Chapter 32. Pharmaceutics, Pharmacokinetics and Biopharmaceutics

Chapter 32. Pharmaceutics, Pharmacokinetics and Biopharmaceutics

337 Chapter 32. Phannaceutics, Pharmacokinetics and Biophannaceutics Edward R. G a r r e t t and Oscar E. Araujo College of Pharmacy, University of ...

921KB Sizes 28 Downloads 321 Views

337

Chapter 32.

Phannaceutics, Pharmacokinetics and Biophannaceutics Edward R. G a r r e t t and Oscar E. Araujo College of Pharmacy, University of Florida, Gainesville, FL 32601

-

Introduction The a v a i l a b i l i t y of t h e drug from t h e dosage form depends on physical chemical f a c t o r s , chemical i n t e r a c t i o n s and a p r i o r i p r e d i c t i o n s and confirmations of r e l e a s e i n b i o l o g i c a l systems.

-

Drug Dissolution and Diffusion The importance of t h e r e l a t i o n s h i p between drug absorption and t h e r a t e processes of d i f f u s i o n and d i s s o l u t i o n has been w e l l established i n recent years. W. Higuchil has reviewed t h e lite r a t u r e and extracted t h e physical and mathematical treatments of drug transport. He considered t h e laws governing t h e d i s s o l u t i o n r a t e s of solids a s affected by a g i t a t i o n , p a r t i c l e s i z e , i n t e r a c t i o n with s o l u t i o n a d d i t i v e s and drug r e l e a s e r a t e s from matrices t h a t do and do not obey Fick's law. The d i f f u s i o n r a t e s of pentobarbital, s a l i c y l i c acid and urea across t h e i s o l a t e d r a b b i t mesentery i n d i c a t e d i f f u s i o n of both i o n i c and non-ionic forms of t h e drugs across t h e membrane. with no s i g n i f i c a n t change i n r a t e due t o pH2. Drug t r a n s p o r t through nonpolar l i q u i d s a s models of l i v i n g membranes indicated t h a t when t h e Hildebrand 6 value of t h e drug molecule apprcached t h a t of t h e l i p o i d a l b a r r i e r , t r a n s er of t h e drug molecule across and through t h e l i p o i d a l b a r r i e r was faster When aqueous d i f f u s i o n a l b a r r i e r s on each s i d e of t h e l i p o i d a l membrane a r e included, Fick's law does n o t f u l l y hold i n t h i s case of protonation of weak bases4. The t r a n s f e r of amidopyrine and s a l i c y l i c acid through an organic l i q u i d obeys t h e t h e o r e t i c a l equation proposed5. The formation of complexes can modify t h e r a t e of t r a n s f e r of drugs t rough such b a r r i e r s and demand modification of t h e d i f f u s i o n a l equations When micron-sized emulsion d r o p l e t s a c t as sinks f o r drug, equations were derived for m i c e l l a r s o l u b i l i z a t i o n t o t a k e i n t o account t h e possible e f f e c t s of an e l e c t r i c a l b a r r i e r between t h e micelle and t h e charged oil-water i n t e r f a c e .? Drug r e l e a s e from water i n o i l emulsions a s a function of pH i n t o an aqueous sink8 and with a separating membrane9 was studied and t h e experimental data agreed with the physical models suggested. I n order f o r i n v i t r o d i s s o l u t i o n s t u d i e s of poorly soluble drugs t o bear any r e l a t i o n s h i p t o & vivo observations, s i n k conditions must be maintained and t h i s can be s i m ulated by t h e presence of an organic solvent phaselo. The k i n e t i c s of simultaneous determinations of v i t r o drug d i s s o l u t i o n and p a r t i t i o n i n g r a t e s i n a s i n g l e system has been studied, a s affected by a g i t a t i o n and temperatwell. The e f f e c t of d i f f e r e n t polymorphic forms on t h e rate of d i s s o l u t i o n and subsequent absorption of a drug has been s h m t o be of extreme importance before recent governmental committees. Suspensions cont a i n i n g only chloramphenicol polymorph B gave s i g n i f i c a n t l y higher blood l e v e l s than suspensions containing only polymorph A, r e g a r d l e s s of p a r t i c l e

5.

2.

-

3 38 -

Sect. VI

-

Topics i n Chemistry

Smi s sman, Ed.

sizel2. The r a t e s of reversion of t h e metastable t o t h e s t a b l e f o n s duri n g d i s s o l u t i o n were c o r r e l a t e d t o t h e c r y s t a l growth r a t e s f o r polymorphs of s u l f a t h i a z o l e and methylprednisolone13. Solvents have a d i s t i n c t influence on t h e shape of c E s t a l s and can promote t h e formation of unstable polymorphic modifications

.

P a r t i c l e s i z e has a decided e f f e c t on t h e r a t e of d i s s o l u t i o n of drugs. Examples of t h e i n t e r r e l a t i o n of p a r t i c l e s i z e , s o l u b i l i t y , absorption and t h e r a p e u t i c a c t i v i t y i l l u s t r a t e t h e i r importance i n medicin a l s f o r o r a l , t o p i c a l or p a r e n t e r a l administrationl5. The angle of repose and s l i d i n g angles of sodium borate and b o r i c a c i d powders were calcul a t e d and it was found t h a t t h e cohesive f o r c e between t h e p a r t i c l e s i s n e g l i g i b l y small f o r p a r t i c l e diameters l a r g e r than t h e c r i t i c a l while it s i g n i f i c a n t l y influences t h e angle a t smaller diameterslg:ZeThe apparent s p e c i f i c volume of samples i n t h e l o o s e s t packing i s n e a r l y cons t a n t f o r sizes above t h e c r i t i c a l diameter, b u t it i n c r e a s e s gradually The an l e s with decreasing p a r t i c l e s i z e below t h e c r i t i c a l diameter1?. of repose were a p a r e n t l y lowered by t h e a d d i t i o n of t h e lubricantsl!. The Coulter counter 15 was used t o study t h e p a r t i c l e s i z e d i s t r i b u t i o n of vari o u s samples of griseofulvin. The considerable d i f f e r e n c e s which would a f f e c t s p e c i f i c s u r f a c e area and thus blood l e v e l s demanded s t r i c t e r o f f i c i a l specifications20. Dissolution test procedures which have not been c a l i b r a t e d on t h e b a s i s of i n vivo measurements a r e u n l i k e l y t o r e f l e c t t h e g a s t r o - i n t e s t i n a l absorption and may i n f a c t y i e l d misleading dataz1. I n t r i n s i c dissolution r a t e s varied con i d e r a b l y among t a b l e t s f o r aspirin22, sodium s a l i c y l a t e 2 3 and phenindione2', depending on t h e c r y s t a l l i n e form, compression and tabl e t technology. A new d i s s o l u t i o n apparatus permits 20 d i s s o l u t i o n t e s t s simultaneously and t h e r e s u l t s agree w e l l with standard procedures*S.

-

Drug I n t e r a c t i o n s The f i r s t order r a t e s of deaggregation abbetted by wett i n g and d i s p e r s i n g agents of a suspension o f a s u b s t i t u t e benzoic acid and i t s sodium s a l t c o r r e l a t e with t h e r a t e s of solution2 The t h e o r e t i c a l simultaneous r e l e a s e o f a mixture of two non-interacting drugs d i s persed i n an i n e r t p l a s t i c matrix was confirmed by s t u d i e s on a s a l i c y l i c acid-benzoic a c i d p l a s t i c mixture27. The v a l i d i t y of t h e model f o r t h e int e r a c t i n g system, benzocaine-caffeine, was also verified28. Surprisingly, t h e r e l e a s e of s a l i c y l i c a c i d from polyethylene matrices exhibited no r a t e i n c r e a s e i n t h e presence of increasing concentrations of d i b a s i c potassium phosphate even though t h e s o l u b i l i t y increased a s much a s 45 fold. The presence of a s u r f a c t a n t , however, produced a dramatic r a t e increase. The r e s u l t indicated t h a t matrix permeability and r a t e s of permeation by t h e solvent can r e s t r i c t drug r e l e a s e r a t e s a s a function of pore s i z e d i s t r i bution of t h e matrix and wetting p r o p e r t i e s of t h e solvent defined by surf a c e tension and contact angle29. The r e l e a s e of benzoic a c i d and salicyl i c acid i n t o aqueous media from wax matrices a r e b e s t analyzed from a d i f f u s i o n c o n t r o l l e d model and square r o o t of t i m e r e l e a s e profiles30. Over one range of composition t h e r a t e of r e l e a s e of a hydrogenated c a s t o r o i l propylene glycol monostearate-sulfanilamide i s d i f f u s i o n controlled, with high t o f t n o s i t y values. A t higher sulfanilamide concentrations i n t h e tabl e t . t h e r e l e a s e i s not d i f f u s i o n controlled31. Dissolution r a t e s of

2.

Chap. 32

Biopharmaceutic s

339 -

G a r r e t t , Araujo

hexestrol, d i e n e s t r o l and griseofulvin increased s i g n i f i c a n t l y i n t h e presence of l y ~ o l e c i t h i n 3a ~s they did f o r t e s t o s t e r o n e i n aqueous s o l u t i o n s of polysorbates33. I n general, increasing conc n t r a t i o n s of surface-active agents increase t h e d i s s o l u t i o n r a t e s of drugs3 Non-ionic surface a c t i v e agents i n t e r a c t with preservative, decrease t h e i r antimicrobial a c t i v i t y , and a f f e c t the over-all absorption of t h e medicaments35. Polysorbate 20 and a polyelec r o l y t e d i s p e r s a n t increased t h e r e l e a s e r a t e s of s o l i d s i n microcapsules3 Chemical, physical and morphological reasons for t h e permeation of various chemical s t r u c t u r e s through p l a s t i c m a t e r i a l s were postulated37. A s e r i e s of s t r u c t u r a l l y r e l a t e d aromatic compounds were studied f o r t h e i r a b i l i t y t o permeate through a polyethylene f i l m . Benzyl alcohol and benzo c acid had the lowest permeability due t o intermolecular hydrogen bonding3

8.

2. -

&.

The t h e o r e t i c a l bases for formulation of s t a b l e drugs Drug S t a b i l i t y depend upon knowledge of t h e k i n e t i c s of t h e thermal s o l v o l y s i s of t h e drug i n solution a s a function of pH, concentration and excipients. This sectt i o n considers recent fundamental contributions on t h e k i n e t i c s and mechrs on t h e k i n e t i c s and anisms of drug s t a b i l i t y . A series of review A complete and c r i t i s t a b i l i t y of drugs ha r e c e n t l y been published c a l review by GarrettE2 of t h e a v a i l a b l e l i t e r a t u r e up t o 1966 on k i n e t i c s and mechanisms i n t h e s t a b i l i t y of drugs is now available. The hydrolysis of undissociated a s i r i n i n buffered s o l u t i o n s of t h e non-ionic surfacta n t s , cetomacrogel$? and polysorbate 80N i s i n h i b i t e d due t o t h e p a r t i t i o n of, and t h u s t h e u n a v a i l a b i l i t y i n t r u e s o l u t i o n of, aspirin4?, A s p e c i f i c hydrogen ion catalyzed hydrolysis of t h e undissociated a s p i r i n p a r t i t i o n e d i n t o t h e micelles i s observed but i s of a smaller magnitude than i t s count e r p a r t i n t r u e solution. Dissociated a s p i r i n i s not p a r t i t i o n e d and shows o v e r a l l i n h i b i t i o n of s o l v o l y t i c r a t e i n t h e presence of t h e s u r f a c t a n t Cyclodextrin enhances t h e hydrolysis of a s p i r i n a t elevated H values The but i n h i b i t s t h e hydrolyses of e t h y l aminobenzoates and atropine 4F former i s ascribed t o t h e s t e r i c juxtaposition of ionized hydroxyl groups t o bound a s p i r i n whereas t h e l a t t e r i s ascribed t o inclusion henomena where t h e solution a v a i l a b i l i t y of t h e s u b s t r a t e s i s reduced'y. It was a l s o shown t h a t t h e s p e c i f i c hydroxyl ion catalyzed hydrolysis of benzocaine and homatropine i n t h e presence of nonionic surface-act e agents i s unaffected a t l e s s than t h e c r i t i c a l micelle concentration However, a t a concentration i n excess, t h e s t a b i l i t y i s enhanced due t o m i c e l l a r i n t e r a c t i o n or p a r t i t i o n . Fersht and Kirby47 have demonstrated t h a t t h e pH independent region f o r t h e s o l v o l y s i s of a s p i r i n i s due t o t h e f a c t t h a t t h e ionized carboxyl group a c t s a s a general base i n i t s a t t a c k on water t o form t h e hydroxyl ion t h a t a t t a c k s t h e ester, r a t h e r than t h e previously accepted mechanism of intramolecular nucleophilic a t t a c k on e ste r carboxyl carbon t h a t r e s u l t s i n a mixed anhydride. This occ).~gs when a s p i r i n i s s u b s t i t u t e d with highly e l e c t r o n withdrawing groups General base c a t a l y s i s by a c e t a t e and phosphate was a l s o demonstrated. The a t t a c k of nucleophiles on t h e ester group i s promoted by intramolecular e n e r a l acid c a t a l y s i s effected by t h e undissociated carboxylic acid group45 ,

fsm .

@g

.

.

ts.

.

Schwartz5', a s p a r t of a continuing and d e t a i l e d series on model cata l y s t s which simulate p e n i c i l l i n a s e has studied t h e mechanism of hydrolysis of p e n i c i l l i n catalyzed by catachol and t h e i r pH dependencies. The degra-

3 40

Sect. VI

-

Topics in Chemistry

Smi s sman, Ed.

dation of 6-aminopenici~1anic a c i d by s o l v o l y s i s of t h e B-lactam i s first order below pH 6.6 and tends toward second order with r e s p e c t t o s u b s t r a t e above t h i s valuefii. The pH of minimum s o l v o l y s i s i s 8.0. A concomitant reaction is dimerization through t h e nucleophilic a t t a c k of t h e amino group of one molecule t o t h e B-lactam of another t o form p e n i c i l l i n . The k i n e t i c s of a series of 3,b-dialkylsydnones were studied where t h e presence of ana-hydrogen i o n on t h e a l k y l s u b s t i t u e n t s tended t o s t a b i l i z e a g a i n s t hydrogen ion and water a t t a c k , probably by decreasing t h e concent r a t i o n of a r e a c t i v e intermediate with e q u i l i b r a t e d tautomeric f0ms5~. The rate-pH p r o f i l e nd Arrhenius' parameters have been determined f o r echothiophate iodide33 The k i n e t i c s show a pH independent s o l v o l y s i s with

.

(CH,),N+

- CH, - CH, - S - O(O)(O - C 2H 5) 2I-

t h e l o s s of one mole of ethanol and a s p e c i f i c hydroxyl ion a t t a c k on t h e S-P bond t o f i e l d ( 2-mercaptoethyl)-trimethylamonium iodide. Notari54 has s t a t e d t h a t t h e primary mechanism of hydrolytic deamination of cytosine arabinoside appears t o r e s u l t f r m t h e a t t a c k of t h e nucleophilic monoanion of a polybasic a c i d ( b i s u l f i t e , dihydrophosphate, etc.) with a r e a d i l y d i s s o c i a b l e proton on t h e activated C-6 p o s i t i o n of t h e protonated nucleoside, I, with subsequent s a t u r a t i o n a t t h e C-5 p o s i t i o n by t h e l a b i l e proton, 11. Subsequent nucleophilic displacement by H,O occurs a t C-4 with a l o s s of NH,. The products I1 and I11 a r e i s o l a b l e . Further alkal i n e treatment can regenerate t h e u r a c i l arabinoside

The hydrolytic r a t e s of various N-substituted 6-amino-thiouracils t o t h e corresponding 6-aminouracils were compared i n strongly a c i d i c and alkal i n e s o l u t i o n s and were enhanced over t h e unsubstituted compound55. A t high acid concentrations, t h e pH independent a t t a c k of water on t h e protonated species becomes rate-determining. The r a t e s of formation of hydroxymethylfurfural from f r u c t o s e and sucrose56, of f u r f u r a l from ribosefi7, and of t h e now i d e n t i f i e d 5-methyl-3( 2H)-furanone from 2-deoxy-D-ribo~e5~ have been characterized a s a function of temperature and acid concentration. The k i n e t i c s of degradation of these products hav en characterized a s a function of temperature and a l k a l i concentration5 Isoniazid shows an anerobic hydrogen ion catalyzed s o l v o l y s i s with s i g n i f i c a n t b u f f e r e f f e c t s t o i s o n i c o t i n i c acid t h a t can be assigned to'hydrogen ion a t t a c k on t h e monocation or water a t t a c k on t h e dication59. Certain s u l f a drugs such a s 2-sulfanylamido-~,5-dimethyloxazole and 3- sulfanylamido-2-phenyl-pyrazole a r e highly sugSeptible t o oxidative degradation through sulfanylurea t o sulfanylamide The i n t e r e s t i n g observation of an unusual acid-catalyzed s o l v o l y s i s of an anhydride was obse ved by Nestler and Seydel i n the case of t h e i s o n i c o t i n i c acid anhydridesgl. The k i n e t i c s of s o l v o l y s i s of 2ethylpyridine-4-carboxythioamide have been described. It undergoes solvent and s p e c i f i c acid catalyzed s o l v o l y s i s t o t h e corresponding carboxylamide and carboxyl, and i n a l k a l i forms both s t a b l e carboxylic acid

%-B.

.

Chap. 3 2

Biopharmaceutics

Garrett, Araujo

341 -

The r e a c t i o n of t h e food preservative, deand thiocarboxylic acid&. hydroacetic acid with amino compounds under i n v i t r o physiological condit i o n s has been studied i n e t h a n o l i c solutions. Schiff base formation a s a function of pH is maximal 3.pH 7 and i s c o n s i s t e n t with t h e c l a s s i c a l mechan sn of a t t a c k of undissociated amines on t h e protonated carbonyl The u s e of carbonate esters a s "prodrugs"which possess d e s i r a b l e carbon h3 pharmaceutical p r o p e r t i e s and can r e l e a s e pharm c o l o g i c a l l y a c t i v e compounds on hydrolysis i n vivo has been suggestedg4 and thus he study of t h e i r enzymatic hydrolysis of a-chymotrypsin was conducted 65 The r a t e s were proportional t o enzyme and s u b s t r a t e concentration where t h e former could b e saturated i n accordance with t y p i c a l Michaelis-Menten kinetics. A sigmoid pH-rate curve is obtained c h a r a c t e r i s t i c of an enzyme function of pKa2. There is a very r a p i d production of alcohol, Pi, and a subsequent s l o er r a t e when enzyme concentration, E, i s d e f i c i e n t . This can be explained 5 on t h e premise t h a t t h e regeneration of enzyme, E, along with t h e acyl moiety, P, from a p a r t i a l l y dissociated enzyme complex ES' becomes r a t e determining E + S m E S d P , + ES1-+P2 + E An apparatus f o r s o l u t i o n k i n e t i c s t o minimize l a g t m e f o r thermal equilThe maintenance i b r a t i o n and oxygen contamination has been describedk6 of constant spectrophotometric absorbance of an acid-base i n d i c a t o r while monitoring added acid-base r e a c t a n t has been pro osed and evaluated t o maintain constant pH i n t h e hydrolysis of esters 7.

.

.

2

.

%

--Pharmacokinetics and Biophannaceutics - The q u a n t i f i c a t i o n of t h e d i s t r i b u t i o n s of a c u t e doses of a drug and i t s metabolites i n t h e multicompartment-

a 1 complex organismand i t s r a t e s of metabolism and excretion a s functions of dose a r e necessary p r e r e q u i s i t e s f o r t h e determination of i t s b i o l o g i c a l a v a i l a b i l i t y f r o m dosage forms and depends on perturbations of t h e timecourse of observed d i s t r i b u t i v e patterns. The l i m i t a t i o n s of t h e simplifying hypothesis of a r a p i d l y e q u i l i b r a t i n g t o t a l volume of d i s t r i b u t i o n t o v a l i d l y estimate t h e first order r a t e constants f o r loss of drug f r o m t h e blood and for accumulation i n t h e u r i n e have r e c e n t l y been appreciated f3,69. Examples of t h e i n v a l i d i t y of t h i s hypothesis a r e referenced i n a discussion of t h e l i m i t i n g conditions for observing simple exponential loss of drug from t h e blood plasma7O. This simplifying p o s t u l a t e i s s t i l l used irst order appearance and i n computer programs f o r the simple model first order removal of drug frcm the bloodqf*'2 which permit determination of both r a t e constants even when they a r e of s i m i l a r magnitude72. Methods have been proposed73 f o r estimating f i r s t order r a t e constants of absorption, metabolite formation and o v e r a l l l o s s of drug from t h e body when t h e t i m e course f o r urinary excretion of a metabolite i s known and t h e r a t e constant f o r urinary excretion of t h e metabolite is available. Wagner74 has claimed t h a t evaluation of t h e time course of urinary excretion of metabolites on t h e assumption of rapid clearance may lead t o an erroneous conclusion of s a t u r a t i o n of metabolic pathways. H e a l s o s t a t e d t h a t t h e apparent l i n e a r i t y of a cumulative urinary excretion curve and/or t h e curvature of semilogarithmic p l o t s of drug blood l e v e l s or of amounts of drug-not-excreted a g a i n s t t i m e a r e i n s u f f i c i e n t evidences t o conclude zero order s t e p s i n metabolite production o r zero order absorption

342

Sect. VI

-

Topics in C h e m i s t r y

Smi s sman, Ed.

of a drug. He used data i n t h e l i t e r a t u r e on a s p i r i n phannacokinetics a s h i s examples. Levy75has claimed t h a t a d d i t i o n a l and strong evidence i s a v a i l a b l e f o r t h e pharmacokinetic model f o r s a l i c y l a t e elimination i n man which assumes capacity-limited o r zero order formation of s a l i c y l u r i c acid a t higher doses. If t h e time-course of drug l e v e l s i n t h e accessible compartments of t h e body i s c o r r e l a t e d with t h e time-course of pharmacological a c t i v i t y , i n s i g h t can be gained i n t o t h e p r o p e r t i e s of t h e compartment i n which reside t h e receptor s i t e ~ 7 ~ 9 ~Methatrimeprazine 6. levels i n t h e b r a i n were correlated with t h e onset and duration of pharmacologic e f f e c t s and implicated d i r e c t a c t i o n and d i s t r i b u t i o n of t h e parent compound The overt u r n time f o r goldfish and i t s duration were used a s a phannacologic endpoint f o r t h e a c t i o n of ethanol and pentobarbi a 1 and i s a function of body drug l e v e l s and r a t e of drug elimination 78

.

.

Urinary excretion studies79 have shown t h a t riboflavin-5 * -phosphate and r i b o f l a v i n a r e incompletely absorbed i n t h e upper region of t h e gastroi n t e s t i n a l t r a c t and t h e absorption sites appear t o be s a t u r a b l e since t h e percent recovery decreases with increasing o r a l dose. Enterohepatic cyc l i n g i s a l s o indicated. Probenecid i n h i b i t s t h e specialized t r a n s p o r t process responsible f o r the i n t e s t i n a l absorption of r i b o f l a v i n i n man and apparently i n h i b i t s t h e a c t i v e r e n a l tubular secretory process, thereby increasing t h e apparent blood l e v e l half-life80. Further work has been c a r r i e d out on t h e pharmacokinetic model f o r n a l i d i x i c acid i n man81. The blood l e v e l s on repeated dosing could be predicted from t h e pharmacokinetic model obtained from t h e study of an a c u t e dosage and demonstrated no satu r a t i o n o r induction e f f e c t s . The pharmacokinetics and metabolism of 5methylpyrazole-3-carboxylic acid has been studied i n the r a t , dog and human and no v a r i a t i o n s i n t h e pharmacokinetic parameters were observed on chronic dosing. The drug i s completely absorbed and r a p i d l y excreted with an a c i d i c conjugate a s a p a r t i a l metabolite i n t h e r a t and man82. The apparent h a l f - l i f e of diazoxide i n t h e blood of man was determined t o be 28* 8.3 hrs.83. Thiothixene i s w e l l absorbed, r a p i d l y d i s t r i b u t e d and rn tabolized t o products which a r e b i l i a r y e ~ c r e t e d 8 ~ .The absorption of l'b-labelled teroxalene H C 1 i n various species showed a l i n e a r r e l a t i o n t o o r a l dose and apparent f i r s t order elimination although l a r g e r e s i d u a l s were maintained i n adipose tissue85. The absorption, excretion and metabolism of dimethylsulfoxide has been studied i n man and un hanged drug and t h e metabolite dimethylsulfone a r e excreted i n t h e urinebg. Salicylamide i s eliminated a s t h e glucuronide and the s u l f a t e , t h e former decreasing w i t h increasing dose and t h e l a t t e r increasing and imply s a t u r a t i o n proc e ~ s e s ~Probenecid ~ . i n h i b i t s e f f l u x of 5-hydroxyindoleacetic acid from r a t b r a i n t o plasma i n steady-state k i n e t i c studies88. Rifampicin, a new rifamycin, has been pharmacokinetically studied a s t o absorption, d i f f u sion and elimination i n human&. The pharmacokinetics and metabolism of chlormezanone has been studied i n man and laboratory animals9O. p-Methoxycinnamate i s r a p i d l y absorbed i n r a b b i t s and is r a p i d l y metabolized t o p-metho~ybenzoate9~. Blood l e v e l h a l f - l i v e s are g r e a t e r on o r a l than on intraveneous administration. The maximum concentration i n t h e blood i s proportional t o t h e dose. The f i r s t order l o s s of intravenously adminis t e r e d bishydroxycoumarin, l e v e l s i n plasma has been compared f o r t h e r a t ,

Chap. 3 2

Biopharmaceutics

Garrett, Araujo

343 -

guinea pig, dog and rhesus monkey92. Only i n t h e monkey was it d e f i n i t i v e t h a t t h e h a l f - l i f e increased with increasing dose. Methyridine is r a p i d l y absorbed and d i s t r i b u t e d i n sheep, calves and cows on various r o u t e s of administration93. The major metabolite i s pyrid-2-ylacetic a c i d which i s a l s o excreted a s a glycine conjugate. Increase of drug dosage t o compens a t e for enzyme induction may r e s u l t i n marked toxicitiesg4. D i f f e r e n t their toxicities administrative routes of cholinesterase i n h i b i t o r s vary and it is suggested t h a t t h e a v a i l a b i l i t y f o r metabolism i n t h e l i v e r i s t h e major factor95. The t o t a l urinary excretion of amphetamine i s pH dependent b u t t h e r e i a d e f i n i t i v e d i f f e r e n c e i n t h e r e l a t i v e excretion The pharmacokinetic models f o r cyproterone acer a t e s of t h e isomers9 t a t e were s i m i l a r i n men and baboons and s i g n i f i c a n t g a s t r o i n t e s t i n a l resorption was 0bserved9~.

8.

On t h e hypothesis t h a t modifications of t h e r a t e of drug absorption may c o n t r o l or reduce nausea and/or emesis associated with t h e d i f f i c u l t l y soluble n i t r o f u r a n t o i n administration, t h e c r y s t a l s i z e was controlled and a v a i l a b i l i t y i n r a t , dog and man, and emesis i n t h e dog were shown t o increase a s a function of t h e a v a i l a b l e surface area of f i n e c r y s t a l s98 Griseofulvin absorption i n man c o r r e l a t e d with i t s d i s s o l u t i o n r a t e s i n various f ormulations i n simulated i n t e s t i n a l fluids99. The time-courses of dextroamphetamine 1 k s u l f a t e 1 0 0 i n dogs and humans and amobarbital14C i n humans101 were monitored i n plasma and urine t o compare t h e availab i l i t y from sustained and nonsustained-release dosage forms. Biological a v a i l a b i l i t y from various formulations f o r r e c t a l absorptionloz, 103 were determined from blood levels. Pla a l e v e l s of phenmetrazine were evaluated from d i f f e r e n t formulationslO? Relative absorption r a t e s of pente e r y t h r i t o l t e t r a n i t r a t e from l i g a t e d s e c t i o n s of t h e g a s t r o i n t e s t i n a l t r a c t were a t t r i b u t e d t o i t s degradation i n t o lower n i t r a t e s l 0 5 . Absorpt i o n of quinine hydrochloride from e n t e r i c coated t a b l e t s has been monit o r e d by plasma and urinary l e v e l s with time a d i t s absorption i s decreased i n t h e d i s t a l p a r t s of t h e intestinelo'. Urinary excretion data was used t o s t u d y t h e r e l e a s e r a t e i n vivo of a n t i p y r e t i c and analgesic drugs from commercial sugar-coated t a b l e t s l o 7 . Polysorbate 80 enhances t h e absorption of s e c o b a r b i t a l i t h e goldfish by increasing t h e p e m e a b i l i t y of t h e b i o l o g i c a l mernbranelo8. The e f f i c i e n c y of t e t r a c y c l i n e absorption i n d i f f e r e n t s u b j e c t panels has been shown t o be s i m i l a r based on t h e seq u e n t i a l first order model of absorption and excretion and premise t h a t t h e area under t h e blood level-time curve i s r e l a t e d to t h e r e l a t i v e absorption efficiencylO9. Similar procedures have been used t o compare t h e e n t e r a l absorption of sulfanilamidesllo. Levy111 has demonstrated s i g n i f i c a n t d i f f e r e n c e s i n t h e phannacokinetic constants f o r benzyl p e n i c i l l i n i n humans when ambulatory o r during bed rest which may be a t t r i b t u t e d t o v a r i a t i o n s i n apparent volumes of d i s t r i b u t i o n t h a t a f f e c t apparent metab o l i c r a t e s . S i g n i f i c a n t d i f f e r e n c e s i n d i s s o l u t i o n r a t e s may a f f e c t s a l i c y l a t e a v a i l a b i l i t y i n individuals with high absorption r a t e s b u t not those t h a t a r e slow absorbers21.

.

Amphetamines blocked i n t h e para p o s i t i o n r d t h a chlorine disappeared f r o m t h e b r a i n a t slower r a t e s which could be a t t s i b u t e d to t h e blocking of t h e para hydroxylation route112. Four u r i n a r y metabolites of N-(0-aminophenyl) N- dimethylaminopropyl ) a n t h r a n i l a t e h ve been i d e n t i f ied i n t h e

344 -

Sect. V I

-

Smi s sman, Ed.

Topics in C h e m i s t r y

dog and humanll3. The k i n e t i c s of excretion of the drug and i t s metabolites have indicated t h a t absorption and metabolism take place r a p i d l y and t h a t t h e b i l i a r y r o u t e i s t h e major one i n excretion. Equilibrium d i a l y s i s s t u d i e s of t h e p r o t e i n binding of c o r t i s o l show t h a t t h e chemical degradat i o n i n the f i n i t e time of t h e study give erroneous estimates of t h e binding i f not accounted forii4. Biopharmaceutical considerations i n subcutaneous and intramuscular drug administration have been reviewed recent1 ~ 1 1 5a s has t h e mechanisms of drug absorption and excretionll6. There has been a r e c e n t awareness t h a t metabolic and d i s t r i b u t i v e p a t t e r n s vary among i n d i v i d u a l s f o r t h e same drugsll7r70 and t h a t i n t h e f u t u r e t h e metabolic and pharmacokinetic p r o f i l e s of i n d i v i d u a l s w i l l be mapped before prescribing drugs and dosage regimens. References

1.

2.

3.

4. 5. 6. 7.

8. 9.

10.

11. 12.

13. 14. 15. 16. 17. 18.

19.

20. 21. 22. 23.

24. 25.

26. 27. 28. 29. 30.

31.

32.

33.

56,

Higuchi, J. Pharm. Sci., 315 (1967). Shenouda and A.M. Mattocks, ibid., 464 (1967). S.A.Khali1 and A.N. Martin, 1225 (1967). R.G. Stehle and W.I. Higuchi, 2, 1368 (1967). J.Perrin, J. Pharm. Pharmacol., 2,25 (1967). G. Levy and E.J. Mroszczak, J. Pharm. Sci., 2, 235 (1968). A.H. Goldberg, W.I. Higuchi, N.F.H. Ho, and G. Zografi,

W.I.

56, m.a, w.,

L.S.

1432 (1967). T. Koizumi and W.I. 93.

m., M. Gibaldi and S.

Higuchi,

w., z, 87

u.,

m.,56,

(1968).

Feldman, 56, 1238 (1967). P.J. Niebergall, M.Y. P a t i l , and E T . Sugita, %,943 (1967). A.J. Aguiar, J.Krc, Jr., A.W.Kinke1, and J.C. S a m , W . , 8 4 7 . W.I. Higuchi, P.D. ?ernardo, and S.C. Mehta, 200. K. Nikolics, G.Bidlo, and M. Mikolics, Acta Pharm. Hung., 2, 20 (1967) L. Renoz, J. Pharm. Belg,, 22, 41 (1967). N. Kaneniwa, A. Ikekawa, and H. Aoki, Chem. Pharm. B u l l . , G , 1m1 (1967) A. Ikekawa, H. Aoki, K. Masukawa, and N. Kaneniwa, 1626. M. Aoki, S. Ogawa, S. Hayashi, and M. Hirayama, Arch. Pract. Pharm,,

u.,

w.,

w,,

2,18

(1967).

M. Barnes, M.S. Parker, and T.J. Bradley, M & B Pharm. Bull., &,32 (67) B.A. Mathews and C.T. Rhcdes, J. Pharm. Sci., 56, 838 (1967). G. Levy, J.R. Leonards, and J. A. Procknal, 1365. A.G. Mitchell and D.J. S a v i l l e , J. Pharm. Pharmacol., B,729 (1967). E.Marlowe and R.F. Shangraw, J. Phann. Sci., 56, 498 (1967). D. Ganderton, J.W. Hadgraft, W.T. Rispin and A.G. Thompson, Pharm. Acta Helv. 2,152 ( 1967). R.A. Castello, G. J e l l i n e k , J.M. Konieczny, K.C. Kwan, and R.O. Toberman, J. Phert. Sci., 2,485 (1968). A.J. Aguiar, J.E. Zelmer, and A.W. Kinkel, 56, 1485 (1967). 1542. P.Singh, S.J. Desai, A.P. Simonelli, and W.I. Higuchi, Ibid., 1548.

u.,

,

w.,

m., 2,217 (1968). J. B. Schwartz, A.P. Simonelli, and W.I.

M.,278.

Higuchi,

m.,

m., 274.

T.R. Bates, S. Lin, and M, Gibaldi, J. Pharm. Sci., A. L. Thakkar and N.A. H a l l , 1121.

w.,

56,

1492 (1967)

Chap. 32

3'4. 35

Biopharmaceutic s

345 -

Garrett, Araujo

3. L. P a r r o t t and V. K. Sharna, i b i d . , 131. S. Parrker and 1'1. Barnes, Soap, Perfumery 2osmetics. 49, 163

LJ~.

( 1967) L. A.llLuzzi and 3. J. Serraughty, J. Pharm. Sci., 1174 (1967). 37. H. Fluck, Deut. Apotheker-Ztg., 107, 69 (1967). A. Gonzales, J. Nematollahi, 'd. L. Guess, and J. Autian, J. 33. Pharm. S c i . , 1288 (1967). J. i(. Seydel, Arzneim.-Forsch., 2,792 (1967). 39 40. 5. I?. S a r r e t t , ibic'., 795. 41. K. !I. Yensch, ibid.., 802. 42. 8. 3. G a r r e t t i n ttAdvancss i n Pharmaceutical Sciences", 2, 1 (1967), ed. ii. S. Bean, A. H. 3 e c k e t t , and J. 2. Carless, Academic Press, London. A. f. . : i t c h d l and J. F. Sroa?head, J. ?ham. S c i . , 1261 (1967). 43 4b. K. S . i.hrthy and 8. 5. Xippis, i b i d . , 1026. , &* (1963). lc5. T.2. :bin, P.-L Chun;., and J. L. Lach., i b i d . , 46. P. 3. Sheth and 6. L. P a r r o t t , i b i d . , j6,' w ( 1 9 7 ) . 47. A. t. Yersht and A. J. Kirby, J. bar. Chem. SOC. 2, 4 p 5 3 , 4557

35.

56,

,,.

56,

55,

F

'Lg

.

'c9.

50.

51. j2.

53

9

54. 55 56 57 58 59 60. 61. 62.

63

(1967)

u.,

A. 3. Fersht, and. A. J . :Kirby, 5960. A. Fe_rsht an6 A. J . Kirby, 5961. ivl. A. Schwartz and S. R. P f l u g , J. Pharm. Sci.,&,

-<.

w.,

411 (1968). R. 3. Xotari, i b i d . , 2, 804 (1967). :.-F. Chin, 14.-H. Xu, and. J. L. Lach, ibid., 562. 3. 1. G a r r e t t and J. Blanch, Anal. Zhem. 2, 1109 (1967). L. 3 . G a r r e t t , J. slanch, and J. K. Seydel, J. Pharm. Sci.,

1560 (1967)J. K. Seydel, 3. R. G a r r e t t , V. D i l l e r , and K.-J. S. Inous, Ya!kugaku Zasshi, 3, 883 (1967).

66. 67. 68. 69 70 71. 72. 73

2,

2,

S c h a p e r , W . ,858.

x,

H. ,O&tner and F. P o r h i c h , Arzneim.-Forsch., 309 (1967). H. J. Kestler and J. .:I Seydel, 3 h m . Ber. 100, 1983 (1967). J. K. Seyclel, Arzneix.-Porsch., 812 ( 1 9 m . S. Soto, S. Iguchi, A. Kono, an* 5. iTtsunoqiya, J. Pharm. Sci.,

17,

579 (1967).

9. 6. Adams, H. C. Caldwell, L. 3.'. D i t t e r t , T. ' X l i s o n , and D. 5. 3 i v a r 5 , i b i d . , 992 (1966). A. A. Sha:. *ind K. A. Connors, ibid., 2, 282 (1969). J. .!I Carstensen, i b i d . , 494. X. A. Connors and J. E. Z a v i l l a , i b i d . , 56, (1967). J. 13. 'dagner and J. I. Xortham, i b i d . , 529. S. Riegelman, J. C. K. Loo, and 3. 3owland, i b i d . , 2,117, 123

64. J. V. Sinntosky,

55.

1459 (1967).

56,

D. 'J. DeRnen, i b i d . , 1273. 2. ki. G a r r e t t and P. G. A,lehta, i b i d . , 1469. A. Xussain, P. Schurman, V. T e t e r , and G. Xiilosovich, i b i d . ,

56,

z,

(1963). E. 3. Ga-rett and J. S. Gravenstein, Vth I n t e r n a t i o n a l Congress of -henotherapy, 105 (1967). Li. Lowenthal and 3. L. Vitsky, J. Pharm. S c i . , 56, 169 (1967). J. G. 'dagner an2 2. i-i. A e t z l e r , ibifi., 659. J. G. Vagner, i b i d . , 439.

m,

346 -

74 75. 76.

0

77. 78. 79

80. 91. 82.

83

84.

e5.

86.

Sect. VI

-

Topics in Chemistry

I b i d ., j86. Levy, G., J.

Pharm. Sci., 56, 1044 (1967). E. 3. G a r r e t t , A. J. Wgren, and H. J. Lambert, I n t . Zeit. f u r Klin. Pharm., 1, 1 (1967). A.-H. 1%:. A f i f i arid 3. L. gay., J. Pharm. S c i . , 6, 720 (1967). 14. Gibaldi and C. H. Nightingale, i b i d . , 57, 22 (1968). W. J. Jnsko and $3. Levy, i b i d . , 50, 59 (1967). Ibi?., 1145. s. d . i?c:hesney, G. A. Portmann, and X. F. KOSS, J. Pharm. Sci.,

&

7

56,

.

599 (1967).

D. L. Smith, J. 3. ‘Jagner, and G. C. G e r r i t s e n , ibid., 1150. S. Symchowicz, L. ‘dinston, J. Black, rl. S n i t h , B. Colesnick, and I. I. A. Tabachnick, i b i d . , 912. D. C. Hobbs, ibi?., 2,105 (1968). J. P. X i l l e r , 3. V. Cardinal, and L. 3. Crawford, Toxicol. Appl. Pharmacol., 2, 455 (1966). 9. 5. Yucker, 2. K, Xiller, A. Xochberg, 2. D. Brobyn, F. K. 3 i o r dan, and B. Colesnick, J. Pharmacol. FXp. Ther. 309 (1967). G. b v y and T. Iiahuzawz, i b i s . , -j6, 285 (1967). Avo 2. Xeff, T. K. Tozsr, and B. E. 3rodie, i b i d . , 214 (1968). S. ?ixesz, 3. S c o t t i , R. Pallanza, and E. :Iapelli, Arzneim.-Forsch.

m,

.-

90 91. 92. 93 94. 95 95 ?7. 9e. 99

100.

101. 10.2.

103. 104. 105.

106. lC7. 108.

109.

Smi s sman, Ed.

z,

a, 534 (1967). 2. .I:‘ lIcChosney,

W. 3. 3ancks, Jr., f. A. Portmann, and A. V. 3. Crain, Biochen Pharmacol. 813 (1967). ~4. S. Xoo, J. ?harm. Sci., 2,27 (1968). 3. Nagashima, G. Levy, and N. Back, i b i d . , 68. J. Sums, ’d. A. iil. Duncan, and B. Scales, 3iochem. Pharmacol., &,

16,

463 (1967). 3 . X. J e l c h , Y. 2. Harrison, ard J. J. h r n s , Toxicol. Appl. Pharmacol., 2 340 (1967). I. L. Batoff, J. F k ~ r m . Pharmacol., 2,612 (1967). L. I-. Gunne, 3iochem. Phamacol., l6, 863 (1967). i(. I-:. iiolb and 5. 3oepke I n t . of Clin. Pharmacol., 1,184 (1962). 2. E. Paul, K. J. Xayes, M. F. Paul, and A. 2. Borgnann, J. h a r m . Sci., 56, 882 (1967). 3. .catcTen and S. Symchowicz, i b i d . ,

1108.

E. Rosen, I’. X E s o n , P. Tannenbaim, S. X. Free, and A. F. Crosley, Jr., ibid., 365. E. Rosen, A. Polk, S. X. Free, P. J. ?amenbarn, and A. P. Crosley, Jr., ibid., 1285. F. Yenwald and P. Ackard, Galenica Acta 3,179 (1966).

iC. Ka!oxi, 9. Sezdxi, S. i h - a n i s h i , and H. Shozo, Chem. Phaarm. Bull. 172 (1967). .G. P. Quinn, 21. 31. Cohen, L. E. Beid, P. Sreengar?, and I;. lrleiner,

u,

d l i n . Pharnacol. Therap. 2, 369 (1967). F. J. Dicarlo, S. 3. Coutinno, a.d PI. 2 . (Crew, Arch. I n t . Pllarmaco-

dyn.

&, 163

(1967).

S. b s x u s s e n , Acta Pharmacol. Toxicol. 2, 331 (1966). H. Nogami and. 2;. Hanano, :hem. Pharm. 3ull., 1002 (1967). S. Levy and J. A. A n i e l l o , CT. Pharc. Sci., 101 ( 1968). J. G. Wagner, i b i d . , 56, 652 (1967).

x, z,

Chap. 32

110. 111. 112.

113.

Biopharmaceutics

Dost and 3. Gladtke, Arzneinl.-Forsch. 2,772 (1967). G., J. Pharm. Sci., 56, 928 (1967). F u l l e r arid C. V. E n e s , ibid., 302. Smith, A. L. Pallia!!, and 9. KO, ibid., 815. J. Kripalani and D. L. Sarby, i b i d . , m 3. Ballzrd, ibid., 2,357 ( 1 9 K li. Xeine:*, Ann. Eiev. ?harrnacol. 2 39 (1967). Sjgquist, Lakartidningen, 64, 57 il96.i).

F. 3. Levy, 3. X. D. L.

114. K. 115. 3. 116. I. 117. P.

Garrett, Araujo