25
Chapter 3
COLLECTION OF HYDROLOGIC DATA 3.1
STREAMFLOW Continuous streamflow records a r e obtained a t a gaging s t a t i o n a t which t h e
stream stage (water-surface o r is recorded continuously.
h e i g h t above some datum) i s e i t h e r r e a d f r e q u e n t l y D i s c h a r g e i s measured,
u s u a l l y by c u r r e n t m e t e r ,
a t v a r i o u s s t a g e s f o r d e f i n i n g t h e stage-discharge r e l a t i o n ( r a t i n g curve) which
i s used t o convert the stage record t o a discharge record.
Only t h e g e n e r a l
p r o c e d u r e s a r e g i v e n h e r e ; f o r more d e t a i l s e e WMO (1980) o r Rantz (1982). 3.1.1
S t a g e measurement
Gaging s t a t i o n s a r e o f s e v e r a l t y p e s .
The s i m p l e s t c o n s i s t s o f a s e r i e s of
s t a f f g a g e s (Fig. 3.1) on w h i c h an o b s e r v e r r e a d s t h e s t a g e o n e or more t i m e s a
Fig. 3.1. day.
S t a f f g a g e s on Rio C i a , B r a z i l .
Recording g a g e s e i t h e r s e n s e t h e w a t e r s u r f a c e i n a s t i l l i n g w e l l hydraul-
i c a l l y c o n n e c t e d t o t h e s t r e a m o r by means o f a gas-purge
( b u b b l e gage) s y s t e m
w h i c h m e a s u r e s t h e p r e s s u r e on an o r o f i c e p e r m a n e n t l y m o u n t e d i n t h e s t r e a m . R e c o r d i n g g a g i n g s t a t i o n s a l s o h a v e s t a f f g a g e s ( F i g . 3.2) f o r v e r i f y i n g t h e s t a g e s b e i n g s e n s e d b y t h e equipment.
A simplified stilling-well
installation
is shown i n F i g u r e 3.3 and a g a g i n g s t a t i o n s t r u c t u r e i n F i g u r e 3.4. A bubble-gage
i n s t a l l a t i o n c o n s i s t s of an i n s t r u m e n t s h e l t e r on a c o n c r e t e
s l a b on t h e r i v e r bank. A t u b e c o n n e c t s t h e i n s t r u m e n t t o t h e o r o f i c e i n t h e stream.
N i t r o g e n gas i s bubbled t h r o u g h t h e o r o f i c e t o a c t u a t e t h e s e n s o r .
26
Fig. 3.2.
Lor-rater staff gage.
Fig. 3.3.
Simplified stilling-well installation.
Recording instruments are either analog or digital.
The latter produces a
punched-tape record for processing by digital computer; the punch interval commonly used is 15 minutes but this can be as short as 5 minutes or an hour.
as
long as
The two types of recorders are shown in Figures 3.5 and 3.6.
A gaging station should be located above a stable section of channel in order
that the relation between stage and discharge be well defined and unchanging
21
Fig. 3.4.
Gaging station.
Fig. 3.5.
Analog water-stage recorder.
with time.
T h e feature of the channel that maintains a more-or-less
stage-discharge relation is called the control.
stable
The control m a y be at a sec-
tion, such as a stable riffle ( F i g . 3.7) o r it m a y be a fairly long reach of the
28
F i g . 3.6.
D i g i t a l water-stage
F i g . 3.7.
Natural section control.
channel i t s e l f .
recorder.
A r t i f i c i a l s e c t i o n c o n t r o l s s u c h a s l o w dams a r e s o m e t i m e s
c o n s t r u c t e d where n a t u r a l channel f e a t u r e s a r e n o t s u i t a b l e . t r o l s a r e expensive,
e s p e c i a l l y f o r l a r g e streams,
A r t i f i c i a l con-
and a r e hard t o m a i n t a i n i n
e r o d i b l e c h a n n e l s c a r r y i n g heavy s e d i m e n t loads. 3.1.2
D i s c h a r g e measurement
D i s c h a r g e m e a s u r e m e n t s o f s t r e a m s a r e u s u a l l y made by currant-meter.
The
p r o c e d u r e c o n s i s t s o f (1) m e a s u r i n g t h e w i d t h , d e p t h , a n d v e l o c i t y o f f l o w i n
29 e a c h of s e v e r a l s u b s e c t i o n s of a s t r e a m c r o s s s e c t i o n , ( 2 ) c o m p u t i n g t h e d i s c h a r g e i n e a c h s u b s e c t i o n a s t h e p r o d u c t of a r e a and mean v e l o c i t y , summing t h e p a r t i a l d i s c h a r g e s t o o b t a i n t h e t o t a l .
and (3)
R e f e r r i n g t o F i g u r e 3.8.
t h e d e p t h a t e a c h of t h e s e l e c t e d v e r t i c a l s i s m e a s u r e d by s o u n d i n g and t h e width of each s u b s e c t i o n i s computed from t h e spacing of t h e v e r t i c a l s .
A t each
v e r t i c a l t h e mean v e l o c i t y i s o b t a i n e d from one or more v e l o c i t y o b s e r v a t i o n s by
Verticals
Meter locations
F i g . 3.8. S t r e a m c r o s s s e c t i o n showing m e t e r l o c a t i o n s f o r a d i s c h a r g e measurement. c u r r e n t meter.
Many s t u d i e s have demonstrated t h a t t h e mean of t h e v e l o c i t i e s
a t 0.2 and 0s of t h e d e p t h f r o h t h e w a t e r s u r f a c e i s v i r t u a l l y t h e mean velocity i n the vertical. mean i n t h e v e r t i c a l .
L i k e w i s e t h e v e l o c i t y a t 0.6 d e p t h v e r y n e a r l y e q u a l s t h e V e l o c i t y o b s e r v a t i o n s a r e u s u a l l y made a t 0.2 and 03 of
t h e depth i n each v e r t i c a l where t h e depth i s adequate. The b a s i c equipment needed f o r a d i s c h a r g e measurement c o n s i s t s of a c u r r e n t meter,
a d e v i c e f o r i n d i c a t i n g t h e r e v o l u t i o n s of t h e meter,
a s t o p watch,
and
some means of measuring d e p t h and w i d t h and of holding t h e m e t e r i n t h e proper l o c a t i o n s for v e l o c i t y observations.
In shallow s t r e a m s , measurements a r e made
by wading; t h e c u r r e n t meter i s mounted on a wading rod which i s used t o measure d e p t h and t o p o s i t i o n t h e m e t e r i n t h e v e r t i c a l .
H o r i z o n t a l c o n t r o l i s main-
t a i n e d by a t a p e or b e a d e d w i r e s t r e t c h e d a c r o s s t h e s t r e a m .
See F i g u r e 3.9.
In use, t h e number of r e v o l u t i o n s of t h e meter r o t o r i s obtained by an e l e c t r i c a l c i r c u i t w h i c h p r o d u c e s c l i c k s i n a n e a r p h o n e or r e g i s t e r s o n a c o u n t i n g device.
Elapsed t i m e i s measured by a stopwatch.
v e l o c i t y through t h e meter r a t i n g t a b l e . measurement.
These d a t a a r e t r a n s l a t e d t o
F i g u r e 3.10 shoks n o t e s of a d i s c h a r g e
30
F i g . 3.9.
Wading equipment and a measurement i n p r o g r e s s .
Deep s t r e a m s a r e m e a s u r e d f r o m a b r i d g e , c a b l e w a y , o r b o a t .
The m e t e r i s
suspended on a c a b l e above a sounding weight which i s used f o r d e p t h measurement and t o h o l d t h e c u r r e n t m e t e r a t t h e c o r r e c t p o s i t i o n i n t h e v e r t i c a l f o r v e l o c i t y observation.
Sounding w e i g h t s used range from 1 5 t o 300 pounds or more
depending on t h e d e p t h and v e l o c i t y of t h e stream. i n F i g u r e s 3.11,
3.12,
and 3.13.
Methods of gaging a r e shown
S e e Buchanan a n d S o m e r s ( 1 9 6 9 ) f o r a m o r e
complete d e s c r i p t i o n of measurement t e c h n i q u e s i n c l u d i n g measurement under i c e cover. The m o v i n g - b o a t velocity-area
method i s s i m i l a r t o t h e above method i n t h a t i t u s e s t h e
approach t o d e t e r m i n i n g d i s c h a r g e b u t i t d i f f e r s i n t h e method of
d a t a c o l l e c t i o n ; t h e de?t:..
r n d v e l o c i t i e s a t e a c h o b s e r v a t i o n p o i n t a r e ob-
tained while the boat is rapidly traversing the cross section.
Thus a measure-
ment of d i s c h a r g e by t h i s method c a n be made on wide s t r e a m s i n a few m i n u t e s a t s i t e s without fixed f a c i l i t i e s .
However,
made and t h e r e s u l t s a v e r a g e d .
The e q u i p m e n t ( F i g . 3.14) c o n s i s t s o f a s o n i c
sounder,
a vane w i t h a n g l e i n d i c a t o r ,
in practice 6 traverses usually are
a component p r o p e l l o r - t y p e
c u r r e n t meter.
and a maneuverable s m a l l boat. The t r a v e r s e o f t h e c r o s s s e c t i o n i s made w i t h o u t s t o p p i n g a n d d a t a a r e collected a t regular intervals.
The b o a t o p e r a t o r m a i n t a i n s c o u r s e by "crab-
b i n g " i n t o t h e d i r e c t i o n of f l o w s u f f i c i e n t l y t o keep on l i n e .
The f o r c e
e x e r t e d on t h e c u r r e n t m e t e r i s t h e c o m b i n a t i o n of two f o r c e s a c t i n g s i m u l t a neously,
one f o r c e d u e t o t h e movement o f t h e b o a t a n d t h e o t h e r f r o m t h e
o t r e a m f l o r normal t o t h e path.
A d d i t i o n a l i n f o r m a t i o n needed i s t h e v e r t i c a l
........................................................... qz"uan ........................................................................ ..............................................
.......
-
. . . .
..."a?3....... I
0Al"q)
...............................................
-
..................................................................... r,rmqiJ py,"s )q,", ................ p'"nu,, p , ~ , ~ n..........................
..........
-
~
.qo i+,p.J"~u
........ . . .................. .... ...... P.3 o,... a , . & ........ ~,~... . . . *y ........................................... 'WJ .......................... -* ?nj.?.... , ~ y l , ~ & ..................... &.zc J., Iu .~ ..... ............................. . . . . . . . . . . . . . "Dll,al "0'3 : N O I I ! p Y O > ~~~
'i~~LUs
yuqpJ"0 p m q
-
'(0'8
n r o ) rmd
'(Oh@) I!*)
...... .... ... ............................................. ............. .................... ........................... pYmJ 9.93 ',.q-q>q,
,.
.......................................
PY.
. 1 . *
CI
'(0'5)
pms '(%Z)
>">[,a,.>
..
p3p,
....
l"?w,inrwly H 3
n 8-2
3 W Pilix"b
Ib!'B:./4!18.l?:!'s:l:::::::::+c:~! ,
H
32
Fig. 3.11.
Gaging from a bridge (during a flood at left).
F i g . 3.12.
Measuring from a cableway.
the stage-discharge relation w i l l change either gradually or abruptly in response to such factors as aquatic growth, ice formation and release, erosion or deposition by floods, and other natural or man-made changes in the channel.
The
definition and application of rating curves require an understanding of stream hydraulics and considerable experience. Kennedy (1983).
S e e WYO (1980) or R a n t z
(1982). and
33
F i g . 3.13.
J e t b o a t equipped f o r gaging.
I ,Indicator
Sighting d e v i c e \
I
-
L
/"
and dial
L
I
F i g . 3.14. E q u i p m e n t f o r m e a s u r i n g by t h e m o v i n g - b o a t m e t h o d (From Smoot and Novak, 1969).
A stage-discharge
r e l a t i o n c a n be computed from a s u r v e y of t h e downstream
channel and e s t i m a t e s of channel roughness. backwater method,
The technique,
known a s t h e s t e p -
i s u s e f u l where t i m e does n o t p e r m i t o b t a i n i n g c u r r e n t - m e t e r
d i s c h a r g e measurements throughout t h e range of s t a g e , or where h i g h accuracy i s not required.
The method i s d e s c r i b e d i n many h y d r a u l i c t e x t s and by Davidian
(1984) and was v e r i f i e d for t h i s a p p l i c a t i o n by B a i l e y and Bay (1966).
34
Fig. 3.15
Stage-discharge relation (rating curve).
Streamflow records are sometimes needed on stream reaches affected by variable backwater.
T h e discharge past a section on such a reach is a function of
stage and the slope of the water surface through the reach.
A continuous stage
record at each end o f a reach is required to define the slope. analysis depends on the hydraulic conditions.
The method of
See W M O (1980) or Bantz (1982).
and Kennedy (1983) for rating curve theory and details of applications to various channel and flow conditions. 3.1.4
Discharge computation and the hydrograph
Given a continuous stage record or frequent stage observations, and a stagedischarge relation, the discharge can be computed for any particular time within the period of stage record.
Daily mean discharges are usually computed although
discharges at intervals of an hour or less are used to define the changes during a flood.
An annual s t r e a m f l o w record as published b y U S G S is s h o w n in F i g u r e
3.16. The daily mean discharges of Figure 3.16 the hydrograph shown in Figure 3.17. various events.
are plotted against time to produce
Hydrographs show how a stream responds to
An uncharacteristic pattern of a segment of a hydrograph may
indicate s o m e unnatural f l o w modification o r an error in the record or in t h e analysis on which the discharge record is based. Flood hydrographs are usually defined by discharges at short intervals, such as hourly, and by the peak discharge. 3.1.5
Figure 3.18
is an example.
Special gaging methods
Variable backwater due to operation of a dam or other control on a stream may result, at times, in
SO
little fall in the r a t e r surface through a reach that
35
POTOMAC RIVER BASIN
183
01600000 NORTH BRANCH POTOMAC RIVER AT PINTO, MD Mineral County, W. Va., Hydrologic Unit 02070002, on right bank a r downLOCATION.--Lat 3 9 " 3 3 ' 5 9 " , long 78'50'25''. stream side of Western Maryland Railway bridge at Pinto, 2.8 m i ( 4 . 5 km) downstream from M i l l Run, and a t mile 3 2 . 6 (52.5 km). DRAINAGE AREA:-S96
mi'
(1.544
krn'). WATER-DISCHARGE RECORDS
PERIOD OF RECORD.~-October1 9 3 8 to current year REVISED RECORDS.--WSP 1332:
1943
GAGE.--Water~stagerecorder. Datum of gage is 648.23 ft (197.581 rn) National Geodetic YeTtxCal Datum of 1 9 1 9 . P r i o r to Dec. 10, 1938, "onrecording gage at highway bridge 2 5 0 ft (76 a) downstream at same datum. REMARKS.--Water-dischargerecords good except those for winter periods. uhxch are fair. Some regulation at low flow by Stony River Reservoir, 6 6 m i (106 km) above statxon ( s e e statxon Ol59S200), and since December 1950, by Savage River Reservoir, 25 "11 ( 4 0 ke) above Station ( s e e Station 0 1 5 9 7 5 0 0 ) . AVERAGE DISCHARGE.--41 years, 886 ft'ls
(25.09 m ' l s ) ,
20.19 inlyr (513 mnlyr), unadJusred.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 37,000 ft'ls (1,050 " ' I s ) Oct. 16, 1954. gage height, 23.23 ft (7.081 n); minimum, 31 ft'ls (0.88 m'ls) Dec. 18, 19, 1 9 4 3 , gage height, 1.37 fr (0.418 m), result of freereup. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 29. 1924, reached a stage of about 24 ft (7.3 m), discharge. Flood of Mar. 17 1936. reached a stage of about 23.5 ft (7.16 m). from about 5 5 , 0 0 0 ft3/s (1,560 m'/s). floodmarks, discharge, about 1 0 , 0 0 0 ft'lr ( 1 , 4 2 0 m i l s ) . EXTREMES FOR CURRENT YEAR.--Maximum discharge 1 2 800 ft'ls (362 r n ' l s ) Feb. 26. gage height, 13.28 ft ( 4 . 0 4 8 m ) ; minimum, 126 ft'ls (3.57 m'15) NO". 15. g a i e h;ight, 1.88 ft (0.573 m ) . D I S C H A R G E , I N CUSIC FEE7 PEH SECOND+ lb7ER 7 E b X OCTOBER I978 10 SEPTEUBER 1 9 7 9 UEbN VbLUES
011
OCT
NUV
OEC
JAN
FEB
MbH
1 2 3
171 172 111 165 113
111 170
695
603
6580
169 169
2410 3050
1750 3990 3870 2700
161 165 164
LO
114 171 169 168 172
164 163
2240 1500 15.0 3720 3050
11
171
1 63 164 167 165 152
179 184 183
250 618
1-3
1-1
I
5
6 7
8 9
16 17
169
1590
1180 1010
988 174 600 476 403
233 22* 206 270 260
115 406 911 $15 266
95.
1060
1140 1800 2890 22hO 1120 1630 1160 853
351 321 318
471
232 205 179
3180
908 835 790 155
1310 1180 1090
735 711 698 L I D ,a 1
739 897 1600
1000 1500 1100
8.09 280 1090 152
Fig. 3.16.
2550
151 159 181
3bO 350 370 390 450
2330
TOTAL l07AL
3550
147
1190
209 217 463 1090 678
1078 1919
152
1170
631 376 286 2b3 230
1990 2090 17.0 1260 918
3330 3050 2060 1760 2680
YR I7R VR
586
1560 1680 1500
255 231 224 226 213
CAL
I k70 1290 1130 981 893
2210
6350 5480
I73
MAX *IN
564
10400 7890
21
5501 171 242 161
SEP
217 188 112 161 157
36Y
2-9
TOT&L WEbN
bUG
319 250 2bl 298 1140
320 380
xrr
_--
JUL
1030 899 710 8* 1 169
1340 1230 2050 1990 1610
514
i.0
183
JUN
1250 1080 96. 1LhO 1540
318
566
554
165 169 235 242 20 1
UbY
888
2160 2010 2220 2650
!:
26 21 28 29 30 31
APT(
,200 6140 6330 9570
483
4BP
509
1930
352 343
.'tP
730
850 1900
2410
3360
2310 2100 2210
2180 5390 9280 11100 1550 5220
loso
1530 1310 1200 1010 832 969
52h7 1702 3120 514
51295 1655 3990 139
54139 1955 11100 320
2200 1610 959
1030
390628 414643
UEbN
MEAN
107% 1136
_-_ ___ ---
MAX
*AX
10700 11100
6610
2710 2350 2010 2150
1810
low
1430
1054 1044 931
'. Dz o1 e0
,TO L.-q
1010 Y36 819 1160 2720
663 660 895 753
1150 1580
15.
TO,
111
631
595
625 1210 3080
2200 2040 1830 1530 968 817
746 1530
---
3090 2160 1590 1570 1310 2100
99270 3202
39624 1321 26511 660
43416 1k01 3090 595
io4ao
871
M I N 131
*IN 1+7
1880
1490 14OP
CFSw 1.80 CFSM 1.91
49h 502
631
; ; ;
.*a
P'a:;
333
236 241 245 231 215
300 255 217 229 228
191 172 161 180 253
---
366 215 195 210 213 284
14661 489 1170 161
9828 311 1140 195
; ; :
217 191 180
I 64 157 19, 443
509 572 330
690
39b 311 292
167 663 688 135 124
604
369
>=D
336
368 LIT0 1250 973 839 196 129 752 800
280
---
8164 263 911 147
26953 898 3550 292
669
IN 24.38
I N 25.88
Published annual streamflow r e c o r d .
the f a l l cannot be measured c l o s e l y enough ( o r i s a f f e c t e d by wind) for use i n a stage-f a l l - d i s c h a r g e
relation.
Several a l t e r n a t i v e s a r e a v a i l a b l e .
36
Fig. 3.17.
I:
Hydrograph of daily discharges of Figure 3.16.
20,000
I
10,ooo
-
I
z
W'
U
40 [r
1 m -
cn n
lqIl 10050 50 21
Fig. 3.18. (i)
I
t
'I
23
"I
"
l
25
27
,
1
JUNE 1972
Flood hydrograph.
Deflection meter.
The simplest alternative is use of a deflection vane
set at a fixed position below the minimum stage and at a right angle to the current (Fig. 3.19).
The angular deflection of the vane is a function of the
velocity in the cross section, and the stream stage is related to the cross sectional area.
Deflection and stage are measured at the gage site and the
relation with discharge is based on current-meter measurements. The deflection vane is used in small channels having little change in stage. Both downstream and upstream flow can be measured so it is suitable for tidal
37
High tide7
Low tidei
River bottom-
F i g . 3.19
Deflection-meter vanes.
channels.
D i s c h a r g e s c o m p u t e d by t h i s m e t h o d a r e g e n e r a l l y of low a c c u r a c y ,
e s p e c i a l l y t h o s e n e a r zero. ( i i ) A c o u s t i c method.
V e l o c i t y a t some f i x e d l e v e l i n t h e s t r e a m i s ob-
t a i n e d by d e t e r m i n i n g t h e t r a v e l t i m e s of sound i m p u l s e s moving i n b o t h d i r e c t i o n s along a d i a g o n a l p a t h between t r a n s d u c e r s (sound g e n e r a t o r s o r r e c e i v e r s ) mounted n e a r e a c h bank. shown i n F i g u r e 3.20.
The l a y o u t of a n o p e r a t i n g s y s t e m on Columbia River i s The i n s t a l l a t i o n a n d o p e r a t i o n o f t h a t s y s t e m i s deC a l i b r a t i o n i s by c u r r e n t meter.
s c r i b e d b y S m i t h and o t h e r s (1971).
Laenen
and S m i t h ( 1 9 8 2 ) h a v e a s s e m b l e d p u b l i s h e d and u n p u b l i s h e d i n f o r m a t i o n on t h e o p e r a t i o n , a p p l i c a t i o n s , performance, and l i m i t a t i o n s of a c o u s t i c v e l o c i t y measurement s y s t e m s w i t h s p e c i f i c a p p l i c a t i o n s t o measurement of streamflow. ( i i i ) E l e c t r o m a g n e t i c method.
tromagnetic meter.
P o i n t v e l o c i t y can b e measured by a n elec-
Continuous r e c o r d s of v e l o c i t y a t one p o i n t i n a c r o s s
s e c t i o n and of t h e s t a g e can b e t r a n s f o r m e d i n t o a continuous d i s c h a r g e r e c o r d a f t e r c a l i b r a t i o n w i t h c u r r e n t - m e t e r measurements.
The r e l i a b i l i t y of t h e
computed d i s c h a r g e depends on how c l o s e l y t h e v e l o c i t y a t t h e one p o i n t repres e n t s mean v e l o c i t y through t h e range of d i s c h a r g e experienced a s w e l l as on t h e r e l i a b i l i t y of t h e p o i n t v e l o c i t i e s .
Such a n i n s t a l l a t i o n s h o u l d b e o f r e l a -
t i v e l y low c o s t b u t t h e e l e c t r o m a g n e t i c m e t e r i s a l w a y s s u b j e c t t o damage from
38
Fig. 3.20. 1971).
Layout o f an a c o u s t i c v e l o c i t y measuring system (Smith and o t h e r s ,
d e b r i s i f i t i s s u i t a b l y located.
Lack of s t a b i l i t y of t h e m e t e r c a l i b r a t i o n i s
a l s o a problem. Green and Herschy (1978) d e s c r i b e an e l e c t r o m a g n e t i c g a g i i g s t a t i o n based on t h e total-flow
e l e c t r o m a g n e t i c method.
T h i s a p p l i c a t i o n i s s t i l l under develop-
ment. (iv)
D i l u t i o n methods.
D i l u t i o n methods o f measuring s t r e a m d i s c h a r g e a r e
u s e f u l under flow c o n d i t i o n s t h a t e x i s t i n s h a l l o w , Current-meter
e x t r e m e l y rough channels.
measurements a r e g e n e r a l l y q u i c k e r and more r e l i a b l e a t a l l b u t
extremely unfavorable s i t e s . The f i e l d p r o c e d u r e i n v o l v e s i n j e c t i n g a t r a c e r of g i v e n c o n c e n t r a t i o n i n t o a s t r e a m and sampling t h e c o n c e n t r a t i o n downstream where t h e t r a c e r i s c o m p l e t e l y mixed w i t h t h e w a t e r .
The t r a c e r may b e i n j e c t e d a s a s l u g o r a t a c o n s t a n t
rate.
U s e f u l t r a c e r s i n c l u d e s a l t s , r a d i o a c t i v e m a t e r i a l s , and f l u o r e s c e n t
dyes.
The method r e q u i r e s s k i l l e d o p e r a t o r s , c o n s i d e r a b l e t i m e ,
and a c o n s t a n t
discharge. Stream d i s c h a r g e for c o n s t a n t - r a t e Q =
injection is
c1 - c2 c -cb
2 where q i s t h e t r a c e r i n j e c t i o n r a t e and cb,
c1
and C2 a r e c o n c e n t r a t i o n s of t h e
39 stream a t t h e i n j e c t i o n p o i n t , of t h e i n j e c t e d t r a c e r , and of t h e s t r e a m a t t h e downstream c r o s s s e c t i o n r e s p e c t i v e l y .
See White (1978) or K i l p a t r i c k and Cobb
(1984) f o r d e t a i l s . 3.1.6
I n d i r e c t measurements
I t i s o f t e n i m p o s s i b l e t o measure f l o o d d i s c h a r g e s a t p a r t i c u l a r t i m e s because o f l a c k of a c c e s s t o t h e s i t e , s h o r t a g e of manpower, o r i n a d e q u a t e advance n o t i c e of t h e flood.
Engineers have t h e r e f o r e d e v i s e d methods of computing peak
d i s c h a r g e a f t e r t h e passage of t h e f l o o d : t h e common ones a r e slope-area, tracted-opening,
flow-over-dam,
and flo w -th rongh- cul ver t .
con-
These methods a r e
b a s e d on h y d r a u l i c e q u a t i o n s t h a t r e l a t e t h e d i s c h a r g e t o t h e w a t e r - s u r f a c e p r o f i l e , t h e geometry of t h e channel, and t h e channel roughness.
These measure-
ments may be e x p e n s i v e and t h e y a r e l e s s a c c u r a t e t h a n c u r r e n t - m e t e r
measure-
ment s. The s l o p e - a r e a m e t h o d i s t h e m o s t w i d e l y u s e d .
An i d e a l s i t e i s a r e a c h o f
u n i f o r m c h a n n e l on w h i c h t h e f l o o d p e a k p r o f i l e i s d e f i n e d on b o t h b a n k s by high-water
marks.
Surveys o f t h e s e p r o f i l e s and o f channel c r o s s s e c t i o n s ,
and
e s t i m a t e s o f t h e r o u g h n e s s c o e f f i c i e n t i n t h e Manning e q u a t i o n a r e r e q u i r e d . F i e l d e x p e r i e n c e i n s e l e c t i n g roughness c o e f f i c i e n t s i s d e s i r a b l e b u t guidance can be o b t a i n e d from t h e photographs i n t h e r e p o r t by Barnes (1967). I n d i r e c t methods a r e d e s c r i b e d by Barnes and Davidian (1978).
Users g u i d e s
t o t h e v a r i o u s t e c h n i q u e s a r e g i v e n by D a l r y m p l e and Benson (1967). B o d h a i n e (1968).
M a t t h a i (1968).
and Hulsing (1968).
Common t o a l l t h e s e methods i s t h e need t o s e l e c t t h e roughness c o e f f i c i e n t subjectively.
The roughness c o e f f i c i e n t o f a n a t u r a l channel i s a f u n c t i o n of
bed roughness,
bank i r r e g u l a r i t y ,
e f f e c t of v e g e t a t i o n ( i f any), d e p t h o f w a t e r ,
c h a n n e l s l o p e , and o t h e r f a c t o r s .
No o b j e c t i v e way o f c o m b i n i n g a l l t h e s e
e f f e c t s i n t o one c o e f f i c i e n t i s a v a i l a b l e .
F u r t h e r m o r e t h e v e r i f i e d v a l u e of a
roughness c o e f f i c i e n t f o r a p a r t i c u l a r channel r e a c h and f l o o d i s a f f e c t e d by i n a c c u r a c i e s i n measuring o t h e r v a r i a b l e s i n t h e Manning e q u a t i o n ; t h i s r e s u l t s i n some a p p a r e n t i n c o n s i s t e n c i e s among v e r i f i e d r o u g h n e s s c o e f f i c i e n t s . avoid t h i s s u b j e c t i v i t y .
Riggs (1976) developed a s i m p l i f i e d s l o p e - a r e a
To
method
i n w h i c h d i s c h a r g e i s r e l a t e d t o c r o s s - s e c t i o n a l a r e a and t o w a t e r - s u r f a c e slope.
A roughness c o e f f i c i e n t i s n o t used because, i n n a t u r a l channels, roughThe e q u a t i o n i s
n e s s and s l o p e a r e r e l a t e d . l o g Q = 0.366
+
1.33 log A
+
0.05 l o g S
-
0.056 ( l o g S ) *
w h e r e Q i s i n c f s , A i s a v e r a g e c r o s s s e c t i o n a l a r e a i n s q u a r e f e e t , and S i s d i m e n s i o n l e s s s l o p e of t h e w a t e r s u r f a c e through t h e reach. Mud f l o w s or d e b r i s f l o w s i n s m a l l ,
steep-gradient
channels leave physical
e v i d e n c e t h a t may b e m i s i n t e r p r e t e d a s i n d i c a t i n g t h e p a s s a g e o f a f l o o d .
A
40
flood-peak d i s c h a r g e computed fro m s u ch e v i d e n c e m i g h t b e e x t r e m e l y l a r g e , p o s s i b l y g r e a t e r t h a n t h e p o t e n t i a l f o r t h e b a s i n o r region.
Costa and J a r r e t t
(1981) d e s c r i b e how t o make t h e p r o p e r i n t e r p r e t a t i o n of t h e evidence. 3.1.7
Crest-stage
gaging s t a t i o n s
A c r e s t - s t a g e gaging s t a t i o n p r o v i d e s a r e c o r d of peak s t a g e s and t h e c o r r e s I t s purpose i s t o p r o v i d e d a t a f o r d e f i n i n g t h e
ponding d i s c h a r g e s a t a s i t e . flood-peak
f r e q u e n c y c h a r a c t e r i s t i c s where t h e c o s t o f c o l l e c t i n g a c o n t i n u o u s
s t r e a m f l o w r e c o r d cannot b e j u s t i f i e d .
A crest-stage
gage u s u a l l y c o n s i s t s of a 2-inch
t h e s t r e a m bank.
p i p e mounted v e r t i c a l l y on
The p i p e i s c a p p e d a t b o t h e n d s and c o n t a i n s a wooden s t a f f .
and i n t h e bottom cap, some ground cork.
I n t a k e h o l e s i n t h e bottom cap, and an
a i r h o l e i n t h e top cap, p e r m i t w a t e r t o e n t e r t h e p i p e a s t h e s t r e a m r i s e s . The c o r k f l o a t s on t h e w a t e r and some o f i t s t i c k s t o t h e s t a f f a t t h e c r e s t stage.
The gage i s i n s p e c t e d p e r i o d i c a l l y t o r e c o r d t h e c r e s t s t a g e ,
the staff,
t o clean
and t o r e p l e n i s h t h e cork.
Crest-stage
gages a r e u s u a l l y l o c a t e d where a s t a g e - d i s c h a r g e
computed from channel c h a r a c t e r i s t i c s , a r e a c h s u i t a b l e f o r step-backwater
r e l a t i o n can be
u s u a l l y above a b r i d g e o r c u l v e r t ,
analysis.
F i g u r e 3.21
o r on
shows a c r e s t - s t a g e
gage i n s t a l l a t i o n on a n ephemeral s t r e a m i n South Dakota. Data produced by c r e s t - s t a g e
gaging s t a t i o n s u s u a l l y a r e l i m i t e d t o t h e
maximum s t a g e and d i s c h a r g e e a c h y e a r , a l t h o u g h a d d i t i o n a l p e a k s may b e r e corded. 3.1.8
Time of t r a v e l
Time of t r a v e l i s u s u a l l y c o n s i d e r e d t h e mean t r a v e l t i m e of w a t e r p a r t i c l e s f l o w i n g from one c r o s s s e c t i o n t o a n o t h e r , a t a g i v e n d i s c h a r g e .
I t i s much
l o n g e r t h a n t h e t i m e r e q u i r e d f o r a f l o o d wave t o p a s s t h r o u g h t h e same reach. E s t i m a t e s o f t h e r a t e o f movement o f w a t e r b o r n e p a r t i c l e s i n s t r e a m s a r e needed f o r d e f i n i n g t h e w a s t e - a s s i m i l a t i v e
c a p a c i t i e s of s t r e a m s and t o f o r e c a s t
t h e movement of a s l u g of contaminant such a s might r e s u l t from a n a c c i d e n t a l spill. Various h y d r o l o g i c t r a c e r s such a s s a l t , have been used.
radioisotopes,
and f l u o r e s c e n t d y e s
The d y e Rhodamine WT i s a p o p u l a r t r a c e r .
It is injected
i n s t a n t a n e o u s l y a t a s t r e a m c r o s s s e c t i o n and t h e dye c o n c e n t r a t i o n is m o n i t o r e d a s t h e dye c l o u d p a s s e s each of a s e r i e s of c r o s s s e c t i o n s .
Dye c o n c e n t r a t i o n
i s measured by a f l u o r o m e t e r which i s s e n s i t i v e t o c o n c e n t r a t i o n s a s low a s 0.05 p a r t s per billion.
F i g u r e 3.22
shows t h e measured c o n c e n t r a t i o n a t f o u r p o i p t s
on t h e M i s s i s s i p p i R i v e r r e s u l t i n g f r o m t h e i n j e c t i o n o f d y e a t B a t o n Rouge. The maximum c o n c e n t r a t i o n d e c r e a s e s and t h e l o n g i t u d i n a l d i s p e r s i o n i n c r e a s e s w i t h d i s t a n c e downstream. l e a d i n g edge,
Time o f t r a v e l c a n b e e x p r e s s e d a s t i m e f o r t h e
t h e peak c o n c e n t r a t i o n , o r t h e l a s t d e t e c t a b l e dye t o p a s s a g i v e n
41
Fig. 3.21.
Crest-stage gage installation.
r B A T O N ROUGE
k
Q: 6700 M3/5EC.
I00 KM 147
20
KM
40 60 80 HOURS AFTER DYE RELEASE
202 KM (NEW ORLfANS)
100
I
Fig. 3.22. Distribution of dye concentration with time at midstream sampling points, Mississippi River, Louisiana, September, 1965 (From Wilson, 1968).
42 point.
A l l t h r e e t i m e s may b e n e e d e d f o r some p r o b l e m s .
D e t a i l s of time-of-
t r a v e l m e a s u r e m e n t s a r e g i v e n b y Hubbard a n d o t h e r s (1982).
See a l s o White
(1978) on d i l u t i o n gauging. t r a v e l i s g r e a t l y increased a s stream discharge i s decreased.
Time o f
Buchanan (1964) showed t h a t t r i p l i n g t h e d i s c h a r g e of Swatara Creek, Pa. reduced t h e t r a v e l t i m e about h a l f . r e a c h of S t .
Mary's
River,
T a b l e 3.1 s h o w s t r a v e l t i m e s t h r o u g h a 14.4 m i Indiana f o r a range i n discharge,
a s given by
Eikenberry and Davis (1976). TABLE 3 . l T r a v e l time v e r s u s d i s c h a r g e Discharge
T r a v e l time ( h o u r s )
cfs
% mean
22 120 620 810 1220
4.6 25 130 170 255
3.1.9
l e a d i n g edge
peak 1 30 40 .O 16.8 14.8 12 .o
105 33 .o 13.8 12.0 10.8
Sediment t r a n s p o r t
Sediment-laden
w a t e r i s n o t o n l y u n s u i t a b l e f o r many u s e s w i t h o u t t r e a t m e n t ,
b u t i t a l s o d e p o s i t s s e d i m e n t i n c h a n n e l s , c a n a l s , and r e s e r v o i r s .
Thus, de-
s i g n e r s and o p e r a t o r s of w a t e r p r o j e c t s need i n f o r m a t i o n on t h e amounts and t i m e d i s t r i b u t i o n of sediment t r a n s p o r t e d so a s t o minimize t h e d e t r i m e n t a l e f f e c t s . Sediment i s t r a n s p o r t e d by a s t r e a m a s suspended sediment, which i s c o n t i n u a l l y i n suspension, and a s bed l o a d which moves by r o l l i n g , ing along t h e bottom.
sliding,
or bound-
The a m o u n t o f s e d i m e n t b e i n g t r a n s p o r t e d i s h i g h e s t
d u r i n g a p e r i o d of f l o o d r u n o f f because of t h e e r o s i o n produced by t h e c a u s a t i v e r a i n f a l l and because of t h e h i g h e r v e l o c i t i e s and t u r b u l e n c e i n t h e channels.
A sediment-discharge
measurement,
and a c o n c u r r e n t w a t e r - d i s c h a r g e
ment, p r o d u c e d a t a from w h i ch t h e f o l l o w i n g c a n be o b t a i n e d :
measure-
mean s u s p e n d e d
s e d i m e n t c o n c e n t r a t i o n , p a r t i c l e s i z e d i s t r i b u t i o n , s p e c i f i c g r a v i t y of t h e suspended sediment, t e m p e r a t u r e of t h e sediment-water m i x t u r e , w a t e r d i s c h a r g e , and t h e d i s t r i b u t i o n of flow i n t h e s t r e a m c r o s s s e c t i o n .
In a sediment-discharge
measurement water-sediment
selected v e r t i c a l s i n the cross section.
samples a r e c o l l e c t e d a t
The s a m p l e a t e a c h v e r t i c a l i s ob-
t a i n e d a s t h e s a m p l e r (Fig. 3.23) i s lowered t o t h e streambed and r a i s e d t o t h e s u r f a c e a t a uniform r a t e or, a l t e r n a t i v e l y , by c o l l e c t i n g samples a t s e l e c t e d points in the vertical. water-discharge
Laboratory analyses of t h e samples a r e used w i t h t h e
measurement t o p r o d u c e t h e d e s i r e d i n f o r m a t i o n .
g i v e n by Vanoni (1975, p. 317-349)
On s m a l l ,
Details are
and by Guy and Norman (1976)
f l a s h y streams n e a r l y a l l t h e sediment i s transported during t h e
s h o r t p e r i o d s of h i g h d i s c h a r g e .
Because t h e s e f l o o d p e r i o d s a r e r a r e l y known
43
F i g . 3.23.
Sediment sampler.
i n advance, a u t o m a t i c sampling equipment h a s been developed.
T h i s may b e a
s e r i e s of c o n t a i n e r s a t d i f f e r e n t e l e v a t i o n s f o r c a t c h i n g samples a s t h e s t r e a m r i s e s , or a pumping s a m p l e r p r o g r a m m e d t o t a k e s a m p l e s a t s e l e c t e d i n t e r v a l s according t o stream stage. Records o f sediment d i s c h a r g e o v e r a c o n s i d e r a b l e p e r i o d o f t i m e a r e needed t o d e f i n e i t s v a r i a t i o n w i t h s t r e a m f l o w and w i t h seasons, and t o d e f i n e t h e mean annual l o a d of sediment t r a n s p o r t e d .
If a d a i l y r e c o r d i s d e s i r e d , one or more d e p t h - i n t e g r a t e d
samples a r e t a k e n
e a c h d a y a t one v e r t i c a l : t n e s e a r e s u p p l e m e n t e d by p e r i o d i c , m o r e - d e t a i l e d suspended-sediment
measurements.
The d a i l y measured c o n c e n t r a t i o n s a r e p l o t t e d
on a c h a r t of gage h e i g h t a g a i n s t t i m e ( u s u a l l y t h e one from t h e analog r e c o r d e r a t t h e stream-gaging
s t a t i o n ) and t h e graph of s e d i m e n t c o n c e n t r a t i o n i s drawn
between observed p o i n t s u s i n g t h e s t a g e graph a s a guide. t i o n graph and t h e s t r e a m f l o w record, ( P o r t e r f i e l d , 1972).
From t h e concentra-
t h e d a i l y sediment l o a d can be computed
P a r t o f a p u b l i s h e d s e d i m e n t r e c o r d i s shown i n F i g u r e
3.24. The t o t a l suspended sediment l o a d f o r a y e a r c a n be approximated from occas i o n a l s e d i m e n t measurements by u s e of a s e d i m e n t - t r a n s p o r t d u r a t i o n curve.
curve and a flow-
The f o r m e r i s a p l o t o f s e d i m e n t d i s c h a r g e a g a i n s t s t r e a m
d i s c h a r g e ( F i g . 3.25) and t h e l a t t e r s h o w s t h e d i s t r i b u t i o n o f d a i l y s t r e a m d i s c h a r g e s during t h e y e a r (Chapter 5 ) .
The d u r a t i o n c u r v e i s d i v i d e d i n t o
i n t e r v a l s of t i m e and t h e mean d i s c h a r g e f o r e a c h i n t e r v a l i s determined.
This
d i s c h a r g e i s used t o d e f i n e t h e sediment t r a n s p o r t f o r t h a t i n t e r v a l of time. The a n n u a l s e d i m e n t d i s c h a r g e i s t h e sum f o r a l l o f t h e i n t e r v a l s . (1963) and,
f o r a n example,
See C o l b y
Simmons (1976).
The m e a s u r e m e n t s and t h e c o m p u t e d s e d i m e n t l o a d s d e s c r i b e d a b o v e a r e o f suspended sediment.
T o t a l sediment l o a d i n c l u d e s t h e bed l o a d which i s u s u a l l y
44
11477000 SUSPENDED-SEDIMENT
EEL RIVER AT SCOTIA, CA--Continued
OlSCtlAHGE ITONS/OAY), WATER YEAR 0CTlJt)ER 1979 TO SCPTEM~CF? 1980
OCTOBER
DAY
I
L
3
4
5 b
7
8
9
10
11
12 1>
ICFSL
106
1
I
.25 .50
.50 .5L -76 .78 .7e
98 96 99
3 3 3 3 3
21 22 23 24 25
2400 2540 2e20
2
3 3 3
I21
1
2 2 5
20
85 68 125 234 1740
472U
23000 20600 6580 3700 2540 1930
1150 220 10
35 16
1610
16
---
75726
TOTAL
-26
2 2
133 156 169 348 984
30 31
.29 .27
93 94 94 V6 96
16 17 18 19
ZY
SEDIMENT DISCHARGE ITDNSIDAY)
I 1
100 96 91 93
123
26 27 28
COiCENTRATlDN IYGILJ
DISCHARGE
1* 15
20
NOVEMBER
ME.M
MEAN
Fig. 3.24. computed,
.18 .18
.no
1.0 .9e -36 .e4 .91 4.7 53 624
b66
952 3630 122000 64000
3910 699 240 83 70
196743.1
MEAN DISCHARGE ICFSJ
MEAN CONCEN-
TRATION
1370 1340 SO50 11200 9270 14000
29000 15700 8960 6130
IMGILl
e
5220
20300
I2
33509 10400U 116U
3150 2900 2600 2500 2310
4s 24 16
563 237 131
2150 2020 1910
271
6890 lO8OOU 2140U 5230 2050
1 b50
1580 1540 1920 2860
95Y 5370 67800 28000
4540 8290 7980 30300 37600
220
6ezou
25700 15900 11300
355 215 105
lllU
9660 38300
218
536503
254350
14400
339u
7s 6L
11 LO
1160
55
359090
52 55 30 22 17
646 1260 340 I40 10
6460
--_
6180 5290 4550 3940 3440
12100 6010
12100 e440
26800 19000 12800 9510 7+m0
33
6510
tCF5l
MEAN CONCENIRATION IMGILL
MEAN DISCHARGE
400 240
390 160 90
7340 z&eoo 19500 25500
SCDIMLNT
DISCHAHGE ITONS/UAV)
30
9 196
4630 3660 3040 2610 22eo 34700
DtCEMBER
174
910 502 560
m600
643
151ou
295 150 94 55
518U
_--
24IU
--_-_
10 14
e
234
158 102 7s
101
e
46
e 5
4 5 4
10
38 I27 320 916 741
60
8680
e6e
786 369
54 62
6
1730
ITON51DAY)
10
b
ieoo
StO 1MEN1 DISCHARGE
1310
---
33 31 39 23
in
21 I7 52 293
inso
7160 4740 14500
iseoo
24600 9230 3100
1410 7070
144000
366945
Published sediment record. o r i s e s t i m a t e d a s a p e r c e n t a g e of t h e suspended load.
of bed load g e n e r a l l y a r e n o t r e l i a b l e .
Measurements
See Vanoni (1975).
I f a stseam f l o w s through a r e s e r v o i r most of t h e sediment w i l l b e t r a p p e d i n the reservoir.
The volume of m a t e r i a l d e p o s i t e d and i t s volume-weight
d e t e r m i n e d b y s u r v e y s a t i n t e r v a l s of s e v e r a l y e a r s.
can be
Of c o u r s e t h e r e s e r v o i r
outflow w i l l c o n t a i n some suspended m a t e r i a l ; t h u s t h e t o t a l i n f l o w load w i l l b e somewhat g r e a t e r than t h a t measured i n t h e r e s e r v o i r .
F i e l d measurement tech-
n i q u e s t o d e t e r m i n e t h e volume occupied by s e d i m e n t s d e p o s i t e d i n a r e s e r v o i r a r e d e s c r i b e d i n Vanoni (1975, p. 349-382).
Runoff and sediment y i e l d of ephe-
m e r a l s t r e a m s c a n b e o b t a i n e d f r o m d a t a c o l l e c t e d a t s m a l l r e s e r v o i r s a s des c r i b e d by P e t e r s o n (1962). 3.1.10
Chemical and b i o l o g i c a l q u a l i t y
Whether w a t e r i s c o n s i d e r e d of good or poor q u a l i t y depends on t h e use t o be made of it.
Drinking w a t e r should n o t c o n t a i n b a c t e r i a .
c e r t a i n m i n e r a l s , or d i s s o l v e d gases.
suspended m a t e r i a l s ,
Water f o r i r r i g a t i o n should c o n t a i n o n l y
45
100,000
I
I
I
40,000
10,000
4000
300 L 5000
I
10,000
I
I
20,000
50,000 100,000
DAILY MEAN WATER DISCHARGE, IN CFS
F i g . 3.25. Sediment-transport c u r v e f o r Sacramento R i v e r a t Sacramento. C a l i f o r n i a (From P o r t e r f i e l d , 1980). a l i m i t e d amount o f sodium and o f some o t h e r elements; and suspended sediment i s u n d e s i r a b l e because i t c l o g s t h e p i p e s and d i t c h e s . r e q u i r e w a t e r s o f v e r y s p e c i f i c c h e m i c a l content.
Some i n d u s t r i a l p r o c e s s e s Esthetically,
w a t e r i s con-
s i d e r e d good i f i t i s c l e a r ( h a s l i t t l e or no suspended or f l o a t i n g m a t e r i a l ) , h a s no c o l o r or odor, and s u p p o r t s f i s h and o t h e r b i o t a . Water q u a l i t y c a n be d e s c r i b e d i n two ways,
by i d e n t i f y i n g and q u a n t i f y i n g
the i n o r g a n i c and t h e o r g a n i c m a t e r i a l s i n t h e w a t e r , or by some measures o f t h e e f f e c t s of t h e s e m a t e r i a l s .
F o r example.
t h e c o n c e n t r a t i o n of d i s s o l v e d s o l i d s
is r e l a t e d t o t h e e l e c t r i c a l conductance: t h e t y p e s o f d i s s o l v e d s o l i d s d e t e r mine t h e pH,
a measure of hydrogen-ion
a c t i v i t y ; and t h e c o n c e n t r a t i o n of d i s -
s o l v e d oxygen is an i n d i c a t i o n of t h e b i o c h e m i c a l c o n d i t i o n of t h e water.
These
t h r e e i n d i c a t o r s p l u s t e m p e r a t u r e c a n b e m e a s u r e d i n t h e f i e l d a n d a r e good g e n e r a l measures o f w a t e r q u a l i t y .
But f o r c e r t a i n u s e s one needs t o know t h e
k i n d s a n d c o n c e n t r a t i o n s of t h e v a r i o u s d i s s o l v e d e l e m e n t s in t h e r a t e r . and
46
whether dangerous b a c t e r i a l or c h e m i c a l p o l l u t a n t s a r e p r e s e n t .
This informa-
t i o n i s o b t a i n e d by l a b o r a t o r y a n a l y s e s of samples o f w a t e r from t h e stream. D e t e r m i n a t i o n of w a t e r q u a l i t y i s a d e t a i l e d and s p e c i a l i z e d o p e r a t i o n a s i n d i c a t e d by t h e wide range of p h y s i c a l , chemical, b i o l o g i c a l , and r a d i o c h e m i c a l i n f o r m a t i o n p u b l i s h e d i n t h e a n n u a l w a t e r - d a t a r e p o r t s of t h e USGS f o r t h e
A purpose of t h e s e
N a t i o n a l S t r e a m - Q u a l i t y A c c o u n t i n g (NASQUAN) s t a t i o n s . NASQUAN s t a t i o n s i s t o m o n i t o r changes i n w a t e r q u a l i t y ,
consequently s p e c i f i c
conductance,
concentration a r e re-
pH.
water temperature,
corded continuously.
and dissolved-oxygen
T h i s d e t a i l i s n o t n e c e s s a r y on n a t u r a l ( u n p o l l u t e d )
w a t e r s whose c h a r a c t e r d o e s n o t c h a n g e a p p r e c i a b l y f r o m y e a r t o y e a r .
Hem
(1972. p. 40-50) d e s c r i b e s how e n v i r o n m e n t a l i n f l u e n c e s a f f e c t n a t u r a l w a t e r qua1 i ty. Methods f o r c o l l e c t i n g and a n a l y z i n g w a t e r - q u a l i t y o f t h i s book.
d a t a a r e beyond t h e scope
S e e Hem ( 1 9 7 2 , p. 60-68) f o r g u i d e l i n e s o f s a m p l i n g ; S k o u g s t a d
(1979) f o r d e t e r m i n a t i o n of i n o r g a n i c s u b s t a n c e s : B a r n e t t and M a l l o r y (1971) f o r d e t e r m i n a t i o n o f m i n o r e l e m e n t s ; G o e r l i t z and Brown ( 1 9 7 2 ) f o r m e t h o d s f o r a n a l y s i s o f o r g a n i c s u b s t a n c e s ; Greeson and o t h e r s (1977) for methods f o r coll e c t i o n and a n a l y s i s of a q u a t i c b i o l o g i c a l Thatcher, J a n z e r .
and m i c r o b i o l o g i c a l s a m p l e s ;
and Edwards (1977) f o r methods f o r d e t e r m i n a t i o n of r a d i o a c -
t i v e s u b s t a n c e s i n w a t e r ; and Stevens,
Picke,
and Smoot (1975) f o r measurement
of water temperature.
WEATHER OBSERVATIONS
3.2
The p r i n c i p a l w e a t h e r o b s e r v a t i o n s o f concern t o h y d r o l o g i s t s a r e p r e c i p i t a t i o n , t e m p e r a t u r e . and e v a p o r a t i o n from w a t e r s u r f a c e s . 3.2.1
.
Precipitation
A t most m e t e o r o l o g i c a l s t a t i o n s , t h e p r e c i p i t a t i o n i s caught i n a can and t h e c a t c h measured d a i l y .
The N a t i o n a l Weather S e r v i c e 8-inch nonrecording gage i s
shown i n F i g u r e 3.26.
D e t a i l s o f t h e gage and i n s t r u c t i o n s f o r making observa-
t i o n s a r e g i v e n by t h e N a t i o n a l Weather S e r v i c e (NWS, 1972). t a t i o n i s snow, t h e gage c a t c h may n o t be r e p r e s e n t a t i v e .
When t h e p r e c i p i -
Then a sample of snow
o n t h e g r o u n d i s o b t a i n e d b y i n v e r t i n g t h e c a n and c u t t i n g a v e r t i c a l s a m p l e which i s m e l t e d t o d e t e r m i n e t h e w a t e r c o n t e n t . Recording p r e c i p i t a t i o n gages commonly weigh t h e c a t c h and r e c o r d t h e cumulat i v e c a t c h on a n a n a l o g c h a r t or a s p u n c h e s a t s e l e c t e d i n t e r v a l s on a p a p e r tape. Data from t h e s e gages a r e commonly t a b u l a t e d a t h o u r l y i n t e r v a l s ; c a t c h e s a t s h o r t e r i n t e r v a l s c a n be o b t a i n e d most r e a d i l y from t h e d i g i t a l t a p e , l i m i t e d of c o u r s e by t h e punch i n t e r v a l . The t i p p i n g - b u c k e t r a i n g a g e , commonly u s e d i n h y d r o l o g i c s t u d i e s , i s a c t u a t e d by s m a l l i n c r e m e n t s o f r a i n ( u s u a l l y 0.01 i n c h e s i n U.S.). ments a r e r e c o r d e d on an analog c h a r t .
The i n c r e -
41
F i g . 3.26.
N a t i o n a l Weather S e r v i c e n o n r e c o r d i n g r a i n gage.
I n remote areas, p r e c i p i t a t i o n i s caught i n s t o r a g e gages, 8-inch cans of c o n s i d e r a b l e depth.
The c a n s a r e charged w i t h c a l c i u m c h l o r i d e t o m e l t snow and
t o prevent severe freezing of the catch. e v a p o r a t i o n between o b s e r v a t i o n s .
O i l i s sometimes used t o reduce
The c a n i s u s u a l l y e l e v a t e d on a tower and
e q u i p p e d w i t h a s h i e l d to r e d u c e w i n d v e l o c i t y ( F i g . 3 . 2 7 ) . serviced a t i r r e g u l a r intervals,
Storage gages a r e
sometimes o n l y 3 o r 4 t i m e s a year.
Generally
o n l y s e a s o n a l o r annual p r e c i p i t a t i o n i s o b t a i n e d . The c a t c h o f a p r e c i p i t a t i o n g a g e d e p e n d s on i t s l o c a t i o n w i t h r e s p e c t t o trees, buildings,
and o t h e r o b s t r u c t i o n s .
A l o c a t i o n i s considered s a t i s f a c t o r y
i f t h e r e a r e no o b s t r u c t i o n s w i t h i n a n i n v e r t e d 45-degree However,
cone above t h e gage.
a gage l o c a t i o n may become u n s u i t a b l e because of t r e e growth o r b u i l d -
ing construction.
Gages on windy,
open a r e a s tend t o c a t c h t o o l i t t l e p r e c i p i -
tation. A l t h o u g h a p r e c i p i t a t i o n g a g e may c o l l e c t s a m p l e s r e p r e s e n t a t i v e o f t h e immediate l o c a l i t y ,
t h e r e c o r d a t t h e s i t e may n o t d e s c r i b e t h e p r e c i p i t a t i o n
p a t t e r n some d i s t a n c e away, e s p e c i a l l y i n mountainous country. N a t u r a l p r e c i p i t a t i o n may be a f f e c t e d by man's a c t i v i t i e s .
Smoke and o t h e r
a i r b o r n e e f f l u e n t s from i n d u s t r i a l a r e a s t e n d t o i n c r e a s e p r e c i p i t a t i o n downwind, and l a r g e urban a r e a s become h o t t e r than undeveloped a r e a s and induce more thunderstorms.
I n addition t o inadvertent modifications.
enhance p r e c i p i t a t i o n i n some regions.
3.2.2
c l o u d s a r e seeded t o
See Chapter .lo.
Evaporation from w a t e r s u r f a c e s
E v a p o r a t i o n i s commonly m e a s u r e d i n a n o p e n pan.
The w i d e l y - u s e d W e a t h e r
B u r e a u C l a s s A p a n i s 4 f t i n d i a m e t e r and 1 0 i n c h e s d e e p ( F i g . 3 . 2 8 ) .
It i s
48
Fig. 3 . 2 1 .
S t o r a g e r a i n gage w i t h s h i e l d .
F i g . 3.28.
Evaporation pan.
f i l l e d t o a d e p t h of 8 inches and t h e d e p t h i s measured d a i l y w i t h a hook gage. Evaporation i s t h e d i f f e r e n c e between r e a d i n g s , during the interval. refilled.
a d j u s t e d f o r any p r e c i p i t a t i o n
When t h e w a t e r l e v e l h a s r e c e d e d a n i n c h ,
t h e pan i s
An e v a p o r a t i o n s t a t i o n i n c l u d e s r a i n a n d t e m p e r a t u r e g a g e s . a n d
sometimes a n anemometer f o r measuring r i n d .
49 The r a t e o f e v a p o r a t i o n f r o m a p a n i s g r e a t e r t h a n t h a t f r o m a l a k e o r r e s e r v o i r because of t h e h e a t t r a n s f e r r e d t h r o u g h t h e pan w a l l s .
Although t h e
"pan c o e f f i c i e n t " t o a d j u s t annual pan e v a p o r a t i o n t o annual l a k e e v a p o r a t i o n i s c o n s i d e r e d t o b e a b o u t 0.7,
f o r s h o r t e r p e r i o d s i t v a r i e s c o n s i d e r a b l y and
cannot b e d e f i n e d re1 iably. O t h e r ways o f m e a s u r i n g w a t e r - s u r f a c e e n e r g y b u d g e t , and m a s s t r a n s f e r .
evaporation include w a t e r budget,
These methods r e q u i r e c o n s i d e r a b l e d a t a
c o l l e c t e d on a r e s e r v o i r f o r a y e a r or more. Water budget i s t h e s i m p l e s t . s t o r a g e a r e measured.
Inflow, outflow,
Water-surface
the o n l y unknown i n t h e water-budget
rainfall,
and change i n
e v a p o r a t i o n c a n be computed because i t i s equation.
R e l i a b i l i t y of t h e r e s u l t de-
p e n d s on t h e m a g n i t u d e of t h e e v a p o r a t i o n r e l a t i v e t o t h e m a g n i t u d e s o f t h e o t h e r e l e m e n t s : a s m a l l d i f f e r e n c e between two l a r g e numbers, some e r r o r ,
each s u b j e c t t o
tends t o be unreliable.
The e n e r g y - b u d g e t e q u a t i o n i n c l u d e s t h e e n e r g y i n p u t s a n d o u t p u t s , a l l o f which,
except evaporation,
c a n b e measured.
Data c o l l e c t i o n and a n a l y s i s a r e
d e s c r i b e d i n a c o m p r e h e n s i v e i n t e r a g e n c y p r o j e c t r e p o r t (U.S. Geol. S u r v e y , 1954). The m a s s - t r a n s f e r
E = Np ( e o
-
equation is
e,)
where E i s e v a p o r a t i o n , N i s t h e mass t r a n s f e r c o e f f i c i e n t .
p i s wind speed, and
eo and ea a r e s a t u r a t i o n vapor p r e s s u r e and a c t u a l vapor p r e s s u r e r e s p e c t i v e l y . M e a s u r e m e n t s o f w i n d s p e e d , and w a t e r and a i r t e m p e r a t u r e a r e r e q u i r e d .
The
c o e f f i c i e n t , N, m u s t b e d e r i v e d f r o m e v a p o r a t i o n m e a s u r e d b y a n o t h e r m e t h o d (See T u r n e r , 1966). 3.2.3
Temperature
D a i l y maximum and minimum a i r t e m p e r a t u r e s a r e o b t a i n e d a t many l o c a t i o n s by t h e N a t i o n a l Weather Service.
D e t a i l s of c o l l e c t i o n a r e g i v e n i n t h e i r Observ-
i n g Handbook No. 2 (NWS, 1 9 7 2 ) . 3.2.4
Snow accumulation
Snow f a l l i s r e p o r t e d a t w e a t h e r s t a t i o n s b u t t h e a c c u m u l a t i o n of snow on t h e ground o r d i n a r i l y is not.
Snow on t h e ground i s p o t e n t i a l r u n o f f which can be
f o r e c a s t i f t h e amount and c h a r a c t e r of t h e snowpack a r e known. t h e snowpack,
Measurement of
c a l l e d snow surveying, c o n s i s t s of measuring t h e d e p t h and w a t e r
c o n t e n t a t snow c o u r s e s ( F i g . 3.29).
A t u b e i s u s e d . t o e x t r a c t c o r e s of snow
f r o m t h e p a c k a t d e s i g n a t e d d i s t a n c e s a l o n g t h e l i n e m a r k i n g t h e snow c o u r s e . D e p t h is r e c o r d e d a t e a c h s a m p l i n g p o i n t and t h e c o r e i s w e i g h e d t o d e t e r m i n e t h e w a t e r c o n t e n t ( F i g . 3.30). D e p t h s and w a t e r c o n t e n t s a r e a v e r a g e d o v e r a l l
F i g . 3.29. Snow s u r v e y o r s a t a marker d e s i g n a t i n g o n e end o f a snow c o u r s e ( U . S . S o i l Conservation S e r v i c e ) .
Snow surveying: I n s e r t i n g t h e tube, reading t h e depth. and weighing F i g . 3.30. the tube w i t h the snow c o r e i n i t (U.S. S o i l Conservation S e r v i c e ) .
51 the sampling points to give the result.
Snow surveys are usually made near the
first of each of the spring months. In mountainous regions travel to a snow course by skis or snowshoes is time consuming;
if by helicopter the travel is expensive.
The number of visits can
be reduced by using a snow pressure pillow which is a flat flexible container filled with anti-freeze.
The pillow indicates the snow-water equivalent by the
pressure of the snow pack on the pillow.
Pressure readings are transmitted by
radio or satellite and transformed to water content by a previous calibration of the pillow (Ballison, 1981).
Soil Conservation Service (1972) describes snow-
surveying procedures in detail.
Use of snow survey results is described in
Chapter 11. 3.3
BASIN CHARACTERISTICS Knowledge of drainage basin characteristics is useful in understanding a
streamflow record and is a requirement in some methods of estimating flow c h a r acteristics at nngaged sites. Size of drainage area is the most common basin characteristic. basin is delineated on topographic maps and its area measured.
The drainage
In arid or
semiarid regions a major drainage basin may encompass an area which has no surface drainage; the contributing drainage area excludes that interior area. Drainage area may not be a good indicator of streamflow if the topographic and the ground-water divides are not coincident.
This disparity cannot be
easily quantified but its recognition will help to understand the measured flows or to estimate flows at ungaged sites. Basin topography influences runoff in several ways
-
steep slopes concentrate
the rainfall quickly and result in high flood discharges; flat slopes result in slow runoff, increased gronnd-water recharge, increased evapotranspiration, and consequently in decreased total runoff.
Basin topography is commonly quantified
by some approximation of the slope of the main channel.
An additional index is
the percentage of lakes and swamps in the basin. Vegetative cover can sometimes be quantified as the percentage of the area forested, or under cultivation.
In a natural basin, the vegetative cover de-
pends on climate and on soil characteristics. Soil characteristics determine the rate of infiltration of rainfall to the soil and thus affect the rate and amount of runoff.
The Soil Conservation
Service (1971) classifies each soil into one of four ranges according to infiltration rate. The geology of a basin affects the rate of runoff',
the losses or gains along
the channels, and especially the low-flow characteristics. Knowledge of the geology as i t affects the water resource may be very useful even though i t is only qualitative.
52 P r e c i p i t a t i o n usually i s considered a basin characteristic. p r e s s e d a s mean annual p r e c i p i t a t i o n ,
t h e 12-hour s t o r m p r e c i p i t a t i o n a t 50-year a p p r o p r i a t e t o a p a r t i c u l a r problem.
I t c a n b e ex-
some measure of s t o r m i n t e n s i t y such a s r e c u r r e n c e i n t e r v a l , or i n o t h e r ways
Likewise,
monthly mean t e m p e r a t u r e s a r e
b a s i n c h a r a c t e r i s t i c s in t h a t t h e y a r e i n d i c a t o r s of p o t e n t i a l e v a p o r a t i o n and t r a n s p i r a t i o n r a t e s and of whether p r e c i p i t a t i o n w i l l be snow and whether i c e w i l l form i n s t r e a m s .
Stream channel geometry,
esthetic character,
stability,
and s u i t a b i l i t y f o r
f i s h a n d w i l d l i f e h a b i t a t a r e useful d e s c r i p t o r s a l t h o u g h q u a n t i f i c a t i o n i s somewhat s u b j e c t i v e . 3.4
TRANSMISSION OF HYDROLOGIC DATA Conventionally, t h e s t a g e d a t a observed o r recorded a t a gaging s t a t i o n i s
o b t a i n e d when t h e hydrographer v i s i t s t h e s t a t i o n , a t monthly or l o n g e r i n t e r vals.
T h i s frequency of c o l l e c t i o n i s adequate i f t h e d a t a a r e t o be used f o r
w a t e r r e s o u r c e s t u d i e s or f o r p r o j e c t design.
But f o r w a t e r management p u r p o s e s
t h e d a t a may be needed immediately, or i n s o - c a l l e d " r e a l time."
B a s i c e l e m e n t s f o r a s a t e l l i t e d a t a - c o l l e c t i o n s y s t e m (From U.S. F i g . 3.31. Geological Survey). V a r i o u s s y s t e m s f o r t r a n s m i t t i n g d a t a d a i l y or m o r e f r e q u e n t l y u t i l i z e phone l i n e s o r r a d i o s .
Xn t h e l a s t few y e a r s automated s a t e l l i t e t e l e m e t r y h a s
become a p r a c t i c a l means of p r o v i d i n g water-data t i o n w i t h i n t h e t i m e frame needed.
u s e r s w i t h h y d r o l o g i c informa-
S a t e l l i t e data-collection
s y s t e m s use e a r t h -
o r b i t i n g s a t e l l i t e s t o r e l a y d a t a from c o l l e c t i o n s i t e s t o r e c e i v i n g s t a t i o n s . The system c o n s i s t s of s e n s o r s ,
small radios called data-collection
platforms.
53 satellites, earth receiving sites, and a data processing and distribution system.
See Shope and P a u l s o n (1981) and F l a n d e r s (1981).
T h e system is illus-
trated in Figure 3.31. REFERENCES Bailey, J.F. and Ray, H.A., 1966, Definition of stage-discharge relation in natural channels by step-backwater analysis: U.S. Geol. Survey Watersupply Paper 1869-A, 24 p. Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: Geol. Survey Water-Supply Paper 1849, 213 p. Barnes, H.H., Jr. and Davidian. J., 1978, Indirect methods Herschy, ed., New York. John Wiley and Sons.
U.S.
Hydrometry, R.W.
Barnett, P.R. and Mallory, E.C., Jr., 1971, D e t e r m i n a t i o n of m i n o r elements in w a t e r b y e m i s s i o n spectroscopy: U.S. Geol. Survey Techniques of WaterResources Investigations, Book 5, Chapter A2, 31 p. Bodhaine, G.L., 1968, M e a s u r e m e n t of p e a k discharge at culverts b y indirect methods: U.S. Geol. Survey Techniques of Water-Resources Investigations, B o o k 3, Chapter A3. 60 p. Buchanan, T.J., 1964, Time of travel of soluble contaminants in streams: of Sanitary Engineering Division, ASCE, Vol. 90. No. SA3, 12 p.
Jour.
Buchanan, T.J. and Somers, W.P., 1969, Discharge m e a s u r e m e n t s at gaging stations: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chapter A8, 6 5 p. Colby. B.R., 1963, P l u v i a l s e d i m e n t s - A s u m m a r y of source, transportation, deposition, and m e a s u r e m e n t of sediment discharge: U.S. Geol. Survey Bull e t i n 1181-A, 4 7 p. 1981, Debris f l o w s i n s m a l l m o u n t a i n stream Costa, J.E. and Jarrett, R.D., channels of Colorado and their hydrologic implications: Bulletin of the Assoc. of Engineering Geologists, Vol. xviii, No. 3, August 1981. Dalrymple, T. and Benson, M.A., 1967, M e a s u r e m e n t of p e a k discharge b y the slope-area method: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chapter A2, 12 p. Davidian, J., 1984, C o m p u t a t i o n of water-surface profiles: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chapt. Al5. 1976, A technique for estimating t i m e of Eikenberry, S.E. and Davis, L.G., travel of water in Indiana streams: U.S. Geol. Survey Water Resources Investigations 9-76. 3 9 p. Flanders, A.F., 1981, Hydrological data transmission: W o r l d Meteorological Organization, Operational Hydrology Report No. 14, WMO-No. 559, 3 4 p., Geneva, Switzerland. Goerlitz, D.F. and Brown, E., 1972, M e t h o d s for analysis of organic substances in water: U.S. Geol. Survey Techniques of Water-Resources Investigations, B o o k 5, Chapter A3, 40 p.
J Hydrometry, R.W. Green, M.J. and Herschy, R.W.. 1978, N e w methods & ed., Chichester, W, John Wiley and Sons.
Herschy,
Greeson, P.E.. Elke, T,A., Irwin. G.A., Lium, B.W., and Slack, K.V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geol. Survey Techniques o f W a t e r Resources Investigations, B o o k 5, Chapter A4, 3 3 2 p.
54 Guy, H.P. and Norman, V.W.. 1976, Field methods for measurement of fluvial sediment: U.S. Geol. Survey Techniques of Wa t er-Resources Investigations, Book 3. Chapter C2, 5 9 p. Hem. J.D.. 1972. Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, Second Edition, 363 p. Hubbard. E.F.. Kilpatrick, F.A., Martens, L.A.. and Wilson, J.F.. Jr., 1982, Measurement of time of travel and dispersion in streams by dye tracing: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3. Chapt. A9. 44 p. Hulsing. H., 1968, Measurement of peak discharge at dams by indirect methods: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chapter A5. 29 p. Kennedy, E.J., 1983. Discharge ratings at gaging stations: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chapt. A10. Kilpatrick. F.A. and Cobb. E.D.. 1984. Measurement of discharge using tracers: U . S . Geol. Survey Open-File Rept. 84-136, 73 p. Laenen, A. and Smith, W., 1982. Acoustic systems for the measurement of streamflow: U.S. Geol. Survey Open-File Rept. 82-329, 45 p. Matthai. H.F.. 1968, Measurement of peak discharge a t width contractions by indirect methods: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chapter A4. 44 p. NWS,
1972, Substation observations, National Weather Service Observing Handbook No. 2: National Weather Service, Data Aquisition Division, Office of Meteorological Operations, Silver Spring, Md.
Peterson, H.V.. 1962. Hydrology of small watersheds in western States: Geol. Survey Water Supply Paper 1475-1, 137 p.
U.S.
Porterfield, G., 1972. Computation of fluvial-sediment discharge: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3 . Chapter C3. 66 P. Rallison. R.E.. 1981, Automated system for collecting snow and related hydrological data in mountains of western United States: Hydrological Sciences Bulletin, Vol. 26, No. 1, March 1981, p 83-89. Rantz, S.E.. 1982. Measurement and computation of streamflow: U.S. Water-Supply Paper 2175. 631 p.
Geol. Survey
Riggs. H.C., 1976, A simplified slope-area method for estimating flood discharges in natural channels: U.S. Geol. Survey Jour. of Research, 4 (3). p 285-291. Shope. W.G. and Paulson, R.W., 1981, Data collection via satellite for water management: Transportation Engineering Journal, ASCE, Vol. 107, No. TE4, July 1981. p 445-455. Simmons, C.E., 1976. Sediment characteristics of streams in the eastern Piedmont and western Coastal Plain regions of North Carolina: U.S. Geol. Survey Water-Supply Paper 1798-0. p 10-14. Skougstad. M.W.. Ed., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 5 . Chapter Al. 626 p. Smith, W., Hubbard, L.L.. and Laenen. A., 1971, The acoustic streamflow-measuring system on Columbia River at The Dalles. Oregon: U.S. Geol. Survey OpenFile Report, Portland, Oregon.
55 Smoot, G.F. and Novak, C.E.. 1969, M e a s u r e m e n t of discharge b y the moving-boat method: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chapter All, 2 2 p. Soil Conservation Service, 1971, Hydrology, SCS National Engineering Handbook, Section 4: Soil Conservation Service, U.S. Dept. of Agriculture, Washington, D.C. Soil Conservation Service, 1972, Snow survey and water-supply forecasting: SCS National Engineering Handbook., Section 22, Soil Conservation Service. U.S. Dept. of Agriculture, Washington. D.C. Stevens. H.H.. Jr., Ficke, J.F., and Smoot. G.F., 1975. W a t e r temperature influential factors, field measurement. and data presentation: U.S. Geol. 65 Survey Techniques of Water-Resources Investigations, Book 1, Chapter D1, P. Thatcher. L.L., Janzer, V.J., and Edwards. K.W.. 1977. Methods for determination of radioactive substances in water and fluvial sediments: U.S. Geol. Survey 95 p. Techniques of Water-Resources Investigations, Book 5. Chapter AS, Turner, J.F., Jr., 1966, Evaporation study i n a h u m i d region, Lake Michie, North Carolina: U.S. Geol. Survey Prof. Paper 272-6. U.S.
Geological Survey, 1954. W a t e t l o s s investigations Volume 1 - Lake Hefner studies: U.S. Geol. Survey Prof. P a p e r 269.
Ed., 1975, Sedimentation engineering: Vanoni, V.A.. Practice, 745 p.
ASCE Manual of Engineering
White, K.E., 1978, Dilution methods & H y d r o m e t r y by R.W. Pork, John Wiley and Sons.
Herschy, Ed.:
New
Wilson, J.F., Jr.. 1968, Time of travel measurements and other applications of dye tracing: International Assoc. of Scientific Hydrology Publ. NO. 76, Bern. p 252-262. WMO, 1980, Manual on stream gauging: World Meteorological Organization Operational Hydrology Report No. 13. W M O - No. 519. Vol. 2, Geneva. Switzerland.