Chapter 4 Introduction to the Surreal Number Field No

Chapter 4 Introduction to the Surreal Number Field No

117 CHAPTER 4 I N T R O D U C T I O N T O THE SURREAL NUMBER F I E L D No 4.00 SURREAL NUMBERS In J . H . Conway's book, On Numbers and Games C241...

2MB Sizes 0 Downloads 140 Views

117 CHAPTER 4

I N T R O D U C T I O N T O THE SURREAL NUMBER F I E L D No

4.00

SURREAL NUMBERS

In J . H . Conway's book, On Numbers and Games C241, t h e b a s i c c o n s t r u c t i o n o f numbers i s t h e f o l l o w i n g : (0)

I f L a n d R a r e two s e t s of n u m b e r s , a n d i f no member of L is t any

member of R , t h e n ( L I R } i s a number.

A l l numbers are c o n s t r u c t e d i n

t h i s way [ 2 4 , p . 41.

How t h e n d o e s o n e g e t s t a r t e d c o n s t r u c t i n g n u m b e r s u s i n g C o n w a y ' s

construction?

The empty s e t is a s e t of numbers which we know e ists.

L and R be empty. (01,

Note t h a t no member of L is 2 any member of R

[LIR] i s a number.

Let u s c a l l t h i s number 0 .

Let

t h u s , by

Conway C24, p . 41

adopted t h e following n o t a t i o n a l convention:

If x

=

( L I R } w e w r i t e xL f o r a t y p i c a l member of L , a n d

t y p i c a l member of R ; t h u s x e, f , e, f ,

... ) , ... 1 .

option _---

of x.

we mean t h a t x

L R {x Ix 1 .

= =

If we write x = ( a , b , c ,

... I d ,

and R

=

Id,

x L i s c a l l e d a l e f t o p t i o n of x , a n d x R i s c a l l e d a r i g h t If L ( r e s p . R ) i s empty, we may i n d i c a t e t h i s by l e a v i n g t h e

p l a c e where L ( r e s p . R ) would a p p e a r b l a n k . =

... }

( L I R ) , where L = [ a , b , c ,

xR for a

[I).

Hence ( ( 0 1 l a }

=

([O}

I],

and 0

I n K n u t h ' s m a t h e m a t i c a l n o v e l l a o n s u r r e a l n u m b e r s [52] he u s e s s l i g h t l y d i f f e r e n t n o t a t i o n i n t h e body of t h e t e x t . writes x

=

(X

X 1. L' R

For example, Knuth

We have c h o s e n t o a d o p t most of Conway's n o t a t i o n .

is n o t o n l y v e r y compact a n d e a s y t o u s e , b u t i t s u g g e s t s

feels

-

t h e r i g h t way t o t h i n k a b o u t t h e s u b j e c t .

-

It

t h e author

118

Norman L . A l l i n g

4.00

Conway t h e n d e f i n e s o r d e r between numbers a s f o l l o w s :

(1)

( 1 ) x 6 y i f and O n l y i f ( i i ) no y R 2 x and x S no x

L

.

Note t h a t ( 1 , i ) is a s t a t e m e n t about n u m b e r s , a n d t h a t ( 1 , i i ) i s a s t a t e m e n t a b o u t s e t s of n u m b e r s .

Conway d e s c r i b e s 0 as t h e t l s i m p l e s t t t

number t h a t was ttborn on day 0" [24, p.

111.

T h i s seems f i t t i n g i n d e e d ,

{*I.]. The numbers 1 = Conway s a y s of them t h a t

s i n c e i t i s b u i l t up fran t h e empty s e t u s i n g o n l y

{Ol) and -1

-

(10) a r e a l i t t l e more c o m p l e x .

t h e y were e a c h " b o r n o n d a y 1 " [ 2 4 , verify t h a t ( 1 , i i ) holds. and t h a t ( b ) 0 < j l ) ,

p . 111.

To s e e t h a t 0 2 1, w e m u s t

To do t h a t i t s u f f i c e s t o show t h a t ( a ) lo)

<

0,

S i n c e ( a ) and ( b ) a r e both t r u e , we see t h a t 0 2 1 .

Conway goes on t o make t h e f o l l o w i n g d e f i n i t i o n s : (2)

(i)

y 2 x i f and o n l y i f x 6 y ,

x = y i f and o n l y i f x 6 y and y S x , x < y i f and o n l y i f x 6 y and i f x + y , and ( i v ) y > x i f and o n l y i f x < y.

(ii)

(iii)

Perhaps t h e o n l y s u r p r i s e i s t h a t ( 2 , i i ) is a definition.

Conway

y, -x,

and xy

ends h i s s h o r t l i s t of remarkable s t a t e m e n t s by d e f i n i n g x

+

i n d u c t i v e l y f o r all numbers x and y as f o l l o w s . L R R I x L + y , x + y Ix + y , x + y 1 .

(3)

x + Y

(4)

-x = (-x

(5)

x y - ( x y + x y

=

R

L

1-x I .

L

L x Y

+

L L R R R R - x y , x y + x y - x y J R L R R L X Y - x y , x y + xy - x Ry L ) *

L

A t f i r s t g l a n c e t h e s e d e f i n i t i o n s may l o o k c i r c u l a r .

Note, f o r

example, i n ( 4 ) i f we know how t o form t h e n e g a t i v e of a l l t h e o p t i o n s of x used t o d e f i n e x , t h e n (4) i s n o n - c i r c u l a r .

S i m i l a r l y , i n ( 3 ) i f we c a n

p r e f o r m a l l t h e i n d i c a t e d a d d i t i o n s among o p t i o n s of x and y and y and x

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.00

t h e n w e c a n compute t h e s e t s on t h e l e f t i n ( 3 ) .

119

The same may b e s a i d of

(5). Conway a l s o showed C24, p p . 16-17] t h a t , i f x

(6)

L

<

[XI

4.01

<

=

[LIR] then

R.

CONWAY'S CONSTRUCTION

C o n w a y ' s c o n s t r u c t i o n a n d most of t h e p r o o f s h e g i v e s , a r e b y induction.

One of Conway's v e r y u s e f u l i d e a s i s t h a t of t h e b i r t h o r d e r of

s u r r e a l numbers.

As we w i l l s e e t h i s i s o n e of t h e most i m p o r t a n t Given aEOn, Conway d e f i n e s

p r o p e r t i e s of surreal numbers. (0)

0 as t h e s e t of a l l numbers b o r n before day a , a M

as t h e s e t of a l l numbers b o r n o n o r b e f o r e day a t a n d

N

as t h e s e t of a l l numbers b o r n o n d a y a C24, p . 291.

<

S i n c e t h e r e are no o r d i n a l s a

0, 0 ,

=

The s e t s L a n d R which

0.

a r e a v a i l a b l e t o make n u m b e r s o n day 0 a r e v e r y few: o n l y t h e empty s e t . Thus t h e o n l y Conway c u t ( 1 . 2 0 ) i n 0 is ( 0 , 0 ) .

We c a n t h i n k of a number as

a n e q u i v a l e n c e c l a s s o f Conway c u t s ( L , R ) i n NO, u n d e r t h e e q u i v a l e n c e relation (4.00:2,ii). (4.00:O).

Thus we s e e t h a t M ,

=

No

=

(01,

0 being

Ill

Now t h a t t h e n u m b e r s o n day 0 h a v e been c r e a t e d , t h e c a l e n d a r

a d v a n c e s , as i t were, a day t o day 1 .

On d a y 1 t h e r e a r e two s e t s o f n u m b e r s :

t h e e m p t y s e t 0 and [ O } .

Thus t h e r e a r e two Conway c u t s i n 0 , , ({01,0) a n d ( 0 , { 0 1 ) .

we w i l l d e f i n e t o be [Ol], and - 1 , t h e elements i n N , .

C l e a r l y 0,

=

Thus 1 , which

which we w i l l d e f i n e t o b e

M,

= [0,+11; thus

(lo],

are a l l

we a r e r e a d y t o b e g i n

t o c o n s i d e r t h e numbers c r e a t e d o n day 2. Conway d e f i n e s t h e c l a s s of a l l n u m b e r s c r e a t e d i n t h i s way a s No [24,

(I)

p . 41.

He shows [ 2 4 , p . 301 t h a t

g i v e n any xcNo t h e r e e x i s t s a u n i q u e aEOn s u c h t h a t X E N ~ .

Norman L. A l l i n g

120

4.01

Let a be c a l l e d t h e b i r t h d a y of x , and l e t i t be denoted by b ( x ) . w i l l c a l l b the b i r t h order function.

y if b(x)

<

Conway writes t h a t x i s s i m p l e r t h a n

Since On i s well-ordered t h e p h r a s e t h a t sane element i s

b(y).

" t h e s i m p l e s t element such t h a t

..

.I1

makes s e n s e .

Conway g i v e s t h e follow-

i n g very i l l u m i n a t i n g d e s c r i p t i o n of t h e c r e a t i o n p r o c e s s . numbers w i t h L

<

No, I L I R I

R in

=

G i v e n s e t s of

x

i s t h e s i m p l e s t element of No s u c h t h a t L

(2)

We

< {XI <

R.

Conway r e f e r s t o t h i s as "The S i m p l i c i t y Theorem" C24, Theorem 1 1 , p . 231.

Henceforth we w i l l r e f e r t o (2) as ttConwayls S i m p l i c i t y Theorem".

is a v i t a l i n g r e d i e n t i n many of

we w i l l s e e , Conway's S i m p l i c i t y Theorem

our c o n s i d e r a t i o n s .

Note a l s o t h a t P =

As

( Na

aeon

i s a p a r t i t i o n of No.

T h i s p a r t i t i o n can a l s o be g i v e n by g i v e n a map b , which maps each element

t o t h e index a .

in N

Given b , t h e n N

=

b

-1

( a ) . b c a n b e t h o u g h t of a s

a s s i g n i n g t h e b i r t h o r d e r t o t h e e l e m e n t s of No. more d e t a i l s . ) day 1 .

-2,

Thus 0 i s born f i r s t , on day 0.

-1/2,

( S e e [5, 384-3851 f o r

1 and -1 are born n e x t , on

1/2, and 2 are born n e x t , on d a y 2, e t c .

One of t h e t h i n g s t h a t Conway had t o d e a l w i t h was t h e f o l l o w i n g :

"A

m o s t i m p o r t a n t comment whose l o g i c a l e f f e c t s w i l l be d i s c u s s e d l a t e r i s that

the n o t a t i o n of

equality

is a

defined relation.

Thus a p p a r e n t l y

d i f f e r e n t d e f i n i t i o n s w i l l produce t h e same number, and we m u s t d i s t i n g u i s h

form

{LIR] of a number a n d t h e number i t s e l f . I t C24, p . 51 U s i n g ( 2 ) we c a n g i v e a d r a m a t i c i l l u s t r a t i o n of t h i s , n a m e l y t h e

between t h e following:

(3)

Let L and R be s u b s e t s of No s u c h t h a t L

< {O] <

R ; then

0 = ILIRf.

S i n c e t h e class of a l l o r d i n a l numbers On i s , i n a very n a t u r a l way, a s u b c l a s s of No C24, pp. 27-281, we see t h a t (4)

No i s a proper class.

One of t h e n a t u r a l t h i n g s t o d o , in t r y i n g t o c o n s t r u c t No i n a more c l a s s i c a l manner w i t h i n a conventional s e t t h e o r y , would be t o c o n s i d e r t h e

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.01

121

v a r i o u s Conway c u t s f r m which x c a n be d e f i n e d , s a y a s o r d e r e d p a i r s , a n d then pass t o equivalence c l a s s e s .

The d i f f i c u l t y of d o i n g t h i s can be s e e n

i n ( 3 1 , s i n c e 0 h a s a p r o p e r c l a s s of Conway c u t s ( L , R ) s u c h t h a t 0

F u r t h e r , ( 3 ) i s n o t a n i s o l a t e d o c c u r r e n c e , as we w i l l now show.

{LIR).

Let x = I L ( R 1 , where (L,R) i s

>

t h a t f o r a l l f3cOn w i t h 8 ( r e s p . R ) union [ 8 } .

(5)

=

x

=

[L (R

$

6

a Conway c u t i n No.

a, (-6)

<

L and R

<

There exists acOn s u c h

(8).

Let L

8

(resp R ) be L

B

Then

1, f o r each B > a .

Hence. we see ( 5 ) t h a t e a c h XENO has a p r o p e r c l a s s o f Conway c u t s (L',R')

such t h a t {L'IR') 4.02

=

x.

THE CUESTA DUTARI CONSTRUCTION OF No

Let T be an o r d e r e d s e t .

R e c a l l (1.20) t h a t a C u e s t a Dutari c u t i n T

is a p a i r of s u b s e t s (L,R) of T , s u c h t h a t ( i ) L L and R i s T .

<

R and ( i i ) t h e u n i o n o f

Let CD(T) = { C u e s t a D u t a r i c u t s i n T I .

S i n c e ( 0 , T ) and

(T, 0) a r e Cuesta Dutari cuts, (0)

C D ( T ) i s never empty.

Assume t h a t M is an o r d e r e d set which c o n t a i n s T , s u c h t h a t t h e o r d e r

on M i n d u c e s t h e o r i g i n a l o r d e r on T: i . e . , (M,6) (1.10).

Let (L,R)ECD(T). X E M w i l l be s a i d t o

i s a n e x t e n s i o n of (T,S)

rill (L,R)

in M if L

< [XI <

R.

Let x ( T ) , t h e C u e s t a D u t a r i c o m p l e t i o n o f T , b e t h e u n i o n of T a n d CD(T), o r d e r e d a s f o l l o w s : (1)

(i)

i f x and y a r e i n T , l e t them be o r d e r e d as t h e y were i n T ;

( i i ) i f XET and y (iii) i f x

=

=

(L,R), y

(L,R)€CD(T). =

s u b s e t of L ' . (2)

x ( T ) i s an o r d e r e d s e t .

x

<

y i f X E L , and y

(L',R')&CD(T), t h e n x

<

< x

i f XER;

y i f L is a p r o p e r

Norman L. A l l i n g

122

Let x , y , and z be i n x ( T ) , w i t h x < y a n d y

PROOF.

that x

(3)

< z

4.02

< z.

c o n s i d e r t h e e i g h t e a s i l y proven c a s e s s e p a r a t e l y .

< t, in < c, i n

For all t ,

(i)

( i i ) For a l l c,

To show

o

T , t h e r e e x i s t s CECD(T) with t o < c C D ( T ) , t h e r e exists

tET

< t,. < t < C,.

with c,

( i i i ) ( 0 , T ) i s t h e l e a s t and ( T , 0 ) i s a g r e a t e s t element of x ( T ) .

PROOF.

Let t o

< c <

then t o

Let t c L ,

-

be elements i n T.

< c,.

w i t h c,

(L,,R,)&CD(T),

L,.

< tl,

t,, establishing L o ; then c ,

(i).

Let c

Let c,

=

= ((-m,to],(to,+-));

and c,

(L,,Ro)

=

Then, by d e f i n i t i o n , Lo is a proper s u b s e t of

< t <

c,, establishing (ii).

I f T i s empty

t h e n x ( T ) h a s o n l y o n e p o i n t i n i t , namely ( 0 , 0 ) ; e s t a b l i s h i n g ( i i i ) i n case T

=

0.

Assume now t h a t T is non-empty.

For a n y ~ E T ,( 0 , T )

< t <

(T,0). (4)

c

=

f i l l s t h e Cuesta D u t a r i c u t ( L , R ) i n x ( T ) .

(L,R)ECD(T),

PROOF. NOTE.

L

R

By d e f i n i t i o n , f o r a l l x EL and a l l x ER, xL

<

<

c

x

R

.

o

Even though each Dedekind c u t i n T i s a C u e s t a D u t a r i c u t i n

T , t h e C u e s t a Dutari completion x ( T ) of T p l a y s a very d i f f e r e n t r o l e t h a n

Dedekind used gaps i n t h e r a t i o n a l

does t h e Dedekind completion 6(T) of T .

numbers Q t o d e f i n e i r r a t i o n a l n u m b e r s , a n d t h u s d e f i n e R.

Since R is

Dedekind-complete i t has no gaps; t h u s t h e Dedekind completion of R, i s R. S i n c e C D ( T ) i s n e v e r empty (01, t h e C u e s t a D u t a r i completion x ( T ) of T always c o n t a i n s T as a proper s u b s e t .

I n p a r t i c u l a r , R is a p r o p e r s u b s e t

of x ( R ) . Let T o be t h e empty s e t .

d e f i n e d T , t o be x(T,,),

Cuesta D u t a r i [251 a n d H a r z h e i m C431 t h e n

and noted t h a t T , = [ ( 0 , 0 ) ) .

Assume t h a t f o r sane

BEOn t h a t a f a m i l y (Ta)a
then define T

d i n a l , than d e f i n e T

set.

t o be x ( T , ) ; 8 t o be t h e union of

6 F u r t h e r , Harzheim proved t h a t

and i f 8 is a non-zero l i m i t o r -

Note t h a t T

WO

is a n n o -

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.02

(5)

T

is a n

IRI

+

<

-set 143, p.1191.

5

Let L a n d R be s u b s e t s of T

PROOF. ILI

q

WE'

=

(avcT

6:

a r e s u b s e t s of T

5

C'E

and ( i i )

s u c h t h a t L and R are s u b s e t s of T Clearly L'

Let R' be d e f i n e d t o be T

6'

such t h a t L Then

(L',Rf)eCD(T6).

(6)

< w5

< R,

is r e g u l a r and s i n c e

5

t h e r e e x i s t s acL s u c h t h a t a t 5 a } .

s a t u r a t e d s u b s e t of T

i n Tw 5

f o r which ( i ) L

S i n c e , by a s s u m p t i o n ( 1 . O O : O ) , w

( i i ) holds, there e x i s t s 6

L'

123

<

R,

T6+,, and L

6

-

L'.

is a lower

S i n c e L and R

R i s a s u b s e t of R I .

< {cl} <

Let

6'

Let c '

=

By c o n s t r u c t i o n , c' is

R.

. By i n d u c t i o n

is defined.

F o l l o w i n g Conway [24,

p . 291, l e t Oa ( t h e s e t o f " o l d n u m b e r s " ) b e

d e f i n e d t o be Ta, l e t N

a

( t h e set of Ifnew numbers") b e T

a+l

-

Ta, a n d l e t

Mu ( t h e s e t of "made numbersTf)b e Ta + l ' N o t e t h a t Ma i s t h e u n i o n o f 0 a a n d Nu C24, p . 291. F i n a l l y , l e t No be d e f i n e d t o be t h e u n i o n of (Oa)aEOn [24, p . 41.

See a l s o C60, p . 491 o n s u c h u n i o n s .

N o t e t h a t No i s a l s o t h e u n i o n o f (M M

a

and t h a t i f a

a adn'

<

6, t h e n

i s a p r o p e r s u b s e t of M6; t.hus g i v e n X E N O , t h e r e e x i s t s a l e a s t BEOn

s u c h t h a t XEM

6

(= T6+l).

t h e b i r t h d a y of x.

Let b ( x ) d e f i n e d t o be f3, a n d l e t i t be c a l l e d

b w i l l be c a l l e d t h e b i r t h - o r d e r

t h a t b ( x ) is t h e u n i q u e e l e m e n t i n On s u c h t h a t X E N , , ( ~ ) ( - Tg+l C l e a r l y f o r each acOn, b - l ( [ O , a ) ) Note t h a t (NaIaeOn

=

Oa, b - l ( [ O , a ] )

i s a p a r t i t i o n o f No.

=

Note

f u n c t i o n o n No.

Ma, a n d b - l ( { a } )

-

T6). =

N

a'

I n [5, p p . 384-3851 we c a l l e d

s u c h a p a r t i t i o n a Conway p a r t i t i o n , a n d c o n s i d e r e d s o m e o f t h e i r p r o p e r ties.

The f o l l o w i n g i s of g r e a t i m p o r t a n c e .

Norman L . A l l i n g

124

CONWAY'S SIMPLICITY THEOREM. L

<

Let I

R.

=

Let L and R be s u b s e t s of No f o r which

< {y) <

(YENO: L

4.02

R).

Then ( i ) I is non-empty, a n d ( i i )

t h e r e e x i s t s a u n i q u e x c I s u c h t h a t b ( x ) < b ( y ) , f o r all Y E I[24,

is an

11

5

i s r e g u l a r , a n d f o r which U is a s u b s e t of 0

-set (51, I i n t e r s e c t Ow

5

-

least element.

b ( J ) i s a n o n - e m p t y s u b c l a s s of On; l e t 5 be i t s

Let x a n d x' be i n J s u c h t h a t b ( x ) = B

f o r a moment, t h a t x

t <

XI.

T h e r e e x i s t s a u n i q u e XEJs u c h

{XI implies b(x) < b(y).

PROOF ( o f ( 7 ) .

T5.

Since

is a non-empty.

Let J be a n o n - m p t y i n t e r v a l i n No,

-

.

5

that y d

T6+,

Since U i s a s e t t h e r e e x i s t s

Let U be t h e u n i o n of L and R .

a CEOn s u c h t h a t w

(7)

(Cf.

Theorem 1 1 , p . 231.) PROOF.

0

{XI.

<

=

b(t)

6'

<

Assume

S i n c e b ( x ) = 6 = b ( x ' ) , x a n d x ' are i n N

X I .

By ( 3 , i i ) we know t h a t t h e r e i s a n e l e m e n t t E T

Since tcT

b(x').

6'

6

=

such t h a t x

<

S i n c e J is a n i n t e r v a l , t i s i n J ; which i s

6.

absurd, proving ( 7 ) . Apply ( 7 ) t o I , a n d t h e Conway S i m p l i c i t y Theoran i s p r o v e d .

o

Let ( L , R ) b e a Conway c u t i n No ( 1 . 2 0 ) ; i . e . , l e t L and R b e s u b s e t s of No f o r w h i c h L

<

R.

By C o n w a y ' s S i m p l i c i t y T h e o r e m , t h e r e e x i s t s a

u n i q u e X E N O of minimal b i r t h d a y s u c h t h a t L

<

{x)

<

R.

Since x is uniquely

d e t e r m i n e d by L a n d R , l e t us f o l l o w Conway [24, p . 41 a n d use t h e symbol (LIR) t o d e n o t e x .

We w i l l a l s o s a y t h a t t h e Conway c u t ( L , R ) r e p r e s e n t s

x , a n d t h a t ( L , R ) i s a Conway cut r e p r e s e n t a t i o n of x.

(8)

Given any Conway c u t ( L , R ) a n d ( L ' , R ' )

< R)

=

PROOF,

(yeNo: L'

<

(y)

<

R'),

-

of No f o r which (YENO: L

t h e n (LIR)

Apply Conway's S i m p l i c i t y Theorem.

-

x

< (y}

(L'IR').

o

We w i l l s a y t h a t L a n d L ' ( r e s p . R and R ' ) a r e m u t u a l l y c o f i n a l

4.02

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

125

( r e s p . m u t u a l l y c o i n i t i a l ) i f f o r a l l aEL t h e r e e x i s t s a'EL' s u c h t h a t a 5 a ' , a n d f o r a l l a f E L * t h e r e e x i s t s acL s u c h t h a t a' 5 a ( r e s p . i f f o r a l l CER t h e r e exists c ' E R '

such t h a t c 5 c').

such t h a t c' 2 c , and f o r a l l c'ER'

t h e r e e x i s t s CER

We w i l l s a y t h a t t h e Conway c u t s ( L , R ) a n d ( L f , R ' ) a r e

equivalent i f L and L ' are m u t u a l l y c o f i n a l and R and R ' Clearly (8) implies t h e following:

coinitial. (9)

If ( L , R ) a n d ( L ' , R ' )

EXAMPLE 0 . and R '

=

are mutually

Let L

a r e equivalent, then {L'IR'] =

and R

{-I}

11/21; t h e n 0 = { L f l R f ] .

cofinal.

=

[ l ] ; then 0

=

=

[LIR}.

(LIR].

C l e a r l y L and L '

Let L '

[-21

are not mutually

are not mutually c o i n i t i a l .

F u r t h e r , R and R '

=

Thus [LIR]

=

[ L f l R t } , and yet ( L , R ) and ( L f , R ' ) are not equivalent. A Conway c u t r e p r e s e n t a t i o n ( L , R ) of x w i l l be c a l l e d t i m e l y i f L and

R are s u b s e t s of 0

b ( x ) ( = Tb(x))*

Note t h a t t h e Conway c u t r e p r e s e n t a t i o n s

of 0 i n E x a m p l e 0 a r e n o t t i m e l y .

o

s e n t a t i o n of (10)

Also n o t e t h a t t h e o n l y t i m e l y r e p r e -

i s 10101.

Each XENO has a t i m e l y r e p r e s e n t a t i o n . PROOF.

Let b ( x ) = 8 ; t h e n XEN

a n element ( L , R ) i n CD(T ) . 0

8'

i.e.,

x is

in T

B+1

- TO.

Hence x i s

(L,R) i s t h e n a t i m e l y r e p r e s e n t a t i o n of x.

Another way t o d e s c r i b e s u c h a Conway c u t ( L , R ) i s t o n o t e t h a t L [ ~ E O ~ ( y~ <) x] : and that R ( ( Y E O ~ ( ~ ) y:

s e n t a t i o-n _------

=

[y€Ob(,):

y

>

XI [ 2 4 , p . 291.

x [24, p . 291.

=

Let us d e f i n e

< X ) , [ Y E O ~ ( ~y ) >: X I ) t o b e t h e C u e s t a D u t a r i

of

o

cut

repre-

Note also t h a t t h e Cuesta Dutari cut

r e p r e s e n t a t i o n of x is a C u e s t a D u t a r i c u t i n 0

S i n c e we h a v e b u i l t b(x)' up No, i n t h i s s e c t i o n , u s i n g C u e s t a Dutari c u t s have t h e f o l l o w i n g r e s u l t .

(12)

Let ( L , R ) a n d ( L ' , R f 1 b e t i m e l y Conway c u t r e p r e s e n t a t i o n s i n No,

Norman L. A l l i n g

126

4.02

such t h a t [LIR} = [ L t l R f } ; t h e n ( L , R ) and ( L ' , R ' )

a r e equivalent.

Assume f i r s t t h a t ( L , R ) i s t h e C u e s t a D u t a r i c u t r e p r e -

PROOF. s e n t a t i o n of x .

Let b ( x )

> x}.

6; then XECD(O 1, L

=

B

<

[x)

<

{ Y E O ~ ( ~y )<:

X I and

R

=

and s i n c e ( L ' , R ' )

i s t i m e l y , L ' is

a s u b s e t of L and R ' is a s u b s e t of R ; t h u s f o r a l l a ' c L '

t h e r e e x i s t s acL

( Y E O ~ ( ~ )y:

Since L '

=

R',

s u c h t h a t a ' 5 a , and f o r a l l c ' E R ' Since x L and R '

=

[L'IR'),

t h e r e e x i s t s C E R such t h a t c S c ' .

< [ y } < R') is empty;

{ Y E O ~ ( ~ )L: '

i s c o i n i t i a l i n R : i , e . , f o r a l l acL t h e r e e x i s t s a ' E L '

such t h a t

such t h a t c' 5 c .

a 5 a ' , and f o r a l l CER t h e r e e x i s t s c ' E R ' these

t h u s L ' is c o f i n a l i n

Combining

f i n d i n g s , we see t h a t L and L ' are m u t u a l l y c o f i n a l and R and R' are Now d r o p t h e a s s u m p t i o n t h a t [ L I R ] i s t h e C u e s t a

mutually c o i n i t i a l .

D u t a r i c u t r e p r e s e n t a t i o n of x .

Fran t h e above argument we see t h a t L and

L ' are both m u t u a l l y c o f i n a l w i t h {yEOb(x): y

m u t u a l l y c o f i n a l with each other.

< XI,

and hence t h e y a r e

S i m i l a r l y , one can show t h a t R and R '

a r e mutually coinitial.

(13)

(i) x S y iff ( i i ) x

<

R

f o r a l l y R , and xL

y

Assume f i r s t t h a t ( i ) h o l d s .

PROOF.

<

y for all x

Then x 5 y

<

y

R

,

L

.

and xL

< x

S

L

y , f o r a l l yR a n d x ; e s t a b l i s h i n g ( i i ) . C o n v e r s e l y , assume t h a t ( i i )

holds.

Assume, f o r t h e moment, t h a t ( i ) i s f a l s e : i . e . , t h a t y

we s e e t h a t t h e f o l l o w i n g hold: ( a ) y

.

x R , f o r a l l x L , x R , y L , and y R ( a ) we s e e t h a t b ( y ) we see t h a t b ( x )

<

<

L

<

y

< x <

y R , and ( b ) x

<

x.

L

<

Thus y

<

x

<

Using t h e Conway S i m p l i c i t y Theorem a n d Using t h e Conway S i m p l i c i t y Theorem and ( b )

b(r).

b ( y ) ; which i s a b s u r d .

The c o n t r a p o s i t i v e of (13) i s t h e f o l l o w i n g :

<

L

y iff (ii)x 5 y

, for

sane y L ,

or xR 6 y , f o r sane x

R

.

(14)

(i)x

(15)

U n l e s s s t a t e d t o t h e c o n t r a r y , w e w i l l assume h e n c e f o r t h t h a t a l l r e p r e s e n t a t i ons under c o n s i d e r a t i on are t i me1y

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.02

127

Ccmbining ( 9 ) and ( 1 2 ) we have t h e f o l l o w i n g : (16)

L e t ( L , R ) a n d (L',R')

b e Conway c u t s i n No.

e q u i v a l e n t i f and o n l y i f { L ' I R ' )

=

( L , R ) and ( L ' , R ' ) a r e

(LIRJ.

Note t h a t we c a n d e s c r i b e t h e C u e s t a Dutari c o n s t r u c t i o n No of t h e

s u r r e a l numbers as f o l l o w s . (17)

XENO i f and o n l y i f x i s t h e f o l l o w i n g o r d e r e d p a i r of sets: ((yENo(<,b(x)): y

< XI, (yENo(<,b(x)):

B I B L I O G R A P H I C NOTE.

y

>

XI).

Much of what was g i v e n i n f i r s t p a r t of t h i s

s e c t i o n i s at most a s l i g h t r e w o r k i n g of C u e s t a D u t a r i ' s p a p e r [ 2 5 1 of 1954.

( 5 ) c a n b e f o u n d i n Harzheim's e l e g a n t paper 143, pp. 116-1201, of

1964.

These i d e a s were t h e n a p p l i e d t o i d e a s developed by Conway C24, p p .

4-29],

i n 1976.

Cuesta-Dutari

N o t e a l s o how many s i m i l a r i t i e s t h e r e a r e between t h e

c o n s t r u c t i o n and von Neumann's c o n s t r u c t i o n of t h e c l a s s On

of a l l o r d i n a l n u m b e r s , ( 1 . 0 2 ) .

The new r e s u l t s of t h i s s e c t i o n a r e a

r e s u l t of j o i n t work w i t h P h i l i p E h r l i c h , much of w h i c h a p p e a r e d , w i t h o u t many of t h e p r o o f s , i n [6].

4.03

AN ABSTRACT CHARACTERIZATION OF A FULL CLASS OF SURREAL NUMBERS

Thus f a r i n t h i s monograph we have d i s c u s s e d two s l i g h t l y d i f f e r e n t c o n s t r u c t i o n s of c l a s s e s of s u r r e a l numbers: Conway's [241 ( S e c t i o n s (4.00) and ( 4 . 0 1 ) ) , and t h e one g i v e n i n (4.02) u s i n g Cuesta Dutari c u t s .

In

Chapter 5 we w i l l g i v e a n o t h e r o n e , u s i n g Conway's n o t i o n of t h e s i g n e x p a n s i o n of a surreal number as i t s d e f i n i t i o n .

We have yet t o show t h a t

Conway's surreal numbers a r e e s s e n t i a l l y t h e same as t h o s e c o n s t r u c t e d i n (4.02).

This s t a t e of a f f a i r s resembles, t o some d e g r e e , t h e s t a t u s of t h e

v a r i o u s c o n s t r u c t i o n s of t h e real numbers; as Dedekind cuts i n t h e r a t i o n a l n u m b e r s , a s l e a s t upper bounds of bounded s u b s e t s of t h e r a t i o n a l numbers, a s e q u i v a l e n c e c l a s s e s of Cauchy sequences of r a t i o n a l numbers, as i n f i n i t e decimals, e t c .

Each of t h e s e c o n s t r u c t i o n s has i t s u s e s .

Once i t h a s been

shown t h a t t h e f i e l d of a l l real numbers is, u p t o i s o m o r p h i s m , t h e o n l y c o m p l e t e o r d e r e d f i e l d , t h e n o n e c a n p a s s f r e e l y back and f o r t h between t h e s e v a r i o u s c o n s t r u c t i o n s , as need o r i n c l i n a t i o n s u g g e s t s .

Norman L. A l l i n g

1 28

4.03

I n t h i s s e c t i o n we w i l l d e v e l o p a n a b s t r a c t d e s c r i p t i o n o f w h a t we w i l l c a l l a f u l l c l a s s F of s u r r e a l n u m b e r s , a n d show t h a t any two s u c h

classes have an o r d e r - p r e s e r v i n g i s a n o r p h i s m between them t h a t p r e s e r v e s T h i s shows t h a t t h e two c o n s t r u c t i o n s g i v e n s o f a r of

birth-order.

No a r e

indeed isomorphic. I t p r o v e s u s e f u l t o g e n e r a l i z e t h i s d i s c u s s i o n a l i t t l e f u r t h e r by

c h o o s i n g a n i n i t i a l segment S of On. S = [O,B)

If S i s a p r o p e r s u b c l a s s of On, t h e n

f o r a u n i q u e 8 ~ O n . If n o t t h e n l e t

L e t ( a ) F be a n ordered class.

On; t h e n a g a i n S

=

[O,B).

Assume ( b ) t h a t a f u n c t i o n b h a s been

d e f i n e d which maps F o n t o t h e s u b c l a s s [O,B) birth-order function. -___

=

of On, t h a t w i l l be c a l l e d a

Assume ( c ) t h a t , g i v e n any Conway c u t ( L , R ) i n F f o r

< a < 6, t h e n t h e r e e x i s t s a u n i q u e XEF f o r which b ( x ) i s m i n i m a l , s u c h t h a t L < ( X I < R . Such a t r i p l e { F , < , b . f i ] w i l l b e c a l l e d a which b ( L ) , b(R)

class ___-

of s-u r r e a l -____ n u m b e r s -of ---h e i g h t 8.

I

If B = O n , l e t u s a l s o d e n o t e

I F , < , b , B ] by ( F , < , b } , a n d l e t u s c a l l i t a c l a s s of. s u r r e a l n u m b e r s . C o n d i t i o n ( c ) w i l l a l s o b e referred t o as Conway's S i m p l i c i t y Theorem. Let ( F , < , b , B } b e a class of surreal numbers of h e i g h t B.

t h a t s i n c e b maps F o n t o [ O , B ) , t h e n F is a proper class.

Next, n o t e t h a t s i n c e Conway's S i m p l i c i t y

Theorem h o l d s , x i s u n i q u e l y d e t e r m i n e d by L and R . t h e symbol ( L I R I be used

Note f i r s t

t h a t i f BEOn, t h e n 161 2 I F I ; and i f B = On

t o denote x.

F o l l o w i n g Conway, l e t

C o n t i n u i n g t o u s e Conway's n o t a t i o n L

a n d c o n v e n t i o n s , ( 4 . 0 0 ) o r C24, p . 41, we w i l l write x as { x Ix L (x

(0)

=

R

L and ( x 1

R.

Let y be i n No, w i t h y

( i ) x 2 y i f f (ii) x

PROOF. Similarly x ( i i ) holds.

x.

=

R

1 , where

L R ( y ( y 1.

=

< yR f o r a l l yR, a n d xL < y for a l l xL .

Assume t h a t ( i ) h o l d s .

Then x 2 y

<

yR, and hence x

L

< yR

.

< x S y , a n d h e n c e xL < y ; t h u s ( i i ) h o l d s . Assume now t h a t Also assume, f o r a moment, t h a t ( i ) i s f a l s e : i . e . , t h a t y <

Thus we s e e t h a t t h e f o l l o w i n g h o l d : ( f ) yL

< y < x < y R , a n d (**I

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.03

xL < y

< x <

R

xR, for a l l xL, x

L R y , and y

,

<

Theorem a n d ( * ) we s e e t h a t b ( y )

<

Theorem and ( * * ) we see t h a t b ( x )

.

b(x).

129

Using t h e Conway S i m p l i c i t y U s i n g t h e Conway S i m p l i c i t y

b ( y ) ; which i s a b s u r d .

n

The c o n t r a p o s i t i v e o f ( 0 ) i s t h e f o l l o w i n g :

(i) x

(1)

<

y i f f ( i i ) x 6 y L , f o r sane y L , o r x

F o r e a c h a ~ [ O , 8 ) ,l e t and l e t F ( = , a ) (2)

=

F(<,a)

=

b-'([O,a)),

R

2 y , f o r sane x

let F(6,a)

=

b

-1

R

.

([O,a]),

b-'([a)).

{F,<,b,B] is

full

i f f o r a l l Conway c u t s (L,R) i n F ( < , a ) , [LIR) i s i n

F ( < ,a).

i s a f u l l class of s u r r e a l numbers of

{ N o , < , b } , as d e f i n e d i n (4.021, h e i g h t On.

i s a l s o a f u l l c l a s s of s u r r e a l numbers of

C o n w a y ' s c l a s s No [ 2 4 ] h e i g h t On. p.

T h i s may be s e e n by c o n s u l t i n g Conway's c o n s t r u c t i o n o f No C24,

41, h i s d e f i n i t i o n o f o r d e r a n d e q u a l i t y o n No 1 2 4 , p . 41 ( w h i c h i n -

spired (0) and (4.02:13), c o n s u l t i n g [24,

pp.

a n d i s i n c o m p l e t e a g r e e m e n t w i t h e a c h ) , by

15-17],

by n o t i n g t h a t Theorem 1 1 1 2 4 , p . 231 is what

we h a v e c a l l e d Conway's S i m p l i c i t y Theorem, a n d by r e a d i n g [24, pp. 29-30]. Let [ S , < , b ] d e n o t e t h e o r d e r e d c l a s s of a l l s i g n - e x p a n s i o n s , as g i v e n by Conway [24, pp. 30-311.

See a l s o ( 5 . 3 0 ) .

t h a t t h e s i g n - e x p a n s i o n map X E N O map t h a t p r e s e r v e s b i r t h - o r d e r ; n u m b e r s of h e i g h t O n .

+

Conway s h o w e d C24, p . 301

(x)ES is a s u r j e c t i v e order-preserving

t h u s ( S , < , b ] i s a f u l l c l a s s of s u r r e a l

T h i s c a n a l s o b e s h o w n d i r e c t l y by w o r k i n g o n

is,<, b } . Let { F , < , b , B ) be a full c l a s s of s u r r e a l numbers.

= a

<

8.

then L(x)

Let L ( x )

< {XI <

=

ItcF(<,a): t

R(x).

d e f i n e d t o be [ L ( x ) ( R ( x ) ] .

< XI

and l e t R(x)

=

Let X E F , w i t h b ( x ) itsF(<,a):

Assume t h a t L ( x ) a n d R ( x ) a r e s e t s . By ( 2 1 , z i s i n F ( S , a ) .

~ ( x )a n d R ( x ) i s F ( < , a ) , b ( z )

= a.

t

>

x);

Let z be

S i n c e t h e u n i o n of

S i n c e C o n w a y ' s S i m p l i c i t y Theorem

Norman L. A l l i n g

130

holds, z

=

4.03

f o r No, t h e

Let ( L ( x ) , R ( x ) ) b e c a l l e d , as i t w a s i n ( 4 . 0 2 )

x.

Cuesta D-u t a r i --cut -~

r e p r e s e n t a t i o n of x i n I F , < , b , f 3 } .

1 _ 1

T h u s we h a v e p r o v e d

the following: Each XEF f o r which L ( x ) a n d R ( x ) a r e s e t s , x h a s a unique Cuesta

(3)

D u t a r i c u t r e p r e s e n t a t i o n i n { F , <, b , B } . Let [ F , < , b , B ) , { F ' , < , b * , B I , a n d [ F t t t , < , b l l , B l b e f u l l c l a s s e s of

L e t f be a map form F i n t o F' and l e t h be a

s u r r e a l numbers of h e i g h t B. m a p p i n g of F' i n t o F". YEF i m p l i e s f ( x )

f w i l l be c a l l e d a s u r r e a l monomorphism i f ( i ) x

< f ( y ) h o l d s , and

<

f o r a l l XEF.

(ii) i f b(x) = b ' ( f ( x ) ) ,

C l e a r l y we have t h e f o l l o w i n g . If f and h a r e s u r r e a l monomorphisms, t h e n h - f is a surreal monomor-

(4)

phi s m

.

( i ) There e x i s t s a s u r r e a l monomorphism of F i n t o F'.

LEMMA.

Let f a n d g b e a s u r r e a l monomorphism of F i n t o F ' , t h e n f = g . s u r r e a l monomorphism f of F i n t o F ' , m a p s F o n t o F ' .

Let

aE[O,e)

( i i i ) Any

( i v ) F o r a l l aEOn

is a s e t .

s u c h t h a t a 5 8, b-'([O,a)) PROOF.

(ii)

a n d assume t h a t t h e r e e x i s t s a s u r r e a l monomor-

p h i s m f of F ( < a ) o n t o F ' ( < & ) , a n d t h a t F ( < a ) a n d F ' ( < a ) a r e s e t s . t h a t 0 has t h i s p r o p e r t y . )

Let x , ~ F ( = a ) , a n d l e t ( L , , R , )

Dutari cut representation.

Clearly (f(L,),f(R,))

F'.

Let x,'

n u m b e r s of h e i g h t 6 ( 2 ) , b ' ( x , ' ) x,;

be its Cuesta

is a Cuesta Dutari cut i n

S i n c e [ F t , < , b l , B } i s a f u l l c l a s s of s u r r e a l

= {f(Lo)lf(Ro)].

i s equal t o F ' ( < a ) , b ' ( x , ' )

I a.

S i n c e t h e u n i o n of f ( L , ) a n d f ( R , )

2 a ; thus b'(x,')

=

Let x , E F ( = a ) , w i t h x o

a.

a n d l e t ( L , , R , ) b e t h e Cuesta D u t a r i c u t r e p r e s e n t a t i o n of x , .

( f ( L , ) , f ( R , ) ) i s a C u e s t a Dutar i c u t i n F 1 . S i n c e xo

< x,,

R

f(xl)

>

< xl,

<

Clearly

Let x l t = [ f ( L , ) l f ( R , ) l .

s i n c e x, and x , t F ( = a ) , a n d hence a l l x o R and a l l x l L are i n

F ( < a ) , we may i n v o k e ( 1 ) t o c o n c l u d e t h a t ( a ) x p ( b ) x,

(Note

f o r some x,

L f ( x l )cf(R,).

R

.

< xlL, for

some x l L , o r L

Assume t h a t ( a ) h o l d s ; t h e n x i ER,,

Since f ( R , ) R

and thus

> ( f ( x , ) ] , we s e e t h a t f ( x , ) > f ( x , ) .

Assume t h a t ( b ) h o l d s ; t h e n x, E L , , a n d t h u s f ( x , )

<

R f ( x , )cP(L,).

Since

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.03

<

f(L,)

{ f ( x , ) } , we s e e t h a t f ( x o )

<

131

Since each x , ~ F ( = c r ) is

f(x,).

u n i q u e l y d e t e r m i n e d by a C u e s t a D u t a r i c u t i n t h e s e t F ( < a ) , F(6a) i s a g a i n

a set.

Let z ' E F ' ( = a ) , w i t h z '

cut i n F'(
Let z

F(
=

=

{L'IR'),

where ( L ' , R ' )

i s a Cuesta D u t a r i

i s a Cuesta D u t a r i cut (L.R) i n

Clearly (f-'(L*),f-'(R'))

{LIR}; t h e n z EF ( =a ) a n d f ( z ) =

Since each z'cF'(=a) i s

2'.

u n i q u e l y d e t e r m i n e d by a C u e s t a D u t a r i c u t i n t h e s e t F ' ( < a ) , F'(Sa) i s again a s e t .

As t o ( i i ) , a s s u m e t h a t t h e r e s t r i c t i o n of f t o F ( < a ) ) ,

f l F ( < a ) , is equal t o glF(
=

( g ( L o ) , g ( R , ) ) i s a Cuesta Dutari c u t i n F'(
{ f ( L o ) ( f ( R o ) )= ( g ( L o ) ( g ( R o ) ) = g ( x o ) . THEOREM.

Thus f ( X o )

0

Assume t h a t { F , < , b , B ) a nd { F ' , < , b ' , B )

s u r r e a l numbers of h e i g h t B.

Clearly

a r e f u l l c l a s s e s of

The r e exists a u n i q u e surreal monomorphism f

of F o n t o F ' . COROLLARY.

T h e r e e x i s t s a u n i q u e s u r r e a l monomorphism, which maps

t h e c l a s s of Conway's s u r r e a l numbers C241 onto t h e c l a s s of s u r r e a l numb e r s c o n s t r u c t e d i n (4.02) BIBLIOGRAPHIC NOTE.

( a n d i n C71).

I n [ 7, ( 1 1 1 t h e a u t h o r a n d P h i l i p E h r l i c h m a d e ,

what h e r e i s a theorem ( 4 . 0 3 : 0 ) ,

into a condition.

I t w a s E h r l i c h who

f i r s t s u s p e c t e d t h a t r a t h e r t h a n b e i n g a c o n d i t i o n i t was, i n f a c t , a

theorem.

He w e n t o n t o show t h a t ( 0 , i ) i m p l i e d ( O , i i ) , w h i l e t h e a u t h o r

showed t h a t ( 0 , i i ) i m p l i e d ( 0 . i ) . [6],

b o t h authors - separately

-

s u r r e a l numbers of h e i g h t 6 a g a i n .

Having m i s s e d t h i s f a c t when we w r o t e c o n s i d e r e d t h e axioms f o r a f u l l class of The r e s u l t s of t h e a u t h o r s r e f l e c t i o n s

may be found i n S e c t i o n 4.60. 4.04

SUBTRACTION I N No

Assume t h a t No i s t h e c o n s t r u c t i o n of t h e s u r r e a l numbers by means of C u e s t a D u t a r i c u t s , t h a t we c o n s i d e r e d i n S e c t i o n 4.02. f u l l c l a s s of s u r r e a l n u m b e r s ( o f h e i g h t O n ) .

Then (N o , < , b } i s a

By T h e o re m 4 . 0 3 we can

t r a n s f e r a l l the or e m s t h a t a r e s t a t e d p u r e l y i n terms of t h e l i n e a r o r d e r and t h e b i r t h - o r d e r f u n c t i o n , t o any o t h e r f u l l c l a s s of s u r r e a l numbers.

132

Norman L . A l l i n g

4.04

Following Conway [ 2 4 , p . 51, we w i l l c o n s i d e r e x p r e s s i o n s { L I R ) , f o r which L and R a r e s u b s e t s of No, and c a l l s u c h an e x p r e s s i o n s games.

a game { L I R ) , t h e n i t i s a number i f and o n l y i f L Let x

( L I R } b e i n No.

=

<

Then, by assumption (4.02:15),

t i m e l y Conway c u t r e p r e s e n t a t i o n of x.

Given

R.

(L,R) is a

Following Conway, d e f i n e s u b t r a c -

t i o n as f o l l o w s : l e t -x be d e f i n e d t o be { - R l - L ] . (0)

(i)

-x i s an element i n No, which i s independent of r e p r e s e n t a t i o n ,

(ii)

-(-XI

=

x,

( i i i ) b(-x)

=

b ( x ) , and

x <

(iv)

y i f and o n l y i f -y

< -x. i s a game.

I n i t i a l l y a l l we know i s t h a t ( - R l - L )

PROOF.

We w i l l

p r o v e ( 0 ) by i n d u c t i o n , b y a s s u m i n g t h a t ( 0 ) h o l d s on Oa ( = b - ' ( [ O , a ) ) . Note t h a t i f a = 0 , t h e n Oa i s e m p t y , t h u s ( 0 ) h o l d s o n O a ; h e n c e o u r i n d u c t i o n i s launched.

-

a.

By ( O , i v ) , - x R

<

thus b(x)

(= b-'(a));

< xR.

To see t h a t (0) holds on Ma ( = b - l ( [ O , a l ) , F i r s t n o t e t h a t each x L

-x ; t h u s ( - R 1 - L )

L

let X E N ~

and xR i s i n Oa, and x

i s a number.

I n i t i a l l y we may

assume t h a t ( L , R ) i s t h e C u e s t a D u t a r i c u t r e p r e s e n t a t i o n o f x. ( L o , R o ) b e any Conway c u t i n 0

CL

t h a t r e p r e s e n t s x.

L o and L are m u t u a l l y c o f i n a l a n d R ,

(4.02:16),

coinitial.

Since ( 0 ) holds on Oa,

-(-x)

=

=

I-RI-L);

-{-RI-L)

=

. a

Thus by (4.02:16)

Since ( 0 , i i ) h o l d s on Oa,

{ L I R ] = x; showing t h a t ( 0 , i i ) h o l d s on Ma,

t h e element of No of minimal b i r t h d a y s u c h t h a t L and conclude t h a t t h e r e i s no element ~ b ( - x ) 2: b ( x ) .

and -R are m u t u a l l y

we know t h a t -R,

e s t a b l i s h i n g ( 0 , i ) on M

Let

Then, as we saw i n

and R are m u t u a l l y

c o f i n a l , and t h a t -Lo and -L are m u t u a l l y c o i n i t i a l . (-Rol-Lo}

L

<

x

<

€ such 0 ~t h a t -R

Since x is

R , we may a p p l y ( 0 )

<

(z}

<

-L.

Thus

S i n c e (No,<,b} i s a full class of surreal numbers (4.03:2),

b ( - x ) 5 a , showing t h a t b(-x) = b ( x ) , and hence showing t h a t ( 0 , i i i ) h o l d s o n Ma. on M

Ci

Now l e t ycM

, we

a'

w i t h y = ( L t l R t ] , and w i t h x

<

y.

Since ( 0 , i ) holds

may assume, without l o s s of g e n e r a l i t y , t h a t ( L t , R t )i s t h e

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.04

C u e s t a D u t a r i c u t r e p r e s e n t a t i o n of y. =

(L,R), y

=

F i r s t assume t h a t b ( y )

< y.

Since x

(L',R')ECD(T~).

is a p r o p e r s u b s e t of - R ;

y is i n R.

t h u s -y

<

a ; then x As

U s i n g ( 0 ) o n O a , we know t h a t Assume now t h a t b ( y )

-x.

and we s e e t h a t - y

Hence - y c ( - R ) ,

=

L i s a p r o p e r s u b s e t of L'.

a c o n s e q u e n c e , R ' is a p r o p e r s u b s e t of R . -R'

133

<

-x.

<

a ; then

T h u s we h a v e s h o w n

t h a t (0) h o l d s o n Ma.

A D D I T I O N I N No

4.05

Conway d e f i n e s a d d i t i o n i n No as f o l l o w s C24, p . 51:

x + y = Ix

(0)

L

L

R

R

+ y , x + y Ix

+ y , x t y }.

L e t u s s e e sane of t h e m o t i v a t i o n b e h i n d t h i s d e f i n i t i o n .

< x <

xL

x

R

and y

L

<

y

<

y

.

R

S i n c e we want No t o be a n o r d e r e d g r o u p u n d e r

<

a d d i t i o n , we m u s t h a v e ( i ) xL + y

<

<

xR + y , a n d ( i v ) x + y

x + y

R

.

b i r t h d a y s u c h t h a t i n e q u a l i t i e s (1)

[OL

-

(ii) 0

+

1 and 1 + 0 a r e b o t h t h e number 1 .

PROOF.

Since 0 = L

R

0 10

+

0, and there are no 1

L

1)

=

I0

+

0, 0

R

.

+

there are no 0 0

R

1

=

x + y, (iii) x + y

( i v ) hold.

0 i s t h e number 0, a n d

[I},

<

Thus x + y i s t h e e l e m e n t of smallest

+

+ 0, 0 +

I0 + 1

x + y , ( i i ) x + yL

0

(i)

(1)

Note t h a t

(1)

= 0.

L

R and no 0 ; t h u s 0

Recall t h a t 1

=

+

0 =

[Ol); t h u s l L

=

R

Thus 0 + 1 = [OL + 1 , 0 + lLIOR + 1 , 0 + 1 1 =

0 1 1 = I011 =1.

0

On o c c a s i o n w e w i l l p r o c e e d b y i n d u c t i o n o n t h e n a t u r a l ,

or

H e s s e n b e r g , sum of t h e o r d i n a l n u m b e r s b ( x ) a n d b ( y ) , b ( x ) + b ( y ) , e t c . Recall t h a t g i v e n a n o r d i n a l number a

>

0 i t has t h e following unique

e x p a n s i o n , which i s c a l l e d C a n t o r ' s normal form C18, p . 2371:

134

Norman L. A l l i n g

w

(2)

“1

B,

+

...

w

+

“n

Bn, w i t h

... > q n ,

>

q,

4.05

>

and w

... ,

B1,

Bn > 0.

R e g a r d i n g s u c h s u m s as f o r m a l power s e r i e s a l l o w s u s t o a d d a n d

Let u s a l s o r e g a r d t h e o r d i n a l number 0 as t h e empty expan-

m u l t i p l y them.

s i o n ( 0 1 , a n d l e t i t b e a d d e d a n d m u l t i p l i e d a s a formal power series. Such sums and p r o d u c t s g i v e r i s e t o t h e n a t u r a l numbers.

a n d p r o d u c t of o r d i n a l

C55, pp. 246-2611.)

(See e.g.,

Note t h a t we have y e t t o p r o v e t h a t x we know t h a t i t is a game ( 4 . 0 4 ) .

t i o n of a d d i t i o n between games.

+

y i s a l w a y s a number; however

F u r t h e r , we may r e g a r d (0) as a d e f i n i -

As s u c h we c a n e s t a b l i s h p r o p e r t i e s a b o u t

F i r s t note that

it.

(3)

0

+

x

=

PROOF.

x , f o r a l l XENO. Assume t h a t 0

+

u = u is t r u e f o r a l l UEO

U’

and l e t b ( x ) = a.

(Note that i f a

=

0, t h e i n d u c t i o n h y p o t h e s i s i s empty, x

noted i n ( 2 ) , 0

+

x

+

xR I .

Since 0

x.)

By d e f i n i t i o n , 0

+

x

(0

=

+

xLIO

L R h y p o t h e s i s ) i s {x Ix 1, which i s x .

x

(4)

+

y

=

PROOF.

+

x = {OL

+

x, 0

+

L R x 10

+

x, 0

( 1 1 , t h e r e a r e n o 0L , o r 0 R : i . e . , 0 h a s n o o p t i o n s

=

Thus 0

(4.00).

=

0 , a n d , as

=

+

R x 1 , which ( u s i n g o u r i n d u c t i o n

o

y + x , f o r a l l x , YENO. Let x a n d y be chosen s o t h a t f o r a l l U , V E N O ,

n a t u r a l sum, b ( u )

+

(Note t h a t i f

b ( v ) , i s less t h a n b ( x )

f o r which t h e

b(y) = a; then u

v

v

=

(Y

=

0, t h e n t h i s i s t h e empty i n d u c t i o n h y p o t h e s i s ,

x

y , and hence x

+

y

+

+

+

u.

= 0 =

x.)

S i n c e any o p t i o n z of x ( r e s p . y ) i s s i m p l e r

than x (resp. y): i.e., b ( z )

< b ( x ) ( r e s p . b ( z ) < b ( y ) ) , we c a n u s e t h e

=

y

+

i n d u c t i o n h y p o t h e s i s t o show t h a t x [y

t

L

x , y

L + x I y + x R , yR

+ XI

=

y

+

y

+

x.

=

IxL 0

+

y, x

+

yLlxR

+

y,

x

+

yR)

=

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.05

135

Let u s now c o n s i d e r two s t a t e m e n t s which we w i l l p r o v e f o r a l l u, v ,

a n d z i n No.

w,

The f i r s t o f t h e s e , we w i l l c a l l P ( u , v : w , z )

is the

following: ( i ) u 2 v a n d ( i i ) w 5 z, implies ( i i i ) u

(5)

w 2 v

+

(iv) Strict

z.

+

i n e q u a l i t y i n ( i ) or ( i i ) i m p l i e s s t r i c t i n e q u a l i t y i n ( i i i ) . O u r i n d u c t i o n w i l l be w i t h r e s p e c t t o rnax.(b(u) + b ( v ) , b(w) + b ( z ) ) , Let N ( x , y ) b e t h e s t a t e m e n t t h a t

which we w i l l d e f i n e t o be b ( P ( u , v : w , z ) ) .

x

(6)

+

L

y i s a number: i . e . , t h a t {x

+

Let b ( N ( x , y ) ) be d e f i n e d t o be b ( x )

y, x +

+

L

y 1

< {xR

t

R

y , x + y }.

b ( y ) , and consider t h e f o l l o w -

ing statement:. ( 5 ) a n d ( 6 ) h o l d , f o r a l l u, v , w , z , x , a n d y i n No.

(7)

PROOF.

To e s t a b l i s h ( 7 ) , we w i l l p r o c e e d b y i n d u c t i o n o n

max.(b(P(u,v:w,z)),

b ( N ( x , y ) ) ) , w h i c h we w i l l c a l l b ( Q ( u , v : w , z : x , y ) ) .

(Note t h a t i f b ( Q ( u , v : w . z : x , y ) ) (5) and ( 6 ) a r e t r u e . )

Let a

>

= 0,

then u

=

v = w

=

z =

x

=

y

=

0, and

0 , a n d assume t h a t f o r a l l u, v , w , z , x ,

<

a n d y i n No, f o r which b ( Q ( u , v : w , z : x , y ) )

a, t h e n (5) and ( 6 ) holds.

Now

l e t b ( Q ( u , v : w , z : x , y ) ) = a. L

<

<

x

u 5 v iff u

<

Note t h a t ( a ) u R

z < z , ( e ) xL (4.02:13),

x iff w

<

R

x

<

x

a n d wL

u R

< u R , ( b ) v L < v < v R , ( c ) w L < w < w R , ( d ) zL <

, and

v

R

(f) y

x

<

y

<

y

R

.

Note a l s o t h a t , b y

< v , f o r a l l v R a n d a l l uL ; and

a n d uL

< x, for a l l

L

R

and w

L

.

that w 2

S i n c e ( e ) a n d ( f ) h o l d , and

s i n c e t h e r e l e v a n t i n d u c t i o n h y p o t h e s i s h o l d s , we see by (51, t h a t x

xR (8)

t

y, x x

+

t

yL< x

t

y R , xL + y

<

x

t

y R , and x + y L

<

y is a number, as a l s o are u + w a n d v + x .

xR + y: t h u s

L

+

y

<

Norman L . A l l i n g

136

t e l l s us that u

Now n o t e t h a t (4.02:13)

<

u + w

( v + zIR and ( u

wIL < v

+

4.05

w 5 v

+

(v

+ z, for a l l

z if and o n l y i f

+

zIR, a n d a l l ( u

+

L

w) ,

+

But by ( 8 ) an d ( 0 1 , we h a v e

(9)

u

+

w 5 v + z iff u + w < v

u

+

wL < v

+ z, f o r a l l v

R

R

+

z, u + w

, zR , u L ,

<

v

and w

z R , uL

+

+

w < v

+

z, a n d

.

L

Then, u s i n g ( a ) - ( d ) , we know t h a t

Assume t h a t ( 5 , i ) a n d ( 5 , i i ) h o l d . t h e following holds:

u

(i)

(10)

L

(iii) u

< u

5 v

R

< v ,

< vR ,

(iv) w

and ( i i ) w

< zR ,

L

( v ) uL

< w

<

2 z

R

<

z ; which i m p l y t h a t

v, and ( v i ) w

L

< z.

Thus, we may i n v o k e t h e i n d u c t i o n h y p o t h e s i s , a p p l y i t t o ( l O , ( i i i ) ( v i ) ) u s i n g (51, t o e s t a b l i s h t h e r i g h t hand s i d e o f ( 9 ) .

With t h e a i d of

( 9 ) we h av e t h u s p r o v e d ( 5 , i i i ) .

Now assume t h a t s t r i c t i n e q u a l i t y h o l d s i n ( 5 , i ) o r ( 5 , i i ) .

that u

<

t h a t ( i ) uR S v , f o r s a n e u

see t h a t u

+

(4.02:14)

R

.

Assume f i r s t t h a t ( h ) h o l d s .

L

L

.

w 2 vL + z ; t h u s u + w 5 ( v + z I L , f o r some ( v + z ) w e see t h a t u + v < v + z . Assume, l a s t l y , t h a t ( i ) h o l d s .

w 5 v

t h u s ( u + w ) S~ v + z ,

+ z;

we s e e t h a t u

+

w

<

v

+ z,

,

or

U s i n g ( 5 ) we

+

(4.02:14),

(5), u R

we know t h a t ( h ) u 5 v L , f o r some v

Applying (4.02:14)

v.

Since

we may a s s u m e , w i t h o u t l o s s of g e n e r a l i t y ,

a d d i t i o n i s commutative ( 4 ) ,

f o r some ( u + w)

s h o wi n g t h a t ( 5 , i v ) h o l d s .

R

.

By By By

By i n d u c -

t i o n we h av e e s t a b l i s h e d ( 7 ) .

(x

(11)

+ y) + z =

PROOF.

“x

+

Y)

+ 2,

( y + z ) , f o r a l l x, y , an d z i n No.

+

Let u s p r o c e e d by i n d u c t i o n o n b ( x ) + b ( y ) + b ( z )

as we d i d ab o v e. L

x

(x

Thus (x + y ) + z = +

Y)

+

2

L )(x

+

y)

R

+

z, (x

+

y)

+

z

R

1

=

=

a , much

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.05

I(x L (xR

y) +

+

+

y)

+

L

137

LI

z, (x

+

y

z, (x

+

y)

+

z

z, (x

+

y ) + z, (x

+

y)

+

z R ] . We may now a p p l y t h e i n d u c t i o n

+

R

h y p o t h e s i s an d c o n c l u d e t h a t t h e l a s t number i s

(13)

x

+

(-x)

PROOF.

0, f o r a l l xcNo.

=

x

+

(-XI

(xL IxR

+

(-x R I-xL )

=

[xL

+

(-XI, x

+

(-XI L I

(-xR )1xR + (-XI, x + (-xL 1). Let u s p r o c e e d by i n d u c t i o n by a s s u m i n g t h a t u + (-u) = 0 , f o r a l l u s u c h t h a t R b ( u ) < a , w h e r e b ( x ) = a . We know t h a t ( i ) xL < x < x We h a v e s e e n R L L ( 4 . 0 4 : 0 , i v ) t h a t ( i ) i m p l i e s t h e f o l l o w i n g : ( i i ) -x < -x < -x , Adding x

xR

+

(-XI, x

+

(-XI

RI

-

=

(xL

+

(-XI,

x

+

.

t o t h e r i g h t - h a n d s i d e of ( i i ) , u s i n g t h e i n d u c t i o n h y p o t h e s i s , a n d ( 5 ) g i v e s us ( i i i ) xL

+

(-x)

<

0. Adding -xR t o t h e r i g h t - h a n d s i d e of

u s i n g t h e induction hypothesis, and (5) g i v e s us ( i v ) x

+

(i),

(-x R ) < 0.

Adding xR t o t h e l e f t - h a n d s i d e of ( i i ) , u s i n g t h e i n d u c t i o n h y p o t h e s i s , and (5) gives us (v) 0

< xR

+

(-XI.

F i n a l l y , a d d i n g -xL t o t h e l e f t hand

s i d e of ( i ) , u s i n g t h e i n d u c t i o n h y p o t h e s i s , a n d ( 5 ) g i v e s u s ( v i ) 0

L

(-x 1.

< x

+

Taken t o g e t h e r , ( i i i ) - ( v i ) show t h a t t h e f o l l o w i n g h o l d s :

S i n c e 0 i s t h e s i m p l e s t element i n No, ( 1 3 ) i s p r o v e d . Canbining ( 3 ) , proved t h e following:

( 4 1 , ( 7 1 , ( 8 ) , ( 1 1 1 , a n d ( 1 3 1 , we s e e t h a t we h a v e

4.05

Norman L. A l l i n g

138

Under a d d i t i o n No i s an o r d e r e d A b e l i a n g r o u p .

THEOREM.

The i d e a of u s i n g t h e n a t u r a l or H e s s e n b e r g sum

B I B L I O G R A P H I C NOTE.

i n t h e i n d u c t i o n , as we d i d a b o v e , c a n b e f o u n d i n G o n s h o r ' s b o o k o n t h e s u b j e c t [38].

Of c o u r s e t h e i d e a of n a t u r a l sums a n d p r o d u c t s p e r m e a t e s A f t e r a l l , Conway's normal form f o r a s u r r e a l number

Conway's work [24].

w h i c h we w i l l c o n s i d e r i n C h a p t e r 6 , i s a g e n e r a l i z a t i o n

[ 2 4 , pp. 32-33],

Normal f o r m s were a l s o u s e d by S i k o w s k i 1661, i n

of C a n t o r ' s normal form.

1 9 4 9 , t o c o n s t r u c t a n i n t e r e s t i n g f i e l d , which c a n be r e g a r d e d i n a v e r y n a t u r a l way as a s u b f i e l d of No. MULTIPLICATION I N No

4.06

Conway's d e f i n i t i o n of m u l t i p l i c a t i o n ([24, p . 51

Or

However, Conway g i v e s C24, p . 61

at first glance, a l i t t l e surprising.

sane more m o t i v a t i o n f o r i t , which we w i l l now expand o n .

<

i n No; t h e n xL

(0)

x - x

L

,

x

-

y

< xR

yL, xR

-

L

<

y

x , and yR

-

and y

<

y

R

( 4 . 0 0 : 5 ) ) seems,

.

Let x a n d y b e

Hence

y a r e a l l greater t h a n z e r o .

We w a n t t o d e f i n e a m u l t i p l i c a t i o n o n No u n d e r which i t w i l l be an o r d e r e d f i e l d ; t h u s w e must have t h e f o l l o w i n g :

(1)

L

L

L

(i)

O < ( x - x ) ( y - y ) = x y - x y - x y

(ii)

o <

(iii)0

(iv)

(xR

-

x)(y

R

-

R

-

-

R

R R

=

xy

< ( x - x L ) ( yR - y )

=

-xy

+

L x y

=

-xy

+

R x y +xyL

(xR - x ) ( y

-

yL

xy

L L x y ,

+

y)

o <

x y

L

+ x y

xyR

-

,

xLyR, a n d

- x Ry L ,

A s a consequence we s e e t h a t

(2)

(i)

L x y

( i i i ) xy

+

<

-

xyL

L

x y

+

L L x y

<

R xy, ( i i ) x y L R

xyR - x y

,

+

and ( i v ) xy

xy

<

R

R

R R x Y

x y + xy

< L

XY.

-

R L x y

.

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.06

139

Using ( 1 ) a n d ( 2 ) we s e e t h a t f o r No t o b e a n o r d e r e d f i e l d t h e f 011owing i nequal i t y must hol d: L L L L R R R R I x y + x y - x y , x y t x y - x y ) < x y < L R L R R Ix Y XY - x y , x y i. xyL - x R y L ) .

(3)

+

Hence by d e f i n i t i o n of x y , [24, p . 51, i s L

(4)

L L R R R R - x y , x y t x y - x y l R L R R L R L Y - x y , x y + x y - x y } .

I X Y + X Y

L

X Y + X

L

Thus xy is t h e s i m p l e s t element i n No s u c h t h a t (3) h o l d s . S i n c e ( 1 ) ( o r e q u i v a l e n t l y (2) o r ( 3 ) ) h a s y e t t o b e p r o v e d , we do n o t know t h a t xy i s a number, w e know o n l y t h a t i t i s a game.

As such t h e

f o l l o w i n g h o l d s f o r a l l x , YENO.

PROOF.

( xL0 + x o L

(1)

=

Recall t h a t 0

- x L0 L , x R 0

+

=

xOR

( 1 1;

-

t h u s t h e r e a r e n o O L o r a n y 0R

x R 0R

I

x L0

xOR

i.

-

0 , e s t a b l i s h i n g ( i ) . To prove ( i i ) , r e c a l l t h a t 1

R 0 , a n d t h e r e i s no 1

.

L {x 1

+

xlL

+

L (x 1

+

x0

-

-

R XLlL, x 1

L R x OIx 1

i n d u c t i o n on b ( x )

+

+

x0

-

xLOR, x R o + xoL

- {Ol 1 ;

.

x0 =

XROLJ

=

t h u s 1L

=

Proceeding by i n d u c t i o n on b ( x ) , we see t h a t x l = xlR

-

xRIRI xL1

- x R 01

=

(x

L

Ix

R

+

xlR

}

x.

-

-

x L I R , xR1 + x l L

-

x R1L 1 =

To prove ( i i i ) , proceed by

By d e f i n i t i o n ( 4 ) we know t h a t xy i s equal t o

b(y).

-

xRyR

I

x y

+

xy

R

-

-

R R y x

I

L y x

+

yxR

-

LR R R L x y , x y + xyL - x y I = L L L L R R R R R R L R L L R (yx + y x - y x , y x + y x - y x I y x L + y x - y x , y x + y x - y x } = L

+ xyL

-

xLyL, xRy

t y L x + yxL

-

yLxL, y R x + y x

{x y

yx.

+

xyR

R

y L x R , y R x + yxL

-

y Rx L 1

=

L a s t l y , t o e s t a b l i s h ( i v ) , l e t us proceed by i n d u c t i o n on b ( x ) + b ( y ) .

Norman L. A l l i n g

140

4.06 R

By t h e d e f i n i t i o n of s u b t r a c t i o n (4.041, I(-xR)y

-

(-x)yL

+

(-xR)yL, (-xL)y

+

L

L

( - x ) y = I-x I-x I I y Iy ( - x ) y R , - ( - x L ) yR I (-x ) y +

-

( - x R ) y R , ( - x L )Y

I-x R y - xy L -(xy).

which i s

(-x)y

R

+

=

(6)

(x

(-y)x

x Ry L , -x L y - xy R =

L

1(x (x

(x

y)z L

+

y z , f o r a l l x , y , and z i n No.

+

(x

+

-

y)2L

+

y)z

(xL

+

L

(x + y)zL

-

(x + y )z

y)z

+

(x

y)zL

-

(xR

R y )z

+

(x + y)zL

-

(x

+

+

y,

+

Rlz =

Y)ZL,

+

+

+ L Ix R

(xL + y ,

=

y )z

+ +

=

BY d e f i n i t i o n , ( x

t

+

R

L R R R R R x y I-x y - xy + x y , -xLy - xyL t xLyL} - ( y x ) ; t h u s u s i n g what we have j u s t p r o v e d , +

x(-y); establishing ( i v ) .

y)z = xz

+

PROOF.

(x

+

By ( i i i ) , - ( x y )

-(xy)

(7)

I

( - x ) y L - ( - x L ) yL 1. Using t h e i n d u c t i o n h y p o t h e s i s , and we s e e t h a t t h i s last game i s e q u a l t o t h e f o l l o w i n g game:

(4.05).

=

R

L

,

Y)ZL,

R

y )z

L

I.

We w i l l p r o v e ( 6 ) by i n d u c t i o n on b ( x )

+

b(y)

+ b(z).

Then, making

t h e usual i n d u c t i o n h y p o t h e s i s , ( 7 ) i s e q u a l t o t h e f o l l o w i n g :

(8)

I XL Z + Y Z + X Z ~ L- XL ,Z x z + yL z + y zL - y Lz L, y zR - y Rz R 1

xR z

+

yz

+ XZR

-

XRZR,

xz

+

y Rz

xL z

+

yz

+ XZR

-

XLZR,

xz

+

yL2 + y zR

-

yL z R ,

xR2

+

yz

+

xzL - xRzL, x z

+

y Rz

-

y R z L 1.

Now expanding x z

+

t

+

yzL

yz, we f i n d t h a t i t

is e q u a l t o t h e f o l l o w i n g :

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.06

L {x z

+

-

xzL

xLzLt xRz

x L z + x z R - xL zR , x R z + x z L - xR zL 1 +

R R xzR - x z

.+

L L L R R R R tyLz+yz - y z , y z + y z - y z

(9)

L Ix z

+

xz

yLz

+

L x z

xz

.+

.+

xzL .+

xzR

L y z

-

.+

-

L L x z

yzL

.+

R yz, x z

L L y z , xz

-

L R x z

+

.+

+

yLz + y z R

xzR

R y z

R y z , x z + xzL

yzR - yLzR, x z

.+

141

R y z

+

.+

-

y L zR , y R z

.+

y zL - y R zL l =

R R x z + yz,

yz

R

-

xRzL yzL

-

R R y z +

I

yz,

R L y z I.

S i n c e t h e games i n ( 8 ) a n d ( 9 ) a r e e q u a l , ( 5 ) i s p r o v e d .

4.07

ORDER A N D MULTIPLICATION I N No

L e t x l , x,,

y l , a n d y, be e l e m e n t s i n No.

Conway s t a t e s a n d p r o v e s

t h e f o l l o w i n g t h r e e r e s u l t s [ 2 4 , Theorem 8, p p . 19-20], THEOREM. xy is a number. (i)

x , S x, a n d ( i i ) y 1 5 y 2 i m p l y ( i i i ) x 1 y 2

.+

x,y,

( i v ) I f ( i ) and ( i i ) are strict t h e n ( i i i ) is strict I f xl

=

x, t h e n x l y

We w i l l p r o v e ( 0 )

-

=

5 xlyl

.

.+

x2y2.

x,y.

(2) t o g e t h e r , by i n d u c t i o n .

Conway r e f e r s t o t h e i n e q u a l i t y o f ( 1 , i i i ) a s P ( x l , x 2 : y 1 , y 2 ) C24, p 191.

I f ( 1 , i i i ) h o l d s t h e n we w i l l write t h a t t t P ( x , , x , : y l , y , )

holds".

( 1 , i i i ) i s a s t r i c t i n e q u a l i t y we w i l l w r i t e t h a t " P ( x , , x 2 : y 1 , y , )

strictly".

(3)

If

holds

Now assume t h a t x , 5 x, 6 x , , a n d t h a t y 1 5 y2 6 y B .

I f ( i ) P(x1,x2:y1,y2) and (ii) P(x2,x,:yl,y,) P(x,,x,:yl,y2)

holds.

hold, then ( i i i )

F u r t h e r , ( i v ) i f a t l e a s t o n e of ( i ) or ( i i )

holds s t r i c t l y , then ( i i i ) holds s t r i c t l y .

Norman L. A l l i n g

142

4.07

Assume t h a t ( 3 , i ) a n d ( 3 , 1 1 1 h o l d ; t h e n we h a v e t h e

PROOF of ( 3 ) .

following:

(4)

( i ) xlyZ

+

x2Y1 5 X , Y ,

x 2 y 2 , and ( i i ) x2y2

+

X,Y,

+

5 x2y1

x,y,.

+

Adding ( 4 . i ) a n d ( 4 , i i ) g i v e s u s

C a n c e l i n g t h e sum of t h e c e n t e r two terms o n e a c h s i d e of ( 5 ) shows that P(xI,x3:y1,y2) holds;

proving ( 3 , i i i ) .

I f ( 3 . i ) or ( 3 , i i ) is s t r i c t ,

t h e n s o is (5); thus ( 3 , i v ) h o l d s , hence (3) is proved.

(6)

If

( i ) P ( x , , x , : Y , , y 2 1 a n d ( i i ) P ( x , , x z : Y z , ~ ,) h o l d , t h e n ( i i i )

P(x1,x2:y1,y3) holds.

F u r t h e r , ( i v ) i f a t l e a s t o n e of ( i ) or ( i i )

holds s t r i c t l y , then ( i i i ) holds s t r i c t l y . PROOF of

(6).

Assume t h a t ( 6 , i ) a n d (6,111 h o l d ; t h e n we h a v e t h e

fo l l o w i n g :

(7)

(i)

xIy2

+

xZyl 5 xly,

+

x 2 y Z r and ( i i ) xlyB

t

x,y,

2 x1y2

t

x,y,.

Adding ( 7 , i ) a n d ( 7 , i i ) g i v e s us

C a n c e l i n g t h e two i d e n t i c a l terms i n ( 8 ) g i v e s

US

P(X,

,X2

:yl ,Y3),

e s t a b l i s h i n g (71, a n d h e n c e c o m p l e t i n g t h e p r o o f of (6).

PROOF of (O), ( 1 1 , a n d ( 2 ) . n a l 2 ( b ( x ) + b ( y ) ) t o prove ( 0 ) ;

Let u s p r o c e e d by i n d u c t i o n on t h e o r d i on b ( x l ) + b ( x , ) + b ( y , ) b(y,) t o prove

( 1 ) ; and on 2 ( b ( x , ) + b ( y ) ) ( w h i c h e q u a l s 2 ( b ( x , )

+

+

prove ( 2 ) .

To p r o v e ( O ) ,

we m u s t e s t a b l i s h t h e f o l l o w i n g :

b ( y ) ) i f X1

-

X,),

to

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.07

143

T h a t i s , t h e f o l l o w i n g i n e q u a l i t i e s m u s t be e s t a b l i s h e d :

Assume f i r s t t h a t x L ’ 5 x L 3 .

Then, u s i n g t h e i n d u c t i o n h y p o t h e s i s ,

we may a p p l y ( 1 ) a n d c o n c l u d e t h a t P ( x L 1 , x L 3 : y L 1 , y ) h o l d s a n d t h a t

P(xL3,x:yL1 , y R 3 ) holds s t r i c t l y .

Adding t h e two a s s o c i a t e d i n e q u a l i t i e s

together gives us t h e following:

On c a n c e l i n g o u t x L 3 y L 1 a n d s u b t r a c t i n g xL1yL1

+

x L 3 y R 3 f r a n ( 1 11, we

obtain (10,i).

Assume, o n t h e o t h e r h a n d , t h a t xL3 5 xL h y p o t h e s i s , we may a p p l y ( 1 )

’.

Then, u s i n g t h e i n d u c t i o n

and conclude t h a t P ( x L 1 , x : y L 1 , y R 3 ) holds

R s t r o n g l y and t h a t P ( x L 3 , x L 1 : y , y 3 , h o l d s .

A d d i n g t h e two a s s o c i a t e d i n -

e q u a l i t i e s together gives us t h e following:

(12)

xLlyR3 + xyLl

+

xL3yR3

+

xLl Y

<

XL’yL1 + xyR3 +

On c a n c e l i n g o u t xL1yR3 a n d s u b t r a c t i n g xL1yL1 obtain ( 1 0 , i ) again.

+

xL3y

+

,LlyR,.

x L 3 y R 3 fran (121, we

144

Norman L. A l l i n g

4.07

U s i n g t h e i n d u c t i o n h y p o t h e s i s , we m a y a p p l y ( 1 ) a n d c o n c l u d e t h a t P(xL1,x:yL1,y) and P(x,xR4:yL4,y) hold strongly.

Adding the two a s s o c i a t e d

i n e q u a l i t i e s t o g e t h e r gives us t h e f o l l o w i n g :

L (13) x 'y

+

xyL1 + x y

t

xR4yL4

<

xLiyLi

+

xy

+

xyL4

On c a n c e l i n g o u t xy a n d s u b t r a c t i n g x L 1 y L 1

+

+

xR4y.

x R 4 y L 4 from ( 1 3 ) ,

we

obtain (10,ii). Using t h e i n d u c t i o n h y p o t h e s i s , w e may a p p l y ( 1 ) a n d c o n c l u d e t h a t P(x,xR2:y,yR2) and P(xL3,x:y,yR3) hold strongly.

Adding t h e two a s s o c i a t e d

i n e q u a l i t i e s t o g e t h e r g i v e s us t h e f o l l o w i n g :

(14)

xyR2

+

x R 2 y + xL3yR3 + xy

< xy

+

,RzyR2

+

L

3y

+

xyR,*

On c a n c e l i n g o u t xy a n d s u b t r a c t i n g x L 3 y R 3 + x R z y R 2 from ( 1 4 ) ,

we

obtain (10,iii).

Assume t h a t x R z 4 x R 4 . apply

T h e n , u s i n g t h e i n d u c t i o n h y p o t h e s i s , we may

and conclude t h a t

(1)

P(x,xR2:yL4 ,yRz) h o l d s s t r o n g l y .

P(xR2,xRr:yL4,y) holds and t h a t

Adding t h e two a s s o c i a t e d i n e q u a l i t i e s

t o g e t h e r gives u s t h e f o l l o w i n g :

On c a n c e l i n g o u t x R z y L 4 a n d s u b t r a c t i n g x R 2 y R 2 + x R 4 y L 4 fran ( 1 5 1 , we obtain (10,iv).

Assume, on t h e o t h e r h a n d , t h a t x R 4 5 x R 2 .

the induction hypothesis,

Then, u s i n g

we m a y a p p l y ( 1 ) a n d c o n c l u d e t h a t

P ( x , x R 4 : y L 4 , y R z ) h o l d s s t r o n g l y a n d t h a t P ( x R 4, x R 2 : y , y R 2 ) h o l d s . t h e s e two i n e q u a l i t i e s t o g e t h e r gives us t h e f o l l o w i n g :

(16)

xyR2

+

xR4yL4 + xR4yR2

t xR2y

xyL4

+

,hyR2

R $y

+

xR2yR2.

Adding

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.07

On c a n c e l i n g o u t x R 4 y R 2a n d s u b t r a c t i n g x R z y R z + xR'yL' obtain (10,iv) again.

145

f r m ( 1 6 1 , we

T h i s c o m p l e t e s t h e i n d u c t i v e proof of ( 0 1 , t o t h e

n e x t h i g h e r l e v e l of t h e i n d u c t i o n . L e t u s now t u r n o u r a t t e n t i o n t o ( 1 ) .

(17)

Assume t h a t ( 1 . i ) a n d ( 1 , i i ) a r e b o t h s t r i c t : i . e . , ( 1 , i ) x,

t h a t we h a v e

< x, and ( 1 , i i ) y 1 < y,.

By ( 4 . 0 2 : 1 4 ) a n d ( 1 , i ) t h e r e i s a n x Z L w i t h x, 5 x z L o r t h e r e i s a n

x l R w i t h x l R 5 x,:

(18)

i.e.,

( i ) t h e r e i s a n x p L w i t h x i 5 x Z L < x,,

R

( i f )t h e r e i s a n x1

. with x I

Assume t h a t ( 1 8 , i ) h o l d s . f a c t t h a t y1

(19)

<

x,

R

or

6 x,.

We may u s e t h e i n d u c t i o n h y p o t h e s i s ; t h e

< y z ; a n d (3) t o c o n c l u d e t h e f o l l o w i n g :

P(x, ,x,:y, ,y,)

holds s t r o n g l y , s i n c e P(x, ,xZL:y, , y 2 ) h o l d s and

L

P(x, , x z : y l , y z ) h o l d s s t r i c t l y . Assume t h a t ( 1 8 , i f ) h o l d s . f a c t t h a t y1

(20)

We may u s e t h e i n d u c t i o n h y p o t h e s i s ;

the

< y,; and (3) t o c o n c l u d e t h a t R

P ( x I , x p : y l , y a ) h o l d s s t r o n g l y , since P ( x , , x l : y l , y z ) h o l d s s t r i c t l y

R and P(xl , x z : y 1 , y 2 ) holds. Now assume t h a t

(21)

( 1 , i ) i s s t r i c t and t h a t ( 1 , i i ) h o l d s , b u t i s n o t s t r i c t : i . e . , t h a t ( 1 , i ) x,

<

x, and ( 1 , l i ) y1 = y 2 .

146

Norman L. A l l i n g

By ( 4 . 0 2 : 1 4 )

a n d ( 1 , i ) there is a n x p L w i t h x , 5 x Z L or t h e r e i s a n

x I R w i t h x l R 5 x,:

(22)

i.e.,

t h e r e i s a n x Z L w i t h x , 4 x,

(i)

<

( i ' ) there i s a n x l R w i t h x,

Assume t h a t ( 2 2 , i ) h o l d s . f a c t t h a t y , 6 y,;

(23)

4.07

x1

L R

<

x,,

or

5 x,.

We may u s e t h e i n d u c t i o n h y p o t h e s i s t h e

and (3) t o conclude t h e f o l l o w i n g :

P(x, ,x,:yl , y 2 ) h o l d s , s i n c e P ( x , , x Z L : y , ,Y,) a n d P(x,Llx,:Yl

,Y,)

h o i d. Assume t h a t ( 2 2 , i ' ) h o l d s .

We may u s e t h e i n d u c t i o n h y p o t h e s i s ; t h e

f a c t t h a t y , 5 y 2 ; and (3) t o c o n c l u d e t h a t

Now a s s u m e t h a t (25)

( 1 , i ) a n d ( 1 , i i ) h o l d , b u t are n o t s t r i c t : i.e.,

and ( 1 , i i ) y l

=

that ( 1 , i ) x,

x,y,

+

x,y,;

x,

y,.

Note t h a t ( i , i i i ) i s , i n t h i s c o n t e x t , t h e s t a t e m e n t t h a t x 1 y 2 =

=

which follows i m m e d i a t e l y f r a n ( 2 ) .

+

x2yI

Thus l e t u s p r o c e e d t o

prove (2).

We know t h a t x 1

=

R

{ x I L I x , 1 , x,

F u r t h e r , assume t h a t x,

=

x,.

=

{xZLI x,

1, a n d y

that

( i ) { x i L ) a n d [ x , ~ ) are m u t u a l l y c o f i n a l , and t h a t

(ii)

R

R

=

{y

L

I

R

y 1.

By ( 4 . 0 2 : 1 6 ) we know t h a t t h e Conway c u t s

L ( x l L , x l R ) and (x, , x Z R ) are e q u i v a l e n t : i.e.,

(26)

R

{ x , 1 a n d {x, 1 a r e m u t u a l l y c o i n i t i a l .

4.07

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

-

Using t h e i n d u c t i o n h y p o t h e s i s we may a p p l y ( 0 )

147

(2) t o e s t a b l i s h

the following.

(27)

If

(i)

L

X,

( i i ) If x1 ( i i i ) If x,

(iv)

If

XI

R

L R

2 x P L then

R

5 x, 2 x,

L

L

x, y

then

X,

then

X,

R

L

R

y + x2y

R

y + x2y

R

5 x Z R t h e n x, y + x l y

Assume t h a t x1 L 5 x, L

PROOF.

L

+ xly

.

L

L L

-

x1

-

x2 Y

-

x2 Y

-

R R

L R

R L

x1 y

S i n c e yL

2

x2

L +

R

5 x, Y

5

x1

L

Y

+

+

R

x2 Y

+

X2Y X1Y

XlY X2Y

L R R

L

-

.

L L

x, y

R R

- x 1 y . L R

-x1 Y

*

R L

- x , y .

< y , and s i n c e t h e i n d u c t i o n

h y p o t h e s i s h o l d s , we may i n v o k e ( 1 ) a n d c o n c l u d e t h a t P ( x , L , x Z L : y L , y ) h o l d s : i.e.,

(28)

L x, y

+

L L L L x, y 5 x1 Y

+

L x2 y.

Adding x,yL = x 2 y L t o b o t h sides of ( 2 8 ) we a r r i v e a t t h e f o l l o w i n g . L L L L (29) x , y + x , y + x 2

x,

L L +

x2y

L

L

+

x, y.

R e a r r a n g i n g terms i n ( 2 9 ) g i v e s ( 2 7 , i ) . A s s u m e t h a t x , R 5 x, R

.

Since y

<

yR, and s i n c e t h e i n d u c t i o n

h y p o t h e s i s h o l d s , we may i n v o k e ( 1 ) a n d c o n c l u d e t h a t P ( x , R , x , R :y,yR) holds: i.e., R R R R (30) x , y + x 2 y 5 x,

+

R R

,

Adding x2yR = x , y R t o b o t h s i d e s of (30) we a r r i v e at t h e f o l l o w i n g . R R

(31) x , y

+

x2y

R +

R R R R R x2 Y 5 x1 y + x l y + x i ? Y .

Rearranging terms in (31) g i v e s ( 2 7 , i i ) .

148

Norman L . A l l i n g Assume t h a t x 1 L S x, L

.

Since y

4.07

yR , and s i n c e t h e i n d u c t i o n

<

h y p o t h e s i s h o l d s , we may i n v o k e ( 1 ) a n d c o n c l u d e t h a t P ( x , L , ~ , ~ : y R, )y holds: i.e.,

(32)

L R x1 Y

+

L L x 2 y 6 x1 y

+ x2

L R

,

Adding x 2 y R = x l y R t o b o t h s i d e s of ( 3 2 ) we a r r i v e a t t h e f o l l o w i n g .

(33)

L R R L L x1 y + x2y + x 2 y S x 1 y

X,Y

+

L R R + x , y .

R e a r r a n g i n g terms i n ( 3 3 ) g i v e s ( 2 7 , i i i ) . Assume t h a t x 1R 6 x, R

.

S i n c e yL

<

y, and s i n c e t h e induction

h y p o t h e s i s h o l d s , we may i n v o k e ( 1 ) a n d c o n c l u d e t h a t P ( ~ , ~ , x , ~ : y ~ , y ) holds: i.e.,

(34)

R R L x1 y + x, y 5 Adding x l y L

R

(35) x, y + xly

L

=

R L +

R

x2 y .

x 2 y L t o b o t h s i d e s o f ( 3 4 ) we a r r i v e a t t h e f o l l o w i n g .

R L

+ X , Y

R L < x , y

L +

X2Y

+

x,

R

y.

R e a r r a n g i n g terms i n (35) g i v e s ( 2 7 , i v ) ; p r o v i n g a l l

Of

(27).

0

Combining ( 2 6 ) a n d ( 2 7 ) we see t h a t we h a v e p r o v e d t h e f o l l o w i n g .

(36)

(i)

L (xl Y

+

L

(x, Y (ii)

L

txl y L

tx, y

+

+

xly X2Y

L L

xlyR

x,yR coinitial. +

-

L L

x1 y

L L

,

x1

R

t

R

-

x2 Y I x 2 Y L R R x1 Y I x , Y

-

x2

L R R Y I x2 Y

xly

R

+

x2yR L x1y

+

X,Y

+

L

-

xlRyR} and

-

x, y I a r e m u t u a l l y c o f i n a l .

-

R L x1 y 1 a n d

R R

xZRyLa ~re m u t u a l l y

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.07

By ( 4 . 0 2 : 1 6 )

149

a n d ( 3 6 ) we s e e t h a t ( 2 ) h o l d s a t t h e n e x t s t a g e i n t h e

induction.

We may now u s e ( 2 ) a t t h e l e v e l ( w h i c h h a s j u s t b e e n p r o v e d ) t o p r o v e (1).

T h u s ( 1 ) i s e s t a b l i s h e d a t t h e n e x t h i g h e r l e v e l of t h e i n d u c t i o n .

-

Thus, by i n d u c t i o n , ( 0 ) (37)

If 0

< x

=

xy.

<

y , i n No, t h e n 0

<

xy.

By ( 1 1 , P ( O , x : O , y ) h o l d s s t r i c t l y ; t h u s 0

PROOF. xy

and 0

( 2 ) have been proved.

=

Oy + x 0

<

0.0

+

0

Conway g a v e t h e f o l l o w i n g i l l u m i n a t i n g v e r s i o n of t h e d e f i n i t i o n of xy C24, p . 191:

(39)

xy

=

(xy - (x xy

4.08

+

- x

L L

(x - x )(Y

L y 1,

-

)(Y R

-

XY

Y ) , xy

+

(xR

-

(xR -

X)(Y X)(Y

R

-

Y)J y

L

11.

THE ASSOCIATIVE LAW FOR MULTIPLICATION I N No

LEMMA.

L e t x , y , a n d z b e i n No; t h e n ( x y ) z

=

x ( y z ) , which w i l l be

d e f i n e d t o b e x y z , as u s u a l . PROOF.

We w i l l p r o c e e d by i n d u c t i o n , on b ( x )

d e f i n i t i o n we s e e t h a t we h a v e t h e f o l l o w i n g .

+

b(y)

+

b z).

BY

Norman L . A l l i n g

150

4.08

Expanding t h e e x p r e s s i o n s f o u n d i n ( 0 ) ( i n ( 1 ) t h r o u g h ( 8 ) ) a n d ( 0 ' ) ( i n ( 9 ) t h r o u g h (1611, a n d i n d u c t i o n g i v e s r i s e t o t h e f o l l o w i n g .

(1)

x Ly z

+

xy Lz

x y zL

-

x Ly L z

-

xLyzL

-

xyLzL + x Ly L 2 L ,

(2)

x Ry z

+

xy R z + x y z L

-

x Ry R z

-

xRyzL

-

xyRzL + x Ry R z L ,

(3)

x Ly z

+

xy R z

+

xyzR

-

xL y R z

-

xLyzR - x y R z R + x L y R z R ,

(4)

x Ry z

+

xy L z

+

xyzR

-

x Ry L z

-

x R y z R - xyLzR

(5)

x Ly z

+

xy L z + x y z R

-

x Ly L z

-

xLyzR

-

(6)

x Ry z

+

xy R z

+

xyzR

-

x Ry R z

-

xRyzR

- xyRzR + x Ry R zR ,

(7)

x Ly z

+

xy R 2

+

xyzL

-

xLy R z

-

xLyzL

-

xyRzL

(8)

x Ry z

+

x y Lz

+

x y zL

-

x Ry L z

-

xRyzL

-

xyLzL + x Ry L z L ,

(9)

x Ly z

+

xy L z + x y z L

- xLy L z -

xLyzL

- xyLzL

(10)

L x yz

+

xy

R2

+

xyzR

- xLyR z -

xLyzR

-

xyRzR + ,LyRzR,

(11)

x Ry z

+

xy L z

+

xyzR

-

xRyLz

-

xRyzR

-

xyLzR + x Ry L zR ,

(12)

x Ry z

+

xy R z

+

xyzL

-

x Ry R z

-

xRyzL

-

xyRzL + x Ry R z L ,

(131 x L YZ

+

xy L z

+

x y zR

- xLyL z - xLyzR - xyLzR

(14)

x LYZ

+

xy R z

+

x y zL

-

x LyR z

- xLyzL -

(15)

x Ry z

+

XY L Z

+

x y zL

-

x Ry L z

-

+

xRyzL

-

+

x Ry L z R ,

xyLzR + x L y L zR ,

+

xLyRzL,

+ x Ly LzL ,

+ x LyL zR ,

xyRzL + x Ly R z L , xyLzL

t

x Ry LzL ,

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.08

(16)

R

x yz

+

R

xy z

+

xyzR

-

R R

x y z

-

R R R

xRyzR - xyRzR + x y z

151

.

The r e a d e r s h o u l d n o t e t h a t each o f t h e s e l a s t 1 6 expressions i s

determined by t h e c h o i c e of a n " L "

o r a n "Rfl o v e r e a c h o f x , y , a n d z.

( T h i s may most e a s i l y be s e e n by l o o k i n g a t t h e s u p e r s c r i p t s on t h e extreme

r i g h t hand term of each e x p r e s s i o n . ) (i,j,k),

(L,L,L),

These e x p r e s s i o n s w i l l t h e n be c a l l e d

where i , j , and k a r e e i t h e r L o r R. (2) is the expression ( R , R , L ) ,

etc.

Thus ( 1 ) i s t h e e x p r e s s i o n From t h i s a n a l y s i s we s e e

t h a t t h e following holds:

On t h e o t h e r hand,

S i n c e t h e s e two e x p r e s s i o n s ( ( 1 7 ) and ( 1 8 ) ) a r e i d e n t i c a l , w e have proved t h e Lemma. Thus we h a v e p r o v e d t h e f o l l o w i n g c o r o l l a r y t o t h e Lemma, and much t h a t precedes i t : THEOREM.

No i s an o r d e r e d commutative r i n g , w i t h 1 # 0.

Note, i n p a s s i n g , t h a t t h e r e i s a s i m p l e r u l e f o r d e s c r i b i n g t h e v a r i o u s o p t i o n s of xyz i n ( 1 7 ) and ( 1 8 ) ; namely t h e f o l l o w i n g . ( i ) A l l 1 6 c h o i c e s of

i,j,lE{L,R}.

(i,j,k)

o c c u r a s o p t i o n s of x y z , where

( i i ) 8 of t h e s e a r e l e f t o p t i o n s and 8 a r e r i g h t o p t i o n s .

( i i i ) ( i , j , k ) i s a l e f t o p t i o n i f f i t has an odd ( r e s p . even) number of L ' s

(resp. R ' s ) i n it.

( i v ) ( i , j , k ) i s a r i g h t o p t i o n i f f i t h a s a:) even

( r e s p . odd) number of L ' s ( r e s p . R ' s ) i n i t . The f o l l o w i n g was noted by Conway C24, p . 191.

(C.f.,

(4.06:41.)

4.08

Norman L . A l l i n g

152

xy

(19)

=

- x

Ixy - ( x L

xy - ( x - x ) ( Y 4.09

-

L

-

L

R

y ) , xy - ( x - x ) ( Y - y R R L y 1, xy - (x - x ) ( Y - y 1 ) . )(y

R

)I

ON NUMBERS G I V E N BY REFINEMENTS OF ( T I M E L Y ) CONWAY C U T S

We have s e e n i n S e c t i o n 4.02 t h a t e a c h XENO e q u a l s (LIR], where ( L , R ) i s a t i m e l y Conway c u t i n No: i . e . ,

( L , R ) i s a Conway c u t i n O b ( x ) .

Let L ' a n d R' be s u b s e t s of No s u c h t h a t ( i ) L ' < ( X I < R ' ;

(ii)for

a l l xL EL t h e r e e x i s t s x L ' E L ' s u c h t h a t xL 6 x L ' ; a n d ( i i i ) f o r a l l R R x E R t h e r e e x i s t s x ~ ' E R ' s u c h t h a t xR' 5 x

.

Then ( L ' , R ' )

w i l l be

c a l l e d a r e f i n e m e n t of ( L , R ) . be a r e f i n e m e n t of ( L , R ) ;

Let (L',R')

PROOF.

Let I

L

< (y} <

a n d I' = ( Y E N O :

R},

=

(LIR}.

L'

<

(y]

<

R'}.

we s e e t h a t X E I 'a n d t h a t I ' i s a s u b i n t e r v a l of t h e

By ( O , ( i ) - ( i i i ) ) i n t e r v a l I.

= (YENO:

then ( L ' I R ' )

Since x i s t h e s i m p l e s t element i n I , i t is c e r t a i n l y t h e

s i m p l e s t element of 1'. be a r e f i n a n e n t of ( L 1 , R 1 ) ,

Let (Ltl,R1')

ments of ( L , R ) ; (L',R')

and l e t ( L ' , R ' )

be refine-

t h e n ( L f f , R t l ) i s a r e f i n e m e n t of ( L , R ) .

i s p o s s i b l y an u n t i m e l y , r e p r e s e n t a t i o n of x ; w h e r e b y a

r e p r e s e n t a t i o n t h a t i s p o s s i b l y u n t i m e l y ( r e s p . i s u n t i m e l y ) we mean a n o t b e s u b s e t s of O b ( x ) Ob(x)).

x , b u t f o r which L ' a n d R ' may ( r e s p . t h e u n i o n of L ' and R' is n o t a s u b s e t of

i n No s u c h t h a t ( L ' I R ' )

Conway c u t ( L ' , R ' )

=

( S e e S e c t i o n 4.02 f o r d e t a i l s . )

We have s e e n t h a t 0

EXAMPLE 0 .

of No f o r which L ' s e n t a t i o n of 0.

<

(0) < R ' ;

-

[

then ( L ' , R ' )

I f t h e u n t o n of L ' and R'

u n t i m e l y r e p r e s e n t a t i o n of 0. n o t an i s o l a t e d o c c u r r e n c e .

I}.

Let L ' and R ' be any s u b s e t s

is possibly an untimely r e p r e is non-empty,

then (L',R')

is a n

The r e a d e r c a n e a s i l y v e r i t y t h a t t h i s i n

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.09

(2)

153

Let y

=

L R L R { y Iy ]&NO, a n d l e t IyL',yR') b e a r e f i n e m e n t of f y , y 1.

x

=

(x

+

y

L' +

Y, x

+

x

YL'I

R'

+ y, x

+ yR'].

By c o n d i t i o n ( 0 1 , a n d t h e f a c t t h a t No i s a n o r d e r e d g r o u p

PROOF.

( 4 . 0 8 ) , we know t h a t f o r each xL a n d x R t h e r e e x i s t s x L ' a n d xR' s u c h t h a t

<

xL + y 5 xL' + y

x

y

+

<

xR'

+

y S xR

+

y ; a n d we know t h a t f o r each y L

and yR t h e r e e x i s t s y L ' a n d y R ' s u c h t h a t x + yL 5 x x + y R ' I x + yR .

(31

+

yL'

< x

+

y

<

0

L' L' L' L' R' xy=(x y + x y - x y , x y + x y - x L' R' L' R' R' L' R' L' x Y + X Y - x y , x y + x y - x y }. PROOF of ( 3 ) .

U s i n g ( 0 ) a n d t h e f a c t t h a t No i s a n o r d e r e d r i n g

( 4 . 0 8 1 , we know t h a t t h e f o l l o w i n g h o l d .

(4)

F o r each xL a n d yL t h e r e e x i s t x L ' a n d y L ' f o r w h i c h

(i)

L

x y

+

xyL

-

xLyL 6 xL'y

+

xy

L' - x L' y L' < x y .

( i i ) F o r each xR a n d y R t h e r e e x i s t x R ' a n d y R ' f o r w h i c h

R x y

+

xyR

-

xRyR 5 x R ' y + xy

R'

( i i i ) For each xL a n d y R t h e r e exist

L

X Y

(iv)

+

R

PROOF of

L'

+

+

x y R'

- xL' y R' >

xy.

xyL

-

xRyL 2 xR'y + xyL'

-

xR'yL'

> xy.

4).

b y

consequence, 0 t h u s xL y

xLyR h xL'y

xL' a n d y R ' f o r w h i c h

f o r e a c h xL, t h e r e e x i s t s xL' 2 x L ; a n d f o r each y L t h e r e

By ( O ) ,

exists y

-

xy.

F o r each xR a n d yL t h e r e e x i s t x R ' a n d y L ' f o r w h i c h X Y +

(i)

xyR

- x R' y R ' <

x yL

L

< -

.

Thus, 0

xy - x

L'

< (x - xL')(y - y

y - xy

L'

+

xLyL 5 xL'y + x y L '

xL'

-

Y

L'

xL'yL'

L'

L (x - x )(y - yL).

AS a L L L L 6 X Y - X Y - x y + x y , a n d

<

) 5

xy.

Norman L. A l l i n g

154

4.09

x R , there e x i s t s x R ' 5 xR : a n d f o r each y R t h e r e R' R R Thus 0 < ( x - x R ' ) ( y - y ) 2 ( x - x ) ( y - y 1. As a R' R' R' R' R R R R

( i i ) By ( 0 1 , f o r e a c h

exists y

R'

4 yR.

<

consequence, 0 R

t h u s x y + xyR

-

xy

-

x

y - xy

xRyR 5 x

R'

+ x

-

y + xy R'

y

xR'yR'

( i i i ) By ( 0 1 , f o r e a c h xL, t h e r e e x i s t s x

R'

L'

2

x

L

L R xL'yR' 5 x y + xy

-

L R x y

By ( 0 ) . f o r each x R , t h e r e e x i s t s x

R'

4 x

Thus 0

- xL ' y

consequence, 0 > xy t h u s xy

< xL ' y

+

xyR'

-

- xy

R'

xL')(y +

+ x y ,and

; and f o r each yR t h e r e

L R x ) ( y - y 1. A s a x L ' y R' t x y - x Ly - x y R + x Ly R, a n d R'

y

5 yR.

x y - x y

< xy.

-

exists y

(iv)

> (x -

-

2 xy

) 2 (x

-

.

R

; a n d f o r e a c h yL t h e r e

L

.

consequence, 0

>

R' x y

+

R ' L' R xy - x y - x y L ' + x y L xy x y - xyL + x R y L , a n d L' R ' L' R L R L xy x y 5 x y + xy - x y i p r o v i n g ( 4 ) .

exists Y

t h u s xy

L'

<

2 Y

Thus 0

> (x - x

R'

)(y

-

y

L'

1 L (x

-

R

L

x ) ( y - y 1.

AS

a

-

R'

-

To c o m p l e t e t h e proof of ( 3 ) , we c a n r e a s o n as we d i d i n t h e proof of (1).

a

PROPERTIES OF DIVISION I N No

4.10

THEOREM. t h a t xy = 1 .

-

Were x then -x(z)

Let x b e i n No, w i t h x n o t 0.

T h e r e e x i s t s y i n No s u c h

Thus, No i s a n o r d e r e d f i e l d .

<

0 , a n d were -x t o h a v e a m u l t i p l i c a t i v e i n v e r s e z i n No,

1 = x(-z),

showing t h a t x h a s a m u l t i p l i c a t i v e i n v e r s e i n No.

Thus t o p r o v e t h e Theoren i t s u f f i c e s t o p r o v e t h e f o l l o w i n g . (0)

>

Assume t h a t x

0 in

No.

T h e r e e x i s t s a YENO s u c h t h a t xy = 1 .

I n t h i s s e c t i o n , t h e f o l l o w i n g r e s u l t w i l l a l s o b e of u s e . (1)

T h e r e e x i s t s u b s e t s L and R of t h e s e t of p o s i t i v e elements of No such t h a t L

<

t i m e l y (4.02).

R , w i t h x = { O , L I R ) , f o r which t h i s r e p r e s e n t a t i o n i s

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.10

PROOF of ( 1 ) . timely (4.02).

By d e f i n i t i o n x

>

Since x

t h a t 0 5 xL ( 4 . 0 2 : 1 4 ) .

=

[x

L

0 , and s i n c e 0

Let L

=

L

[ x : xL

R x 1 , the r e p r e s e n t a t i o n being

I

[I},

=

155

t h e r e must e x i s t a n xL s u c h

> 01, and

let R

=

[x

R

1.

Then x

=

[O,LIR}; e s t a b l i s h i n g ( 1 ) .

( 1 ) We may write x a s [ O , x L l x R } , w i t h e a c h

Conway d e f i n e d t h e m u l t i p l i c a t i v e i n v e r s e y of x as f o l l o w s

being timely. [24,

xL > 0 , t h e r e p r e s e n t a t i o n

p . 211.

(1

+

(xL

L L x)y ) / x , ( 1

-

+

(xR

-

R R x)y ) / x I.

Conway writes t h e f o l l o w i n g a f t e r t h i s d e f i n i t i o n .

"Note t h a t ex-

p r e s s i o n s i n v o l v i n g yL and yR a p p e a r i n t h e d e f i n i t i o n o f y . t h a t r e q u i r e s u s t o ttexplaintt t h e d e f i n i t i o n .

It is this

The e x p l a n a t i o n i s t h a t we

r e g a r d t h e s e p a r t s of t h e d e f i n i t i o n as d e f i n i n g new o p t i o n s f o r y i n terms So even t h e d e f i n i t i o n of t h i s y is an i n d u c t i v e one. t [ T h i s

of o l d o n e s .

i s i n a d d i t i o n t o t h e t t o t h e r t l i n d u c t i o n s by which we s u p p o s e t h a t i n v e r s e s L

for the x

and x

R

have a l r e a d y been f 0 u n d . 1 ~ ~C24, p . 21.1

In a footnote t

[24, p . 211 Conway g i v e s t h e f o l l o w i n g v e r y i n s t r u c t i v e example. Example 0. as [0,21}.

Let x R

=

3.

Thus x c a n be w r i t t e n , as i t is above i n ( l ) ,

.

Hence [ x ) i s empty, and xL

=

2.

By (21, t h e g e n e r a l f o r m u l a

for y is

Let yoL

=

0.

Note t h a t yoL

BY ( 3 ) , we s e e t h a t y I R

=

Let us make no c h o i c e of a y o

S i n c e t h e r e i s no y o R , t h e r e i s n o y 1

1/2.

U s i n g ( 3 ) , we s e e t h a t y Z L = 1 / 4 . y S R = 11/32, y G L = 21/64, y,R

< 1/3.

=

T h i s t h e n y i e l d s y,R = 318, y,L

43/128,

...

=

R

L

. .

5/16,

Writing t h i s i n t h e customary

Norman L. A l l i n g

156

way g i v e s y = ( 0 , 1/4, 5/16, 21/64,

... I

4.10

1/2,

3/8,

11/32,

The decimal v e r s i o n of t h i s i s even more i n s t r u c t i v e . {O,

0.25,

0.3125,

0,328125,

... I

0.5,

0.375,

0.34375,

431128,

...

I.

It is t h e following: 0.3359375,

... ) .

I n t r y i n g t o u n d e r s t a n d ( 2 ) more f u l l y , n o t e t h a t e x c e p t f o r 0 t h e o p t i o n s g i v e n i n (2) a r e d e t e r m i n e d i n p a r t by t h e c h o i c e of w h i c h o p t i o n o n e c h o o s e s t o c o n s i d e r , r i g h t or l e f t .

Let u s make t h e f o l l o w i n g

def i ni t i o n s .

(4)

(i)

R

-

x)y ) / x ,

be d e f i n e d t o be ( 1 + ( x L

-

x)y ) / x ,

Let [R:Ll(y) b e d e f i n e d t o be ( 1 + ( x

( i i ) l e t [L:R](y)

L

R

R

L

( i i i ) l e t [ L : L l ( y ) b e d e f i n e d t o be ( 1

+

( x L - x ) y L ) / x L , and

l e t [R:Rl(y) b e d e f i n e d t o be ( 1

+

(xR

(iv)

-

R R x)y )/x

.

Then, a c c o r d i n g t o (21,

PROOF of ( 0 ) .

Note t h a t (0) i s t r u e i f x

<

are no s i m p l e r p o s i t i v e e l e m e n t s ; t h u s f o r b ( x ) f o r which ( 0 ) i s t r u e f o r a l l X E N O , w i t h 0

< x

-

1.

Note a l s o t h a t t h e r e

2, (0)i s t r u e .

and b ( x )

<

Let a e o n

a.

We w i l l s t a r t o f f t h e f i n i t e i n d u c t i o n , as i n t h e e x a m p l e a b o v e , by d e f i n i n g y o t o b e 1.

(6)

Recall t h a t 1 = {Ol}: t h u s

yoL = 0, and there are no Y, R . Consider t h e f o l l o w i n g i n e q u a l i t y :

(7,n) ( i ) x y k <

1 , f o r a l l y,

L : and ( i l l 1

N o t e t h a t (7,O) i s t r u e , y I R be d e f i n e d t o be [L:L](y,); hypothesis,

<

xyn R , a l l yn R

.

Let u s d e f i n e y I L t o b e [R:L](y,),

and l e t

then, using our ( t r a n s f i n i t e ) induction

I n t r o d u c t i o n t o t h e s u r r e a l number F i e l d No

4.10

S i n c e No i s a n o r d e r e d r i n g , (7,l) h o l d s .

Let ncN such t h a t y n L a n d

Let y n + l L and y n+ 1

ynR a r e d e f i n e d , For which ( 7 . n ) holds.

= (1 +

(xR

-

x)yk)/x R , o r

(1

+

(xL

-

x)ynR)/xL; and

( i i i ) y n + l R = C L : L I ( ~ ~=) ( 1

+

(xL

-

x)y:)/xL,

+

(xR

-

x)yn )/x

=

Y,+~

(i)

(ii) Y

(iv)

and t h e ex-

be d e f i n e d a s f o l l o w s :

p r e s s i o n [*:.](.)

(9)

157

[R:L](y,)

~ += [L:R](yn) ~

=

Yn+l

=

[R:R](yn)

Now l e t t h e e x p r e s s i o n

(1

=

or

R

R

.

be d e f i n e d as f 011ow9 :

{ a : - ) ( . )

( i i i ) xyn+lR

-

1 = ((x

-

x )(I

L

-

xy,

(iv)

XY,+~

-

1 = ((x

-

R x )(1

-

'Yn

Using

(lo),

L R

we see t h a t t o prove t h a t (7,n+l) h o l d s , i t s u f f i c e s t o

prove t h e f o l l o w i n g :

PROOF of (11). that x

-

x

R

<

0,

Since

1

-

x < x

xynL

>

R

,

a n d s i n c e xynL

0, a n d h e n c e ((x

-

<

1 ( 7 , n , i ) , we s e e

R x )(1

-

xynL))/xR

-

158

Norman L. A l l i n g

{R:L](yn)

<

0; proving ( i ) .

>

s e e t h a t x - xL

<

0; proving ( i i ) .

x

-

x

R

<

0,

L

Since

-

1

xy

<

xynR

Since

x - xL > 0 , 1 - xy n proving ( i i i ) .

-

0, 1

Since

xL

<

xL

a n d since 1

((x - x

0, a n d

L

)(1

x, and since x y t

>

0, and ( ( x

x

< xR ,

<

0, and ( ( x

n

< x,

4.10

-

L x )(1

and s i n c e 1

-

<

xy

R x )(1

<

-

<

xynR ( 7 , n , i i ) , we

xynR))/xL

=

{L:R}(yn)

1 , ( 7 , n , i ) , w e see t h a t

x y t ) ) / x L = {L:Ll(yn) n

-

>

0;

( 7 , n , i i ) , we see t h a t xynR))/x

R

=

(R:R}(yn)

>

0;

p r o v i n g ( i v ) , a n d h e n c e a l l of ( 1 1 ) . T h u s we s e e t h a t ( 7 , n + l ) h o l d s .

Hence, by i n d u c t i o n , (7,111 holds f o r

all ncN.

(12)

F o r a l l m , ncN, y,

PROOF of ( 1 2 ) .

Since x

>

L

<

yn

R

. By (7.m) a n d (7,111. x y m L

L e t m , ncN.

0 , we see t h a t (12) f o l l o w s .

o

L R Let y b e d e f i n e d t o b e ( y n I y n 1 .

(13)

( i ) (xyIL

-

1

<

0, and ( i i ) 0

<

The f o l l o w i n g h o l d s :

(xyIR

-

1.

I n order t o p r o v e ( 1 3 1 , l e t u s e s t a b l i s h t h e f o l l o w i n g .

(14)

R

1

+

xR (y - [R:L](yn)),

- xLynR = 1

+

L x (y

-

[L:R](yn)),

L

-

xLyk

1

+

L x (y

-

[L:L](yn)),

xynR

-

xRyt = 1

+

xR ( y

-

[R:R](yn)).

(i)

X

Y

+

xy

(ii)

L x y

+

xy n

L (iii) x y

+

xy

xR y

+

(iv)

-

n

xRyk

=

=

and

<

1

<

xyn

R

.

I n t r o d u c t i o n t o t h e s ur r ea l number f i e l d No

4.10

R x y

PROOF of ( 1 4 ) . =

1

f

x R (y

xLy + x y R

n

1

+

-

(1

L

L 1 + x (y R

X Y f X Y

( x R - x ) y n L ) / xR )

f

(xL - x)ynR)/xL)

f

L

- x Ly,

-

(1

+

R

- x

R

L

1

=

Yn

R

1

=

-

L

XYn

+

L

- x

1

=

f

xL(y

( x Ly - 1 - x Ly, L

f

(xL - x ) y t ) / x R (x y

f

L

= 1 +

-

- x

1

x ) y n R ) / xR )

-

-

1

- x Ry nL

xynL))

f

[R:L](yn)), proving ( i ) .

R

+

[L:RI(y,)).

proving ( i i ) .

xynL)) =

L

x (y - C L : L I ( ~ , ) ) , proving ( i i i ) .

yn

R

+ xynR)) =

-

1 + xR (y

=

-

[R:RI(y,)),

proving ( i v ) .

o

Note t h a t by ( 1 4 , i i i ) a n d ( g , i i i ) , we h a v e

PROOF of ( 1 3 ) .

x Y

1 + xR ( y

=

R (x y

f

n

- ( 1 + (xR

1 +X(Y

1

=

R = l + ( xL y - 1 - x Ly R + x y n R ) ) =

-"n

x L (y - (1

X Y f X Y

xynL - xRynL

f

159

-

Y,

-

1 = xL ( y

[L:L](yn))

xL ( y

=

-

yn+lR)

<

0.

By

( 1 4 , i v ) , ( 9 , i v ) , a n d t h e d e f i n i t i o n o f y , we h a v e

R x Y

- x

XY,

f

-

-

1 = xR ( y

C R : R 1 ( y n ) ) = xR ( y

-

+ xynR

-

xLynR

-

-

1 = xL ( y

[L:R](yn))

=

xL ( y - y n + l L )

R ( g , i ) , a n d t h e d e f i n i t i o n of y , we h a v e x y + x y

R

C R : L I ( ~ , ) ) = x (y

PROOF of

R

t h e r e are no 1

-

yn+,L)

(15).

.

>

0 ; proving ( 1 3 , i i ) .

-

Let xy

By (131, z

z.

L < 1 < zR

n

<

0 ; proving

Were z

<

=

1 S z

L

Since 1 5

f o r sane z

z S. 1 , z

L

-,

0.

By ( 1 4 , i ) ,

L - l = x R( y -

(Ol}; t h u s l L

=

1 t h e n by ( 4 . 0 2 : 1 4 ) ,

R

(4.02:14),

>

o

Recall t h a t 1

.

-'Yn

0 o r zR S 1 f o r some z ; b o t h o f w h i c h a r e a b s u r d .

absurd.

yntlR)

By ( 1 4 , i i ) , ( 9 , i i ) , a n d t h e d e f i n i t i o n of y , we h a v e

(13,i).

x Ly

*

Y,

Were 1

< z

0 and z 5

t h e n by

o r l R 5 z f o r some l R ; b o t h o f w h i c h a r e

1.

By ( t r a n s f i n i t e ) i n d u c t i o n we have p r o v e d (0).

4.10

Norman L. A l l i n g

160

S i n c e ( 0 ) i m p l i e s t h e Theorem, t h e Theorem i s p r o v e d .

Having made a l l t h e s e c a l c u l a t i o n s , we can now s e e more

CONCLUSION.

2 ) comes a b o u t .

c l e a r l y how t h e e x p r e s s i o n define y ( =

o

I Y L I Y R 1 ) and prove t h a t xy

must know t h a t ( x y )

L

<

1

<

=

I n o r d e r t o prove ( 0 ) we m u s t 1.

I n o r d e r f o r xy t o be 1 , we

(13) must hold.

xyIR: i . e . ,

I n checking t o s e e

t h a t (13) does i n d e e d h o l d , e x p r e s s i o n s of t h e t y p e t h a t o c c u r on t h e l e f t hand s i d e of ( 1 4 ) m u s t be c o n s i d e r e d .

I n order t o study these expressions,

q u a n t i t i e s of t h e t y p e t h a t occur o n t h e r i g h t - h a n d s i d e of ( 9 ) a r i s e . These elements of No engender ( 2 ) ' and p r o v i d e t h e f o r m u l a e t h a t move t h e f i n i t e i n d u c t i o n frcm s t a g e n t o s t a g e n

1.

+

Even though t h i s l i n e o f r e a s o n i n g p r o v i d e s a m o t i v a t i o n f o r ( 2 1 , d o e s n o t r e d u c e t h e a u t h o r ' s admiration of Conway's i n s i g h t .

see t h a t t h e r i n g No i s a f i e l d seems r e m a r k a b l e i n d e e d .

it

Indeed, t o

To p r o v e i t i n

t h e way t h a t Conway d i d seems t o t h e a u t h o r l i t t l e s h o r t of i n s p i r e d . 4.20

DISTINGUISHED SUBCLASSES OF No

(1 ]

We h a v e shown t h a t element 1 i n No,

Let

l e t (n

n.1

+

11.1

=

nEN

i s t h e e l e m e n t 0 i n No, and t h a t

f o r which no1

+ 1 = {0,1,2,

{0,1,2,

=

...,n -

...

l,nl].

{Ol

is t h e

, n - 1 1 ) i n No; t h e n

Thus, by f i n i t e induc-

t i o n , t h e f o l l o w i n g i s proved:

(0)

For a l l n i n N , n.1

=

(O,l,2,

... , n

-

11 )EN,

I t i s convenient t o i d e n t i f y ncN w i t h n.lENo, s u b s e m i - g r o u p of No.

-1

(n)).

and t h u s r e g a r d N as a

We can a l s o c o n s i d e r t h e element I N [ ] , and c a l l i t w

as Conway d o e s [24, p . 121. (1)

(= b

Clearly n

<

w f o r a l l nEN, t h u s

No is a non-Archimedean f i e l d . The class On of von Neumann o r d i n a l s w a s d e s c r i b e d i n s e c t i o n 1 . 0 2 .

R e c a l l t h a t 0 i s t h e empty s e t , t h a t 1

=

{O}, etc.

Recall a l s o t h a t i f a

i s i n On, t h e n i t s s u c c e s s o r i s a u n i o n {a]. I t i s n a t u r a l t o a s s o c i a t e

4.20

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

OEOn w i t h f ( 0 )

=

0

t o let f(1)

[]]ENo,

=

f ( 6 ) = { ( f ( u ) ) a < B 11.

=

1

=

{O]]eNo,

Let BEOn and l e t

Then, one can e a s i l y see t h a t

f is a n o r d e r - p r e s e r v i n g map of On i n t o No.

b(f(8))

161

F u r t h e r , f o r a l l $€On,

B.

=

Fran t h i s we s e e , among o t h e r t h i n g s , t h a t

No i s a p r o p e r class. On o c c a s i o n , we w i l l i d e n t i f y BEOn w i t h f(B)cNo, even though t h e y a r e (To s e e t h i s t a k e No f o r example t o

q u i t e d i f f e r e n t objects i n s e t theory.

be g i v e n by t h e C u e s t a D u t a r i c o n s t r u c t i o n , g i v e n i n S e c t i o n 4.02.) ELEMENTS OF No H A V I N G F I N I T E BIRTHDAY

4.21

Let nEN, and c o n s i d e r t h e f o l l o w i n g a s s e r t i o n s .

(0,n) lNnl

= 2

n

,

10nl

=

2

n

-

1 , and 1M

n

I

n+ 1

=

2

...

,

PROOF.

C l e a r l y (0,O)

For each x

holds.

one p o i n t i n M

,

, we

(LIRIeN n+

=

( = 0 n+l

1.

(O,l),

hold.

that (Mn[

=

2n+’

-

F u r t h e r , i f b o t h L and R a r e non-empty t h e n x

Clearly Nn+l

1.

t h a t has a s u c c e s s o r i n M

l e a s t e l e m e n t of M n ) “+I

I

=

2”+l- 1

-

1

+

Let neN f o r which ( 0 , n )

can t a k e L and R t o c o n s i s t of a t m o s t

can be t a k e n t o be t h e immediate s u c c e s s o r of x

n

1.

For a l l neN, ( 0 , n ) h o l d s

(1)

M

-

*

n’

L

in M

n‘

By ( 0 , n ) we know

has one p o i n t i n i t f o r e a c h e l e m e n t of

p l u s t w o more p o i n t s ,

{ ] u ) ( u being t h e

and { v l ] ( v b e i n g t h e g r e a t e s t element i n M , ) . 2

=

2

n+l

R

., e s t a b l i s h i n g

(O,n+l).

Thus

162

Norman L. A l l i n g

4.21

S i n c e No i s an o r d e r e d f i e l d ( 4 . 1 0 ) , i t i s a f i e l d of c h a r a c t e r i s t i c 0, thus

(2)

t h e prime f i e l d of No i s t h e f i e l d Q of r a t i o n a l numbers. Any r a t i o n a l number c a n , of c o u r s e , be w r i t t e n as a / b , f o r acZ and

bsN.

a / b w i l l be s a i d t o b e i n r e d u c e d f o r m i f a a n d b a r e r e l a t i v e l y C l e a r l y e v e r y r a t i o n a l number x may be w r i t t e n i n r e d u c e d form.

prime.

F u r t h e r , r e d u c e d forms a r e u n i q u e .

Let a / b b e t h e r e d u c e d form f o r x .

x w i l l be c a l l e d d y a d i c i f t h e r e e x i s t s neZ+ for which b = 2 b e t h e s e t of a l l d y a d i c numbers.

.

Let D

C l e a r l y D i s a s u b r i n g of Q t h a t con-

Further,

t a i n s 1/2.

(3)

n

D i s t h e s m a l l e s t s u b r i n g of Q t h a t c o n t a i n s 1 / 2 .

(1) If b = 2n,

Let XED be w r i t t e n as a / b i n r e d u c e d form.

LEMMA 1 .

f o r sane ncZ+, t h e n ( i i ) x = { x

-

2-"1x

2-")

+

i n No.

Note t h i s r e p r e -

s e n t a t i o n may n o t be t i m e l y .

Let n

PROOF.

t h e n x is i n Z , x i s i n N

= 0;

1x1 '

d e f i n e t o b e m ) i s of t h e form [ m - 1 1 } (4.20:O). s i m p l e s t e l e m e n t of No b e t w e e n m - 1 a n d m + 1 .

-

s i m p l e s t e l e m e n t b e t w e e n -m - 1 a n d -m ( i i ) , provided n

Note t h a t I m

0.

-

>

is.

(4)

D e f i n e z t o be [x

(5)

22 = z + z =

(6)

z

+

x

-

2-"

<

22

F u r t h e r , -m

+

1 ) ( r e s p . [-m

whereas {m

-

-

+

-

2-"Ix

x

-

< z

2-"12

Then

+ 2-"].

+

+ x + 2-".

x

+

2-"];

thus,

Fran ( 4 ) we see t h a t

is the

x h a s t h e form 1 ) -m

1 ) ) is

+

11) ( r e s p .

0 and assume t h a t ( i ) and ( i i ) h o l d s f o r n

+ 1))

IZ

Clearly m is then t h e

+ 1 , showing t h a t

11 m

n o t a t i m e l y r e p r e s e n t a t i o n of m ( r e s p . -m), Now l e t n

a n d 1x1 ( w h i c h we

-

1.

[I

-m

I n t r o d u c t i o n t o t h e surreal number f i e l d No

x - 2

-n

<

163

z < x+2-".

On combining ( 7 ) a n d (61, w e f i n d t h a t 2x - 2 -(!l-l)

< x +

ZX - 2-(n-1)

<

- 2 -n <

z

< zx

+

22

< x +

z

+ 2-" < 2x + P - 1 )

; hence,

2-(n-1)*

A p p l y i n g t h e i n d u c t i o n h y p o t h e s i s t o 2 x , we know t h a t 2x i s t h e s i m p l e s t element i n No s u c h t h a t t h e f o l l o w i n g h o l d s :

-

2x

(10)

<

2- ( I P 1 )

2x

<

2x + 2

-(n-l)

F r a n ( 9 ) we know t h a t 22 i s i n t h e f o l l o w i n g i n t e r v a l :

(ZX

-

2 - ( n - l ) ,2x + 2 - ( n - 1 ) ) ,

(11)

t h e same o p e n i n t e r v a l i n No t h a t c o n t a i n s 2x

F r a n ( 7 ) we know t h a t

(10).

2

-

<

2-n

x

<

z + 2-".

Adding x t o b o t h s i d e s of ( 1 1 ) g i v e s u s

(12)

- 2 -n <

x + 2

< x

2x

+ 2

+

2-".

U s i n g ( 8 ) a n d ( 1 0 ) we s e e t h a t 2x i s t h e s i m p l e s t element i n t h e interval I

=

(x

+

z

-

x + z

2-",

+

2-").

U s i n g ( 5 ) we know t h a t 22 i s t h e

s i m p l e s t e l e m e n t i n I , a n d t h u s we s e e t h a t 2x dered f i e l d , x

=

z , p r o v i n g Lemma 1.

=

22.

Since No i s an or-

o

A s u b c l a s s S o f No w i l l be c a l l e d s y m m e t r i c i f

XES implies - x d .

U s i n g i n d u c t i o n , one e a s i l y sees t h a t t h e f o l l o w i n g i s t r u e : (13)

For a l l acOn, O a ,

M

a

and N

are s y m m e t r i c .

4.21

Norman L. A l l i n g

164

I f any of t h e s e sets h a s a g r e a t e s t element x , t h e n i t w i l l be c a l l e d t h e r a d i u s of t h e s e t i n q u e s t i o n .

Thus

f o r a l l a e o n , t h e r a d i u s of N a , M a ,

(14)

PROOF.

is a.

Ow i s a s u b s e t of D .

LEMMA 2.

0 , = 1-2,

and O a t ,

W e know t h a t 0 , is empty, t h a t 0 , = {O], t h a t 0 ,

-1,

-1/2,

1 , 21, e t c .

1/2,

0,

[-l,O,l],

=

Let n d be s u c h t h a t ( i ) O n i s a

s u b s e t of D , and ( i i ) t h e d i s t a n c e b e t w e e n s u c c e s s i v e e l e m e n t s i n 0 n i s 2

-k

,

f o r some k s Z + . S i n c e Oa and D are b o t h symmetric ( 1 3 ) . i t s u f f i c e s t o show t h a t O n +

i s a s u b s e t of t h e s e t of D t , f o r a l l nrN. g r e a t e s t element of 0 i n D.

n'

t h e n u i s i n N , and { u l } = u

v

induction hypothesis C

,

-(k+l)

.

t

.

If u is t h e

1 (4.20:0),

n

+

. As

-

2-k

-

which i s

n o t e d above

Let v be t h e immediate s u c c e s s o r of u i n On.

v ) / 2 = x , t h e n x i s i n D.

(15)

+

Assume t h a t u is n o t t h e g r e a t e s t element i n 0

( l ) , On i s f i n i t e .

x + 2

Let u be i n On

Let ( u

+

u , which we w i l l c a l l c, i s i n D and by t h e + Thus u = x - 2 - ( k t l ) , and v = f o r sane kcz

.

By Lemma 1 , ( u l v ) = x .

Summarizing what we have shown t h a t

if v is t h e immediate s u c c e s s o r of u i n O n t ,

then {ulv)

=

(u

+

v)/2,

and t h a t i t i s i n N n .

From t h i s we see t h a t On+l s a t i s f i e s ( i ) and ( i i ) a b o v e , a n d hence we have proved Lemma 2.

LEMMA 3 .

PROOF.

Ow is a s u b r i n g of

Recall t h a t 2

R

make no c h o i c e at a l l f o r 2

.

-

No t h a t c o n t a i n s 112.

I),

t h u s we may take 2L t o be 1 and may R 2h Let h = (01 l } ; t h u s hL 0 , and h = 1 (1

-

.

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.21

2hL - 2 L h L , 2Rh

=

{2Lh

+

=

{h

2hL - hLI h

h

<

+

1

<

h

2hR

-

h

R

-

2RhR

=

{h

I

. w

2Lh + 2hR

h

11.

+

-

Let x a n d y b e i n 0

und er s u b t r a c t i o n .

w

c o n s t r u c t i o n of No ( 4 . 0 2 1 ,

.

+

2hL

We know t h a t 0

<

h

=

1 ; showing

L

a n d Iy 1, a n d ( y

R

T h u s e a c h o p t i o n of x

o p t i o n s of

x

+

+

1 a r e f i n i t e s u b s e t s of 0

y a n d of x y i s i n 0

y a n d xy a r e f i n i t e i n number, x

THEOREM.

Ow =

+

w

.

Assume

b(y)'

w h e r e b(x)

+

b(y)

S i n c e t h e s e t of

y a n d xy a r e i n 0

w

.

0

D.

By Lemma 2, Ow i s a s u b s e t of D .

PROOF.

is closed

L R As s u c h , {x 1 , (x ) a r e f i n i t e

w'

k.

1 ; thus

we may r e g a r d x a s a n element of

t h a t t h e sum an d p r o d u c t of e a c h e l e m e n t o n Ok i s i n 0 =

2h

<

2 Rh L]

T h i n k i n g of No a s t h e C u e s t a

CD(Ob(x)) a n d y as a n e l e m e n t of CD(Ob(y)). s u b s e t s of O b ( x l ,

-

2 L h R , 2Rh

F i r s t n o t e t h a t , by ( 1 4 1 , 0

t h a t 1 / 2 cN2, a n d hence 1 1 2 ~ 0

Dutari

I

Since 1 is t h e simplest p o s i t i v e element,

1.

+

2hR

+

+

165

of Q t h a t c o n t a i n s 112.

By Lemma 3, Ow is a s u b r i n g

By (31, D is t h e smallest s u b r i n g of Q t h a t con-

t a i n s 1 / 2 ; t h u s D = Ow.

COMMENT.

The number

3 is i n Ow, b u t 1 / 3 is n o t ; t h u s 0 is n o t a w

field.

Mw

4.30

(0)

A number x i n

-n < x x

+

< n,

1, x

+

No w i l l be c a l l e d

and x = 112,

x

(x - 1 , x

114,

+ 114, x + 1 / 8 ,

THEOREM 0 ( C 2 4 , p p . 2 4 - 2 5 ] ) .

x

-

i f t h e r e e x i s t s ncN f o r w h i c h

x

-

... , x

... , x - 1/2", ... I 1/2", ... 1, [24, p . 241,

1/8, +

(1) Each deD i s a real number in No.

i n No, t h e n so are - x , x + y, a n d x y . ( i i i ) For e a c h real number x in No, l e t L = {qsQ: q < x ) a n d l e t R = {qcQ: q > XI. Then x = {L I R ) . (ii) If

a n d y a r e r e a l numbers

Norman L . A l l i n g

166

Given any g a p ( L , R ) i n Q , t h e n {LIR) i s a real number i n No.

(iv)

( i ) By Lemma 1 of S e c t i o n 4.21,

PROOF.

-

{x

2-"1

x + 2-n].

={-x - 2

-

-n

2-"

I

-x

+

y, x + y

-

-

-

(x - x ) ( y

x

2-")

+

2-m) x

2-"

+

+

- ( x - x R )(Y -

XY

L

y 1, xy

- (x -

(x

-

2-n))(y

-

(y

-

-

(x

-

2-"))(y

-

( y + 2 - 7 , xy

2 - 9 , xy

{xy - (=

I X Y - ,-(n+m)

I

xy

+

-

2-ml y x

+

+

2-m).

y

=

-x

-

Y

R

R y 11

- (x

2 T , xy

)I

-

= +

2 - 9 1 (y

(x + 2-"))(y

( 2 - n ) ( 2 - m ) l xy

-

(-

I

-

(y

+

2-9

-

(y

-

2-9

2 - n ) ( 2 - m ) , xy

-

=

(2-")(2-91

2 - ( n + m ) 1 ; s h o w i n g t h a t xy i s a r e a l number i n No.

< x ) and l e t R = { q E Q : q > X I . S i n c e by d e f i n i t i o n t h e r e e x i s t s nEN s u c h t h a t -n < x < n , L and R a r e non-empty. Clearly

( i i i ) Let L = { q E Q : (0)

-

-

R x )(Y

-

(x

and y = { y

y , x + y + 2 - m ) ; showing t h a t x + y i s

{xy - ( x {xy

( i i ) Let x a n d y b e r e a l

Using (4.08:19) we know t h a t xy =

L L x ) ( y - y 1,

-

L

-

xy

(x

2-"1

may be w r i t t e n as

a n d t h u s - x i s a r e a l number i n No.

a r e a l number i n No. {xy

-

(x

=

2-"),

+

dED

By ( 4 . 0 9 : 1 ) , x i s r e a l .

n u m b e r s i n No, w i t h x

(X

4.30

L and {x

coinitial. (4.02:16),

-

2-"]

q

a r e m u t u a l l y c o f i n a l a n d R and { x + 2-"]

By ( 4 . 0 2 : 1 6 ) , x { L I R ) is real.

As we have

=

(LIR].

are mutually

( i v ) Let ( L , R ) b e a g a p i n Q .

o

see i n S e c t i o n 4.21, 0

w

i s t h e r i n g D of d y a d i c n u m b e r s .

- D

S i n c e D i s d e n s e i n t h e f i e l d of real numbers R , a number r i n R associated w i t h s u b s e t s L

Clearly L < R.

=

{acD: a

< r)

a n d R = {bED: b

>

i s a t i m e l y r e p r e s e n t a t i o n of x.

Let x

=

= w.

c a n be

r ] of O w .

Let x = { L I R ] , a n d n o t e t h a t x i s n o t i n 0

{No,<,bl i s a f u l l class of s u r r e a l numbers ( 4 . 0 3 : 2 ) , b ( x ) on D.

By

w

.

Since

Thus ( L , R )

f ( r ) . Let f be t h e i d e n t i t y map

Clearly f is a n o r d e r - p r e s e r v i n g map of R i n t o M

w'

The d e f i n i t i o n s

o f a d d i t i o n a n d m u l t i p l i c a t i o n i n R , o n t h e o n e h a n d , a n d i n No o n t h e o t h e r a r e s u c h t h a t f i s a n i n j e c t i v e homomorphism of R i n t o M U . e.g.,

(See

S e c t i o n 1 . 1 6 , w h e r e much of t h i s i s c a r r i e d o u t i n t h e c a t e g o r y of

ordered g r o u p s . )

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.30 (1)

167

C l e a r l y f is a n isomorphism of R o n t o (XENO: x is a r e a l number). Let u s i d e n t i f y R w i t h {XENO: x r e a l ) , by means of f . M

u

t o be ( N ( } ( 4 . 2 0 ) .

C l e a r l y w i s t h e greatest e l e m e n t i n M

is t h e least element i n M

(2)

<

C l e a r l y , d-

d-,

d + E Mu

<

d

- R,

w

.

I

d e f i n e d + t o be {d d e f i n e d - t o b e {d

(3)

For example, r e c a l l t h a t w was d e f i n e d

contains other elements.

-

and

-0 =

{IN]

Given d E D we c a n

d + 1 , d + 1/2,

-

1, d

1/2,

... , d

... , d -

d + , f o r a l l d i n D.

and d

w'

-

<

2-"

d-

<

d

+

l/n,

... ]

... [

l/n,

and

d].

Note t h a t

< d+ <

d

+

2-" f o r a l l n d .

F i n a l l y , we c a n g i v e t h e f o l l o w i n g d e s c r i p t i o n of Mu.

(4)

M

w

is t h e u n i o n o f t h e f o l l o w i n g d i s j o i n t s u b s e t s : ( i ) R, ( i i ) { + w ) ,

a n d ( i i i ) id*: dsD). PROOF.

We h a v e s e e n t h a t M

w

contains all set d e f i n e d i n ( i ) - ( i i i ) .

I t i s a l s o clear t h a t t h e s e t s described i n ( i ) - ( i i i ) are d i s j o i n t . X E M ~ ;then b(x) 5 w.

-

t h a t b ( x ) = w, l e t L

If b ( x ) < w, t h e n X E O ~ , a n d h e n c e i s i n R . (dEOw: d

< XI, and l e t

i s a C u e s t a D u t a r i c u t i n Ow, a n d x i s empty t h e n x

= -w.

=

{L[R).

R = {dcOw: d

Assume t h a t L and R a r e non-empty;

If (L,R) is a gap i n D, t h e n XER

Dedekind-cut i n D.

( L , R ) is n o t a gap i n D; t h e n i t h a s a c u t p o i n t dED.

If doR, t h e n x = d

-

.

0

> XI; then

If R Is e m p t y , x

- D.

-

Let

Assume

w.

(L,R)

If L

thus (L,R) is a

Assume now t h a t

If dcL, t h e n x = d'.

168

Norman L. A l l i n g Conway [ 2 4 , p . 2 4 1 d e f i n e s x t o b e

B I B L I O G R A P H I C NOTE.

number i f and o n l y if - n (X

-

- 1, x

1/2, x

-

<

1/3,

4.30

x

< n

... I

f o r sane i n t e g e r n , a n d x

x

+

1 , x + 1/2, x + 113,

We h a v e c h o s e n t o u s e s i m p l e r numbers, 1/2",

Ira

=

...1".

e a c h of which i s i n D ,

r a t h e r t h a t t h e numbers l / n , as Conway d o e s [ 2 4 , p . 2 4 1 , s i n c e some of

.

t h e s e numbers a r e i n a r e i n N

Note t h a t t h u s t h e r e p r e s e n t a t i o n ( x

1/3, 1 / 5 , e t c . a r e i n Nu.

-

is a r e f i n e m e n t of ( x

1/2n)

For example 1/2 a n d 114 a r e in D , w h i l e

l/n, x

+

l/n).

-

By ( 4 . 0 9 : l )

1/2",

X

+

they are

e q u i v a l e n t ; t h u s t h e q u e s t i o n of which r e p r e s e n t a t i o n o n e uses s e e m s n o t t o be of major i m p o r t a n c e .

THE MAP XENO

4.40

+

w

x

ENO

+

F o l l o w i n g t h e usual p r a c t i c e s i n an o r d e r e d f i e l d K , f o r XEK l e t 1x1 =

max.(x,

-XI.

For x a n d y i n K , write x

1x1 5 n l y l a n d ( y I 4 n l x l . s u r a t e iff x (0)

a

a

y.

a

y i f t h e r e e x i s t s ncN s u c h t h a t

F u r t h e r , we w i l l s a y t h a t x a n d y a r e commen-

Clearly

i s an e q u i v a l e n c e r e l a t i o n o n K .

Let y / ( a ) d e n o t e t h e e q u i v a l e n c e c l a s s e s mod Clearly

O/(a)

i s {Ol.

a

t o which y belongs.

C l e a r l y K is Archimedean i f and o n l y i f K h a s two

e q u i v a l e n c e classes: ( 0 ) a n d K* ( = {xcK: x # 0 1 ) .

Let y b e i n No*.

<

x

01).

<

nlyl}.

Let J ( y )

=

{xcNo: t h e r e e x i s t s ncN s u c h t h a t l y l / n

C l e a r l y J ( y ) i s a n o n - e m p t y i n t e r v a l i n No'

Using (4.02:7),

( = (XENO:

x >

we know t h a t t h e r e e x i s t s a s i m p l e s t e l e m e n t i n J(y),

which Conway c a l l s t h e l e a d e r of y [24, p . 311. T h u s t h e l e a d e r of YENO*

is t h e s i m p l e s t p o s i t i v e element i n y / ( p ) .

The s i m p l e s t l e a d e r of a l l i s 1 , t h e o n l y p o s i t i v e n u m b e r b o r n o n d a y 1 .

Conway d e f i n e s wo t o be 1 .

He l e t s w 1 be t h e s i m p l e s t l e a d e r t o t h e r i g h t

4.40

I n t r o d u c t i o n t o t h e surreal number f i e l d No

of 1 i n No, namely w, which i s i n N

w

(4.30).

169

I n g e n e r a l , wx w a s d e f i n e d by

+

Conway as f o l l o w s , where r and s r a n g e o v e r R :

(1)

wx

=

(0,rw

xL

Isw

xR

1 C24, p . 311.

I t w i l l be c o n v e n i e n t , o n o c c a s i o n , t o r e s t r i c t r a n d s i n ( 1 ) t o be

S i n c e Qt and R t are m u t u a l l y c o f i n a l a n d m u t u a l l y c o i n i t i a l , t h e

i n .'Q

v a l u e of w x g i v e n by t h e r e s u l t i n g d e f i n i t i o n (which we w i l l c a l l (1,Q')) i s t h e same as t h a t g i v e n by ( 1 ) .

L e t u s m a k e s u r e t h a t t h e d e f i n i t i o n , as g i v e n i n ( I ) , agrees w i t h those g i v e n i n t h e p a r a g r a p h p r e c e d i n g ( 1 ) . 0 =

[Ol], UJ

-1

which i s 1 .

[Ol],

1 =

.

is, a c c o r d i n g t o ( 1 ) .

thus w -1

=

1

=

[lo],

{I], =

0

=

Let u s d e t e r m i n e what

(O,rll = w. thus w-l

t h u s by ( 1 1 , w

[Olrl, a n e l e m e n t we

d e f i n e d i n (4.30) t o be 0'.

For x , y , a n d z i n K (2)

<<

x

y i f nx

Thus x

(3)

0

<

wu

, we

w i l l write

y f o r a l l nEN.

<

y iff x

y a n d x a n d y a r e incommensurate.

Clearly x

<<

LEMMA 0.

Let u a n d v be i n No.

y and y

<<

z implies x

<<

(1) u

z.

<

v i f and o n l y if ( i i )

<< wv. PROOF.

2b(v)). (1).

<<

<

+

Let u s p r o c e e d by i n d u c t i o n o n m a x . ( b ( u )

Assume t h a t ( i ) h o l d s .

<

u

R

6 v,

or

b(v), 2b(u),

Using i n d u c t i o n a n d t h e d e f i n i t i o n of w

i t i s e v i d e n t t h a t a l l wu a r e p o s i t i v e .

e x i s t s a uR w i t h u

+

By ( 4 . 0 2 : 1 4 ) ,

( b ) there e x i s t s v

L

U

( a ) there

w i t h u S vL

<

v.

If

Norman L. A l l i n g

170

( a ) h o l d s then wu << w' induction, w

U

R

<<

R

.

I f uR

-

v then w

w v , and u s i n g (31, w

U

approximately a s a b o v e , we s e e t h a t w ( i i ) . Now assume t h a t ( i i ) h o l d s .

v t h e n of c o u r s e mu

=

U

<<

4.40

<<

U

R

< v t h e n , by

V

<<

w ; proving t h a t ( i ) implies

Assume f o r a moment t h a t u L v .

>

If u

w v , which i s a b s u r d .

If u =

v t h e n we may u s e t h e

> > w V , which a g a i n i s

W'

Thus we have shown t h a t ( i i ) I m p l i e s ( i ) . o

LEMMA 1 . uy.

If u

If ( b ) h o l d s , t h e n , a r g u i n g

wV.

f a c t t h a t ( i ) implies ( i i ) t o conclude t h a t absurd.

wV.

( i ) For a l l xcNo+ t h e r e e x i s t s a unique ycNo s u c h t h a t x

a

F u r t h e r , ( i i ) b(wy) 5 b ( x ) . L R L x may be w r i t t e n i n t h e form {O,x ( x 1 w i t h x

By ( 4 . 1 0 : l ) .

PROOF'.

P r o c e e d i n g by i n d u c t i o n o n

and xR p o s i t i v e , and chosen t o b e i n Ob(x).

R b ( x ) , we see t h a t f o r e a c h xL ( r e s p . x ) t h e r e e x i s t s a unique yL ( r e s p . y

R

such t h a t xL = uy

L

(resp. xR

R s i m p l e a s xL ( r e s p . x 1.

X I , then ( i ) is proved.

R a

wy

1, w i t h wy

L

R ( r e s p . wy ) a t l e a s t a s

I f x i s commensurate w i t h o n e of i t s o p t i o n s , s a y Note a l s o t h a t b ( u y ' ) 2 b ( x ) , s h o w i n g t h a t ( i i )

Assume t h a t x i s c o m m e n s u r a t e w i t h none of i t s o p t i o n s ; then by

holds.

Lemma 0 , r w y {yLlyR].

L

<< x <<

R SW'

Then y i s i n No.

,

f o r a l l r , SER'.

Let y b e d e f i n e d t o b e

Let I be d e f i n e d t o be {ZENO: xL

L

l e t J be d e f i n e d t o be (zcNo: rwy

<<

z

<<

<

z

<

R swY , f o r a l l r , s E R + } .

i s commensurate w i t h n o n e of i t s o p t i o n s , I

=

J.

x

R

1 , and

Since x

Since x i s , by d e f i n i -

t i o n , t h e s i m p l e s t element i n I and since wy is d e f i n e d t o be t h e s i m p l e s t e l e m e n t i n J , we s e e t h a t x

= w'.

I n t h i s c a s e , of c o u r s e , b ( x )

A s t o t h e uniqueness of y , t h a t f o l l o w s frcm Lemma 0 .

THEOREM.

For a l l x and y i n No, wX+'

= wXwy.

=

b(uy).

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.40

Proceeding by i n d u c t i o n on b ( x )

PROOF. =

Then by Lemma 0, X > 0 and Y > 0 .

uy.

(4)

X

=

{O,aw

X

L bw

X

R

+

b(y), let X

171

=

w

X

and l e t Y

By d e f i n i t i o n ,

L

R

] and Y = (0,cwy IdaY ) , where a , b , c , d a r e i n R t .

Then XY =

L

(5)

10. awx

(6)

L (0, a w x ty

+'

+

+

cw '+Y

cw '+Y

L

L

-

acw

-

acw

L

L

ty

ty

L ~

L

bw

, bw

R

R

ty

+'

t

dw"Y

t

dw"y

R

-

bdwX ty

R

R

I

R

-

R R bdwX ty

I

S i n c e ( 5 ) and ( 6 ) a r e i d e n t i c a l , t h e Theorem is proved. Applying t h e Theorem, we o b t a i n t h e f o l l o w i n g c o r o l l a r y :

(7)

For a l l XENO, w

-X

=

l/w

X

.

F u r t h e r , t h e map t h a t takes XENO t o w x i s

a n o r d e r - p r e s e r v i n g homomorphism o n t o t h e class A of a l l l e a d e r s i n

No; t h u s A i s an o r d e r e d group, under m u l t i p l i c a t i o n , t h a t is o r d e r l s u n o r p h i c t o t h e a d d i t i v e group (No,+) of No.

4.41

FINITE LINEAR COMBINATIONS OF w - x ( 1) ,

... , w - x ( n )

OVER R

We w i l l be concerned i n t h i s s e c t i o n w i t h f i n i t e l i n e a r combinations

Norman L . A l l i n g

172

of elements of t h e form w Y o v e r R.

4.41

Let aeR, and l e t Y E N O .

The f o l l o w i n g

a r e obvious.

(0)

(i)b 0.~')

= 0,

0

f o r all YENO, and ( i i ) b ( a w 1 = b ( a ) , f o r all aeR.

Since b ( - x ) = b(x), and having c o n s i d e r e d ( O , ( i ) ) ,

L

R

Let a = { a la J E R .

f i e l d of Mu.

Since b ( a ) 4

W,

w e know ( b y c o n v e n t i o n

R L t h a t ( a L , a ) i s a t i m e l y r e p r e s e n t a t i o n f o r a: t h u s each a

(4.02:15)),

and each a

F u r t h e r , w e saw i n (4.30) t h a t R i s a sub-

Ow.

=

0.

A s we

As b e f o r e , l e t D denote t h e r i n g of a l l dyadic numbers ( 4 . 2 1 ) .

saw i n S e c t i o n 4 . 2 1 , D

>

assume t h a t a

R . is i n D.

Since a { aL wY

LEMMA.

awy

PROOF.

Let {a

=

L'

I

>

0 , we may a l s o assume t h a t each aL

0.

aR wY I . {dcD: 0

=

>

<

d

<

a) and l e t [ a

R'

) = (dED: d

>

a].

S i n c e D i s dense i n R we know t h a t L R ( a L ' , a R ' ) i s a refinement of ( a ,a ) (4.09:O).

- D.)

( C l e a r l y ( a L 1 , a R ' ) i s t i m e l y i f and o n l y i f a d a

= (3''

I

By ( 4 . 0 9 : 1 ) ,

aR').

By d e f i n i t i o n ,

aJ

{aLwY

=

aLwy

R

+

awy

+

-

L awy

R

aLJ

,

L

aLw Y , a Rwy + a wY aRwY

+

au'

L

-

R

-

R

aRwY

I

L aRwY I .

There a r e f o u r e x p r e s s i o n s f o l l o w i n g t h e e q u a l i t y s i g n i n ( 3 1 , w h i c h we w i l l c o n s i d e r i n o r d e r .

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.41 L

aLwY + y

L

-

L

<

y,

wy

aLwY

<<

L

-

aLwY + ( a

=

aL)WY

L

Since aL < a ,

L

o <

a - a

S i n c e t h e r e e x i s t s aL’

( 4 . 4 0 , Lemma 1 ) .

my

.

173

>

.

Since

a L , we s e e

t h a t t h e following holds.

R

Consider now t h e second e x p r e s s i o n i n ( 3 ) : aRwY

(a

+

-

aR)wY

(4.40, Lemma 1 ) . (5)

a R J+ a J

R

.

< aR, a

Since a

-

aR

<

(a

-

- a w

<

YR --

<<

y R , wY

wy

R

Thus R

R

-

L YR a )w

Lemma 1 ) .

(4.40,

Since y

0.

aRJ

< o <

aL’J

<

am’.

R A aLwY + a u y - aL wY

Consider now t h e t h i r d e x p r e s s i o n i n ( 3 ) : aLwY

R

aRwY+ aw

.

o <

Since aL < a ,

a

- aL .

Since y

<

y R , ,Y

L

-

aRwY

=

<<

J

R

Thus R

(6)

auy

< a R ’ u Y < aLwY + aWy - aL w YR .

Consider now t h e l a s t e x p r e s s i o n i n ( 3 ) : aRwY

(a

+

-

aR)wY

( 4 . 4 0 , Lemma 1 ) .

(7)

L

.

Since a

+

COROLLARY 0. =

<

Since y

0.

L

<

y , Y.

L

<<

UY

L aWY - aR W yL .

that t h e following h o l d s : awy

C

aR

=

There e x i s t s aR’ < a ; t h u s ,

a J < aR’mY < aRwY

+

-

L

R

Hence, b y ( 4 ) - ( 7 ) , auy

Then A

< aR, a

aRwY+ a0y

{aLw-‘

{aL’WyI a R ’ u Y ) . By ( 4 . 0 9 : 1 )

= =

iaLwyI a R u Y ) ; proving t h e Lemma.

Let a , ccR, x +

cw-y,aw-x

, we c o n c l u d e

+

<

y be i n No, A

=

aw- X and l e t C

cL~-YlaRw-X +cW-y,aW-x + cRu-Y].

=

c w- Y

.

Norman L. A l l i n g

174

By d e f i n i t i o n ,

PROOF.

(8)

A

C = {AL

t

4.41

+

C, A

CLI AR

+

c

C, A +

+

R

}.

Using Lemma 0, t h e r i g h t hand s i d e of ( 8 ) i s s e e n t o equal

T h i s may a l s o be g e n e r a l i z e d as f o l l o w s .

COROLLARY 1 .

L e t nEN l e t , a i and ci be i n R, f o r i

<...<

-x(l) + Let A = alw

l e t x(1)

c = c w- x ( l )

t

1

(10)

“alL (a, (a,

+

+

R +

x ( n ) be i n No.

...

t

c

-x(n).

n

c , ) w-x(l)

+

clL).w-x(l)

+

cl)-w - x ( l )

+

( a , + c1R ~ * w - ~ ( ’ )t

PROOF.

Let

x ( n ) be i n No.

... ... ...

+

(a

t

(an

+

( a nR

t

(an

+

n

m i s not equal t o 0.

a

4 . 4 0 h o l d s , w- x ( ’ )

>>

>

< ,

cn)*w- x ( n ) , cnL)-w-x(n)~

+

+

+

cn)*w- x ( n )

#

c:)-w-~(n)].

alw-’(’)

0 or A

... , <

... >> w - x ( n ) ,

BIBLIOGRAPHIC NOTE.

and l e t

anw- x ( n ) ,

+

= 1,.

<

o

..,n, and l e t x(l)

... + anw- x ( n ) .

Let m be t h e l e a s t element i n [ l ,

Then A

Since x(1)

=

1 ,...,n, and

=

l e t aicR, f o r i

nEN,

Let A

a l l of t h e a i l s a r e 0.

PROOF.

...

+

Apply t h e d e f i n i t i o n of a d d i t i o n and Lemma 0.

PROPOSITION.

... , <

Then A + C

...

=

0 a c c o r d i n g as am

< ,

Assume t h a t not

...*n) >

such t h a t

0 o r am < 0.

x ( n ) , a n d since Lemma 0

Of

Section

Sane of t h e r e s u l t s i n t h i s s e c t i o n may be new.

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.50 4.50

THE SIGN-EXPANSION

F o l l o w i n g Conway [24, p p . 30-311, l e t a

Let X E N O , w i t h b ( x ) = B .

B, l e t

175

L ( x ) = [yEOa: y

a

x is not i n 0

a'

< X I , and l e t Ra(x)

= ( ~ € 0 y~ >:

XI.

t h u s ( L ( x ) , R ( x ) ) is a Cuesta Dutari c u t i n 0 a

.

[L,(x)] R a ( x ) ] , and n o t e t h a t x EN a a a 1 B, and let x

>

.

Let x

a, a

=

Now a s s u m e t h a t

a , x f xa.

ath a p p r o x i m a t i o n

t o x [24, p .

( x ) ) i s a s u b s e t of L

(x) ( r e s p .

Conway c a l l s x

x.

=

Since B

>

S i n c e f3

<

the

291. (0)

If a. ,< a , I 6, t h e n ( x a

PROOF. R

a1

Since L

( x ) ) , x and x

a1

a0

a0

1

(x) (resp. R

b o t h f i l l (4.02)

we s e e t h a t L a o ( x a l )

=

[Lao(xa,)I R

{L ( X I / R

a0

(xa

=

= 1

La

(X) 0

a0

x

a0

a0

t h e Conway c u t ( L

a n d Ra a0

.

(XI]

0

(x

=

a1

xa

0

= R

.

a0

(x), R

a1

a0

( X I ) i n No,

Thus

(XI. a0

(Xa 1

1

=

a0

Let u s c a l l ycNo a p r e d e c e s s o r of x, a n d write y < t x i f t h e r e e x i s t s a

<

B such that y

a s u c c e s s o r of y.

=

x

.

I f y i s a n p r e d e c e s s o r of x we w i l l refer t o x as

x i s t h e immediate s u c c e s s o r of y i f y

i s no z ~ N of o r which y

<

z

<

x.

<

x, and t h e r e

C l e a r l y 0 i s t h e o n l y e l e m e n t i n No t h a t

has no p r e d e c e s s o r . (1)

Under < t , No i s a p a r t i a l o r d e r c l a s s .

PROOF.

Assume t h a t x o c t x 1 a n d x 1

ct

y ; t h e n by ( 0 1 , x o

p r o v i n g t h a t No i s a p a r t i a l l y - o r d e r e d c l a s s u n d e r

Let t h e s e t of p r e d e c e s s o r s of x, p r N o ( x )

(2)

=


ct XI.

p r ( x ) i s a w e l l - o r d e r e d s e t u n d e r < t . Under < t , No i s a tree.

c t y;

176

Norman L . A l l i n g PROOF.

C l e a r l y acB

We w i l l r e f e r t o


4.50

xacprNo ( x ) i s an o r d e r - p r e s e r v i n g b i j e c t i o n .

+

a s t h e t r e e o r d e r on No.

See e . g . ,

c57, pp. 292-

3201 o r [55, pp. 315-3263 f o r r e f e r e n c e s t o t h e t h e o r y o f t r e e s .

Since 0

i s t h e element of No t h a t h a s no p r e d e c e s s o r , 0 i s t h e r o o t of No. Let G be a n o r d e r e d group G .

(3)

For ycG l e t

s i g n ( y ) be + i f y

>

0,

( i i ) s i g n ( y ) be 0 i f y

=

0 , and l e t

<

0.

(i)

( i i i ) s i g n ( y ) be

-

if y

Returning our a t t e n t i o n a g a i n t o No,

(4)

l e t o ( x ) ( a ) be d e f i n e d t o be s i g n ( x

-

xa), for a l l a

B U ( X ) E [ + } w i l l be c a l l e d t h e Sign e x p a n s i o n of x. and

as follows: l e t

[ * I Bis a n o r d e r e d s e t .

-<

0

<

+.

bl(Z Y

= Y,

Y

b(x).

Let u s o r d e r

6

Next l e t C be t h e u n i o n of ( { k } )Beon,

is an o r d e r e d s e t .

and b ' ( E ) =On.

-,

0,

Then, under t h e l e x i c o g r a p h i c o r d e r i n g ,

C i n t o O n by t a k i n g e a c h p o i n t of [ + I B t o 6.

( I + ) B ) B E Y ; then E

<

L e t b' map

Let L y be t h e u n i o n o f

Clearly E be t h e u n i o n of ( 2 y ) y e 0 n ,

F u r t h e r t h e f o l l o w i n g h o l d , f o r a l l BcOn.

B I B L I O G R A P H I C NOTE.

L y i s d e f i n e d [55, p p . 3 1 6 1 t o b e t h e f u l l

b i n a r y t r e e of h e i g h t Y .

E h r l i c h [ 2 8 1 c a l l s L t h e f u l l b i n a r y t r e e of

h e i g h t On.

The h e i g h t f u n c t i o n of t r e e t h e o r y [55, p p . 3151 i s t h e f u n c -

tion bl.

(5)

(i)

u maps No i n t o

(ii)

b'.o

z,

= b,

( i i i ) o ( N ) i s c o n t a i n e d i n (*}',

B

(iv)

d o B ) i s c o n t a i n e d i n E 8'

and

177

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.50

One c a n d e f i n e t h e r e l e v a n t o r d e r s o n Z Y and o n I d i r e c t l y .

However,

many fewer s p e c i a l cases must be c o n s i d e r e d i f we p r o c e e d a s f o l l o w s .

L e t Z y A = { t ~ ( f , O ] ~ :t h e r e e x i s t s 6

< bY - ( s ) ,

t(a)

Clearly b

zY1

= f,

maps 1 Y

Y

-

b Y ^ ( t )< Y s u c h t h a t f o r a l l a

a n d f o r a l l a f o r which b - ( s ) 2 a Y o n t o Y.

<

Y , t h e n t ( a ) = 01.

Let Eye b e l e x i c o g r a p h i c a l l y o r d e r e d .

Then

is a n o r d e r e d s e t .

For seZy, w i t h b ( s )

< 6, a n d (6)

s o cZy

B , l e t s A c Z y As u c h t h a t s * ( u ) =

=

s - ( a ) = 0 , f o r a l l a f o r which 6 6 a

Let s o ~ E ya,n d l e t B o

1

, and

that so

+

-

Now l e t

byA(soA) BO.

sl.

-

=

=

b y A ( s A ) ,f o r a l l s c Z y .

By d e f i n i t i o n , B o

b(so).

S1€Ey,

for a l l a

S(u),

< Y.

seZy + s n e Z Y A i s a b i j e c t i o n s u c h t h a t b ( s )

PROOF. -

=

<

and l e t B1 = b ( s l ) .

Y.

Then Assume

I f B o = B = B 1 , t h e n i t i s clear t h a t s o A f s l A . Assume

< E l , t h e n s o ^ ( B o ) 0 a n d s l A ( B 0b) f ; t h u s s o A C s l A . Assume t h a t b 0 > B l r t h e n s l n ( B 1 ) 0 a n d S O A ( B 1 ) t f; t h u s s o A f s l A . Hence t h e mapping s + s A is i n j e c t i v e . Let t E E y n , a n d l e t b y A ( t ) = B ; t h e n 8 < Y . t h a t B,

Let s =

<

6.

tls:

-

i . e . , l e t s be t h e r e s t r i c t i o n of t t o t h e s e t of a l l o r d i n a l s

Then c l e a r l y seZy a n d s- = t .

Let Y 6 6 6

c , a n d l e t t Y E EY

o

6

A

b e e x t e n d e d t o i y ( t y )=

d e f i n i n g t ( a ) t o b e 0, f o r a l l a f o r which Y 5 a

Y

f ol 1owing

(7)

<

6.

Y i s a n o r d e r - p r e s e r v i n g map of Z Y

i6

(ii)

i5 6 - i 6y = i y 5,

and

( i i i ) i Yy is t h e i d e n t i t y mapping of EyA.

into

by

C l e a r l y we h a v e t h e

.

(i)

t6EEgA,

Z6*,

4.50

Norman L. A l l i n g

178

Using ( 7 ) we s e e t h e f o l l o w i n g .

(8)

The d e f i n i t i o n of o r d e r on C i s independent of t h e c h o i c e o f Y, a n d i t r e n d e r s Z ( r e s p . C ) i n t o an ordered c l a s s ( r e s p . an o r d e r e d s e t ) .

Y

< {Yj.

Given any s u b s e t S of C , t h e r e e x i s t Y E O n s u c h t h a t b ' ( S )

a well-defined order-preserving i n j e c t i o n , for

mapping SES

+ s " E i~s ~t h e n

a l l such Y .

Let S" be t h e image of S I n C Y under t h i s mapping.

(9)

The

I n t h e f o l l o w i n g pages, " w i l l always have t h i s meaning. Following Conway C24, p.301, we have t h e f o l l o w i n g . LEMMA.

a is an o r d e r - p r e s e r v i n g map of No i n t o E .

PROOF.

Let x and y be i n No, w i t h x

t i o n on b(x)

+

f o r which x 5 yL

Let u s p r o c e e d by i n d u c -

By ( 4 . 0 2 : 1 4 ) w e know t h a t ( i ) there exists sane y

b(y).

<

< y.

xR f o r which

y , o r ( i i ) t h e r e e x i s t s some

x

<

x

R

L

5 y.

If ( i ) holds then we may use t h e i n d u c t i o n h y p o t h e s i s t o conclude t h a t a ( x ) S

L

< a ( y ) ; which shows t h a t

o ( y L ) and t h a t a ( y )

<

u(x)

<

w e may use t h e i n d u c t i o n h y p o t h e s i s t o conclude t h a t u ( x ) 5 a ( y ) ; which shows t h a t o ( x )

<

I f ( i i ) holds

a(y).

a(x

R

R

and a(X )

o(y).

THE STRUCTURE OF E AND THE SIGN-EXPANSION

4.51

The o r d e r e d c l a s s E w a s d e f i n e d and s t u d i e d i n S e c t i o n 4.50.

operator 0.

then

a s follows: l e t - ( + I

o p e r a t e on

For each S E E , l e t

b'(s);

(0)

-

-9

i s i n Z.

_ _

( s) =

-3

9,

=

-, - ( - I

= +,

Let t h e

and -(O) =

be d e f i n e d a s f o l l o w s : - s ( a ) = - s ( a ) , f o r a l l a Clearly

f o r a l l SEE, and f o r a l l XENO, a ( - x )

=

a(X).

<

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.51

Henceforth we w i l l write -s a s

179

Let 0 b e t h e e l e m e n t i n { + l o :

-9.

i . e . , 0 i s t h e empty mapping; t h a t i s i t i s j u s t t h e empty s e t .

Conway d e f i n e d x

a

124, p . 291, c a l l i n g i t t h e a% approximation o f x.

We d e a l t w i t h t h i s n o t i o n , u s i n g t h e same n o t a t i o n and terminology, i n F u r t h e r , u s i n g i t we i n t r o d u c e d t h e idea of t h e o r d e r

S e c t i o n 4.50.

No, under which No is a t r e e .

(1)

o f s t o t h e set a.

If a, 6 a 1 5 8 , t h e n (sa

PROOF.

(sa )

1 010

-

On

Let us now c o n s i d e r t h e same i d e a s f o r E.

Let S E E , and l e t B = b ’ ( s ) . the restriction


1 a0

I f a 5 B , l e t sa Clearly s

=

s

a0

= s.

= s(a:

i . e . , l e t su be

Further,

.

(slal)lao,which i s j u s t s l a o .

L e t us c a l l teE a p r e d e c e s s o r of s, and write t < t s, i f there e x i s t s

a < 8 such t h a t t

=

s

a

(cf. (4.50)).

If t i s an p r e d e c e s s o r of s we w i l l

refer t o s as a s u c c e s s o r of t ( c f . ( 4 . 5 0 ) ) .

s i s t h e immediate s u c c e s s o r

of t i f t < t s, and i f there is no ueL f o r which t < t u < t s. C l e a r l y 0 i s t h e o n l y element i n L t h a t has no p r e d e c e s s o r . (2)

Under < t , E is a p a r t i a l order class. PROOF.

Assume t h a t so
8,

and

9,


t; then by (11,

9,

C t t.

o

Let t h e set of p r e d e c e s s o r s of s, p r E ( s ) , be {teE: t < t s}.

(3)

p r ( s ) i s a well-ordered set under < t . Under < t , 1 is a tree.

PROOF.

C l e a r l y aEB

+

s E p r z ( s ) i s an o r d e r - p r e s e r v i n g b i j e c t i o n . a

Let < t be c a l l e d tree o r d e r on L.

Note: 0 i s t h e root of t h e t r e e E.

F o l l ~ i n gConway c24, Theorem 181, we have t h e f o l l o w i n g .

Norman L. A l l i n g

180

THEOREM.

is an order-preserving map of No onto

Q

PROOF.

Q

4.51

r,

w i t h b'

s u f f i c e s t o prove t h a t Let

Y

S E ( ~ }

b.

was d e f i n e d i n (4.501, where i t w a s shown t o be an order-

preserving map i n t o Z (Lemma 4.50) f o r which b t * o = b ( 4 . 5 0 : 5 ) .

Cy.

-0 =

.

(I

is s u r j e c t i v e .

For each B

< Y,

Thus, i t

Let YEOn and assume t h a t o ( O y )

t h e r e e x i s t s a unique y E N

5

=

such t h a t

0

o(yg) = SB.

Let x = { ( y 8 : s

(4)

8

< s and

B

-

<

Yll ( y B : s8

>

s and B

< Yl).

Since (No,<,bl is a f u l l c l a s s of surreal numbers (4.03:2), b ( x ) 6 Y.

< Y.

Let s

>

s

B

Note t h a t a(x)(B)

(resp. s

<

6 Y , b t ( o ( x ) ) 6 Y.

COROLLARY.

4.52

+

-

s ) i f f s(B) B

Hence

Q(X) =

(resp. - ) i f f x

> y B (resp.

thus a ( x ) l Y

+ (resp. -);

=

x

<

s.

iff 8 Since b ( x ) y

s , and b ( x ) = Y .

( r , < , b ' } is a f u l l c l a s s of s u r r e a l numbers.

THE NEAREST COMElON PREDECESSOR OF A SUBCLASS OF C

Let S be a non-empty s u b c l a s s of C . predecessor of S i f a S t s , f o r each SES.

aEE w i l l be c a l l e d a common

A cmmon predecessor c of S w i l l

be c a l l e d t h e n e a r e s t common predecessor of S, i n symbols c = ncp(S), i f given any common predecessor a of S t h e n a S t c .

(0)

S has a nearest common predecessor. PROOF.

Let m i n . ( b t ( S ) )

of t h e c h o i c e of seS,

=

Y , and l e t

for a l l a 6 61.

Further, i t is unique.

r

=

{a <

Clearly

Y:

r

S(a)

is independent

i s a lower-saturated

I,) I ) . subset of Y (1.021, which may b e e m p t y ( f o r example i f S = { ( +( Let 8 be t h e l e a s t ordinal t h a t i s g r e a t e r than a l l of t h e elements of Let S ~ E S ,and l e t c ( a ) a l l S E S and a l l a

<

=

s , ( a ) , f o r a l l ae[O,B).

B, c(a)

=

c is a common predecessor of S.

r.

By t h e c h o i c e of B , f o r

s ( a ) ; t h u s f o r a l l SES,

sB

-

c ; showing t h a t

Now l e t a be a common p r e d e c e s s o r of S ,

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.52 and l e t B '

=

c

.

=

ncp(S)

Since a

b'(a).

sBl,

=

181

f o r a l l SES, B ' 5 6, a n d a

=

c

Thus

B"

Now l e t d b e a n e a r e s t common p r e d e c e s s o r of S; t h e n d S t c A s a consequence c = d .

and c St d .

EXAMPLES.

( i ) ncp([s,l)

=

so.

( i i ) I f so is a common p r e d e c e s s o r of

S o , a n d S is t h e u n i o n S o and [ s o ) , t h e n s o = n c p ( S ) .

Let c = n c p ( S ) .

(1)

S 1 ~ Ss u c h

t h a t so 5 c 5

Assume f o r a moment t h a t e i t h e r ( I ) s

PROOF. (ii) s

< c

holds.

Let 6

=

or 0, f o r a l l SCS.

c ; which i s a b s u r d .

f o r a l l S E S , or

S i n c e c A ( B ) = 0 , a n d since c is a common p r e d e c e s -

bl(c). = +

> c

9,.

W i t h o u t l o s s of g e n e r a l i t y we may assume t h a t ( i )

f o r a l l SES.

sor of S, s^(B) =

There e x i s t s o ,

B)

Thus s

=

+,

Were t h e r e

8,hS

f o r a l l SES.

w i t h s,^(B) = 0 , s,

Hence

BEr,

which i s

absurd.

PROOF. so S c 6

bt(c)

<

8,.

Let

8,

<

8,

be i n {+IY, and l e t c

Since b'(s,)

= Y =

Y ; thus so f c f sl.

LEMMA.

b ' ( s l ) , and s i n c e

Hence s o

< c<

3,

<

By ( 2 1 , j ,

j,

and

3,

are unequal,

9,.

There exists a unique

- [Jol). A s s u m e , f o r a moment

Let Y b e t h e l e a s t e l e m e n t i n b ' ( J ) .

that there exists j,

ncp((jo,jl)).

n c p ( ~ s , , s , ) ) . By ( 1 )

Let J be a non-empty i n t e r v a l i n Z.

j o c J such that b f ( j o ) < b ' ( J PROOF.

=

i n J , for which b * ( j o ) = Y = b t ( j l ) .

< c <

j , , and b ' ( c )

<

Y.

Let c =

S i n c e J is a n i n t e r v a l ,

c i s i n J ; which i s a b s u r d .

THEOREM. joEJ

such t h a t b F ( j o )< b ' ( J PROOF.

(1)

Let J be a non-empty i n t e r v a l i n 2 .

-

The u n i q u e e l e m e n t

{ j , ) )is ncp(J).

Let j , be as d e f i n e d i n t h e Lemma, a n d l e t c

a n d t h e f a c t t h a t J is a n i n t e r v a l , we see t h a t

CEJ.

=

ncp(J).

Using

By c o n s t r u c t i o n

Norman L. A l l i n g

182 bl(j,) 5 bt(c).

that bt(c)

=

t h a t c = j,.

Since c

bt(j,,).

=

n c p f J ) , c St j,; t h u s b l ( c ) 5 b t ( j o ) ; and we see

Since

i s unique having t h e s e p r o p e r t i e s , we s e e

j,

o

B I B L I O G R A P H I C NOTE.

i n Ey has been d e f i n e d . 4.53

4.52

The n e a r e s t common p r e d e c e s s o r of two e l e m e n t s

See, e.g.,

[55, pp. 316-3171.

THE TREE STRUCTURE OF A FULL CLASS OF SURREAL NUMBERS

Let { F , < , b , Y ) b e a c l a s s of s u r r e a l numbers of h e i g h t Y ( 4 . 0 3 ) .

-

P r o c e e d i n g v e r y much a s we d i d f o r N o i n S e c t i o n 4.50, l e t XEF, and l e t {YEF: y < x a n d b ( y ) < a ] , b ( x ) = B ; t h e n B < Y. Let a < 8, l e t La(x) a n d l e t R,(x)

= {YEF:

y

F ( < , a ) , t h u s ( L a ( x ) , R,(x))

> x and b(y) <

a].

S i n c e B > a , x is not i n

is a Cuesta Dutari c u t i n F ( < , a ) .

{La(x)l Ra(x)}, and n o t e that x a c F ( = , a ) .

Let xu

S i n c e B > a , x f x a'

=

Recall

(4.50) t h a t Conway C24, p.291 c a l l s xa t h e u t h a p p r o x i m a t i o n t o x.

Let us c a l l yeF a p r e d e c e s s o r ( c f . ( 4 . 5 0 ) ) of x , a n d write y

( c f . ( 4 . 5 1 ) ) i f there e x i s t s a

<

s u c h t h a t y = xa

.


I f y is a n predeces-

sor of x we w i l l r e f e r t o x as a s u c c e s s o r ( c f . (4.50)) o f y .

x is t h e

immediate s u c c e s s o r of y i f y c t x , and i f t h e r e is no zcF f o r which y
(1)

C l e a r l y 0 is t h e o n l y element i n F t h a t has no p r e d e c e s s o r . Under < t , F is a p a r t i a l o r d e r c l a s s . Let t h e s e t of p r e d e c e s s o r s of x, pr,(x)

(2)

= (YEF: y < t x ) .

p r ( x ) i s a w e l l - o r d e r e d set under < t . Under < t , F is a tree. We w i l l refer t o

< t as t h e tree order on ( F , < , b , Y l ( c f . 4.53). --

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.53

I n S e c t i o n 4.51 we a l s o d e f i n e d t h e same terms o n Z ,

183 h o w e v e r i t was

To prove t h a t t h e two i d e a s are t h e same,

based o n a d i f f e r e n t d e f i n i t i o n .

i t s u f f i c e s t o prove t h e f o l l o w i n g . LEMMA.

Let X E N O , b ( x ) = Y , and l e t u ( x )

PROOF.

Let u s proceed by i n d u c t i o n o n Y .

b ' ( a ( x 1) %

x s

% %'

8

=

Let a

b'(sg).

<

6.

x ) i f f s > s (resp. s a % a %

<

If %

<

Y , a(x

%

= S

% a

+

(resp. -1 i f f x

sa) i f f s ( a ) =

%

%'

A s we have s e e n ( 4 . 5 0 : 5 ) ,

Using t h e f a c t t h a t ( x )

we see t h e f o l l o w i n g : a ( x B ) ( a ) =

(4.50:0),

<

=

= 3.

+

%

( r e s p . -1;

>

x

a

= x

a

(resp.

thus u(x ) %

=

o

u i s an i s a n o r p h i s m of { N o , < t ) o n t o {E,<,}.

COROLLARY.

THEOREM.

Let { F , < , b , Y ) and { F f , b q , < ' , Y }be f u l l c l a s s e s of s u r r e a l

n u m b e r s of h e i g h t 7 .

Each h a s a t r e e o r d e r , C t and


respectively.

The

unique s u r r e a l monomorphism f of F o n t o F ' ( T h e o r a 4.03) i s a n isomorphism of { F , < t I o n t o { F q , < t l ) .

THE PREDECESSOR CUT REPRESENTATION OF A SURREAL NUMBER

4.54

Let { F , < , b , Y } be a class of s u r r e a l numbers of h e i g h t Y ( 4 . 0 3 ) . L e t X E F ( = , B ) ;then %

B. (0)

<

Y.

I n S e c t i o n 4.54 we d e f i n e d x a , f o r a l l a

<

Thus we have t h e f o l l o w i n g .

x

=

{{x : x

PROOF.

a

a

<

x and a

<

{xu: x

>

x and a

< %I}.

S i n c e { F , < , b , Y } and {Z , < , b ' , Y ) a r e i s o m o r p h i c , i t s u f f i c e s

Y

t o e s t a b l i s h (0) f o r { Z y , < , b T , Y ) . To prove t h i s we need only prove ( 0 ) f o r ( r y , < , b f ) . Let y be t h e number d e f i n e d o n t h e r i g h t hand s i d e of ( 0 ) . S i n c e { Z , < , b ' } i s a f u l l c l a s s of surreal numbers ( 4 . 0 3 : 2 ) , b ' ( y ) S. b ' ( x ) =

184 Let a

B.

>

< 8.

Note t h a t x ( a ) =

+

(resp. -1 i f f x

(resp. y

<

x a ) i f f y ( a ) = + ( r e s p . -1;

B, we see t h a t x

=

y.

y

4.54

Norman L. A l l i n g

xa

>

xu ( r e s p . x

thus y[B = x.

The f o l l o w i n g w i l l be c a l l e d t h e p r e d e c e s s o r

< x and a <

>

x and a

(2)

Let (L,R) be t h e p r e d e c e s s o r c u t r e p r e s e n t a t i o n of x.

a

iff

Since b ' ( y ) 5

of x:

< 61).

((xu: xa

(xa: x

x

cut r e p r e s e n t a t i o n

(1)

B),

<

Then I L 1

+

IS(

= Ib(X)I.

4.60

ALTERNATIVE AXIOMS FOR A FULL CLASS OF SURREAL NUMBERS

W e w i l l now g i v e a n a l t e r n a t i v e s e t of a x i o m s f o r a f u l l c l a s s of

surreal numbers of h e i g h t B, t h e f i r s t set of axioms b e i n g g i v e n i n S e c t i o n

4.03.

If B = On, l e t [O,B)

d e n o t e On.

F i r s t we have t h e f o l l o w i n g O R D E R

AXIOM: (0)

Assume t h a t S is a n o r d e r e d class. We w i l l c a l l t h e f o l l o w i n g t h e BIRTH-ORDER AXIOM:

(B)

Assume t h a t t h e r e e x i s t s a map b of S o n t o [ o , ~ ) . S , < , b , B ) s a t i s f i e s (0) a n d (9). For a

-

b-'([O,aI),

<

8, l e t S ( < , a ) =

and l e t S ( - , a ) = b-' ( a ) .

S i n c e Conway o f t e n c a l l s XENO f q s i m p l e r f tt h a n YENO, i f b ( x )

<

b ( y ) , we

w i l l call t h e n e x t axiom a b o u t [ S , <, b ) t h e SIMPLE DENSITY AXIOM:

<

(SD) F o r a l l a t h a t x,

<

y

B , a n d a l l x,

<

x,.

<

x I E S ( = , a ) , t h e r e exists y c S ( < , a ) s u c h

I n t r o d u c t i o n t o t h e surreal number f i e l d No

4.60

105

S i n c e t h e f o l l o w i n g axiom resembles t h e TI -set c o n d i t i o n , a n d i t h a s

5

t h e f u l l n e s s c o n d i t i o n of

i n i t , we w i l l c a l l i t t h e FULL ETA

(4.03:2)

AXIOM:

(FE)

< 6 , and s u b s e t s

Given a L

< (y) <

<

L

R of S ( < , a ) , t h e r e e x i s t s YESs u c h t h a t

R , f o r which b ( y ) S u .

L e t [ S , < , b , B ) s a t i s f y (SD) a n d (FE) ( i n a d d i t i o n of ( 0 )a n d (B)), a n d l e t i t b e c a l l e d a new f u l l class of s u r r e a l numbers of h e i g h t Let J b e a non-empty i n t e r v a l i n S.

LEMMA 0.

ment x o ~ Js u c h t h a t ( b ( x , ) l

<

b(J

-

C l e a r l y t h e r e e x i s t s X,EJ f o r w h i c h b ( x , )

which b ( x , )

T h e r e e x i s t s a n ele-

C l e a r l y x, is u n i q u e .

{x,,]).

-

i t has a least

S i n c e b ( J ) i s a n o n - e m p t y s u b s e t of [ O , B )

PROOF. element a .

=

u.

< x,.

<

Let X , E J f o r

With o u t l o s s of

By t h e T h e S i m p l e D e n s i t y Axiom

(SD), t h e r e e x i s t s y E S ( < , a ) s u c h t h a t x, YEJ. S i n c e b ( y )

u.

Assume, f o r a m o m e n t , t h a t x, b x l .

g e n e r a l i t y , we may assume t h a t x,

B.

<

< x,.

y

S i n c e J is a n i n t e r v a l ,

a , we see t h a t u i s n o t t h e l e a s t e l e m e n t of b ( J ) ; which

i s absurd.

CONWAY'S SIMPLICITY THEOREM. S ( < , a ) be

given.

<

Let a

8,

and let subsets L

There e x i s t s a u n i q u e XES s u c h t h a t L

< (XI <

<

R of

R , for

which b ( x ) i s m i n i m a l .

PROOF. non-empty.

Let J

=

(YES: L

<

[y]

<

R).

By t h e F u l l Eta Axiom ( F E ) , J is

By Lemma 0, J has a u n i q u e e l e m e n t x h a v i n g m i n i m a l b i r t h d a y .

0

Note t h a t s i n c e C o n w a y ' s S i m p l i c i t y Theorem h o l d s , x i s u n i q u e l y

d e t e r m i n e d by L a n d R . d e n o t e x.

F o l l o w i n g Conway, l e t t h e symbol ( L I R I b e u s e d t o

C o n t i n u i n g t o u s e Conway's n o t a t i o n a n d c o n v e n t i o n s C24, p . 41, L

R

L

we w i l l w r i t e x a s ( x ( x 1 , w h e r e [ x 1 L R w i t h y = Iy Iy 1 .

=

R L and [x 1

=

R.

Let y b e i n S,

186

(4)

4.60

Norman L. A l l i n g

x 5 y i f and o n l y i f

(i)

(ii) x

<

Assume t h a t ( i ) h o l d s .

PROOF.

< x

S i m i l a r l y xL

Then x 4 y

5 y , and hence xL

T h u s we s e e t h e f o l l o w i n g : ( * ) yL

L

y for a l l x

<

L

<

. yR, and hence x

y; t h u s ( i i ) h o l d s .

<

y

R

.

Assume now t h a t

Also assume f o r a moment, t h a t (1) i s f a l s e : i . e . , t h a t y < x.

( i i ) holds.

for all x

<

yR f o r a l l y R , and xL

, x R , y L , and y R .

we s e e t h a t b ( y )

<

see t h a t b ( x )

<

b(x).

<

y

< x <

y

R

,

<

a n d (**I xL

y

< x < xR ,

Using t h e Conway S i m p l i c i t y Theorem a n d ( * ) ,

Using t h e Conway S i m p l i c i t y Theorem and ( * * ) , we

b ( y ) ; which i s a b s u r d .

The c o n t r a p o s i t i v e of ( 4 ) i s t h e f o l l o w i n g :

(5)

(i)

x

<

y i f and o n l y i f

( i i ) x 4 yL, for sane y L , or

5 y, f o r sane x

S i n c e x i s t h e s i m p l e s t element

< [ y ) < R f o r which in S f o r which L < [ x < R , b ( x )

o

THEOREM 0.

Every new f u l l c l a s s o f s u r r e a l n u m b e r s of h e i g h t 6,

[ S , < , b , B ] i s a f u l l class of surreal numbers of h e i g h t PROOF.

.

By ( F E ) , t h e r e e x i s t s YESs u c h t h a t L

PROOF.

4 b(y) 5 a .

R

For a l l Conway c u t s (L.R) i n S ( < , a ) , x = [LIRIcS 5 , a ) .

LEMMA 1 .

b(y) 5 a.

xR

B (4.03).

Apply t h e Conway S i m p l i c i t y Theorem and Lemma 1 .

THEOREM 1 .

E v e r y f u l l c l a s s o f s u r r e a l n u m b e r s of h e i g h t

B,

[ S , < , b , B ] , i s a new f u l l class of surreal numbers of h e i g h t 6. PROOF.

-

C l e a r l y (0) a n d (8) h o l d .

of S ( < , a ) , and l e t y

(LIR].

As t o ( F E ) , l e t L

<

R be s u b s e t s

Since [ S , < , b , e ] i s a f u l l Class of surreal

n u m b e r s , y c S ( S , a ) ; t h u s (FE) h o l d s .

Let x

<

y be i n S ( - , a ) .

L R Let ( x ,x 1

and ( y L , y R ) b e ( t i m e l y ) Conway c u t r e p r e s e n t a t i o n s f o r x a n d y ( 4 . 0 2 ) .

BY

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

4.60

( 5 ) , ( a ) t h e r e e x i s t s yL s u c h t h a t x S y

x

R

5 y.

L b(y )

<

L

, o r ( b ) t h e r e e x i s t s xR s u c h t h a t

Assume t h a t ( a ) h o l d s , t h e n x 5 y

b(y)

holds, then x

<

L

<

b(x), x f yL; and hence x

= a =

L

xR f y; and hence x

<

x

L

R

< y.

< y

L

<

R

Thus (SD) h o l d s .

COMMENTARY ON THE NEW SET OF A X I O M S . l i k e ( 0 ) and ( B ) seem f o r c e d .

R

S i n c e ( y Iy ) i s t i m e l y ,

y.

Assume t h a t ( b

y. R

<

S i n c e ( x Ix ) i s t i m e l y , b ( x )

xR S y.

187

b(x) = a

=

b(y)

o

C l e a r l y s a n e t h i n g v e r y much

The F u l l E t a Axiom ( F E ) , i s a n a p p a r e n t l y

s l i g h t l y weaker v e r s i o n of the o l d f u l l n e s s axiom (4.03:2).

If a n y t h i n g i s

novel about t h i s new s e t of axioms i t would seem t o b e t h e S i m p l e D e n s i t y Axiom, ( S D ) .

I n s e v e r a l of t h e e x p l i c i t c o n s t r u c t i o n s , t h i s c o n d i t i o n

arises very n a t u r a l l y .

tion (4.02:3,ii),

For example, i t does i n t h e C u e s t a D u t a r i c o n s t r u c -

and i n t h e sign-expansion construction (4.52:2).

One c o u l d make a s l i g h t g e n e r a l i z a t i o n of ( B ) by a l l o w i n g b ( S ) t o b e a n y s u b c l a s s C of On.

T h i s c o u l d be c o n v e r t e d t o (81, b y l e t t i n g g be t h e

o r d e r - p r e s e r v i n g map of C o n t o [O, f3)

, and

by d e f i n i n g a new b i r t h - o r d e r map

b f t o be g - b .

S i n c e t h e F u l l Eta Axiom ( F E ) , d e a l s w i t h t w o t h i n g s , i t c o u l d b e b r o k e n u p i n t o t h e f o l l o w i n g two t h e f o l l o w i n g two axioms: the ETA AXIOM ( E ) t h a t asserts t h a t s u c h a n element y e x i s t s ; and t h e FULLNESS A X I O M ( F )

(E) i s a d e n s i t y ( F ) t e l l s u s some-

t h a t asserts t h a t s u c h a y e x i s t s f o r which b ( y ) 5 a.

c o n d i t i o n and is a n a l o g u e s w i t h a n rl -set c o n d i t i o n . 5 t h i n g a b o u t e l e m e n t s of h e i g h t 2 a i n t h e t r e e s t r u c t u r e of [ S , < , b , B } . a l s o c o n t r o l s how l a r g e b ( S(<,a).

{ - I- 1 )

<

On t h e o t h e r hand, (SD) d e a l s w i t h t h e p o i n t s of h e i g h t

between x, and x , .

C l e a r l y (FE)

=

=

1.

L e t u s s e e i f i t s a t i s f i e s (FE).

t h e empty s e t , L

=

0

=

R.

Let b map

Clearly {S,<,b,f3} satisfies ( 0 ) a n d ( B ) . Let a

Let YES; t h e n L

s e e t h a t {S,<,b,B] s a t i s f i e s (FE).

a in S

(F) + ( E ) .

Let S be any o r d e r e d c l a s s , s u c h t h a t IS1 2 2.

EXAMPLE 0.

a l l of S t o OEOn, and l e t 6

It

is, when a p p l i e d t o a Conway c u t i n

<

f3;

<

then a

{y]

<

R.

=

0.

S i n c e S(<,O)

Since S

By a s s u m p t i o n , I S 1 2 2.

=

S(S,O),

Let x,

<

is

we

x 1 be

188

Norman L. A l l i n g

i n S(=,O). (B)

t

Since t h e r e i s no p o i n t y i n S ( < , O ) , (SD) f a i l s .

PROPOSITION 0 .

If { S , < , b , B } s a t i s f i e s

IS(=,O)l Let S

EXAMPLE 1 .

B = 2.

+

-

(B),

(O),

a n d (SD); a n d i f S

= 1.

[ c , d , e, f , g ) , ordered l e x i c o g r a p h i c a l l y .

Let

Let b ( e ) = 0 , and l e t t h e b i r t h d a y map b map c , d , f , and g t o 1 .

Clearly { S , < , b , 2 ] s a t i s f i e s ( 0 ) and (B).

<

(y]

Note (FE) t a l k s a b o u t e x i s t e n c e

L e t a ( i n axiom ( F E ) ) be 0; t h e n L and R are empty,

not uniqueness.

<

Hence ( 0 )

(FE) h o l d and (SD) f a i l s i n t h i s Example.

is non-empty, t h e n

L

4.60

R f o r a l l YES, (FE) h o l d s a t t h i s l e v e l .

Now l e t a

=

1.

Since Having

d e a l t w i t h t h e Conway c u t ( 0 , 0 ) , we h a v e o n l y t w o more Conway c u t s of S(<,1)

t o investigate:

( i ) ( 0 , i e ) ) and ( i i ) ( [ e l , 0 ) .

p r e s e n c e of c and d s u f f i c e t o s a t i s f y (FE). f and g s u f f i c e t o s a t i s f y (FE); t h u s {S,<,b,2)

I n case ( i i

:n c a s e ( I ) , t h e

, the

satisfies (0)

S i n c e t h e r e i s no element i n S between c and d c S ( - , l ) ,

+

p r e s e n c e of

fB)

+

(FE).

S , < , b , B ] does not

s a t i s f y (SD). Thus from Examples 0 and 1 we see t h a t we have proved t h e f o l l o w i n g :

(SD) i s independent of (0) t (B) + ( F E ) .

THEOREM 2.

Let S be any o r d e r e d c l a s s .

EXAMPLE 2 .

C l e a r l y ( S , < , b , B ] s a t i s f i e s (0) + (B).

o n t o s m o C0,B). Since

Let b be any i n j e c t i o n of S

IS(=,a)l

1 , for all a

=

< 6;

(SD) i s v a c u o u s ,

t h u s ( 0 ) + (B) + (SD) h o l d , f o r t h i s

example. EXAMPLE 3 .

on S.

Let

B

2

3, let S

-

[O,B),

<

B.

and l e t b be t h e i d e n t i t y map

-

A s we saw above, [ S , < , b , B J s a t i s f i e s (0) + (B) + (SD). S i n c e B 2 3,

there exist a

< B

such t h a t a

+

2

Let L

(FE) f a i l s f o r t h i s Conway c u t i n S(<,a + 2 ) . THEOREM 3.

{ a ] and l e t R = { a + 11.

Thus we have t h e f o l l o w i n g :

(FE) i s independent of (0) + (B) + (SD).

BIBLIOGRAPHIC NOTE.

The m o t i v a t i o n f o r t h i s S e c t i o n is d e s c r i b e d a t

t h e e n d of S e c t i o n 4.03.

The Simple Density Axiom grew out of s u c h t h i n g s

as the proof of (5) i n C6, p. 2441.

The i d e a o f u s i n g i t as a n axiom is

4.60

189

I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No

d u e t o Timothy A . S w a r t z , who U n i v e r s i t y of R o c h e s t e r .

- at

- was

t h e time

Using (0) + (B)

an u n d e r g r a d u a t e a t t h e

(SD), S w a r t z w a s a b l e t o p r o v e

+

an i n t e r e s t i n g embedding theorem f o r s u c h s y s t e m s ( d u r i n g t h e f a l l of

1985).

When h e a d d e d axioms ( 0 ) a n d ( 2 ) of [71 t o h i s s y s t e m s , i t became

e q u i v a l e n t t o (0) + ( 8 ) 4.61

+

(SD)

+

(FE).

CONWAY CUTS, ORDERED BY EXTENSION, AND CUESTA DUTARI CUTS

L e t X be a n o r d e r e d s e t .

Recall (4.02) t h a t C D ( X ) d e n o t e s t h e s e t of Recall a l s o t h a t we p u t a n o r d e r o n

a l l Cuesta Dutari c u t s i n X (1.20).

C D ( X ) i n S e c t i o n 4.02, u n d e r which i t i s a n o r d e r e d s e t ( 4 . 0 2 : 2 ) .

L e t CC(X) b e t h e set of a l l Conway c u t s i n X (1.20). be i n C C ( X ) .

(L,,R,)

L e t (L,,R,)

( L 1 , R I ) w i l l be c a l l e d a n e x t e n s i o n o f ( L , , R , ) ,

and if Lo

is a s u b s e t of L , and R,

i s a s u b s e t of R , .

o r d e r s e t under e x t e n s i o n .

C l e a r l y t h e u n i o n of any non-empty s u b s e t T o f

Clearly

C C ( X ) is a p a r t i a l

C C ( X ) , w h i c h i s o r d e r e d by e x t e n s i o n , is a Conway c u t i n X t h a t i s a n

By Z o r n ' s Lemma ( s e e e . g . ,

e x t e n s i o n o f a l l t h e Conway c u t s i n T .

we have p r o v e d p a r t ( i ) of t h e f o l l o w i n g :

p.33]), (0)

C50,

(1)

Every (L,RlsCC(X) h a s a maximal e x t e n s i o n (L*,R*) i n CC(X).

( i i ) C D ( X ) i s t h e set of a l l maximal e l e m e n t (L*,R*) of C C ( X ) .

PROOF.

I n o r d e r t o p r o v e ( i i ) , assume f o r a moment, t h a t ( L * , R * )

not a Cuesta Dutari cut i n X. u n i o n of L* and R*.

x

>

y , t h e n l e t R**

(L**,R**)

-

If ( i ) t h e r e exists YEL s u c h t h a t x

b e t h e u n i o n of L* and {x} a n d l e t R** e x t e n s i o n of ( L * , R * ) ,

which i s a b s u r d .

R*.

<

y, t h e n l e t L**

C l e a r l y (L**,R**)

is a proper extension of (L*,R*),

t h a t ( i ) a n d ( i i ) d o n o t h o l d ; t h e n L*

-

i s a proper

If ( i i ) t h e r e e x i s t s Y E R s u c h t h a t

b e t h e u n i o n of R* a n d { X I a n d l e t L**

-

is

Then t h e r e e x i s t s x i n X which i s n o t i n t h e

<

{x}

which i s a b s u r d .

< R*.

L*.

Clearly

Assume now

Let L** be t h e u n i o n of

L* and { x } a n d l e t R** R*. Then (L**,R**) i s a p r o p e r e x t e n s i o n of (L*,R*), which i s a b s u r d . C o n v e r s e l y , c l e a r l y e v e r y C u e s t a D u t a r i c u t i n X i s a maximal Conway c u t in X .

Norman L. A l l i n g

190

Let (L,R)cCC(X). a n d l e t R-

letL

(1)

+

=

-

X

Let L- = {xEX: t h e r e exists Y E L s u c h t h a t x 6 y } ,

Let R +

L-.

4.61

(xcX:

=

t h e r e e x i s t s ycR s u c h t h a t x L y } , a n d

+

= X - R .

- -

(i) (L ,R

+

a n d (L , R

( i i ) Let ( L * , R * )

+

a r e maximal extensions of (L,R) i n C C ( X ) .

b e a maximal e x t e n s i o n of (L,R) i n C C ( X ) .

t h e l i n e a l o r d e r i n g o n CD(X), (L-,R-)

Then, i n

<, ( L t , R + ) .

I (L*,R*)

PROOF.

C l e a r l y L- is t h e smallest l o w e r - s a t u r a t e d s u b s e t of X t h a t

contains L.

S i n c e L* is a l o w e r - s a t u r a t e d s u b s e t of X t h a t c o n t a i n s L , L-

is a s u b s e t of L*; hence (L-,R-) smallest u p p e r - s a t u r a t e d

5 (L*,R*) ( 4 . 0 2 : 1 , i i i ) .

C l e a r l y R + is t h e

s u b s e t of X t h a t c o n t a i n s R .

u p p e r - s a t u r a t e d s u b s e t of X t h a t contains R , (L*,R*) S (L+,R+) ( 4 . 0 2 : 1 , i i I ) .

Rt

S i n c e R* i s a n

i s a s u b s e t of R * ;

hence

o

Let ( S , < , b , B ) s a t i s f y ( 0 ) + ( B )

+

( F E ) (4.60), l e t a

<

6 and l e t

(L*,R*) b e I n CD(S(< , a ) ) . (2)

<

If yES(S,a) s u c h t h a t L*

PROOF.

R* t h e n b ( y )

a.

o

For a l l ( L , R ) E C C ( S ( < , a ) t h e r e e x i s t s y s S ( - , a )

PROOF.

=

S i n c e (L*,R*) i s a Cuesta Dutari c u t i n S ( < , a ) , t h e u n i o n of

L* and R* is S ( < , u ) ; t h u s b ( y ) L a .

(3)

<

{y]

such t h a t L

By ( 0 1 , ( L , R ) h a s a maximal e x t e n s i o n ( L * , R * )

w h i c h i s a n e l e m e n t of C D ( X ) . which t h e f o l l o w i n g h o l d s : L*

i s a s u b s e t of R*,

<

<

{y}

<

R.

i n CC(S(<,a)),

By (FE) a n d ( 2 ) , t h e r e e x i s t s y ~ S ( = , a )f o r {y]

<

R*.

we c o n c l u d e t h a t L < { y )

S i n c e L is a s u b s e t of L * a n d R

<

R.