4 (1973) 87. R.L. Munier, A.M. D r a p i e r and B. F a i v r e , Chroztographia, (1973) 305. J.J. M a r s h a l l , J . Chromtogr., 76 (1973) 257. R.B. E l l i s , J.U. Ikonne and P.K;-Massan, AnaZ. Bioehem., 6 3 (1975) 5. DEAE-SephaceZ, Pharmacia, Uppsala, Sweden, 1977. W.G. Edwards and C.A. W e l l i n g t o n , J . Chromatogr., 135 (1977) 463. Separation News, 6 ( 1 9 7 9 ) , Pharmacia , Uppsala, SweZh'. D. B e r g e r and B. G i l l i a r d , J . Chromatogr., 210 (1981) 33. J. H l a d i k and J . Kd!:, J . Chromatogr., 75 ( 1 m ) 117. Separation News, 3 ( 1 9 7 3 ) , Pharmacia, Qpsala, Sweden. Separation News, ( 1 9 7 6 ) , Pharmacia, Uppsala, Sweden. M. Pace and J.E. D i x o n , J . Chromato r . , 147 (1978) 521. P. Sijrup, J . Chromatogr., 160 (19788 2 2 1 7 P. Cammarata and C. C e c c a r T , J . Chromatogr., 168 (1979) 395. J.G.R. H u r r e l l , R.J. Fleming and M.T.W. Hearn, T L i q . Chromatogr., 3 (1980) 473. S. Moore, Chromatogr., 159 (1978) 3. Separation News, 1 (1977) , T a r m a c i a , Uppsala, Sweden. DEAE-Sepharose L7L:6B, CM-Sepharose CL-GB f o r Ion Exchange Chromatography, Pharmacia, Uppsala, Sweden, 1976. 0. Mikes, P. S t r o p , J. ZbroZek and J . Coupek, J . Chromatogr., 119 (1976) 339. 0. Mikes, P. S t r o p and J. SedldEkovd, J . Chromatogr., 148 ( 1 9 7 8 n 3 7 . 0. Mike!:, I n t . J . Peptide Protein Res., 14 (1979) 393.0. Mike!:, P. S t r o p , J . Zbrofek and J . Cowek, J . Chromatogr., 180 (1979) 17. 0. Mikes, P. S t r o p , M. S m r f and J. Coupek, J . Ckromatogr., 1 9 2 7 9 8 0 ) 159. 0. Mike!: , J. SedldEkovd, L Rexovd-Benkovd and J Omel kovd Chromatogr., 207 (1981) 99. Mozersky, J.D. P e t t i n a t i and S.D. Kolman, J . Chromatogr., 65 (1972) 387. P. Appel, E.G. Richards and H.S. O l c o t t , J . Chromatogr., 76 (1973) 351. H. Bliithmann, J . Chromatogr., 137 (1977) 222. S.-H. Chang, R. Noel and F.E. R e g n i e r , Anal. Chem., 48 (1976) 1839. S.-H. Chang, K.M. Gooding and F.E. Regnier, J . Chromatogr., 125 (1976) 103. P.J. K u d i r k a , R.R. Schroeder, T.E. H e w i t t and E.C. Toren, C l K Chem., 22 (1976) 471. R.R. Schroeder, P.J. K u d i r k a and E.C. Toren, J . Chromatogr., 134 (1977) 83. T.D. Schlabach, S.-H. Chang, K.M. Gooding and F.E. Regnier, J x h r o m a t o g r . , 134 (1977) 91. Schlabach and F.E. Regnier, J . Chromatogr., (1978) 349. F.H. B i s s e t t , J . Ckromatogr., 178 (1979) 515. J.A. F u l t o n , T.D. Schlabach, J T K e r l and E.C. Toren, J . Chromatogr., (1979) 283. T.D. Schlabach, J.A. F u l t o n , P.B. Mockridge and E.C. Toren, Anal. Chem., 52 (1980) 729. R.W. S t o u t , A.R. Cashmore, J.K. Coward, C.G. H o r v a t h and J.R. B e r t i n o , Anal. Biochem., 71 (1976) 119. A.J. A l p e r r a n d F.E. Regnier, J . Chromatogr., 185 (1979) 375. M. D i z d a r o g l u and M.G. S i m i c , J . Chromatogr., - (1980) 119.
2
a
3.
.
.
,x
m.
m.
158
175
378 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
R. Wood, L. Cummings and T. J u p i l l e , J . Ckromatogr. Sci , 18 (1980) 551. L.A.A. Sluyterman and 0. Elgersma, J . Ckromatogr., 150 1978) 17. L.A.A. Sluyterman and J. Wijdenes, J . Chromatogr., 75[T 1978) 31. L.A.A. Sluyterman and J. Wijdenes, J . Chromatogr., z(m 1981) 429 and 441. Ckromatofocusing, Pharmacia , Uppsal a , Sweden , 1981 J.P. Emond and M. Pas6, J . Chromatoqr.. 200 (1980) 57. L. Bachner, J.-P. B o i s s e l and H. W cm aja.n, Ckromatogr., (1980) 491. J. M i c h e l o t , D. Godeneche, J.C. M a u r i z i s and G. Meyniel, J . Ckromatogr., 188 (1980) 431. T.P.A. Kruck and D.M. Logan, J . Ckromatogr., 206 (1981) 368. T.F. G a b r i e l , J. Michalewsky and J. Meienhofer, J . Chromatogr., (1976) 287. Z. Deyl, J . Ckromatogr., (1976) 91. W. Kullmann, J . L i q . Ckromatogr., 4 (1981) 1121. N. McMillan, J. Cecka, L. Hood, D.B. Murphy . - and H. McDewitt, Nature (London), 277 (1979) 663. Pearson, W.C. Mahoney, M.A. Hermodson and F.E. Regnier, J . Ckromatogr., 207 (1981) 325. T H j e r t C n , Advan. Ckromatogr., 19 (1981 ) 11 1. S. H j e r t g n , J. Rosengren and S. m l m a n , J . Ckromatogr., 101 (1974) 281. L.J. F i s c h e r , R.L. Thies and D. Charkowski, A n d . Ckem., r ( 1 9 7 8 ) 2143. P. Strop, F. Mike5 and Z. C h y t i l o v b , J . Chromatogr., 156 n 9 7 8 ) 239. S, Allenmark and B. Servenius, J . Ckromatogr., ( 1 m ) 239. O c t y I-Sepkarose CL-4B; PkenyZ-Sepharose CL-4B f o r Hydrophobic I n t e r a c t i o n Chromatography, Pharmacia, Uppsala, Sweden, 1976. T. Laas, J . Chromatogr., (1975) 373. J. Hardwick and P. Hechtman, J . Chromatogr., 190 (1980) 385. W.J. Gelsema, C.L. de Ligny, W.M. Blanken, R.J;-Hamer, A.M.P. Roozen and J.A. Bakker, J . Ckromatogr., 196 (1980) 51. L.K. Creamer and A.R. M a t h e s o T J . Ckromatogr., 210 (1981) 105. C. Balck, D.M. Douglas and M.L. Tanzer, J . Ckromatogr., 190 (1980) 393. M. Knight, Y. I t o and T.N. Chase, J . Ckromatogr., 212 ( 1 m ) 356. W.S. Hancock, C.A. Bishop and R.L. P r e s t i d e, A n a Z x i o c k e m . , (1978) 203. M.T.W. Hearn, J . L i q . Ckromatogr., 3 (19807 1255. M.C. Kemp, W.L. Hollaway, R.L. Pres€idge, J.C. Bennett and R.W. Compans, J . L i q . Ckromatogr., 4 (1981) 587. C.A. Bishop, W.S. HanFock, S.O. Brennan, R.W. C a r r e l 1 and M.T.W. Hearn, J . Liq. C k r & r t o g r . , 4 (1981) 599. M.T.W. Hearn and B. GFego, J . Ckromatogr., 203 (1981) 349. A.A. Hobbs, B. Grego, M.G. Smith and M.T.W.Xarn, J . L i q . Chromatogr., (1981) 651. J.R. McDermott, A . I . Smith, J.A. Biggins, M. Chyad Al-Noaemi and J.A. Edwardson, J . Ckromatogr., 222 (1981) 371. C.E. Dunlap, S. Gentleman and L.I. Lowney, J . Ckromatogr., 160 (1978) 191. M. Schoneshofer and A. Fenner, J . Ckromatogr., 224 (1981) 4 r E.C. Nice, M. Capp and M.J. O'Hare, J . C k r o m a t o z , 185 (1979) 413. J.M. Z a n e l l i , M.J. O'Hare, E.C. Nice and P.H. Caor.n, Ckromatogr., 223 (1981) 59. E.C. Nice and M.J. O'Hare, J . Ckromatogr., 162 (1979) 401. M.J. O'Hare and E.C. Nice, J . Ckromatogr., (1979) 209. F. Erni, K. Krummen and A. P e l l e t , Ckromatograpkia, 12 (1979) 399. B.T. Bush, J.H. Frenz, W.R. Melander, Cs. Horvdth, A T . Cashmore, R.N. Dryer, J.O. Knipe, J.S. Coward and J.R. B e r t i n o , J . Ckromatogr., 168 (1979) 343. K. Krummen. J . L i a . Chromatom.. 3 (1980) 1243. A.A. Amoscato, G.F. Babcock i n d * K T Nishioka, J. Ckromatogr., 205 1981) 179. J.L. Meek and Z.L. R o s s e t t i , J . Ckromatogr., 211 (1981) 15. A. Harmar, J.G. S c h o f i e l d and P. Keen, Nature(London1, 284 (1980 267. W. Miinch and W. Dehnen, J . Chromatogr., 149 (1977) 260. W. Monch and W. Dehnen, J . Ckromatogr., (1978) 415. B.N. Jones, R.V. Lewis, S. Paabo, K. Kojima, S. Kimura and S. Ste n, J . Liq. Ckromatogr., 3 (1980) 1373.
.-
193
129
127
m.
153
111
89
4
.=
379 103 J.B. Wilson, H. Lam, P. Pravatmuang and T.H.J. Huisman, J . Chromatogr., 179 (1979) 271. 104 W.A. Schroeder, J.B. S h e l t o n and J.R. S h e l t o n , J . Chromatogr., (1979) 305. 214 105 L. Haeffner-Gormley, N.H. P o l u d n i a k and D.B. W e t l a u f e r , J . Chromatogr., (1981) 185. 106 J.P.H. Burbach, J.G. Loeber, J. Verhoef, V.M. Wiegant and E. D e k l o e t , Nature (London), 283 (1980) 465. 107 J.A.D.M. T%aer, J. Verhoef, V.M. Wiegant and W. De Jong, J . Chromatogr., 183 (1980) 303. 108 R;m. Wu, J.W. Sloan and W.R. M a r t i n , J . Chromatogr., 202 (1980) 500. 109 J.F.M. K i n k e l , G. Heuver and J.C. Kraak, Chromatographia, 13 (1980) 145. 110 P. Bohlen and G. Kleeman, J . &romatogr., 205 (1981) 65. 111 E.H. Creaser and G.J. Hughes, J . C h r o m a t o g c 144 (1977) 69. 112 P.W. Lambert and B.A. Roos, J . Chromatogr., 19811980) 293. 113 N.G. Seidah, R. R o u t h i e r , S. Benjannet, N. L K v i P r e , F. Gossard and M. C h r e t i e n , J . Chromatogr., 193 (1980) 291. 114 D.M. D e s i d e r i o , J.L. S t e i n , M.O. Cunningham and J.Z. S a b b a t i n i , J . Chromatogr., 195 (1980) 369. 115 Hancock, J.D. Capra, W.A. B r a d l e y and J.T. Sparrow, J . Chromatogr., 206 (1981) 59. 116 W.S. Hancock and J.T. Sparrow, J . Chromatogr., 206 (1981) 71. 117 M.T.W. Hearn, B. Grego and W.S. Hancock, J . Chromatogr., 185 (1979) 429. 118 H.P.J. B e n n e t t , C.A. Browne and S. Solomon, J . Liq. C h r o m z g r . , 3 (1980) 1353. 119 F.E. Regnier, V I A , 14, No. 2 (1980) 12, Varian, P a l o A l t o , CA. 120 R. Axen, J. P o r a t h E d S. Ernback, Nature (London), 214 (1967) 1302. 121 H.J. B'dhme, G. Kopperschlager, J. Schulz and E. Hofm=, J . Chromatogr., 69 (1972) 209. 122 K. Kojima, T. Hama, T. Kato and T. Nagatsu, J . Chromatogr., 189 (1980) 233. 123 J.H. B r a n t n e r , R.G. Medicus and R.A. McRorie, J . Chromatogr.73 (1976) 97. 124 H. Jakubowski, J . Chromatogr., 139 (1977) 331. 125 V. B o u r i o t i s and P.D.G. Dean, J x h r o m a t o g r . , 206 (1981) 521. 126 C.R. Lowe, M.J. Harvey and P.D.G. Dean, Eur. J . Biochem., fl (1974) 347. 127 K.D. L i n , D.L. Hwang and D.E. Foard, J . Chromatogr., 195 (1980) 385. 128 J.P.G. Mack and M.B. S l a y t o r , J . Chromatogr., 157 ( 1 9 m 153. 129 J. Turkovd, A f f i n i t y Chromatography, Elsevier,%sterdam, 1978. 130 C.Y. Lee, S.L. Chang, S.T. Kau and Shing-Hui Luh, J . Chromatogr., 72 (1972) 71. 131 T. Gotoh, T. O c h i a i and K. Shikama, J . Chromatogr., 60 (1971) 260.(1979) 271. 132 N. Kelemen, F. Lasmoles and G. Milhaud, J . ChromatogF, 133 F. L o t t s p e i c h , A. Henschen and K.-P. Hupe ( E d i t o r s ) , High Performance Liquid Chromatography i n Protein and Peptide Chemistry, De G r u y t e r , B e r l i n , 1981.
174
m.
177