C H A P T E R 4: COAL GASIFICATION FOR SNG PRODUCTION %
4.1.
Introduction
4. I - I .
The G r e a t P l a i n s Coal G a s i f i c a t i o n P l a n t (GPCGP)
In t h e e a r l y 1970s, w h e n " P r o j e c t I n d e p e n d e n c e " w a s b e i n g d e f i n e d b y t h e F e d e r a l Gove r n m e n t and s e r i o u s c o n c e r n s w e r e b e i n g r a i s e d about t h e NO r e s e r v e s and l o n g - t e r m s u p p l y of NG, t h e r e w e r e m o r e t h a n 100 m a j o r p r o j e c t s u n d e r c o n s i d e r a t i o n t h a t i n v o l v e d t h e p r o d u c t i o n o£ s u b s t i t u t e n a t u r a l gas (SNG) f r o m c o a l . T h e s e p r o j e c t s g e n e r a l l y i n v o l v e d p l a n t s t h a t would p r o d u c e t h e e q u i v a l e n t o f Z50 m i l l i o n s t a n d a r d cubic f e e t of g a s p e r day ( S C F / d ) w i t h a h e a t i n g v a l u e o f 950-1000 B t u / S C F o S o m e of t h e s e p l a n t s w e r e on a s c h e d u l e t h a t would h a v e p l a c e d t h e m o n s t r e a m in t h e m i d - to l a t e - 1 9 8 0 s . H o w e v e r , t h e w o r l d e n e r g y p i c t u r e c h a n g e d d r a m a t i c a l l y and t h e r e q u i r e m e n t f o r p r o d u c i n g p i p l i n e - q u a l i t y gas f r o m c o a l m o v e d f u r t h e r into t h e f u t u r e . Now, SNG f r o m c o a l i s b e i n g c o n s i d e r e d a s a p o t e n t i a l p i p e l i n e - q u a l l t y g a s s u p p l y o p t i o n f o r t h e p o s t Z000 t i m e f r a m e . As a r e s u l t of c h a n g e s in t h e e n e r g y m a r k e t , only t h e G P C G P w a s c o n s t r u c t e d . T h i s p l a n t is l o c a t e d in B e u l a h , N o r t h Dakota, and w a s d e v e l o p e d t h r o u g h t h e c o m b i n e d e f f o r t s of a c o n s o r t i u m of n a t u r a l g a s c o m p a n i e s and t h e F e d e r a l G o v e r n m e n t . S t a r t - u p o p e r a t i o n s b e g a n in 1984, w i t h a n o m i n a l output of 125 m i l l i o n S C F / d (at a 90% s t r e a m f a c t o r ) of p i p e l l n e - q u a l i t y g a s . T h i s p l a n t u s e s N o r t h Dakota l i g n i t e a s t h e f e e d s t o c k and i t s o p e r a t i o n is b a s e d on d r y b o t t o m L u r g l g a s i f i c a t i o n t e c h n o l o g y t o g e t h e r w i t h c o m m e r c i a l l y a v a i l a b l e m e t h a n a t i o n , gas c o n d i t i o n i n g and c l e a n - u p t e c h n o l o g y . To d a t e , t h e G P C G P i s c l e a r l y a t e c h n i c a l s u c c e s s . 1 It w a s c o n s t r u c t e d w i t h i n c o s t , c o m p l e t e d on s c h e d u l e a n d h a s i n v o l v e d o n l y m i n i m a l p r o b l e m s d u r i n g its i n i t i a l p e r i o d o f o p e r a t i o n . The p l a n t w a s d e s i g n e d to p r o d u c e 137.5 × 106 S C F / d , but h a s o p e r a t e d c o n s i s t e n t l y at l e v e l s e x c e e d i n g t h e o r i g i n a l d e s i g n c a p a c i t y . In M a r c h 1986, t h e p l a n t p r o d u c t i o n w a s a s f o l l o w s : h i g h e s t d a i l y r a t e = 154. 7 × 106 S C F (112.5% o£ d e s i g n ) , h i g h e s t w e e k l y r a t e = 1. 0463 109 S C F (109% of d e s i g n ) , h i g h e s t m o n t h l y r a t e = 4. 536 × 109 S C F (106.4% o f d e s i g n ) . in t h e c u r r e n t e c o n o m i c c l i m a t e r e s u l t i n g f r o m low w o r l d o i l p r i c e s , t h e G P C G P is not economically competitive with other g a s - s u p p l y options. However, the experience gained through t h e c o n s t r u c t i o n and o p e r a t i o n o f t h i s p l a n t is p r o v i d i n g t h e g a s i f i c a t i o n c o m m u n i t y w i t h a b e n c h m a r k of t h e r e a l c o s t s of SNG b a s e d on c o m m e r c i a l l y a v a i l a b l e t e c h n o l o g y . In a d d i t i o n , it is h e l p i n g to i d e n t i f y w h e r e p r o c e s s i m p r o v e m e n t s c a n b e e f f e c t e d t h r o u g h e n g i n e e r i n g c h a n g e s o r p r o c e s s s e l e c t i o n and w h e r e s u p p o r t i n g r e s e a r c h and d e v e l o p m e n t e f f o r t s c o u l d have a n i m p a c t . 4.1-2.
General Thermodynamic Considerations
The a t o m i c r a t i o of H to C in c o a l s is l e s s t h a n one. As a r e s u l t , i n o r d e r to c o n v e r t c o a l to p i p e l i n e - q u a l i t y g a s e f f i c i e n t l y a t a n H / C r a t i o of 4, it is n e c e s s a r y to p r o v i d e a s o u r c e of H Z. T h i s i s u s u a l l y a c c o m p l i s h e d b y the a d d i t i o n of s t e a m . The o v e r a l l r e a c t i o n s c h e m e for p r o d u c i n g p i p e l l n e - q u a l i t y g a s f r o m coal, with w a t e r a s s o u r c e of the n e c e s s a r y h y d r o g e n , r e p r e s e n t e d by coal + H20--~
CH 4 + CO 2.
(4.1-1)
In m o s t g a s i f i c a t i o n p r o c e s s e s , h o w e v e r , t h i s o v e r a l l r e a c t i o n is not r e a l i z e d in a s i n g l e s t e p b u t i s a c c o m p l i s h e d t h r o u g h a s e r i e s o f s t e p s to p r o v i d e r e a c t i o n e n v i r o n m e n t s f o r w h i c h c o n v e r s i o n s p r o c e e d at a c c e p t a b l e r a t e s . T h e s e s t e p s a r e t h e unit o p e r a t i o n s of c o a l - g a s i f l c a t i o n p l a n t s . As r e a c t i o n t e m p e r a t u r e s a r e r a i s e d to h i g h e r v a l u e s ( w h e r e g a s i f i c a t i o n r e a c t i o n s p r o c e e d at a d e q u a t e r a t e s ) , t h e s t a b i l i t y of CH 4 i s r e d u c e d and, at t h e h i g h e r t e m p e r a t u r e s s u c h a s t h o s e a s s o c i a t e d w i t h e n t r a i n e d - f l o w g a s i f i e r s (i. e. lZ50-1370 ° C), t h e r e i s no m e t h a n e p r o d u c t i o n in t h e g a s l f l e r . T y p i c a l o f f - g a s c o m p o s i t i o n s f r o m f l x e d - b e d , f i n i d i z e d - b e d and e n t r a l n e d - f l o w g a s i f i e f s a r e p r e s e n t e d i n T a b l e 4. 1-1, w h i c h s h o w s t h e r a n g e s of m e t h a n e p r o d u c t i o n t h a t c a n b e e x p e c t e d . T h e s e d a t a a l s o p r o v i d e an i n d i c a t i o n of t h e a d d i t i o n a l c o n v e r s i o n to m e t h a n e t h a t m u s t b e a c c o m p l i s h e d in o r d e r to a p p r o a c h t h e o v e r a l l r e a c t i o n s c h e m e r e p r e s e n t e d b y Eq. (4. i-1)o As t h e r e a c t i o n t e m p e r a t u r e i s r a i s e d , t h e r e a c t i o n s t h a t d o m i n a t e t h e g a s i f i c a t i o n p r o c ess include
t T h i s c h a p t e r h a s b e e n w r i t t e n b y K e r m i t E . W o o d c o c k and V e r n o n L. Hill of GRI. 663
664
Energy,
coal
The I n t e r n a t i o n a l J o u r n a l
> CH 4 + char + tars,
oils,
(4.1-2)
char + ~zo
>
char + 0 2
• C O + H2,
(4.1-4)
_ CO z+Hz,
(4.1-5)
cH 4 + H z o "
_co+3~z,
(4.16)
ZCH4 + o z "
. CO+4HZ,
(4.1-7)
" CO? + C .
(4. 1-8)
CO+HzO
"
2CO
_
co + ~z,
~4. l - 3 )
In a d d i t i o n to t h e p r i n c i p a l r e a c t i o n s , w h i c h c o n t r o l t h e c o n c e n t r a t i o n of t h e m a j o r p r o d u c t s of g a s i f i c a t i o n , t h e r e o c c u r a l s o a s e r i e s of r e a c t i o n s i n v o l v i n g t r a c e c o n s t i t u e n t s i n t h e c o a l s , s u c h a s t h e n i t r o g e n , s u l f u r a n d m i n e r a l m a t t e r , w h i c h r e s u l t in t h e f o r m a t i o n of a d d i t i o n a l g a s e o u s s p e c i e s (H2S , NH3, COS, m e r c a p t a n s , s u l f i d e s , e t c . ). T h e n a t u r e of t h e s e a d d i t i o n a l g a s eous s p e c i e s depends on the g a s i f i e r conditions and coal type and m u s t also be dealt with as p a r t of a coal-to-SNG process. W h e n the gasification process is controlled b y the types of reactions represented by F_qs. (4. I-Z) through (4. i-8) and w h e n S N G is the desired end product, additional processing steps are required to convert the C O and H z produced in the gaslfler to methane. T h e principal reactions to accompllsh this conversion are (a) the water gas shift reaction (~VGSI~) of F_q. (4° i-5), which provides the desired initial H 2 / C O ratio and ~) a methanatlon reaction w h i c h m a y proceed according to the following steps: T a b l e 4. 1 - 1 .
Commercial and developmental gasification processes, blown reactant consumption and gas production.
Movlng-bed Gasifiers Parameter
Fluidiz ed -bed Gaslfier
Lurgi BGC slagging dry-ash Lurgi Winkler (commercial) (pilot plant a) (commercial)
oxygen-
Entralned-flow Gasiflers HYGAS (pilot plant a)
KoppersTotzek Texaco (commercial) (pilot planta)
Gas exit T, °C
580
440
700
p, psi
430
290
14.7
Gas analysis, volt CO 2 CO
29.7
2.5
20.0
24.7
7.1
10.6
18.9
60.6
34.0
24.0
58.7
51.6
H2
39.1
27.8
41,0
30.5
32.8
35.1
cH 4
11.3
7.6
3.0
19.4
Other s b
1.0
1.5
2.0
1.4
1.4
2.6
H2/CO volume ratio
2.1
0.46
1.21
1.27
0.56
0.68
Product utilization Equivalent SNG, c nM3/lO00 kg of coal Equivalent CH4, d nM3/1000 kg of coal
340
1290
1290
i000
14.7
580
O. 1
1884
1939
1596
1850
1845
1988
529
517
413
542
462
470
laPilotplants are of various sizes: BGC/Lurgi, 1200 kg/h; HYGAS, 2500 kg/h; Texaco, 6500 kg/h. hThis value includes nitrogen and various impurities (H2S , COS, NHj, etc.). CThe SNG is assumed to be equal to the sun% of the concentrations of H2, CO, and 3 X C H 4 . dTl~e methane potentialis assumed to he equal to the methane (CH4) concentration plus (I/4) of the (H2+ CO) concentration.
Coal G a s i f i c a t i o n for SNG P r o d u c t i o n
co
+ 3H 2
,. C H 4
2CO + 2H 2
coz+4~ z
+
665
HzO,
(4. 1-9)
• CH 4 + CO 2 ,
{4.1-10)
cH 4 + z ~ z o .
(4.1-11)
•
These reactions depend on the overall initial gas composition and the methauatiou catalyst used. Workers at Exxon, through the use of al~ali metal or alkallue earth salts as gasification catalysts and an innovative process concept, were able to provide a reaction environment in the gasifler such that all of the methane was formed in the gasifler itsel~ and additional methanatlon steps were not required (compare Sec. 7.2). However, the methane was stillonly one constltuent of a multl-component gas mixture, and separation and gas clean-up steps were required to develop a final product stream of plpeHne-quallty gas. 4, i-3. General Flow Sheets Because of the heterogeneity of coal, the presence of heteroatoms and interactions of chemical kinetics and thermodynamics, the production of plpeHne-quallty gas from coal requires integration of m a n y process steps, regardless of the type of gasifler employed. Typical block diagrams showing the n u m b e r and sequence of major process steps needed for processes in which methanatlon is required downstream of the gasifler and where all methane formation is achieved in the gasifier, as iu the I~RW and Exxon catalytic processes, are shown in Figs. 4. I-I and 4. i-2; the Exxon process is described in detail iu Sec. 7.2. These diagrams emphasize the importance of effective process integration and indicate that there are m a n y opportunities where process improvements, achieved through continued research and development, can have a positive impact on process conflgurat{ons, capital costs, operating costs and, ultimately, the end-product cost of plpellue-quaHty gas. While all process elements contribute to the final end-product cost of S N G from coal, the gaslfler, methanatlon process and clean-up systems represent major determinants in other process requirements and overall process integration,
coa,,
i Compression .ocOas I'q
ROM
Shift Conversion
Coal Crushing Coal Sizing Coal
Drying Coal Feeding Steam
Convective Heat Recovery
COS Hydrolysis
Fines I / Recy
Quench Scrubbing
Removal
Gasification I . . ~ . ~ . -
Recycle Gas Compression
Removal
Particulate Removal
,~
|
H=S
CO=
Methanation
;
Drying
Air
Separation
CO,
Ash Removal
Compression
I Sour Water Stripping
I
Ammonia Recovery
[
> SNG
Ash Wa
To Re-Use I
I Fig. 4.1-1.
~
1 Ammonia
Sulfur
Recovery
r
I
Sulfur
Tail Gas
C o a l - t o - S N G in the K e l l o g g - R u s t - W e s t i n g h o u s e (KRW) g a s i f i c a t i o n p r o c e s s .
666
Energy,
The I n t e r n a t i o n a l J o u r n a l
ROM Coal I
Coal
Crushing
•p•
Steam
Coal Sizing
Recycle Gas
Compression
I,~ H2S Removal
Coal Drying
Char
CO2
Catalyst Addition
Recovery
Waste Heat Recovery
Catalyzed Coal Drying
Gasification
Raw Gas Scrubbing
' Pre°xidati°n1' I
Catalyst Recovery
Methane Recovery
Ash
Compression
Catalyst Makeup
I
CO2
Removal
ProcessGas Drying
_.~
I
Coal Feeding
Removal
SNG
Sour Water Stripping
Ash
Water To Re-Use
Ammonia Recovery
' D.~
Sulfur
Recovery
/
~
Tail Gas
~ R e q u l r e d for c a k i n g c o a l s .
I Fig. 4 . 1 - Z .
,~ Ammonia
I
~ Sulfur
C o a l - t o - S N G in t h e E x x o n g a s i f i c a t i o n p r o c e s s .
4. Z. A d v a n c e d G a s i f i c a t i o n T e c h n o l o g y f o r SNG T h e d e v e l o p m e n t of g a s i f i c a t i o n t e c h n o l o g y to c o n v e r t c o a l to SNG h a s b e e n t h e s u b j e c t of e x t e n s i v e r e s e a r c h , d e v e l o p m e n t a n d d e m o n s t r a t i o n p r o g r a m s f o r a t l e a s t t h r e e d e c a d e s . In t h e US a n d i n t h e m l d - 1 9 7 0 s , o v e r Z0 c o n v e r s i o n p r o c e s s e s w e r e in v a r i o u s s t a g e s of d e v e l o p m e n t and other approaches were being evaluated in Europe. These efforts encompassed exploratory p r o j e c t s , b e n c h - s c a l e s t u d i e s , e v a l u a t i o n s a t t h e e n g i n e e r i n g - t e s t u n i t (ETU) a n d p r o c e s s d e v e l o p m e n t u n i t (PDU) s c a l e s , p i l o t - p l a n t s t u d i e s , a n d d e t a i l e d d e s i g n s t u d i e s f o r d e m o n s t r a t i o n p l a n t s and p o s s i b l e c o m m e r c i a l o p e r a t i o n s . P r o c e s s c o n c e p t s t h a t h a v e b e e n o r a r e b e i n g e v a l u a t e d i n c l u d e t h e f o l l o w i n g : L u r g i d r y - b o t t o m ( L u r g i GmbPI), B i - G a s ( B i t u m i n o u s Coal R e s e a r c h , I n c . ) , C O z - A c c e p t o r (Conoco Coal D e v e l o p m e n t C o . ) , S y n t h a n e (U.S. B u r e a u of M i n e s ) , HYGAS ( I n s t i t u t e of G a s T e c h n o l o g y ) , COGAS (FMC C o r p o r a t i o n ) , High M a s s F l u x ( B e l l A e r o s p a c e ) , F l a s h H y d r o p y r o l y s i s ( R o c k w e l l I n t e r n a t i o n a l ) , Exxon C a t a l y t i c (Exxon R e s e a r c h and E n g i n e e r i n g ) , W i n k l e r ( K h e i n i s c h e B r a u n k o h l e n w e r k e AGR), U - G a s ( I n s t i t u t e of G a s T e c h n o l o g y ) , KKW A s h A g g l o m e r a t i o n ( W e s t i n g h o u s e / K K W E n e r g y ) , H y d r a n e (U. So B u r e a u of M i n e s ) , S l a g ging F i x e d - B e d ( B r i t i s h Gas C o r p o r a t l o n / L u r g i G m b H ) , F l u l d - b e d H y d r o g a s i f i c a t i o n ( l ~ h e i n i s c h e B r a u n k o h l e n w e r k e AGK), R u h r - 1 0 0 ( R u h r g a s / L u r g l GmbH). E a c h of t h e s e p r o c e s s e s w a s c o n c e i v e d i n a n e f f o r t to i m p r o v e t h e c o m m e r c i a l l y a v a i l a b l e t e c h n o l o g y w i t h r e s p e c t to p r o c e s s efficlency~ f e e d s t o c k u t i l i z a t i o n a n d f l e x i b i l i t y o r to r e duce the potential for unfavorable environmental interactions with the recognition that improved t e c h n o l o g y would t r a n s l a t e into l o w e r e n d - p r o d u c t g a s c o s t s . As t h e R ~ D p r o g r a m s p r o g r e s s e d a n d d a t a b e c a m e a v a i l a b l e for u s e in c o m p a r a t i v e e c o n o m i c e v a l u a t i o n s , w o r k w a s d i s c o n t i n u e d o n m o s t of t h e s e a p p r o a c h e s w h e n i t w a s s h o w n t h a t s u f f i c i e n t e c o n o m i c i n c e n t i v e s c o u l d not b e i d e n t i f i e d to j u s t i f y c o n t i n u e d R&D e x p e n d i t u r e s . Today, a s a r e s u l t of t h e a v a i l a b l e d a t a b a s e s and the supporting economic studies, development work is still proceeding on the ash-agglomera t i n g , f l u l d - b e d t e c h n o l o g y ( U - G a s , KKW a s h - a g g l o m e r a t i n g p r o c e s s ) , t h e B r i t i s h G a s / L u r g i s l a g g i n g g a s i f l e r , a n d t h e K h e l n b r a u n d i r e c t , f l u i d - b e d h y d r o g a s i f l c a t i o n p r o c e s s for SNG p r o d u c t i o n b e c a u s e of t h e u n i q u e c h a r a c t e r i s t i c s of t h e a v a i l a b l e c o s t r e s o u r c e b a s e a n d t h e a d v a n c e d s t a g e of t h e K&D p r o g r a m . Other than the fluid-bed hydrogaslflcation teclmology, continued gasifier development w o r k i s b e i n g j u s t i f i e d p r i m a r i l y b e c a u s e of p r o c e s s f l e x i b i l i t y a n d t h e p o t e n t i a l for a p p l i c a t i o n s in a r e a s o t h e r t h a n SNG p r o d u c t i o n (e. g . , IGCC f o r e l e c t r i c p o w e r g e n e r a t i o n ) . A b r i e f s u m m a r y of t h e t e c h n o l o g i e s s t i l l u n d e r d e v e l o p m e n t , w h i c h c a n b e a p p l i e d to c o a l - t o - S N G p r o c e s s e s , is g i v e n i n the following s u b s e c t i o n s , e x c e p t for the U - G a s p r o c e s s w h i c h is d e s c r i b e d i n d e t a i l i n S e c t i o n 3 . 3 - 3 .
Coal G a s i f i c a t i o n f o r SNG P r o d u c t i o n
4o 2 - 1 .
667
B G C / L u r g l Slagging G a s i f i e r
The B G C / L u r g l s l a g g i n g g a s l f l e r is a f l x e d - b e d g a s i f i e r (Fig. 4 . 2 - 1 ) and c o n s i s t s of a v e r t i c a l c y l i n d r i c a l r e a c t o r into w h i c h c o a l is i n j e c t e d t h r o u g h a l o c k h o p p e r and a r o t a t i n g c o a l d i s t r i b u t o r . The c o a l m o v e s s l o w l y down t h e r e a c t o r in c o n t a c t w i t h g a s e s p a s s i n g c o u n t e r c u r r e n t l y t h r o u g h t h e b e d . A m i x t u r e of s t e a m and o x y g e n is i n j e c t e d at t h e b o t t o m of t h e b e d t h r o u g h n o z z l e s (tuy~res)o The b a s e of the c o a l b e d is c a l l e d t h e r a c e w a y and is t h e l o c a t i o n w h e r e h i g h t e m p e r a t u r e s c a u s e the a s h to m e l t , y i e l d i n g a fluid s l a g w h i c h d r a i n s f r o m t h e h e a r t h t h r o u g h a c e n t r a l l y - p l a c e d s l a g t a p . The s l a g i s q u e n c h e d in a c h a m b e r f i l l e d w i t h w a t e r to f o r m a g l a s s y f r i t and is s u b s e q u e n t l y r e m o v e d via a s l a g lock h o p p e r . The p r e d o m i n a n t r e a c t i o n in t h e r a c e w a y is c o m b u s t i o n of d e v o l a t i l l z e d c o a l , y i e l d i n g a p r o d u c t s t r e a m of hot g a s e s t h a t c o n t a i n s t e a m and c a r b o n o x i d e s . As t h i s gas m o v e s up t h r o u g h t h e f i x e d b e d , c a r b o n is r a p i d l y g a s i f i e d b y s t e a m and c a r b o n d i o x i d e . Since t h e s e r e a c t i o n s a r e highly e n d o t h e r m l c , t h e t e m p e r a t u r e d r o p s r a p i d l y , e f f e c t i v e l y l i m i t i n g the v e r y h i g h t e m p e r a t u r e s l a g l i b e r a t i o n z o n e to a s m a l l a r e a . The s m a l l s l a g l i b e r a t i o n z o n e i s b e n e f i c i a l in r e d u c i n g t h e h e a t l o s s e s and p o t e n t i a l r e f r a c t o r y p r o b l e m s . As t h e g a s e s m o v e u p w a r d in t h e b e d , d i r e c t h e a t t r a n s f e r to t h e c o a l r e s u l t s in p r o g r e s s i v e l y l o w e r t e m p e r a t u r e s , e v e n t u a l l y r e d u c i n g r e a c t i o n r a t e s to t h e p o i n t w h e r e g a s i f i c a t i o n r e a c t i o n s e f f e c t i v e l y s t o p . Above t h i s z o n e , r a p i d h e a t i n g of t h e f r e s h c o a l r e s u l t s only in d r y i n g and d e v o l a t i l i z a t l o n r e a c t i o n s . T h e s e r e a c t i o n s y i e l d t a r s and o i l s , s i g n i f i c a n t a m o u n t s of m e t h a n e , s u l f u r c o m p o u n d s , s t e a m , and o t h e r m i n o r p r o d u c t s , w h i c h a r e c a r r i e d out of t h e g a s l f i e r b y t h e p r o d u c t g a s . The B G C / L u r g i s l a g ging g a s l f l e r o f f e r s p o t e n t i a l a d v a n t a g e s o v e r t h e d r y - b o t t o m L u r g i t e c h n o l o g y s i n c e it c a n a c c o m m o d a t e caking c o a l s m o r e e f f e c t i v e l y , u t i l i z e s c o a l f i n e s , and h a s l o w e r o x y g e n and s t e a m r equir ements. 4.2-Z.
KI~W ( I ~ e l l o g g - t ~ u s t - W e s t i n g h o u s e ) A s h - A g g l o m e r a t i n g , F l u i d i z e d - B e d G a s l f l e r
The I~I%W ( K e l l o g g - R u s t - W e s t i n g h o u s e ) p r o c e s s is a f l u i d - b e d g a s i f i e r (Fig. 4 . 2 - 2 ) in w h i c h coal a n d r e c y c l e d f i n e s a r e r e a c t e d with s t e a m and o x y g e n to f o r m a s y n t h e s i s gas c o n s i s t i u g m a i n l y of CO, CO 2, H 2, CH 4, and s t e a m . The p r o c e s s d e v e l o p m e n t unit (PDU) g a s i f i e r is a v e r t i c a l , r e f r a c t o r y - l l n e d v e s s e l o p e r a b l e up to 230 psig and 1000°C a n d c o n s i s t i n g of f o u r s e c t i o n s : the f r e e b o a r d , g a s i f i e r b e d , c o m b u s t i o n z o n e , and c h a r - a s h s e p a r a t o r . Raw c o a l , g r o u n d to S / 1 6 " × 0 " (and d r i e d to 5% s u r f a c e m o i s t u r e w h e n n e c e s s a r y ) , i s fed p n e u m a t i c a l l y to t h e g a s i f l e r t h r o u g h a l o c k h o p p e r s y s t e m , along w i t h t h e c h a r f i n e s f r o m
Feed Coal Coat =^ ^ " Hop1
Dri Gas Quench
Coal Distributor/ Stirrer actory lg
.~r Jacket Gas (
;team/Oxygen "eed
Press Shell Slag
Tuy~re
Circulati, Quench Water
Slag Quench Chamber
Slag Hopl:
Fig. 4.2-1.
The B G C / L u r g l s l a g g i n g g a s i f i e r .
668
Energy, The International Journal
~ R a w Fuel Gas Product and Fines
T
Freeboard
t 1
Gasifier Bed Auxiliary Steam
]z
Combustor Steam Recycle Gas
-
-
t Char-ash Separator
Oxygen Ash Agglomerates Coal and Transport Gas F i g . 4. 2-Z.
F u n c t i o n a l s c h e m a t i c of t h e W e s t i n g h o u s e g a s l f i e r .
c y c l o n e s d o w n s t r e a m of t h e g a s i f i e r . F e e d i n g i s a c c o m p l i s h e d b y m e a n s of s t a r w h e e l f e e d e r s a n d r e c y c l e g a s . T h e c o a l a n d c h a r a r e fed to t h e g a s i f i e r a l o n g i t s c e n t e r l l n e a n d c o m b u s t e d i n a s t r e a m of o x i d a n t ( o x y g e n o r a i r ) fed t h r o u g h a c o a x i a l f e e d t u b e . W h e n o x y g e n i s e m p l o y e d , steam is used together with the oxidant as the gasifying medium. T h e r e a r e s e v e r a l o t h e r k e y f l o w s into t h e g a s l f l e r , a s s h o w n in F i g . 4. Z - 2 . A flow of s t e a m i s p r o v i d e d b y a n n u l a r flow a r o u n d t h e n o z z l e tip to p r e v e n t c a r b o n d e p o s i t i o n at t h e b a s e of the jet. Additional r e c y c l e gas or s t e a m is injected r a d i a l l y at a location n e a r the rnlddle s e c t i o n of t h e i n j e c t i o n n o z z l e . T h i s flow m i l d l y f l u i d i z e s a n d c o o l s t h e a s h f o r w i t h d r a w a l ; t h e s h a r p t e m p e r a t u r e g r a d i e n t a t t h e c h a r / a s h i n t e r f a c e i s u t i l i z e d to c o n t r o l w i t h d r a w a l r a t e . 1%ec y c l e g a s i s a l s o i n j e c t e d t h r o u g h a s p a r g e r r i n g a t t h e b a s e of t h e a s h b e d to a i d i n a s h w i t h drawal. The coal, char and s t e a m r e a c t i o n s in the g a s l f i e r ~orm hydrogen, c a r b o n oxides and r e s i d u a l s t e a m as the p r o d u c t g a s . The c a r b o n in the char is c o n s u m e d by c o m b u s t i o n and g a s i f i c a t i o n a s t h e b e d of c h a r c i r c u l a t e s t h r o u g h t h e j e t . T h e t e m p e r a t u r e n e a r t h e b o t t o m of t h e b e d i s m a i n t a i n e d h i g h e n o u g h to e n s u r e t h a t t h e a s h - r l c h p a r t i c l e s r e s u l t i n g f r o m r e a c t i o n s s o f t e n , a g g l o m e r a t e a n d d e f l u i d i z e . T h e a g g l o m e r a t e s m i g r a t e to t h e a n n u l u s a r o u n d t h e f e e d t u b e a n d a r e c o n t i n u o u s l y r e m o v e d b y a r o t a r y f e e d e r to l o c k h o p p e r s . T h e m a j o r p o r t i o n of t h e g a s l f l e r o p e r a t e s in a n e s s e n t i a l l y i s o t h e r m a l c o n d i t i o n up to 1 , 0 0 0 °C. T h e l o w e r p o r t i o n of t h e a n n u l u s o p e r a t e s a t a b o u t 2 5 0 ° C ° C a r b o n c o n v e r s i o n i s t y p i c a l l y 90-95% on a n o v e r a l l b a s i s , w h i l e t h e a s h i s c o n c e n t r a t e d to 85% in t h e a g g l o m e r a t e s . T h e r a w p r o d u c t g a s c o n t a i n i n g no t a r s o r o i l s p a s s e s f r o m t h e g a s l f l e r to two r e f r a c t o r y l i n e d c y c l o n e s in s e r i e s , w h e r e t h e c h a r p a r t i c l e s a r e r e m o v e d . T h e f i n e s c o l l e c t e d i n t h e c y c l o n e s a r e c o o l e d , i n s e r t e d into a r e c y c l e g a s s t r e a m a n d r e i n j e c t e d into t h e g a s l f i e r , e i t h e r w i t h t h e c o a l f e e d o r s e p a r a t e l y into t h e l o w e r s e c t i o n of t h e b e d . T h e p r o d u c t g a s i s t h e n q u e n c h e d , c o o l e d a n d s c r u b b e d of a n y r e m a i n i n g f i n e s ( u s u a l l y 190) b e f o r e f u r t h e r p r o c e s s i n g a n d recycling. Experiments at the P D U scale have demonstrated that high conversion efflc~encles can be achieved with a wide variety of feedstocks, including both caking and non-caking coals, and that coal fines can be effectively c o n s u m e d in the gasifler.
Coal G a s i f i c a t i o n f o r SNG P r o d u c t i o n
4. Z-3.
669
l%heinbraun AG, H y d r o ~ a s i f i c a t i o n
l%heinbraun AG h a s b e e n p r o c e e d i n g z with the d e v e l o p m e n t and e v a l u a t i o n of a p r o c e s s to p r o d u c e s u b s t i t u t e NG t h r o u g h the d i r e c t r e a c t i o n of h y d r o g e n and c o a l via the o v e r a l l r e a c t i o n
(4. z-i)
coal + H z -----)CH 4 + char .
T h e o v e r a l l p r o c e s s u n d e r c o n s i d e r a t i o n will u t i l i z e two f l u l d - b e d r e a c t o r s . In the u p p e r b e d , h y d r o g e n is u s e d a s the f l u i d i z i u g a g e n t for the p r i m a r y coal f e e d s t o c k . The r e s u l t i n g p r o d u c t g a s is a m i x t u r e of CH 4 , H Z , CO, and CO 2 , along with HzS and NH 3 , t h a t m u s t s u b s e q u e n t l y u n d e r g o c l e a n - u p , s e p a r a t i o n and u p g r a d i n g s t e p s to a c h i e v e the final SNG p r o d u c t s t r e a m . The r e s i d u a l h y d r o g e n f r a c t i o n of the s t r e a m is s e p a r a t e d c r y o g e n i c a l l y and r e c y c l e d to the r e a c t o r . A s c h e m a t i c d i a g r a m of the pilot plant u s e d to d e v e l o p data for the h y d r o g a s i f i c a t i o n r e a c t o r is s h o w n in F i g . 4. Z-3. Table 4. Z-1 p r e s e n t s o p e r a t i n g data f r o m the h y d r o g a s i f i c a t i o n pilot plant for the r e l a t i v e l y r e a c t i v e l ~ h e n i s h b r o w n c o a l and a l s o f o r W e s t G e r m a n a n t h r a c i t e . The h y d r o g e n r e q u i r e d for h y d r o g a s i f i c a t i o n is p r o d u c e d in the l o w e r f l u i d - b e d , l~esidual c h a r f r o m the h y d r o g a s i f l c a t i o n s t a g e is r e a c t e d with s t e a m and o x y g e n to g e n e r a t e SNG t h a t c a n b e s h i f t e d to p r o v i d e the n e c e s s a r y c o n c e n t r a t i o n s of h y d r o g e n , The b a s i s for the c h a r g a s i f i e r is the h i g h - t e m p e r a t u r e W i n k l e r p r o c e s s , a p r e s s u r i z e d , f l u i d - b e d g a s l f i e r t h a t is a l s o b e i n g d e v e l o p e d b y K h e i n b r a u n . The h i g h - t e m p e r a t u r e W i n k l e r is a n e x t e n s i o n of e a r l i e r , a t m o s p h e r i c p r e s s u r e , f l u l d - b e d g a s i f i e r t e c h n o l o g y and is d e s i g n e d to p r o v i d e for h i g h e r t e m p e r a t u r e and h i g h e r p r e s s u r e o p e r a t i o n . The h i g h e r t e m p e r a t u r e l o w e r s the m a k e of liquid b y p r o d u c t and i n c r e a s e s c a r b o n u t i l i z a t i o n , H i g h e r p r e s s u r e s i n c r e a s e the g a s i f i e r t h r o u g h p u t . The h l g h - t e m p e r a ~ r e W i n k l e r t e c h n o l o g y h a s b e e n d e m o n s t r a t e d in a n o m i n a l 45 T P D pilot plant at p r e s s u r e s to a p p r o x i m a t e l y 130 psi a n d t e m p e r a t u r e s to a p p r o x i m a t e l y l l 0 0 ° C ° All t y p e s of c o a l s h a v e b e e n p r o c e s s e d and it h a s b e e n d e m o n s k r a t e d t h a t the a d d i t i o n of l i m e s t o n e to the fluld-bed can significantly reduce the H z S content of the r a w gas.
Methane (SNG) Pneumatic Conveying Drier
I II
Coal Sluice
H2
oo,0.ox
H~S,C02
Cyclone H20 Steam
,I, ~
Scrubber
I--J,/
Steam A'~soi
Plant Residual Gasometer 02
P i g . 4 . 2 - 3.
I i
H=
Raw Gas Condensate
P i l o t plant for h y d r o g a s i f i c a t i o n of coal (l%heinbraun AG); g a s i f i c a t i o n p r e s s u r e : up to 1750 psi; c o a l t h r o u g h p u t : up to 9.6 d r i e d t o n s / h r ; g a s i f i c a t i o n t e m p e r a t u r e : up to 950°C; gas p r o d u c t i o n : up to 7800 m 3 (i. N. ) C H 4 / h r .
670
Energy, The International Journal
Table 4.2-1.
O p e r a t i n g d a t a of the s e m i - t e c h n i c a l pilot p l a n t for h y d r o g a s i f i c a t i o n of c o a l a t R h e i n b r a u n A G . 1976-1982 Parameter R h e n i s h B r o w n Coal
Coal throughput, maf
1782 t o n s
13.6 tons
Special coal throughput, m a f
m a x . 700 l b / h r
m a x . 350 l b / h r
M e t h a n e c o n t e n t of c r u d e g a s
u p to 48 vol%
u p to 25 vol%
D e g r e e of C - g a s l f i c a t i o n
up to 82%
u p to 47%
Operating temperature
800-1000°C
9 4 0 - 9 6 0 °C
Operating pressure
800-1375 psi
1150-1250 psi
Solids r e s i d e n c e time
9-80 rain
28 - 38 r a i n
Plant in o p e r a t i o n with coal throughput
4. Z - 4 .
Anthracite
Z6987 hr 12253 hr
C a t a l y t i c Coal G a s i f i c a t i o n
E x x o n R e s e a r c h and D e v e l o p m e n t has conducted an engineering development p r o g r a m through the P D U stage (1-ton/day) to evaluate the potential for using coal gasification catalysts and a unique process flow sheet to produce S N G f r o m coal in a fluid-bed reactor, without the use of an oxygen plant or a separate methanatlon step. The catalyst, together with the process concept, led to the direct formation of m e t h a n e in the gasifler according to the overall reaction coal + H20
~ CH 4 + CO 2 .
(4.2-2)
T h i s t e c h n o l o g y , w h i c h i s s p e c i f i c a l l y f o c u s e d o n t h e p r o d u c t i o n of SNG f r o m c o a l , is d i s c u s s e d i n S e c . 7.Z. 4.3.
Catalytic Methanation
C a t a l y t i c m e t h a n a t i o u h a s b e e n s t u d i e d e x t e n s i v e l y s i n c e 1902, w h e n S a b a t i e r a n d S e n d e r e n s p u b l i s h e d t h e i r c l a s s i c a l p a p e r on Ni c a t a l y s t s . 3 M a n y c a t a l y s t s w e r e s u b s e q u e n t l y tried. B y 19Z5, m a n y e f f e c t i v e m e t a l c a t a l y s t s h a d b e e n i d e n t i f i e d . 4 A n o v e r v i e w of t h e s e c a t a l y s t s , t h e i r k i n e t i c s , r e a c t i o n m e c h a n i s m s , a n d s o m e c o m m e r c i a l e x a m p l e s m a y be found i n a 1973 r e v i e w p a p e r b y M i l l s a n d S t e f f g e n . 4 A n e x c e l l e n t d e s c r i p t i o n of c o m m e r c i a l p r o c e s s e s i s g i v e n i n R e f . 5. A l t h o u g h t h i s s u b j e c t i s c o n s i d e r e d i n C h a p t e r 7, we s h a l l d i s c u s s it h e r e f r o m a s o m e w h a t d i f f e r e n t p e r s p e c t i v e b e c a u s e of i t s p o t e n t i a l i m p o r t a n c e f o r SNG p r o duction. 4.3.1.
Chemistry and Thermodynamics
C a t a l y t i c m e t h a n a t i o n i n v o l v e s t h e e x o t h e r m i c f o r m a t i o n of CH 4 , u s u a l l y s t a r t i n g w i t h a m i x t u r e of H 2 a n d CO, a l t h o u g h m e t h a n a t i o n c a n a l s o be a c h i e v e d w i t h m i x t u r e s of H 2 a n d CO 2 . M e t h a n e i s f o r m e d in m a n y c o a l g a s i f i e r s , w i t h the l o w e r t e m p e r a t u r e g a s i f i e r s p r o d u c i n g r e l a t i v e l y m o r e CH 4 . T h u s , s o m e a m o u n t of CH 4 m a y be p r e s e n t i n t h e f e e d g a s to the c a t a l y t i c reactor. S t e a m i s u s u a l l y p r e s e n t or is a d d e d to the f e e d to a v o i d c a r b o n d e p o s i t i o n . The heat r e l e a s e d e p e n d s on t h e a m o u n t of CO p r e s e n t i n the f e e d g a s : f o r e a c h 1% of CO, a n a d i a b a t i c reaction will experience a 60°C temperature rise.
Coal G a s i f i c a t i o n for S N G P r o d u c t i o n
671
The p e r t i n e n t r e a c t i o n s a r e 4' 5 3H z + CO
T
~ CH 4 + H z O ,
(4.3-1)
ZH Z + Z C O
-
" CH 4 + CO z ,
(4.3-Z)
4H z + COp
-
~. C H 4 + Z H z O ,
(4° 3-3)
ZCO
-
• C + CO 2 ,
(4.3-4)
.
" C O z + H z.
(4.3-5)
CO +HzO
If m e t h a n a t i o n b e g i n s w i t h a m i x t u r e of H z and CO and n i c k e l - b a s e d c a t a l y s t s a r e u s e d , t h e d e s i r e d H 2 / C O r a t i o of the f e e d gas is 3:1 [ r e a c t i o n (4. 3 - 1 ) ] . When c a t a l y s t s s u c h a s G R I ' s s u l f u r - t o l e r a n t , d i r e c t m e t h a n a t i o n c a t a l y s t a r e u s e d , the d e s i r e d i n i t i a l H z / C O r a t i o is 1 and E q . (4. 3-Z) f o r m s the b a s i s for the m e t h a u a t l o n r e a c t i o n . O t h e r m e t h a n e - p r o d u c l n g p r o c e s s e s i n c l u d e the h y d r o c r a c k l n g of h i g h e r h y d r o c a r b o n s , typified by CzH 6 + H z
)ZCH 4 .
(4.3-6)
o o V a l u e s of AH[% and Z~G~ f o r r e a c t i o n s (4. 3-1) t h r o u g h (4. 3-5) a r e g i v e n in T a b l e 4° 3 - | f o r t e m p e r a t u r e s b e t w e e n Z7 and 7Z7 °C. T h e s e data s h o w t h a t all r e a c t i o n s a r e e x o t h e r m i c , w i t h a l l but the s h i f t r e a c t i o n (4. 3-5) b e i n g s t r o n g l y e x o t h e r m i c . F u r t h e r m o r e , the f l e e - e n e r g y v a l u e s in T a b l e 4. 3-1 show t h a t l o w e r t e m p e r a t u r e s f a v o r m e t h a n e p r o d u c t i o n ; t h u s , t h e r e m u s t be e f f e c t i v e h e a t - r e m o v a l m e t h o d s . At t e m p e r a t u r e s b e l o w ~ 4 Z b ° C , the m e t h a n e y i e l d is not n o t a b l y a f f e c t e d by p r e s s u r e ° C a r b o n d e p o s i t i o n , w h i c h l e a d s to c a t a l y s t fouling, c a n be e n c o u n t e r e d u n d e r c e r t a i n o p e r a t i n g c o n d i t i o n s . T h e s e c o n d i t l o u s a r e h i g h l y d e p e n d e n t on i n i t i a l g a s c o m p o s i t i o n , c a t a l y s t p r o p e r t i e s , t e m p e r a t u r e , and p r e s s u r e ° E x p e r i e n c e w i t h s u l f u r - t o l e r a n t , d i r e c t m e t h a n a t i o n c a t a l y s t s h a s s h o w n t h a t H p / C O r a t i o s a s low a s 0.1 can be p r o c e s s e d w i t h o u t c a r b o n d e p o s i t i o n . With c a t a l y s t s t h a t a c c o m p l i s h m e t h a n a t l o n t h r o u g h the o v e r a l l r e a c t i o n r e p r e s e n t e d b y E q . (4° 3-1) and for w h i c h f e e d gas H z / C O r a t i o s of 3 a r e d e s i r e d , c a r b o n d e p o s i t i o n o c c u r s m o r e r e a d i l y and m u c h l a r g e r r e g i o n s of t e m p e r a t u r e and H z / C O r a t i o s m u s t b e a v o i d e d , a s is s h o w n in F i g . 4. 3-1. 4. 3-Zo
Catalysts
In order of activity, the most important metal catalysts are: l~u > Ni > Co > Fe > M o . 4 Nickel is the m o s t c o m m o n l y used catalyst in cornrnerelal processes because of its relatively low cost. Despite the excellent catalytic performance of Ru, its high cost has precluded its widespread use. The activity of Ni is generally second to that l~u, but it is far cheaper and has therefore b e c o m e the most-used catalyst in commercial methanation processes. 4, 5 Nearly all cornrnerclally available methanation catalysts are rapidly poisoned by S-containing compounds and it is necessary to reduce the concentration of sulfur species in the inlet gas to less than 0.5 pprn in order to maintain adequate catalyst activity for long periods of time. The sulfurtolerant methanatlon catalysts currently under development do not have a similar requirement for low concentrations of sulfur species in the feed streams and thus afford the opportunity to m a k e major changes in the process elements and their integration in downstream processing trains. The catalyst base used and the composition of the Ni-based alloy are important. Investigators developing Ni-based catalysts have tried to find materials that yield o p t i m u m performance in terms of high CO-conversion, low C deposition, high methane selectivity, and yield. Other d e s i r a b l e p r o p e r t i e s a r e long, s t a b l e c a t a l y s t l i f e , a b i l i t y to a c c e p t f e e d s with low H z / C O r a t i o s , and h i g h s p a c e v e l o c i t i e s o v e r a r a n g e of t e m p e r a t u r e s a n d / o r p r e s s u r e s . A s u m m a r y of the m a n y d i f f e r e n t N i - b a s e d c a t a l y s t s i s g i v e n in T a b l e 5 of l l e f . 4. C o b a l t h a s a l s o b e e n found to b e q u i t e a c t i v e a s a m e t h a u a t i o n c a t a l y s t . 6, 7 H o w e v e r , c o m p a r e d to Ni, Co s u f f e r s m o r e s e v e r e c a r b o n d e p o s i t i o n , 6 r e q u i r e s h i g h e r t e m p e r a t u r e s f o r s i m i l a r CO c o n v e r s i o n s , 7 a n d i s l e s s m e t h a n e - s e l e c t i v e . 6, 7
672
Energy, The International Journal
Table 4.3-1.
Heats of r e a c t i o n and free energies of r e a c t i o n for reactions (4. 3-1) through (4. 3-5); reproduced from Ref. 4.
T e m p e r a t u r e , I.... °C
l
Reaction (4.3_i)
I (4.3_2)
l
(4.3_3)
I (4.3_4)
I (4.3_5)
Heat of Reaction, AHI~, kcal/mole 27
-49. 298
-59. 136
-39. 460
-41. 227
-9.838
127
-50.360
-60. 070
-40.650
-41,434
-9.710
227
-51, 297
-60.815
-41,779
-41. 499
-9.518
327
-52.084
-61. 376
-42.792
-41,460
-9. Z92
427
-52.730
-61.780
-43.680
-41. 350
-9. 050
527
-53.248
-62. 047
-44.449
-41. 190
-8,799
627
-53.654
-62. 2O3
-45.105
-40. 996
-8.549
727
-53.957
-62. 261
-45.653
-4O.729
-8.304
F r e e E n e r g y of Reaction, AG~, kcal/rnole Z7
-33. 904
-40.731
-27. 077
-28. 621
-6.827
127
-28. 610
-34. 451
-22.769
- 24. 385
-5o841
227
-23. 062
-27.956
-18. 168
-20. III
-4.894
327
-
17. 338
- 21. 329
-13. 347
-15.836
-3. 991
427
-II. 493
-14. 620
-8. 366
-II. 574
-3. 127
527
-5. 567
-7. 865
-3. 269
-7. 332
627
+0. 594
-I. 07 9
+I. 921
727
+6. 444
+5.715
+7. 173
-3. 108 +I. 090
-
-
2. 298 1. 500
-0.729
_ 1 Atmosphere 4 10 Atmospheres ."
u~
" ~ ~
.~
._.-___--~_ ...... ~C-.~ .... \ 25 Atmospheres
2
_
0
Carbon Deposition May Occur in Area Beneath Curve
I 500
~1~
600
I 700
I
I
800
900
I 1000
I
I
1 1 0 0 1200
I 1300
I 1400
Temperature, °K Fig. 4. 3-1.
The effects of synthesis gas ratio and pressure on carbon deposition. Carbon deposition m a y occur for conditions below the curves.
Coal G a s i f i c a t i o n f o r S N G
Production
673
I r o n - c a t a l y z e d m e t h a n a t i o n h a s b e e n d e s c r i b e d in two p a p e r s . 8, 9 The l o n g - t e r m e f f e c t i v e n e s s of t h i s c a t a l y s t w a s l i m i t e d b y C d e p o s i t i o n . B e c a u s e F e h a s v e r y poor m e t h a n e s e l e c t i v i t y , e v e n a t h i g h H 2 / C O r a t i o s , 8 it is c o n s i d e r e d to be m o r e s u i t a b l e for F i s c h e r - T r o p s c h s y n t h e s e s t h a n for m e t h a u a t l o n c a t a l y s i s . T y p i c a l y i e l d s c o n s i s t of 20% m e t h a n e and 8090 F i s c h e r - T r o p s c h p r o d u c t s w h e n 1 : 1 s y n t h e s i s gas w a s u s e d . 8 M o l y b d e n u m and W h a v e only m o d e r a t e a c t i v i t y and r e q u i r e h i g h t e m p e r a t u r e s for m e t h a u a t l o n . 10, 11 The m o t i v a t i o n f o r e x a m i n i n g t h e s e c a t a l y s t s is t h e i r h i g h r e s i s t a n c e to s u l f u r p o i s o n i n g . 10, 12 Noble m e t a l s h a v e a l s o b e e n s t u d i e d for a p p l i c a t i o n s i n c a t a l y t i c m e t h a n a t i o n . 10 T h e i r a c t i v i t i e s a r e g e n e r a l l y quite low, but P d , Kh, Os, and lZe h a v e the a d v a n t a g e of b e i n g h i g h l y methane -selective. 4. 3-3. C o m m e r c i a l P r o c e s s e s
M e t h a n a t i o n s y s t e m s a r e u s e d c o m m e r c i a l l y to r e m o v e s m a l l a m o u n t s of CO and COp b e c a u s e t h e s e o x i d e s a r e c a t a l y s t - p o i s o n s f o r m a n y c h e m i c a l manufacb~,ring s y s t e m s . A n e x a m p l e of a c o m m e r c i a l s y s t e m f o r w h i c h t h i s r e m o v a l is n e c e s s a r y i s found in a m m o n i a p l a n t s w h e r e the m e t h a u a t i o n s y s t e m s s e r v e a s gas p u r i f i e r s . As a r e s u l t , input CO and CO 2 c o n c e n t r a t i o n s to the a m m o n i a s y n t h e s i s r e a c t o r s a r e u s u a l l y l e s s t h a n ~ 1 % . 5 W h e n s c a l i n g up t h i s t e c h n o l o g y to the m e t h a n a t l o n s y s t e m s r e q u i r e d in a c o a l - g a s i f l c a t l o n plant p r o d u c i n g SNG, c o n s i d e r a t i o n m u s t b e g i v e n to a n u m b e r of p o t e n t i a l p r o b l e m a r e a s . The SNG s y s t e m s w i l l b e m u c h l a r g e r and w i l l be r e q u i r e d to h a n d l e input g a s e s w i t h m u c h h i g h e r CO c o n c e n t r a t i o n s . B e c a u s e of the h i g h h e a t r e l e a s e a s s o c i a t e d w i t h h i g h CO i n p u t - g a s c o n c e n t r a t i o n s , a d e q u a t e h e a t r e m o v a l m u s t be i n c o r p o r a t e d into the r e a c t o r d e s i g n . Sulfur p o i s o n i n g , c a t a l y s t d e a c t i v a t i o n b y h i g h t e m p e r a t u r e s i n t e r l n g of Ni c a t a l y s t s or b y C d e p o s i t i o n m u s t a l s o be a d d r e s s e d . N i c k e l - b a s e d c a t a l y s t s a r e c u r r e n t l y u s e d in the f i x e d - b e d m e t h a n a t o r s at the G P C G P . The f e e d g a s e s a r e p r e p r o c e s s e d b y a c l d - g a s r e m o v a l - s y s t e m s to r e d u c e the s u l f u r c o n t e n t to a c c e p t a b l e l e v e l s ( l e s s t h a n 1 ppm) b e f o r e t h e y e n t e r the m e t h a n a t l o n u n i t s . The s t a t u s of r e c e n t a d v a n c e d m e L h a n a t l o n t e c h n o l o g y d e v e l o p m e n t a c t i v i t i e s is s u m m a r i z e d i n the following s e c t i o n s . 4. 3-4.
Direct Methauatlon
Since 1978, GI~I h a s f u n d e d the d e v e l o p m e n t of the d i r e c t m e t h a n a t i o n p r o c e s s b e c a u s e of t h e p o t e n t i a l f o r i m p r o v i n g the c o a l - t o - S N G e c o n o m i c s . 13 P r o c e s s d e v e l o p m e n t h a s i n c l u d e d c a t a l y s t d e v e l o p m e n t , c a t a l y s t e v a l u a t i o n , e v a l u a t i o n of m a t e r i a l s of c o n s t r u c t i o n , and p r e l i m i n a r y a s s e s s m e n t of p r o c e s s e c o n o m i c s . D i r e c t m e t h a n a t i o n is a p r o c e s s b a s e d on a c a t a l y s t t h a t m e t h a u a t e s e q u l - m o l a r c o n c e n t r a t i o n s of H 2 and CO, p r o d u c i n g CO 2 r a t h e r t h a n s t e a m a s a p r o d u c t via the r e a c t i o n ZH 2 + 2CO
~
• CH 4+CO
2 .
(4. 3-7)
A c c o r d i n g l y , the p r o c e s s h a s no r e q u i r e m e n t for s t e a m , e i t h e r to s h i f t the gas to a n H 2 / C O r a t i o of 3 o r to p r e v e n t coking, a s is r e q u i r e d for N i - b a s e d c a t a l y s t s . Sulfur r e m o v a l is not r e q u i r e d p r i o r to m e t h a u a t i o n s i n c e the c a t a l y s t is not p o i s o n e d b y a n y sulfur c o m p o u n d s p r e s e n t in c o a l d e r i v e d g a s . As a r e s u l t , the p r o c e s s c a n be u s e d to t r e a t the r a w , q u e n c h e d gas f r o m a c o a l gasLfler w i t h l i t t l e o r no p r e t r e a ~ - n e n t , T h i s p r o c e d u r e a l l o w s u s e of the a c i d - g a s r e m o v a l s y s t e m to t r e a t a r e d u c e d v o l u m e of the a c i d - g a s s t r e a m to r e m o v e H2S and CO 2 . P o l i s h i n g m e t h a n a t l o n m a y b e r e q u i r e d to b r i n g the gas to US p i p e l i n e s t a n d a r d s . To d a t e , m o r e t h a n 800 c a t a l y s t f o r m u l a t i o n s h a v e b e e n t e s t e d , r e s u l t i n g in s e v e r a l c o m p o s i t i o n s t h a t h a v e p r o m i s e for a p p l i c a t i o n in the d i r e c t m e t h a n a t i o n p r o c e s s . C a r b o n f o r m a t i o n s h a v e not b e e n o b s e r v e d , e v e n w i t h H 2 / C O r a t i o s a s low a s 0.1 in a d r y gas s t r e a m . The GRI c a t a l y s t s p r o m o t e the m e t h a n a t i o n r e a c t i o n a t t e m p e r a t u r e s f r o m 260 to 650°C, p r e s s u r e s f r o m a t m o s p h e r i c to 1000 p s l g , f e e d gas H2]CO m o l a r r a t i o s f r o m 3 to l e s s t h a n 0. 4, s t e a m c o n c e n t r a t i o n s f r o m 0 to 15 m o l t , and in the p r e s e n c e of up to 1 m o l t of s u l f u r . C a r b o n f o r m a t i o n w a s not d e t e c t e d u n d e r any of t h e s e c o n d i t i o n s . HC a d d i t i o n s of up to 2 m o l t C6H 6 , 0 . 0 5 m o l t C6H~OH, a n d 0 . 3 m o l t NH 3 a l s o did not p o i s o n or foul the c a t a l y s t , L i m i t e d r e f o r m ing t e s t s h a v e i ~ d i c a t e d t h a t the c a t a l y s t s c a n y i e l d a s l n g l e - p a s s c o n v e r s i o n of a l m o s t 2590 of 22 p p m H z S - c o n t a i u i n g NG a t 8 7 0 ° C . C a t a l y s t s a m p l e s h a v e b e e n e x p o s e d to 2300 h r (Fig. 4. 3-2) u n d e r c o n t r o l l e d c o n d i t i o n s w i t h m a i n t e n a n c e of a c t i v i t y , a s w e l l a s 10,000 h r u n d e r a v a r i e t y of t e s t c o n d i t i o n s . B a s e d on t h e s e t e s t s , a m i n i m u m of a 1 - y r c a t a l y s t life h a s b e e n p r o j e c t e d f o r c o m m e r c i a l a p p l i c a t i o n . T a b l e 4. 3 - 2 l i s t s the r a n g e s of o p e r a t i n g c o n d i t i o n s o v e r w h i c h the c a t a l y s t h a s b e e n t e s t e d . The p r e s s u r e r a n g e is ~rpical of a n t i c i p a t e d o p e r a t i n g c o n d i t i o n s d o w n s t r e a m of a coal= g a s l f l c a t l o n plant. The c a t a l y s t c a n be o p e r a t e d up to 660 °C, w h i c h i s i n d i c a t e d b y t h e u p p e r l i m i t of the t e m p e r a t u r e r a n g e s~udled. The e x p e r i m e n t s w e r e c o n d u c t e d u s i n g g a s e s w h i c h
674
E n e r g y , The I n t e r n a t i o n a l J o u r n a l
Luzgi Peed Species
80
CO CO 2 H2 CH4 CZH 6 C 2H4 C3H6 C4H10 HzS COS CSz CH3SH C4H4S
d
A
ff 70
o
g 6o
0
-
~
0
a
o
"~ 50
-
o
o.,.o-
00
A GRI'C'600
4O 0
I 200
I 400
0
I 800
I 800
I 1000
I 1200
~
I 1400
0
I 1600
~
OI 1800
I 2000
N2
H20
Total
Time, hr Fig. 4. 3- 2. Life-test d a t a of the GRI-C-500 and GRI-C-600 catalysts using a clry-bottom Lurgl-type raw gas (450 psig, 6000 SCF/hr-ft 3 , 930 to 980°F, I0 g of -12 to +20 m e s h catalyst).
Table 4.3-Z.
G R I tests on direct methanation-catalysts.
Reactor conditions: p = 50-1000 psig, outlet T = 400-680°C. Types of feed gases simulated (gasification process/coal type): B G C / I L No. 6, I~RW/Pittsburgh No. 8, E R W / W y o d a k , Lurgi/ North Dakota Lignite, Lurgi/Kosebud, She ll{Wyodak, UCG/Rosebud. Feed-gas compositions Species
Volt
CO
4-4Z
CO z
0-42
Hz
8-44
CH 4
6-30
CzH 6
0-0.7
CzH 4
0-0.7
C 3H8
0-0. Z
C4H10
0-90 p p m
HzS
0.05-3
COS
0-0.14
N2
0.3-1.5
H20
0-38
C6H6
0-2.5
C6H5OH
0-0. O6
NH B
0-I
Total S
I00 p p m - 3
H z / C O ratio
0.6to 3
Space velocity = 500-Z5000 SCF/ft3-hr. Results: 18-86% C O conversion (defined as percentage of C O in the feed converted), Zl to 100% C H 4 selectivity (defined as the amount of CH 4 p r o d u c e d a s a p e r c e n t a g e of the a m o u n t of CO c o n v e r t e d ) .
tool%
16.73 28.35 39.70 lZ. 20 0.47 0. Z8 29 ppm 4 ppm
0.51 ?,49 ppm 1 ppm 1 ppm 2 ppm
I. 49 O. Z2
100.00
Coal Gasification for S N G Production
675
r e f l e c t (a) a n t i c i p a t e d r a w g a s c o m p o s i t i o n s a n d H z / C O r a t i o s f o r a v a r l e t y of c o a l - g a s i f l c a t i o n p r o c e s s e s a n d (b) g a s c o m p o s i t i o n s a n t i c i p a t e d a t the o u t l e t of a n u m b e r of d l r e c t - m e t h a n a t l o u r e a c t o r s o p e r a t i n g in s e r i e s . T h e c a t a l y s t h a s b e e n t e s t e d f o r h e a v y HC a n d s u l f u r c o n c e n t r a t i o n s i n t h e r a n g e of 50 to 1350 p p m . T h e c a t a l y s t h a s a l s o b e e n o p e r a t e d o v e r a w i d e r a n g e of s p a c e v e l o c i t i e s a n d f e e d - g a s w a t e r c o n c e n t r a t i o n s to o b t a i n a r a n g e of CO c o n v e r s i o n s a n d CH 4 s e l e c t i v i t i e s. T h e r e s u l t s of l a b o r a t o r y e x p e r i m e n t s to d e t e r m i n e the c o n v e r s i o n c h a r a c t e r i s t i c s of a GI%I direct-methanation catalyst, under conditions simulating the first stage of a methanation process, are presented in Fig. 4. 3-3. These data show the effect of temperature and space velocity on C O conversion and provide a basis for developing process-flow sheets that can be integrated into conceptual designs of coal-to-SNG plants. Workers at Haldor Topsoe, Inc., have been evaluating S-tolerant catalysts for converting C O / H 2 mixtures to methane. 14 They have demonstrated that the catalyst can also be an effective shift catalyst and, under s o m e conditions, leads to the formation of other low molecular weight, saturated, H C s in addition to methane. The general physical characteristics of the catalysts are shown in Table 4.3-3 and the range of test conditions investigated using simulated raw gas is shown in Table 4. 3-4. In addition to laboratory experiments, a methauatlon P D U was constructed and operated on a sllp-stream from an entrained-flow coal gaslfleatlou P D U being evaluated by Mountain Fuel Resources. The entrained-flow gasification experiments involved five different coal feedstocks and provided different r a w gas feed streams to the methautor. The results of these experiments are shown in Fig. 4. 3-4 as relative catalyst activity vs time. The activity was calculated as the space velocity for 90% conversion based on the rate-llmiting component (i.e. , the minor component which is H 2 for C O / H 2 > 1 and C O for C O / H 2 < I). Data are also included from the laboratory experiments carried out with the catalyst prior to performing the integrated P D U tests. A total of 1080 hr of testing was completed with catalyst activity levels remaining high throughout the test. The type of coal appeared to have no effect on the activity of the catalyst and the effects of variations in HzS concentration were also small. There appeared to be no effect of H2S on actlvlty below a 0.07 volt concentration. The catalyst activity remained constant during a 100-hr test with the H z S partial pressure as low as 1 ppm.
4. 3-5. Conaflux Process (Fluld-Bed Methauatlon) The Cornflux process is an Ni-catalyzed, pressurized, fluid-bed process to convert C O rich gasification gases into S N G in a single step. 15 This process performs both shift and methanation reactions simultaneously in a single reactor with complete C O conversion. The water formed in the methanatlon reaction is available for water-gas shift reaction. Thus, a gas with H z / C O < 3 can be methauated without adding steam. A simplified process flow diagram for the Cornflux process is shown in Fig. 4. 3-5. The desulfurized feed gas is preheated by heat exchange with the product gas to the reactlon-inltlation temperature and then fed into the reactor. The g a s flu~dizes the catalyst, and both methanation and water-gas shift reactions take place simultaneously in the fluldlzed bed. The axial temperature gradient in the fluidized bed is extremely small, and the reactor is operated under high loads almost isothermally. Heated catalyst particles are cooled sufficiently fast by mixing with colder particles and by contact wlth integrated heat exchangers so that the high heat of the methanatlon reaction does not cause superheating of the bed. The reaction heat is utilized to generate high-pressure superheated steam in a heat exchanger in the bed. The product gas wlth less than 0.1 volt of C O is cooled and process water condensed. If the feed gas has H z / C O < 3.0, the C O 2 formed with the reaction must be r e m o v e d to meet plpellne-quallty gas specifications. The resulting product gas is S N G with a heating value of 9Z6-I016 B T U / S C F and chemical properties i d e n t i c a l to NG. The C o m f l u x p r o c e s s was e v a l u a t e d initially in a 1 . 3 - i t d i a m e t e r E T U and l a t e r at the pilot plant scale with a 3.3-it diameter reactor and S N G production up to II 2, 000 SCF/hr. Performance data from these development programs are s u m m a r i z e d in Table 4, 3-5. 4. 3-6. H I C O M H I C O M methauatlon is a fixed-bed process and is being developed by the British Gas Corporation to a c c o m m o d a t e the relatively low Hz/CO-ratlo product-gases produced by gasiflers such as the B G C / L u r g i slagging gasifier, KI~V (Westinghouse), U-Gas, Shell (entrained-flow), and Texaco (entrained-flow). 16 Typical off-gas compositions for these gasiflers and the drybottom Lurgi gasifier are shown in Table 4. 3-6. The gases will also contain compounds of sulfur (HzS, COS, etc. ) at levels dependent on the sulfur contents of the coals. The HICO~v[ process employs a series of methanation stages, each of which involves a fixed bed of catalyst; each is connected as shown in the simplified process flow diagram of Fig. 4. 3-6. The principal method used to control the temperature rise in each stage is recycle of cooled, equilibrated product gas to dilute the feed gas. The amount of recycle gas is minimized by passing it through at least two stages, with fresh gas added to each stage (spllt-stream EGY 12:8/9-E
Energy, The InternationalJournal
676
C~
0
a
8 '13
--
u~
o
~o
o
o 0 0 o
u*J
o f~"
I~
.o %lOUJ ' u o ! l e J l u a 0 u o o
O0
•~ ,..:,
),onpoJd
¢) m u .~ m o o
o o o
e~ 0,1 ~00
o
I eU. U U)
o
~.~
~
04i
~o
U 0
U O. U) ~D
o
4 o o o o
% IOtU ' u o ! l e J l , u e o u o o
O0
|onpoJcl
o
~
% 'uo!sJe^uoo
o
lelO/
Coal Gasification
Table 4.3-3,
f o r SNG P r o d u c t i o n
677
Physical characteristics of the catalyst tested by Haldor Topsol, Inc.
Name
S M C 324
Size, L X D
4.5 turn ×4.5
Density
1 . 7 5 grnn/crn 3 (109 l b / C F )
Bulk density
1 . 2 7 5 k g / ~ (80 l b / C F )
Surface area
100 r n 2 / g r
Crushing strength
600 kg/crn 2 (8700 Ib/in2)
Table 4.3-4.
rnrn (0.18" x0.18")
S u m m a r y of direct rnethanation test conditions a n d results; concentrations are given in molt.
Parameters
90 - 300
Pressure, psia Volumetric flowrate, S C F / h r Inlet conditions
R a n g e of T e s t Conditions
Typical Test Data 300
3
1 - 8
( a d j u s t e d w l t h H 2)
CO/H 2 volume ratio
1.5
0 . 7 -
1.0
H2
30 - 45
35
CO
30 - 45
40
CO 2
10
15
40
-
1 pprn-
3.5
0.1
cH 4
0-13
1
N2
2-11
5
Outlet conditions
H2
0-
15
8
CO
Z - 15
8
40 - 55
50
CO 2 HzS
cH 4 CzH 6
2 pprn - 4.5
16 - 39
0.1 25 Z.5
1-4
0.5
C3H 8
0.2-0.7
N2
Balance
Balance
Fractional conversions CO
70 - 100
90
H2
70
9O
-
100
678
Energy, The International Journal
O
1.0
1.o ¢1 U
~
•
qlh
•• " S
k." •
O.O Ill -
• _~_ " •" • - O
087
•
"
0.5 I 0
440-I~ test at HTAS
Fig. 4 . 3 - 4 .
I 500
co
I 1000
Operating time, hr
d North Dakota lignite
Petroleum coke
Price River Utah bituminous coal
SUFCO Utah bitumiuous coal
Test completed
Relative catalyst activity vs time in the methauatiou P D U at Mountain Fuel Resources.
Reactor
Steam Drum
Filter
Cooler
Steam BFW
EII
¢
Feed
,©
Steam Desulfurization
Heat Exchanger
Preheater
Fig. 4. 3-5.
SNG
Compression
Simplified process-lqow diagram for the Cornlqux process.
Coal Gasification
T a b l e 4. 3 - 5 .
A.
Operating
Comflux methanation performance semi-technlcal test plant,
Conditions:
T = 400 - 500°C,
679
data for a
o u t p u t c a p a c i t y = 3500 - 1 2 3 0 0 f t 3 / h r ,
p = 290 - 8 7 0 p s i ,
H 2 / C O v o l u m e r a t i o = 1 . 8 - 3, r e c y c l e
feed ratio = 0 - 0.5,
B.
f o r SNG P r o d u c t i o n
volume-
gas velocity = 0.16 - 0.82 ft/sec.
SNGproductloninvol%:
methane
= 86 - 96, H 2 = Z - 8, C O
= Z - 6; gross
heating value = 926 - 1016 B T U / S C F .
C.
Operational
Data for the Pilot Plant:
reactor
450 - 550°C, Z.0-
3.0,
diameter
feed gas = 112,000 - 400,000 SCF/hr,
recycle-gas
I. 0 ft/sec,
volume ratio = 0 - 0.3,
SNG production
t i o n = 1o 0 - 5 . 2 t / h r ,
= 3 . 2 8 ft ( i n t e r n a l ) ,
steam temperature
size distribution
Table 4.3-6.
charge
gas veloclty=
0.16 -
steam produc-
= 370 - 4 8 0 ° C ,
= 0.8 - 1.6,
=
H2/CO volume ratio =
= 45,000 - 112,000 SCF/hr,
height = 6.4 - 12.9 ft, catalyst
Species
reactor
h e i g h t = 3 6 . 0 ft, p = 190 - 870 p s l , f l u i d i z e d b e d t e m p e r a t u r e
finidized-bed
catalyst-particle
= 10 - 400 ~ m .
Typical gasifier-product g a s e s (in m o l t ) f o r a n u m b e r g a s i f i e r s a n d c o r r e s p o n d i n g s t e a m to d r y - g a s r a t i o s .
Lurgl Dry- Ash
B GC / L u r gi Slagging
Shell
Texaco
of
KRW (Westinghouse)
40
29
29
35
27
CO
17
60
65
43
55
CO 2
32
3
Z
20
6
cH 4
I0
6
0.1
0.3
9
N2
1
1
4
Steam/dry gas ratio
1.4
0o 13
0.03
2
0.23
3
1.0
operation). Product gas from upstream stages (split-stream operation) also helps control the temperature rise in each subsequent reactor and hlgh-grade heat is recovered immediately downstream of each reactor. The effect of using spilt-stream o p e r a t i o n i n o r d e r to r e d u c e t h e amount of recycle gas needed for control of the temperature r i s e in t h e r e a c t o r b e d s i s s h o w n i n Fig. 4. 3 - 7 . The HtCOM process employs nickel-based catalysts and uses excess steam in the feed g a s to p r e v e n t c a r b o n d e p o s i t i o n . The process was initlally evaluated in small-scale laboratory experiments and subsequently tested at the semi-commercial scale on a slip stream from the B O C / L u r g l s l a g g i n g g a s i f l e r a t W e s t f i e l d , S c o t l a n d . In t h e i n t e g r a t e d t e s t s a t W e s t f i e l d , p u r i fied gases from the gaslfier were successfully processed at a nominal rate of approximately 4.5 x 106 S C F / d a y .
4. 3-7.
Liquid-Phase
Methanatlon
Workers at Chem Systemj Inc., have developed a liquld-phase methanation system in w h i c h a g r a n u l a r N i - c a t a l ~ s t i s i m m e r s e d i n a m i n e r a l - o l l c o o l a n t b a t h , w h i c h s e r v e s to c o n t r o l t h e r e a c t o r t e m p e r a t u r e . 17, 18 F i n i d i z a t l o n o f t h e c a t a l y s t o c c u r s b y c i r c u l a t i n g t h e o l l a n d f r e s h SG u p w a r d t h r o u g h t h e r e a c t o r . In a l a r g e - s c a l e p r o c e s s , h e a t i s r e c o v e r e d f r o m t h e o l l
Energy, The International Journal
680
Saturator
Purified Synthesis 4,Gas
H.R Steam Boiler Second Final Methanator Methanator Gas Cooling First Methanator H.R Steamboiler Train 4
!ii;I L b,,/I I [',,-'
'iT I Make Up Water
Purge Liquor
Coolers in Slagger Make Gas Cooling Train
HCM C02 --- SNG Cooling and Removal Train
(a) T y p i c a l g a s c o m p o s i t i o n s f r o m a HICOM ,ilot t e s t F e e d to t h e HICOM Reactor, molt
Component
Product from the HICOM R e a c t o r , m o l t
CO
lZ. 6
CO z
43,0
53.1
Hz
11.7
5.5
31.7
39.3
1.0
I°I
4
Nz
I.I
(b) R a n g e of o p e r a t i n g c o n d i t i o n s Inlet T
Z30 - 3 Z 0 ° C Z5 - 70 b a r
P Maximum T
46O - 640° C
Total test time Fig. 4 . 3 - 6 .
15,000
hr
T h e HICOM p r o c e s s d l a g r a m ~ g a s c o m p o s i t i o n s (a) a n d r a n g e of o p e r a t i n g c o n d i t i o n s (b),
.2 10
u
One Reactor
,,r 5
React°rs ~ 0
I 100
Fig, 4o 3 - 7 .
~ I
L |
200 300 Temperature Rise, °C
400
500
E f f e c t of t h e t e m p e r a t u r e r i s e on t h e r e q u i r e d r e c y c l e r a t i o (= r e c y c l e f l o w / p r o d u c t flow).
Coal G a s i f i c a t i o n f o r SNG P r o d u c t i o n
681
a n d f r o m t h e hot p r o d u c t g a s e s . F e e d s t r e a m s w i t h HP./CO < 3 a r e a c c o m m o d a t e d b y a d d i n g s t e a m to the f e e d , t h u s f o r c i n g t h e s h i f t r e a c t i o n . M u l t i p l e r e a c t o r s a r e r e q u i r e d to o b t a i n a C O - c o n c e n t r a t i o n b e l o w 0.1%° O p e r a t i n g t e m p e r a t u r e s a r e b e t w e e n 300 and 380°C and p r e s s u r e s b e t w e e n 300 and 1000 p s i . V e r y good CO c o n v e r s i o n s h a v e b e e n d e m o n s t r a t e d , but c a r b o n d e p o s i t i o n and c a t a l y s t d i s i n t e g r a t i o n h a v e b e e n p r o b l e m s f o r s o m e o p e r a t i n g r e g i m e s . 4.4.
Acid-Gas l~emoval
4.4-1. C o m m e r c i a l Processes An e s s e n t i a l e l e m e n t of a c o a l - t o - S N G p r o c e s s i s t h e r e m o v a l of g a s e s s u c h a s COp., HP.S, COS, m e r c a p t a n s , and o r g a n i c s u l f i d e s f r o m t h e p r o d u c t s t r e a m in o r d e r to s a t i s f y p r o c e s s c o n s t r a i n t s (such as catalyst poisoning), e n v i r o n m e n t a l c o n s t r a i n t s or product r e q u i r e m e n t s ( s u c h a s h e a t i n g v a l u e and t r a c e - c o n s t i t u e n t l e v e l s ) . B e c a u s e r e q u i r e m e n t s h a v e e x i s t e d f o r t h e r e m o v a l of t h e s e t y p e s o f g a s e s f r o m a w i d e v a r i e t y of p r o c e s s s t r e a m s t h a t a r e e n c o u n t e r e d in t h e c h e m i c a l i n d u s t r y , in p e t r o l e u m r e f i n i n g and NG p r o d u c t i o n , a l a r g e n u m b e r o f unlt p r o c e s s e s h a v e b e e n d e v e l o p e d and c a n b e u s e d in t h e d o w n s t r e a m p r o c e s s i n g t r a i n s o f c o a l - g a s l f i c a tion plants. T a b l e 4 . 4 - 1 c o n t a i n s a l l s t of t e c h n o l o g i e s t h a t have b e e n e x a m i n e d a n d / o r d e v e l o p e d f o r s p e c i f i c a p p l i c a t i o n s . C u r r e n t l y , t h e r e a r e m o r e t h a n 90 l%ectisol u n i t s in o p e r a t i o n o r u n d e r c o n s t r u c t i o n in v a r i o u s p a r t s of t h e world@ The 1%ectlsol t e c h n o l o g y , w h i c h u s e s m e t h a n o l a s t h e p h y s i c a l s o l v e n t , is in u s e a t t h e SASOL p l a n t s and i s a l s o e m p l o y e d in t h e d o w n s t r e a m p r o c e s s ing t r a i n in t h e G P C G P . The B e n f l e l d P r o c e s s , w h i c h u s e s a hot Kp.CO S s o l u t i o n f o r t h e c h e m i c a l a b s o r p t i o n of COP., H2S and COS, is in u s e o r b e i n g c o n s i d e r e d in o v e r 6P'0 a p p l i c a t i o n s throughout the world. The S e l e x o l p r o c e s s , a p h y s i c a l a b s o r p t i o n p r o c e s s w h i c h u s e s the d l m e t h y l e t h e r o f p o l y e t h y l e n e g l y c o l a s t h e s o l v e n t , h a s b e e n i n s t a l l e d at a p p r o x i m a t e l y 30 c o m m e r c i a l a n d / o r p i l o t - p l a n t f a c i l i t i e s . T h i s t e c h n o l o g y is c u r r e n t l y b e i n g u s e d at t h e Cool W a t e r IGCC p r o j e c t . 4. 4 - 2 .
Advanced Technolo$ies
B e c a u s e of t h e e x t e n s i v e c a t a l o g of c o m m e r c i a l l y a v a i l a b l e t e c h n o l o g i e s f o r a c i d - g a s r e m o v a l and t h e l a r g e d a t a b a s e t h a t e x i s t s on t h e p r o p e r t i e s of p o t e n t i a l s o r b e n t s f o r t h e g a s e s o f i n t e r e s t , t h e r e i s o n l y a l i m i t e d e f f o r t d e v o t e d to the d e v e l o p m e n t of n e w p r o c e s s e s t h a t c o u l d i m p r o v e t h e e c o n o m i c s of p r o d u c i n g SNG f r o m c o a l . GKI, t o g e t h e r w i t h DoE and C o n s o l i d a t e d I q a t u r a l Gas (CNG), h a s b e e n e v a l u a t i n g a n a d v a n c e d a c l d - g a s r e m o v a l p r o c e s s s p e c i f i c a l l y for c o a l c o n v e r s i o n . T h i s p r o c e s s r e l i e s on t h e u n i q u e g a s - s o l l d - l l q u i d e q u i l i b r i n m p h a s e r e l a t i o n s h l p s t h a t e x i s t f o r CO2-H2S m i x t u r e s . H y d r o g e n s u l f i d e and c a r b o n y l s u l f i d e a r e s o l u b l e in liquid CO 2 . H o w e v e r , w h e n t h e t e m p e r a t u r e of a CO2/H2S s o l u t l o n i s r e d u c e d to t h e p o i n t w h e r e c r y s t a l l i z a t i o n o c c u r s s t h e s o l i d p h a s e t h a t r e s u l t s i s a l m o s t 100% CO 2 and c o n t a i n s e s s e n t i a l l y no s u l f i d e s . T h i s p h a s e b e h a v i o r p r o v i d e s an e f f e c t i v e m e a n s for r e m o v i n g a c i d g a s e s s u c h a s CO2, H2S and COS f r o m a c o a l - g a s i f i c a t i o n p r o c e s s s t r e a m and s u b s e q u e n t l y i n c r e a s i n g t h e c o n c e n t r a t i o n of H?S in a s t r e a m w h e r e it c a n b e e f f e c t i v e l y c o n v e r t e d to e l e m e n t a l s u l f u r . A c o n c e p t u a l flow d i a g r a m for t h e CNG a c l d - g a s r e m o v a l p r o c e s s is s h o w n in F i g . 4 . 4 - 1 o The r a w f e e d gas is c o o l e d and r e s i d u a l w a t e r v a p o r i s r e m o v e d in a d e h y d r a t i o n s y s t e m to p r e v e n t s u b s e q u e n t i c i n g . The w a t e r - f r e e c r u d e gas i s f u r t h e r c o o l e d to i t s CO 2 dew p o i n t ( - 5 6 ° C ) b y c o u n t e r c u r r e n t h e a t e x c h a n g e w i t h r e t u r n c l e a n gas and COP. o D e p e n d i n g o n t h e COP. dew p o i n t , a f r a c t i o n of t h e COP. in t h e c r u d e g a s s t r e a m is c o n d e n s e d t o g e t h e r w i t h t h e s u l f u r c o m p o u n d s . The g a s at -55 ° C i s t h e n s c r u b b e d b y liquid COP. to r e m o v e HP.S, COS and o t h e r t r a c e i m p u r i t i e s f r o m t h e f e e d g a s . T h i s a b s o r p t i o n is e s s e n t i a l l y i s o t h e r m a l s i n c e t h e h e a t of a b s o r p t i o n is d i s s i p a t e d a s h e a t of v a p o r i z a t i o n of a s m a l l p o r t i o n of t h e liquid CO 2. The liquid COP., t o g e t h e r w l t h a l l of t h e s u l f u r c o m p o u n d s , e t h e r t r a c e c o n t a m i n a n t s and s o m e c o - a b s o r b e d light HCs i s c o m b i n e d w i t h the c o n t a m i n a t e d l i q u i d COp. t h a t w a s c o n d e n s e d in p r e c o o l l n g t h e r a w g a s . The light HCs a r e s t r i p p e d f r o m t h i s c o m b i n e d liquid CO 2 s t r e a m and r e c y c l e d and m i x e d w i t h t h e f e e d g a s . Any h i g h e r I-tCs (C4-C6) in t h e f e e d g a s w i l l r e m a i n w i t h t h e c o n d e n s e d COP.. The c o n t a m i n a t e d liquid COP. s t r e a m l e a v i n g t h e light e n d s s t r i p p i n g t o w e r is p r o c e s s e d in a d i r e c t - c o n t a c t , t r l p l e - p o l n t c r y s t a l l i z e r w i t h v a p o r c o m p r e s s i o n . Solid COP. i s f o r m e d b y a d i a b a t i c f l a s h i n g of t h e liquid COP. s ~ r e a m n e a r t h e top of t h e c r y s t a l l i z e r . An Hp.S-rich g a s s t r e a m is p r o d u c e d and i s c o n t i n u o u s l y w i t h d r a w n f r o m the top. A l l CP.-C 6 HHCs e n t e r i n g t h e c r y s t a l l i z e r a r e r e m o v e d w i t h t h e Hp.S-rleh s t r e a m . The s o l i d COP. c r y s t a l s f a l l to t h e b o t t o m of the c r y s t a l l i z e r , w h e r e t h e y a r e m e l t e d b y d i r e c t c o n t a c t w i t h c o n d e n s i n g COP. v a p o r . P u r e CO Z liquid thus p r o d u c e d i s s p l i t into two s t r e a m s : one i s r e c y c l e d to the HP.S a b s o r b e r and t h e o t h e r i s s e n t b a c k t h r o u g h t h e p r o c e s s f o r r e f r i g e r a t i o n and p o w e r r e c o v e r y and is s u b s e q u e n t l y d e l i v e r e d a s a p r o d u c t s t r e a m o r v e n t e d to the a t m o s p h e r e . C a r b o n d i o x i d e r e m a i n i n g in t h e gas a f t e r r e m o v a l of s u l f u r c o m p o u n d s i s a b s o r b e d a t t e m p e r a t u r e s b e l o w t h e CO 2 t r i p l e p o i n t w i t h a s l u r r y a b s o r b e n t . The s l u r r y a b s o r b e n t i s a
682
Energy,
The International Journal
Table 4. 4- I. S u m m a r y of commercial a n d developmental a c i d - g a s removal p r o c e s s e s ; a b b r e v i a t i o n s , f o r t h e p r o c e s s t y p e , AD = a d s o r p t i o n , AB = a b s o r p t i o n , CD = c r y o g e n i c d l s t i l l a t l o u ; f o r t h e s o l v e n t , C = c h e m i c a l s o l v e n t , P =
physical solvent; for the clean-up mode, S = selective, NS =non-selective. N a m e of Process
Type
Solvent
Mode
Major Contaminants Removed
Activated carbon
AD
C
NS
H2S, oil
ADIP
AB
C
NS
H2S, C O 2
Alkazid
AB
C
S, NS
H2S, C O 2
Amlsol
AB
C/P
S, NS
H2S, C O 2
Benfield
AB
C
NS
H2S, C O 2
Catacarb
AB
C
NS
H2S, C O 2
Chemsweet
AD
C
S
-2s
CNG
AB
P
S
H2S, C O 2
Estasolvan
AB
P
S, NS
H2S, CO2,o i l
Flexsorb SE
AB
C
S
H2S, C O 2
Fluor Econamine
AB
C
NS
H2S, C O 2
Fluor Solvent
AB
P
NS
H2S, CO2,o i l
Giammarco-Vetrocoke
AB
C
S
HzS, CO2
MEA
AB
C
NS
H2S, CO 2
MDEA
AB
C
S, NS
H2S , C O 2
Molecular sieves
AD
P
S
H2S
Purisol
AB
P
S, NS
H2S , C O 2
Rectlsol
AB
P
S, NS
H2S , C O 2
Ryan Holmes
CD
CD
S
H2S , CO2, C ;
Seaboard
AB
C
s
HzS
Selexol
AB
P
S, NS
H2S , COz, oil
Sepasolv MPE
AB
P
S, NS
H2S , CO2, oll
SNPA-
AB
C
NS
H2S, C O Z
Stretford
AB
C
s
HzS
Sulfiban
AB
C
NS
H2S, C O 2
Sulflnol
AB
C/P
NS
H2S, C O 2
Trlpotas sium phosphate
AB
C
S
H2S
V a c u u m carbonate
AB
C
S
H2S
Zinc oxide
AD
C
S
HzS
DEA
C o a t G a s i f i c a t i o n f o r SING P r o d u c t i o n
683
o Z
l
°®
~1
I)~
0
0
~o
~
!
u.I .~.
~(I
--(t o
=~"
!
0
~
_A
.1 4
o
o
684
Energy,
The International
Journal
s a t u r a t e d s o l u t i o n o f a n o r g a n i c s o l v e n t a n d CO 2 c o n t a i n i n g s u s p e n d e d p a r t i c l e s o f s o l i d CO 2 . A s CO 2 i s a b s o r b e d ( c o n d e n s e d ) , t h e l a t e n t h e a t r e l e a s e d m e l t s t h e s o l i d CO 2 c o n t a i n e d i n t h e slurry absorbent. T h e d i r e c t r e f r i g e r a t i o n p r o v i d e d b y t h e m e l t i n g o f s o l i d CO 2 e n a b l e s a s m a l l a b s o r b e n t f l o w to a c c o m m o d a t e t h e c o n s i d e r a b l e h e a t o f c o n d e n s a t i o n a n d a b s o r p t i o n o f t h e CO 2 vapor. The cold, purified gas stream then leaves the acld-gas removal process after heat exchange with the raw gas stream. T h e C O 2 - r l c h s o l v e n t l e a v i n g t h e CO 2 a b s o r b e r n e a r t h e t r l p l e - p o i n t t e m p e r a t u r e cont a l n s n o s o l i d CO 2. T h i s s t r e a m i s f l a s h e d in a d r u m to v a p o r i z e m e t h a n e o r o t h e r l i g h t c o m p o nents. T h e C O 2 - r i c h a b s o r b e n t i s n e x t c o o l e d b y e x t e r n a l r e f r i g e r a t i o n a n d t h e n f l a s h e d to l o w e r t h e p r e s s u r e in a n u m b e r o f s t a g e s , in o r d e r to g e n e r a t e a c o l d s l u r r y o f l i q u l d s o l v e n t a n d s o l i d CO 2. N i t r o g e n s t r i p p i n g o f t h e s o l v e n t m a y s o m e t i m e s b e r e q u i r e d to p r o d u c e a v e r y l e a n s o l v e n t . T h e r e g e n e r a t e d s l u r r y a b s o r b e n t i s r e c i r c u l a t e d to t h e CO 2 a b s o r b e r w h i l e t h e CO 2f l a s h e d g a s i s v e n t e d to t h e a t m o s p h e r e a f t e r r e c o v e r y o f r e f r i g e r a t i o n a n d p o w e r . 4o 5.
SNG E c o n o m i c s
The economics associated with producing natural gas from coal are a function of coal type and cost, the technologies used in the overall conversion processes, as well as slte-speciflc considerations. Figure 4o5-1 shows a comparison of calculated end-product gas costs (in 1982 dollars) for an ash-agglomerating, fluid-bed gasification technology and also for dry-bottom L u r g i t e c h n o l o g y w i t h b o t h US W e s t e r n a n d E a s t e r n c o a l s a s t h e f e e d s t o c k . These results are presented as a levelized constant dollar (LCD) cost, where the levellzed price represents the a v e r a g e g a s s e l l i n g p r i c e r e q u i r e d o v e r t h e l i f e o f t h e p l a n t i n d o l l a r s f o r a g i v e n y e a r to r e a l i z e a r a t e o f r e t u r n o n e q u i t y o f 14~5%= The LCD price also requires that all costs, except that of coal, escalate at the average rate of inflatlon. F i g u r e 4 . 5 - 1 s h o w s t h e r e l a t i v e d i s t r i b u t i o n o f t h e m a j o r c o s t e l e m e n t s (i. e . , f e e d s t o c k , operation and maintenance, and capital investment) for each of the four cases considered. A Western coal was used as the feedstock. T h e c o n t r i b u t i o n s o f t h e m a j o r e l e m e n t s to t h e o v e r a l l e n d - p r o d u c t g a s c o s t s a r e : f e e d s t o c k , 25 to 29%; o p e r a t i o n a n d m a i n t e n a n c e , 45 to 49%;
Western Coal (@ $.701MMBtu Delivered) 1982110e Btu
I
Eastern Coal (@ $1.751MMBtu Delivered) Dry Bottom Lurgi
9.00 -~
Dry Bottom Lurgi
7.00 --
Westinghouse ~ ~] Site Specific Factor (SSF) Process Development Allowance
I~i!i~!I
~-- ~ Westinghouse
~
5.00 --
3.00 -~ ]
1.00 0 -1.00 -
Fig.
LCDPrice L. m - - I W/O PDA 5.83 & SSF W PDA 6.14 & SSF
4.5-1.
~.-----J 4.93 5.84
(PDA) Coal
I ~
Variable Operation & Maintenance
~ I~1
Project Contingency & Working Capital Known Capital Investment
L_..J L__.J 8.86
6.43
9.38
7.06
IO,M)
C o m p a r i s o n of L C D costs of S N G for selected gasifiers. All estimates are based on a 30-yr plant life, 8 5 % debt financing, beginning operation i n 1990. D e l i v e r e d c o a l p r i c e s a r e a s s u m e d t o e s c a l a t e a t 2% p e r y e a r in real terms. Additional primary capital costs were estimated for u n k n o w n f a c t o r s r e l a t e d to p o t e n t i a l s i t e r e q u i r e m e n t s (SSF) a n d s t a t e of technology development (I°DA).
Coal G a s i f i c a t i o n for SNG P r o d u c t i o n
685
capital, 25 to 26%). With an Eastern coal, the relative contributions are as follows: feedstock, 42 to 5090; o p e r a t i o n and m a i n t e n a n c e , 31 to 39%1 c a p i t a l , 19 to 2090. F i g u r e 4 . 5 - 2 s h o w s a c o m p a r i s o n of b o t h t h e l e v e l l z e d c o n s t a n t d o l l a r e n d - p r o d u c t g a s c o s t s and t h e a n n u a l c o s t o f s e r v i c e for c o a l - t o - S N G c o n v e r s i o n f o r a p r o c e s s b a s e d on d r y B o t t o m L u r g l g a s i f i c a t i o n and c o m m e r c i a l l y a v a i l a b l e d o w n s t r e a m p r o c e s s e s , w h e n u s i n g a s y s t e m b a s e d o n a d v a n c e d g a s i f i c a t i o n ( a s h - a g g l o m e r a t i n g , f l u l d - b e d ) and d o w n s t r e a m p r o c e s s i n g ( d i r e c t m e t h a n a t i o n and a n a d v a n c e d a c i d - g a s c l e a n - u p s y s t e m ) t e c h n o l o g i e s . B o t h p l a n t s w e r e s i z e d to p r o d u c e 250 X 106 S C F / d a y of p l p e l i n e - q u a l i t 7 g a s u s i n g l i g n i t e a s t h e f e e d s t o c k . The a v a i l a b i l i t y o f a d v a n c e d t e c h n o l o g l e s w o u l d r e d u c e t h e a v e r a g e g a s c o s t f r o m a p p r o x irnately $6.20/106 B T U to approximately $4.80/106 B T U on a cost-of-service basis. The advanced technology would also lead to a first year gas cost that is approximately $2.00/106 B T U less than that estimated for the process based on dry-bottom Lurgl technology. This reduction in average and first year gas costs will permit coal-to-SNG processes to b e c o m e economically competitive with other energy- and gas-supply options in an earlier time frame than would o t h e r w i s e be the case. 4° 6. Research and Development Needs The r e s e a r c h and d e v e l o p m e n t n e e d s a s s o c i a t e d w i t h t h e l o n g - r a n g e o b j e c t i v e of p r o d u c ing SNG f r o m c o a l c o v e r a s p e c t r u m of a c t i v i t i e s , r a n g i n g f r o m e n g i n e e r i n g s t u d i e s to b a s i c research. T h e s e n e e d s i n c l u d e : (i) o p e r a t l o n a l / e c o n o r n l c data on l a r g e , i n t e g r a t e d c o a l g a s i f i c a t i o n p l a n t s , (ii) e x p a n d e d e n g i n e e r i n g data b a s e s , and (ill) t h e d e v e l o p m e n t of m o r e f u n d a m e n t a l l y - o r i e n t e d i n f o r m a t i o n on t h e r a t e - c o n t r o l l i n g s t e p s of t h e v a r i o u s p r o c e s s e l e m e n t s . W h i l e t h e s e n e e d s a r e f o c u s e d on c o a l g a s i f i c a t i o n a s r e l a t e d to t h e p r o d u c t i o n of h i g h - B T U SNC, m a n y o f t h e n e e d s a r e g e n e r i c in n a t u r e and w i l l b e u s e f u l in a v a r i e t y of c o a l - g a s l f l c a t i o n a p p l i c a t i o n s ° S p e c i f i c r e s e a r c h n e e d s a r e l i s t e d h e r e f o r t h r e e c a t e g o r i e s of R&D. 4.6-1.
E n g i n e e r i n g D e v e l o p m e n t and T e s t i n g
(1) L a r g e - s c a l e o p e r a t i o n a l and p e r f o r m a n c e d a t a a r e n e e d e d on IGCC p l a n t s s u c h a s Cool Water and also for the G P C G P converting coal-to-SNG. (il) Expanded engineering data bases should be developed for oxygen-blown, ash-agglomerating, fluldlzed-bed gasiflers to optimize designs for specific applications (pressure, fines collection and recycle, coal types, in-bed desu1~urizatlon).
12 11 10 9 -D O
% ~
8
Cost of s e r v i c e for dry-bottom Lurgl technology
°'-.. "..
-- 7
%% / ~.
. . . . . . .
~6
Levelized constant-dollar cost for dry-bottom Lurgi technology
~.~ . . . .
~.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
"°°°
O
~,
5 U
°°.
4 .
......
~
.
"-.... Levehzed constant cost for advanced ....... ""~.-...~... technology
/
°'"°°.°O..o..
~ - -.i ..~ ~ . ~
Cost of service for advanced technology ..................
I
1
I
3
I
I
5
I
I
7
I
I
9
I
!
I
11
!
13
I
I
15
~
----"-'--.
I
I
17
I
I
1
19
Y e a r of o p e r a t i o n
F i g . 4. 5- 2.
Estimated cost of S N G for dry-bottom Lurgl technology and advanced gasification and downstream-processing technologies (250 m m SCF/ day, lignite); c o n s t a n t 1985 d o l l a r s a r e u s e d .
686
Energy,
The I n t e r n a t i o n a l J o u r n a l
(ill) S c a l e - u p d a t a for e m e r g i n g t e c h n o l o g i e s a r e r e q u i r e d for s u c h p r o c e s s e s a s t h e d i r e c t m e t h a n a t l o n c o n c e p t a n d the CNG a d v a n c e d a c l d - g a s r e m o v a l c o n c e p t . (iv) I n t e g r a t e d p e r f o r m a n c e e v a l u a t i o n s of a d v a n c e d g a s i f i c a t i o n t e c h n o l o g i e s a r e n e e d e d for t e c h n o l o g i e s s u c h a s the B G C / L u r g i s l a g g i n g g a s i f l e r a n d the a s h - a g g l o m e r a t i n g , f l u l d l z e d b e d p r o c e s s w i t h a d v a n c e d d o w n s t r e a m p r o c e s s i n g , a s w e l l a s for c o n c e p t s s u c h a s the d i r e c t m e t h a n a t i o n p r o c e s s a n d t h e CNG a c i d - g a s r e m o v a l s y s t e m . (v) D e v e l o p m e n t a n d v a l i d a t i o n a r e r e q u i r e d of s c a l e - u p m o d e l s , w i t h p a r t i c u l a r e m p h a s i s on coal gasifiers. (vi) E x p l o r a t o r y s t u d i e s s h o u l d b e c a r r i e d out to d e v e l o p i n i t i a l d a t a b a s e s f o r new, a d v a n c e d p r o c e s s c o n c e p t s for g a s i f i c a t i o n a n d d o w n s t r e a m p r o c e s s i n g . (vii) I m p r o v e d , h l g h - t e m p e r a t u r e h e a t r e c o v e r y s y s t e m s a r e n e e d e d . (viii) E x p a n d e d e n v i r o n m e n t a l d a t a b a s e s s h o u l d b e e s t a b l i s h e d for a d v a n c e d t e c h n o l o g i e s i n the a r e a s of p r o d u c t i o n , f a t e , c o n t r o l , a n d d i s p o s a l or t r e a t m e n t of t r a c e c o n s t i t u e n t s . 4.6-Z.
T e c h n o l o g y B a s e Data f o r D e s i g n
(i) T h e d e v e l o p m e n t of m e t a l a l l o y s for h i g h - t e m p e r a t u r e , h e a t r e c o v e r y a p p l i c a t i o n s should be supported. (ii) The d e v e l o p m e n t of i m p r o v e d c e r a m i c s f o r h l g h - t e m p e r a t u r e a p p l i c a t i o n s (i. e . , particulate filters, valves) should be encouraged. (iii) E x p a n d e d d a t a b a s e s a r e n e e d e d on the e r o s i o n - c o r r o s l o n b e h a v i o r a n d r e s i s t a n c e of metals and ceramics in coal-gaslflcatlon environments. (iv) L o n g - t e r m c o r r o s i o n d a t a (for m o r e t h a n 1 0 , 0 0 0 h r ) s h o u l d b e o b t a i n e d i n c o a l g a s i f i c a t i o n e n v l r o r ~ n e n t s , w i t h p r o p e r c o n s i d e r a t i o n of a l k a l i m e t a l s , s u l f l d a t l o n , a n d c h l o r i d e s . (v) V a p o r - l i q u l d e q u i l i b r i u m d a t a a r e n e e d e d a t e l e v a t e d p r e s s u r e s a n d t e m p e r a t u r e s for s e l e c t e d m u l t l c o m p o n e n t s y s t e m s i n v o l v i n g s y n t h e s i s gas, s t e a m , h e a v y o i l s ( t a r s ) , l i g h t a r o m a t i c s , p h e n o l l c s , f a t t y a c i d s , CH4, HzS, CSz, COS, m e r c a p t a n s , NHB, HC1, HCN, A s H 3 , Sell 2, Hgo (vl) T r a n s p o r t d a t a ( t h e r m a l c o n d u c t i v i t y , v i s c o s i t y , d l f f n s l v i t y ) s h o u l d b e m e a s u r e d for tars and slurries (oil/solids, tar/sollds, water/solids). (vii) T h e r m o d y n a m i c d a t a a r e r e q u i r e d , i n c l u d i n g i m p r o v e d e s t i m a t e s f o r f r e e e n e r g y of f o r m a t i o n , h e a t s of f o r m a t i o n , e n t r o p i e s , s p e c i f i c h e a t s . (viii) S o u r - w a t e r s t r i p p e r v a p o r - l l q u l d e q u i l i b r i a s h o u l d be m e a s u r e d for H z O / N H j / C O z / HzS s y s t e m s a t 0 to 100 psig a n d Z0 to Z00°Fo (ix) I m p r o v e d c o r r e l a t i o n s a r e n e e d e d for p r e d i c t i o n s of m a s s - t r a n s f e r c o e f f i c i e n t s a n d other engineering design parameters whenever multicomponent systems are involved. 4. 6-3. Basic l~esearch Needs for Advanced Systems (i) controlling (il) component
I m p r o v e d u n d e r s t a n d i n g i s n e e d e d of the c h e m i c a l p r o c e s s e s a s s o c i a t e d w i t h a n d the f r a g m e n t a t i o n / g a s i f i c a t i o n of c o a l . I m p r o v e d m o d e l s a r e r e q u i r e d f o r p r e d i c t i o n s of v a p o r - l i q u i d e q u i l i b r i a i n m u l t i systems.
1%eferences 1. V. P. S a b i n , " G r e a t P l a i n s - A l i v e a n d W e l l , " C o u n c i l on S y n t h e t i c F u e l s A l t e r n a t e E n e r g y '86 Conference, Captlva Island, Florida (1986). Z. J. Lambertz, N. Brungel, W. 1%uddeck, and L. Schrader, 1%heinische Braunkohlenwerke AG, "1%ecent Operational Results of the High-Temperature Winkler and Hydrogasification Process, " Proceedings: Conference on Coal Gasification Systems and Synthetic Fuels for Power Generation, Electric Power Research Institute, EPI~I AP-4257-S1%, Palo Alto, C A (December 1985). 3. P. Sabatler and J, B. Senderens, C. 1%. Acad. Sci. (Paris) 134, 514 (1902). 4. G. A. Mills and F. W. Steffgen, Catal. 1%ev. 8, 159 (1973). 5. Chemistry of Coal Utilization, Second Supplementary Volurrle, pp. 1786-1800, M . A . Elliot, ed. , John Wiley & Sons, N Y (1981). 6. IV[. D. Schlesinger, J. J. Demeter and M. Greyson, Ind. Eng. Chem. 48, 68 (1956). 7. H. Eurlta and Y.Tsutsurni, Nippon Eagaku Zasshl 8_22, 1461 (1961). 8. J. F. Schultz, F. S. Earn, 1%. B. Anderson, and L. J. Eo Hofer, Fuel 4__00,181 (1961). 9. A. J. Forney, 1%. J. Demskl, D. Bienstock, and J. H. Field, U.S. Bur. Mines 1%ept. Invest. No. 6609, Pittsburgh, P A (1965). i0. J. F. Schultz, F. S. Earn, and1%. B. Anderson, U.S. Bur. Mines 1%ept. Invest. No, 6974, Pittsburgh, P A (1967). II. S. Friedrnan and1%. W . Hiteshue, U.S. Patent No. 3,4Z9,679 (1969). iZ. E. Wencke, Freiberger Forschungsheft AI5!, II (1960).
Coal Gasification for S N G Production
687
13. H. S. Meyer, V. L. Hill, A . Flowers, J. Happel, and M. A. Hnatow, "Direct MethanationA N e w Method of Converting Synthesis Gas to Substitute Natural Gas, " A C S Div. Fuel Chem., Preprint ZT, No. I, 109-115 (198Z). 14. A. Skov, I~. Pedersen, C. L. Chen, a n d R . L. Coates, "Testing of a Sulfur Tolerant Direct Methanatlon Process," Proceedings: A C S Div. Fuel Chem. 31, No. 3, Anaheim, C A (Septemher 1986). 15. W . L o m m e r z h e i m , "The Pilot Development Stage of the Comflux Process for Methanization of Coal Gas, " Proceedings: Conference on Coal Gasification Systems and Synthetic Fuels for Power Generation, AP-4257-SR, EPRI, Palo Alto, C A (December 1985). 16. 4. L. Ensell and H. J. F. Stroud, "The British Gas H I C O M Methanation Process for S N G Production, " Proceedings: 1983 International Gas Research Conference, London, U K (June 13-16, 1983), 17. M. B. Sherwln, M. E. Frank, and D. G. Blum, "Recent Developments in Liquid Phase Methanation, " paper presented at the 5th Synthetic Pipeline Gas Symposium, Chicago, IL (October Z9-31, 1973). 18. M° E. Frank, M . B.Sherwin, Do B. Blum, and 1%. L. Mednick, "Liquid Phase Methanatlon/ Shift, " paper presented at the 8th Synthetic Pipeline Gas Symposium, Chicago, IL (October 18-20, 1976).