Chapter 4 The Preparation of Molecular Sieves

Chapter 4 The Preparation of Molecular Sieves

77 Chapter 4 THE PREPARATION OF MOLECULAR SIEVES . Jansen A. S y n t h e s i s o f z e o l i t e s J. C B. S y n t h e s i s o f A1P04-based m o...

2MB Sizes 20 Downloads 103 Views

77

Chapter 4

THE PREPARATION OF MOLECULAR SIEVES

. Jansen

A. S y n t h e s i s o f z e o l i t e s

J. C

B. S y n t h e s i s o f A1P04-based m o l e c u l a r s i e v e s

S.T. W i l s o n

A. S y n t h e s i s o f z e o l i t e s

J.C. Jansen U n i v e r s i t y o f Technology D e l f t , L a b o r a t o r y o f Organic Chemistry, J u l i a n a l a a n 136, 2628 BL D e l f t , The N e t h e r l a n d s

I . INTRODUCTION a . General

Nature

provided

mankind w i t h z e o l i t e s ( r e f . 1 ) . Massive z e o l i t e d e p o s i t s have

been d i s c o v e r e d a t many p l a c e s i n t h e w o r l d ( r e f . 2). The o c c u r r e n c e o f n a t u r a l zeolites

can

systems ( r e f s Natural

.

be

assigned

3,4) .

zeolites

t o c e r t a i n g e o l o g i c a l environments o r h y d r o l o g i c a l

generally

form

by

reaction

of

mineralizing

s o l u t i o n s w i t h s o l i d a l u m i n o s i l i c a t e s . The main s y n t h e s i s parameters the

c o m p o s i t i o n o f t h e h o s t r o c k and i n t e r s t i t i a l s o l u t i o n s ; pH

-

aqueous are:

(i)

10, ( i i ) t h e

t i m e ; thousands o f y e a r s and ( i i i ) t h e temperature; o f t e n < 100 'C. The

first

systematic

s t u d i e s on z e o l i t e s y n t h e s i s c o u l d t h u s be g u i d e d by

t h e g e o l o g i c a l and m i n e r a l o g i c a l f i n d i n g s o f t h e n a t u r a l s p e c i e s ( r e f . 5 ) . From 1946

on

many a d d i t i o n a l z e o l i t e t y p e s w i t h o u t a n a t u r a l c o u n t e r p a r t have been

s y n t h e s i z e d ( r e f . 6 ) . The e v o l u t i o n i n t h e

preparation

of

one

of

the

most

s t u d i e d z e o l i t e s i s i l l u s t r a t e d i n F i g u r e 1 by t h e number o f papers and p a t e n t s on t h e m a t e r i a l denoted as ZSM-5 ( r e f . 7 and S e c t i o n

XI1 o f t h i s c h a p t e r ) .

78

NUMBER OF REPORTS

25 20-

15-

L

10-

-

.

5-

o = m n , r - , I

1972

1975

,

,

,

,

,

1985

1980

1990

Fig. 1. The annual number of papers ( 0 )and patents (B) on the preparation of zeolite ZSM-5 since the first publication in 1972.

Throughout the last four decades molecular sieves were mainly prepared by precipitationlcrystallization of an aqueous mixture of reagents at 6 < pH < 14 and temperatures between 100-200 OC. As shown in Scheme 1 a relatively large effort is needed on the optimal preparation procedure of the reactant mixture, EFFORT

1

3

Scheme 1. The effort for the preparatory isolation (3) versus time.

(1).

TIME

the reaction (2) and the

whereafter the hydrothermal reaction process ( 2 ) runs autoclaved for a few days or weeks without manual intervention. Isolation ( 3 ) o f the crystalline material i s a simple final step in the synthesis procedure.

79

of

The z e o l i t e s y n t h e s i s f i e l d i s n o t o n l y extended and r e f i n e d by u s e f u l d a t a modern z e o l i t e c h a r a c t e r i z a t i o n and a p p l i c a t i o n t e c h n i q u e s b u t a l s o by

i n t e r f a c i n g areas o f p h y s i c a l , chemical and mathematical science, see Scheme 2 .

NMR Modern chemicals and p h y s i c a l methods

Nucleation/

Computational

c r y s t a l 1 iz a t i o n

model ing

Scheme 2. Areas o f chemical, p h y s i c a l and mathematical

science

interfacing

the z e o l i t e preparation f i e l d .

Studies i n the

sol-gel

chemistry

and

NMR

analysis

area

have

contributed

s u b s t a n t i a l l y t o t h e knowledge o f t h e hydrothermal r e a c t i o n process. Papers and r e v i e w s r e g a r d i n g s u b j e c t s w i t h i n t h e d i f f e r e n t areas

which

are

mentioned i n Scheme 2 and which a r e o f i n t e r e s t f o r z e o l i t e s y n t h e s i s a r e g i v e n i n Table 1. Besides

the

annually

efforts o f "zeolite synthesis

of

porous

new z e o l i t e

scientists"

in

the

preparations t h e extensive exploratory last

decade

has

resulted

in

the

m a t e r i a l s l i k e t h e A1P04-group ( p a r t B o f t h i s c h a p t e r ) ,

the metal-sulfides ( r e f .

30)

and

the

clathrasils

(ref.

31).

Accordingly,

z e o l i t e s y n t h e s i s appears t o remain a p r o m i s i n g area f o r f u t u r e r e s e a r c h . The c r y s t a l l i n i t y o f d i f f e r e n t s y n t h e s i s p r o d u c t s Plate

1.

The

is

well

illustrated

in

morphology and forms o f t h e c r y s t a l s g i v e a f i r s t i n d i c a t i o n o f

t h e t y p e o f z e o l i t e p r e s e n t and t h e p u r i t y o f t h e p r o d u c t .

80

Table 1. Examples of subjects from areas o f physical, chemical and mathematical science which delivered contributions t o the knowledge o f t h e zeolite synthesis process together with references. Area

Subject

Reference

Sol -gel chemistry

Hydrolysis and condensation o f silicates The sol-gel process

8,9 10

NMR

Structure of (a1umino)silicate-clusters in solution

11,12

Computational model i ng

Lattice energy calculation Local interactions in lattice

13

Modern chemical and physical methods

A1 koxides as reagents Fluorides as reagents and mineralizing agents Gravity - reduced - elevated CVD (chemical vapour deposition) Microwave

15

Nucleationlcrystallization theorypractise Zeal i t e Characterization Appl i cat i on

14

16 17

18 19 20

Mathematical analyses o f zeolite Crystallization. A review Are the general laws o f crystal growth applicable to zeolite synthesis

21

ZSM-5/- 1 1 intergrowth Catalysis - The catalytic site activity - The catalytic properties and the crystal size

23

22

24,25,26 27

81

b . T h i s chapter I n t h i s p a r t of t h e c h a p t e r t h e p r e p a r a t i o n o f two subgroups o f t h e micro-porous t e c t o s i l i c a t e s (see Chapter 3 ) i.e. t h e a l u m i n o s i l i c a t e s and s i l i c a t e s , b o t h i n c l u d i n g t h e c l a t h r a s i l s , w i l l be present ed. The d i v i s i o n between a l u m i n o s i l i c a t e s

and

silicates

i s o f t e n discussed on A l - p o o r r a t h e r

th an A l - f r e e l e v e l ( r e f . 3 0 ) . The

a l u m i n o s i l i c a t e s , s t a r t i n g f r o m Si/A1 r a t i o 1 up t o e.g. Si/A1 r a t i o o f

10000, do r e v e a l t h e presence o f A1 i n s y n t h e s i s , i n c h a r a c t e r i z a t i o n

as

well

as i n a p p l i c a t i o n , see F i g . 2 ( r e f . 31). The A l - p o o r zeo i t e s show no, a t l e a s t no d e t e c t i b l e , Al-dependent behaviour and a r e t h e r e f o r e , t o g e t h e r w i t h t h e A l - f r e e m a t e r i a l s , denoted as s i l i c a t e s . The presence o f aluminium, t h e g u e s t - h o s t i n t e r a c t i o n and t h e n u c l e a t i o n and crystallization

11

contribute

to

the

synthesis

event s

which

are

c h r o n o l o g i c a l l y d e s c r i b e d i n S e c t i o n s I 1 t o V I I o f t h i s chapt er. S e c t i o n V I I I i s focussed on t h e r e a c t i o n parameters. I n S ec t io ns I X and X t h e s i l i c a t e s and c l a t h r a s i l s a r e present ed. Examples

of

research

syntheses

performed w i t h c e r t a i n procedures and/or

m i x t u r e c omp os it i o n s a r e l i s t e d i n S e c t i o n X I . S ec t io ns X I 1 and X I 1 1 c o n t a i n l i t e r a t u r e sources on z e o l i t e p r e p a r a t i o n s and t h e re f e re nc es , r e s p e c t i v e l y .

10

F i g . 2. The

100

1000

10000

r e l a t i v e c a t a l y t i c a c t i v i t y o f H-ZSM-5 versus A1 c o n t e n t on ppm

s c a l e ( r e f . 31).

82

Plate 1. The crystalline nature o f zeolites. a) Single crystals o f zeolite A and b) and c) o f analcime and o f natrolite, respectively. d) A batch o f zeolite L, e) typical needle aggregates o f zeolite mordenite and f ) o f Nu-10.

83

I I . PREPARATORY a. R e a c t a n t s The

chemical

sources

which a r e i n p r i n c i p l e needed f o r z e o l i t e syntheses a r e

g i v e n i n Table 2. T a b l e 2. Chemical sources and t h e i r f u n c t i o n i n z e o l i t e s y n t h e s i s . Sources

Function(s)

Si02

P r i m a r y b u i l d i n g u n i t ( s ) o f t h e framework

A102

O r i g i n o f framework charge

OH-

Mineralizer, guest molecule

A1 k a l i c a t i o n , t e m p l a t e

C o u n t e r i o n o f framework charge, g u e s t m o l e c u l e

Water

Solvent, guest molecule

Within

each

t y p e o f source a v a r i e t y o f chemicals ( r e f . 32), has been used as

t h e d i f f e r e n c e s i n p h y s i c a l n a t u r e and chemical i m p u r i t i e s the

zeolite

synthesis

kinetics

(ref.

34)

and

strongly

influence

sometimes t h e p r o p e r t i e s as

c a t a l y s t s ( r e f s . 24-27). Data

on

t h e s p e c i f i c a t i o n s o f r e g u l a r l y used chemical sources a r e g i v e n i n

t h e f o l l o w i n g survey. - SiO -sources

2

Recent s y n t h e s i s

papers

of

the

Proceedings

of

the

International

Zeolite

Conferences ( r e f s . 34-37) and o f o t h e r z e o l i t e conferences ( r e f s . 38-40) r e v e a l t h a t f o r l a b o r a t o r y s c a l e p a r t i c u l a r S i - s o u r c e s a r e o f t e n used, see T a b l e 3a. Depending

upon

the p a r t i c u l a r synthesis a c e r t a i n Si-source might favour a

s p e c i f i c c r y s t a l l i z a t i o n . For i n s t a n c e , t h e A e r o s i l 200 p r o d u c t can be dissolved

compared

to

the

Optipur

and

d i f f e r e n c e i n p a r t i c l e s i z e , see F i g u r e 3. influence

the

rate

of

nucleation

Gold As

the

impurities

are

more

than

rate

of

dissolution

can

and c r y s t a l l i z a t i o n ( r e f . 41) t h e p r o d u c t

f o r m a t i o n can be a f f e c t e d . A t t h e same t i m e t h e A1 replacing

readily

l a b e l m a t e r i a l because o f t h e

10000

times

and

other

potentially

Si

h i g h e r i n t h e A e r o s i l 200

p r o d u c t compared t o t h e O p t i p u r and Gold l a b e l m a t e r i a l s . The

influence

of

i m p u r i t i e s can change t h e c r y s t a l f o r m ( r e f . 42) and t h e

chemical p r o p e r t i e s ( r e f s . 2 4 - 2 6 ) .

84

Ta ble 3. S p e c i f i c a t i o n s and t h e r e f e r e n c e s o f r e c e n t , r e g u l a r used sources, and high-p u r e ,

*

S i - , and

*

Al-sources.

Specifications S i -s o urc e ( a )

Phys.

Reference

Chem.

A1 -s o urc e ( b )

manufacturer

i m p u r i t i e s (ppm)

Si 7 icon compounds S i (OCH3)4

Tetramethylorthosilicate

liquid

Na,Ca < . 5

liquid

A1,Pt < .2

Merck

(TMOS) S i (OC2H5 14 Tetraethylorthosilicate (TEOS)

Na2Si03.9H20

A1 < 200

"

( o r Na2H2Si04.8H20)

Fe < 120

Q u a r t z Co.

Na20 11%, S i 0 2 29% Water g l a s s

T i < 60

Colloidal silica L u ~ o x - A S- 40 SiO

NH4

I

heavy m e t a l s < 50

A1 < 500

sol

DuPont de Nemours

2r

40 w t % (counterion)

Fe

LU ~ O X -H S -4 0

< 50

Ti B < 10

Si0 2 40 w t % Na'

N" Phi 1 id e l p h i a

(counterion)

Fumed silica A e ro s i 1-200

Dp

-

A1 < 10 12 nm

CAB-0-SIL M-5

* Silica Optipur Gold l a b e l

- 200 pm Dp - 800 pm

Dp

Fe < .6

Degussa

T i < 10

BDH

A1 < .001

Merck

Fe < 0.01

Aldrich

85 Table 3, c ont in u e d

-

Riedel de Hahn

NaA102 Fe < 4

Na20 54%

C a r l o Erba BDH L t d .

Sodium alumin at e

- AlOOH Pseudo-boehmite A1203 70% H20 30%

Dp

- mm Fe < 4 T i < 40

Vista

Fe < 3

Merck

Fe < 0.01

Baker

Catapal - B

-

A1(OH)3

G i bbsi t e

- A1 (N03)3.9H20

Dp

- A1203

*

-

nm

Aluminiumoxide ( U l t r e x )

T h ere f o re , a c a r e f u l c h o i c e o f t h e r e a c t a n t s i s

needed.

The

h i g h grade

Si-

a l k o x i d e s o f which even double a l k o x i d e s l i k e -Si-0-A1- a r e a v a i l a b l e ( r e f . 43) do n o t

have

the

above

d i s c u s s e d disadvantages,

except

for

the

rate

of

h y d r o l y s i s o f t h e a l k o x i d e groups.

F i g . 3.\ SEM photographs of (a) O p t i p u r , (b) Gold l a b e l , and (c) A e r o s i l 200.

86

- A102 Often

source used

Al-sources,

collected

from

t h e same r e f e r e n c e s as g i v e n f o r t h e

S i - s o u r c e s , a r e l i s t e d i n T a b l e 3b t o g e t h e r w i t h t h e

main

chemical

impurity.

Though t h e v e r y p u r e A1203 p r o d u c t c o n s i s t s o f s m a l l p a r t i c l e s i t i s n o t e a s i l y d i s s o l ved. - Alkali c a t i o n / t e m p l a t e The i n o r g a n i c c a t i o n s i n t h e z e o l i t e s y n t h e s i s a r e m a i n l y a l k a l i n e o r ions.

ammonium

The o r g a n i c c a t i o n s / t e m p l a t e s used may be d e v i d e d i n charged and n e u t r a l

molecules c o n t a i n i n g f u n c t i o n a l atoms o r groups. The l a r g e

number

of

organic

molecules

listed

in

several

p u b l i c a t i o n s ( r e f s . 44, 45) t o g e t h e r w i t h t h e s p e c i f i c z e o l i t e p r o d u c t

formed.

To

used

illustrate

in in

zeolite

synthesis

is

extensively

g e n e r a l t h e v a r i a t i o n i n o r g a n i c t e m p l a t e m o l e c u l e s some o f

t h e more common t e m p l a t e s a r e l i s t e d i n Table 4. -

on-

Most z e o l i t e syntheses a r e performed under b a s i c mineralizing

agent.

A

second

agent

is

F-

conditions (refs.

using

OH-

as

a

16 and 46) o f which t h e

d i f f e r e n t n a t u r e compared t o OH' w i l l be d i s c u s s e d i n t h e s e c t i o n

on

reaction

parameters. Both anions a r e t h e c o u n t e r i o n o f t h e i n o r g a n i c o r o r g a n i c c a t i o n s used the

for

syntheses. Depending upon t h e q u a l i t y o f t h e m i n e r a l i z i n g agent i m p u r i t i e s

such as A13'

and Fe3' a r e p r e s e n t a t ppm un t s c a l e .

- The overall

reactant mixture

I n q e n e r a l t h e chemical b e h a v i o u r o f imDuri i e s 1 ike Fe3' importance

compared

to

A13'

in

high

Si/A1

zeolites

c a t a l y s i s when based on Bronsted a c t i v i t y . However,

in

and T i 4 + a r e o f m i n o r i n t h e heterogeneous the

case

of

an

all

s i l i c a z e o l i t e , o r m o d i f i e d z e o l i t e s l i k e B-ZSM-5, Fe-ZSM-5 and Ga-ZSM-5 t r a c e s o f A13+ f r o m r e a c t a n t s as g i v e n i n T a b l e 3 may p l a y an unexpected dominant r o l e

in

t h e B r o n s t e d a c t i v i t y ( r e f s . 24-26). E x t e n s i v e i n f o r m a t i o n on t h i s p o i n t i s

g i v e n i n Chapter 5 on t h e m o d i f i c a t i o n o f influence

of

zeolites.

i m p u r i t i e s f r o m r e a c t a n t s i s K'.

r e t a r d e d by f a c t o r s when

'K

Another

example

of

the

The c r y s t a l l i z a t i o n t i m e can be

i s p r e s e n t i n t h e syntheses o f e . g . z e o l i t e Na-A o r

Na-ZSM-5 ( r e f s . 4 7 , 4 8 ) . I m p u r i t i e s l i k e t r i v a l e n t metal i o n s sometimes change p h y s i c a l c o n d i t i o n s i n t h e r e a c t i o n m i x t u r e i n d i c a t e d by t h e c r y s t a l f o r m o r morphology ( r e f . 42).

87

Table 4. Type of o r g a n i c templates, Organic

f u n c t i o n a l atoms/groups and r e f e r e n c e s .

-__

F u n c t i o n a l atom/group

templ a t e

Ref.

Organic

F u n c t i o n a l atom/group

Ref

templ a t e

-

~

amine

49

n

-NC" n=4,5

N

50 51

3

52

d i -amine

N

~

N 53

54

ammon ium ' P C

' w n n=4,5

-is -+n Cn/NLCn n=4,5

G5

I

I

C-OH

e r y t h r i to1

:N- ( Cn-OH) n=2,3

amine t alcohol

66

)(

~=1-3 ammonium

I

t

a1 cohol

67

-~+-c,-oH n=2

55 acetal

5G amine

-NGO

t ether

69

57 58

di-ammonium

C-OH HO-C-C-C-OH

penta-

N - o x i d e t ammonium

59 phosphonium tri-ammonium

+ A + _ 70

-0-NGN

71

I

-P+I

60

NA +G N

amine t ammonium a1 cohol

Cn-OH

HO-Cn-OH

63 di-phosphonium

n=2-6 HY

tri -01

72

62

n=1-6 d i -01

61

YH

c-c-c I OH

64

-!-C6-y I+

-

I+

73

88

b . The r e a c t i o n v e s s e l and h y d r o t h e r m a l c o n d i t i o n s

Depending OC,

upon

the

r e a c t i o n t e m p e r a t u r e chosen, m a i n l y between 60 5.

r e a c t i o n v es s e l s can v a r y as shown i n T able

aut o c lav es ,

Various

and 300

OC

Teflon

inserted

see F i g . 4a, t o g e t h e r w i t h r e l a t i v e l y l o w p r i c e d ( s t a i n l e s s s t e e l )

and h i g h p r i c e d ( r e e n f o r c e d p o l y e t h e r e t h e r k e t o n ) a u t o c l a v e s a r e shown

in

Fig.

4b and 4c. To f o l l o w t h e c o u r s e o f t h e events t a k i n g p l a c e i n t h e s y n t h e s i s m i x t u r e ,

a

l o o k t h r o u g h aut o c l a v e , see F i g . 4d, can be used. I t was concluded, u s i n g such ex periment a l c o n d i t i o n s , t h a t n u c l e a t i o n and c r y s t a l l i z a t i o n o f z e o l i t e ZSM-5 o c c urred on and in, r e s p e c t i v e l y , g e l spheres o f about 2 mm ( r e f . 42). Another p o s s i b i l i t y t o m o n i t o r s y n t h e s i s event s i n s i t u i s of

IR

the

application

i n t e r n a l r e f l e c t a n c e u s i n g a c r y s t a l embedded i n an aut oclave, as shown

i n F i g . 5 ( r e f s . 74, 7 5 ) .

T a ble 5. Regular

used

lab-scale

r e a c t i o n vessels, t h e t y p i c a l i m p u r i t i e s and

t e mp er a t u r e range. Re ac t io n v es s el

Volume

Impurity

Temperature

P1 a s t i c b o t t l e

( 1 1

Zn2+

Stainless s t e e l autoclave S t a i n 1 ess s t e e l t

< 5 1

Fe3',Cr3'

< 2 1

n u c l e i o f preceding

< 100 o c >> 200 o c < 200 O C

< 5 ml

Si

teflon lining

synthesis

Quartz a u t o c l a v e

< 200

oc

The a ut o c lav es must be f i l l e d between 30 and 70 v o l % i n t h e case o f an aqueous r e a c t i o n m i x t u r e between 100 and 200 O C t o m a i n t a i n a l i q u i d phase ( r e f . 7 6 ) . C leaning o f t h e r e a c t i o n v e s s e l s can be considered i n some cases, teflon-lined

au t o c l a v e s .

As

memory

synthesis i n c a v i t i e s o f the t e f l o n ex periment s

it

is

important

effects wall

can

caused be

by

e.g.

the n u c l e i o f preceding

encountered

in

subsequent

t o c l e a n t h e vessel w i t h e i t h e r HF and w a t e r a t

room t emp era t u re o r NaOH and w a t e r a t t h e r e a c t i o n t emperat ure.

89

1

MACROSCOPE

Fig. 4. Different autoclaves for laboratory use. a) Teflon lined autoclaves u p t o 1000 ml, b ) s t a i n l e s s steel autoclave of 25 ml, c) "Arlon" (polyetheretherketon) reenforced with carbon fiber or glass f i b e r ) autoclaves and d ) s t a i n l e s s steel look through autoclave with quartz windows and Teflon inserts in exploded view together with a schematic drawing of the experimental s e t up.

' R beam

Fig. 5. Parr mini autoclave. I R internal reflection via a crystal embedded in the autoclave makes monitoring of z e o l i t e synthesis events possible ( r e f . 74).

90

111. ZEOLITE PRODUCT VERSUS THE SYNTHESIS MIXTURE a. Two s y n t h e s i s examples The

f i n e t u n i n g and d i f f e r e n c e s i n t h e p r e p a r a t i o n o f each z e o l i t e t y p e i s t o o

complex t o be d is c u s s e d i n t h i s i n t r o d u c t i o n on t h e s y n t h e s i s o f specific

parts

of

the

chapter,

however,

is

chosen

for

a

zeolites. In more d e t a i l e d

p r e s e n t a t i o n o f t h e s y n t h e s i s o f two s u b s t a n t i a l d i f f e r e n t z e o l i t e t ypes, zeolite

Na-A

and

i.e.

z e o l i t e TPA-ZSM-5. The two z e o l i t e s p r e s e n t r o u g h l y a l l t h e

groups i n which z e o l i t e t y p e s a r e d i v i d e d ( r e f . 77). The s y n t h e s i s m i x t u r e s and chemical and p h y s i c a l p r o p e r t i e s o f b o t h z e o l i t e s a r e g i v e n i n T able 6. T able 6. The s y n t h e s i s m i x t u r e s , p h y s i c a l and chemical p r o p e r t i e s

of

zeolites

Na-A and TPA-ZSM-5 ( r e f s . 78-80). Na-A

TPA-ZSM-5 - An example o f s y n t h e s i s m i x t u r e s -

(molar oxyde r a t i o ) 1

Si02

.5

2'3 Na20 TPA20

1 17

H2°

1

< .14 .16 .3 49

> 150

- P h y s i c a l and chemical p r o p e r t i e s -

3D, h o l e s connected v i a windows 1.28 .37

Na',

H20

p o r e arrangements

3 d e n s i t y (g/cm ) p o r e volume (cm3/ g)

ZD, i n t e r s e c t i n g

channels 1.77 .18

1 a t t ic e s t a b i 1iz a t ion

TPA'

1

Si/A1

>

1 ow

Bronsted a c t i v i t y

high

hy dro phy l i c

affinity

hydrophobic

12

91

b. Z e o l i t e product versus synthesis mixture

The most simple zeolite product composition can be given by the overall Si/A1 ratio and the cation type/content. More often the unit cell composition of the zeolite crystal is expressed, e.g. Na-A:

Na12[A112Si12048].27

H20

*

At higher loadings than 4 Al/uc, is replaced by the smaller cation Na' (ref. 81).

TPA' TPA-ZSM-5: 4 TPA[AlnSig6-n0192]H20 * n 5 4

The zeolite reaction mixture i s often formulated in the molar oxyde ratio of the reactants, e.g. SiO2:Al2O3:Na20:(TPA20):H2O. The ratios o f H20/Si02, OH-/Si02, Si02/A1203 and (Na20/TPA20) then give an impression of the concentration, solubility and the expected zeolite types, respectively (ref. 82). Correlation between the synthesis mixture and the product can be obtained from ternary composition diagrams (see Fig. 6a,b) (refs. 83-86), or from graphs of crystallization fields of zeolite types as a function of reactant ratios, see Fig. 6c and Section XI.b.3 SIO) A

a

t ilOl

Fig. 6. Zeolite product versus the synthesis mixture. a) and b ) , ternary compositon diagrams with an inorganic and organic cation/template, respectively. c) Crystallization fields, indicating (0) ZSM-5, (m) ZSM-35, and (A) ZSM-39 (ref. 87).

92

The p r o d u c t f i e l d s a t c e r t a i n P,T, experiment a l

data

depicted

in

Fig.

are

6,

obtained

which a r e n o t always expected f rom a thermodynamic p o i n t o f

view. As t h e i n e v i t a b l y heterogeneous s y n t h e s i s m i x t u r e c o n t a i n s with

different

f rom

micro-domains

r e a c t a n t r a t i o s , k i n e t i c parameters m i g h t induce o t h e r p r o d u c t

phases t h a n t h o s e d e r i v e d f r o m t h e t e r n a r y s y n t h e s i s c o m p o s i t i o n diagram. Because p a r t i c u l a r l y t h e n u c l e a t i o n i s k i n e t i c a l l y det ermined i t i s t hus o f i n t e r e s t t o understand t h e d i f f e r e n t f a c t o r s , e.g. t y p e o f S i - s o u r c e , c a t i o n , A1-source, a d d i t i v e s and p h y s i c a l parameters, i n f l u e n c i n g t h e k i n e t i c st age o f n u c l e a t i o n . The i n f l u e n c e o f t h e s e f a c t o r s can be recognized i n t h e events o f t h e z e o l i t e hereafter i n detail.

T a ble 7 . The subsequent preparation.

subsequent

p r e p a r a t i o n which a r e g i v e n i n T able 7 and discussed

events

present

i n the

Temperature

Subsequent e vent s

Low (< 60 OC)

Reactant s o l u t i o n s

course

of

the

zeolite

Reactant m i x t u r e - g e l f o r m a t i o n Low h i g h (< 60 O C < 200 O C ) +

+

Gel rearrangement Dissolution o f gel Dissociation o f s i l i c a t e

High (< 200

OC)

P r e - n u c l e a t i o n phase Nucleation C r y s t a l l i z a t on

Low (< 60 OC)

I s 0 1a t i o n

I V . THE LOW TEMPERATURE REACTION MIXTURE a. Introduction

The r e a c t i o n m i x t u r e e v e n t s o c c u r r i n g a t l o w t emperat ure disc u s s ed f o r two reasons.

(<

60

'C)

will

be

93

i) Reaction mixtures are prepared at low temperature. Drastic chemical and

physical changes take place then. i i ) Substantial knowledge about the zeolite reaction mixture at low temperature has been obtained using characterization methods such as the molybdate method (ref. 88), the paper chromatography method (ref. 89), the tri-methylsilylation method (ref. go), IR- and laser-Raman spectroscopy (ref. 91), single crystal structure analysis (refs. 92, 93) and the NMR technique (ref. 94). Mostly, starting reaction mixtures typically consist of a gel phase and a liquid phase which means that nucleation is initiated at high temperature by the presence o f a residual gel phase, though there are a few exceptions (refs. 91, 95). The (a1umino)silicate gel phase consists of either a homogeneous dispersed phase of branched chains of sol particles, see Fig. 7I, or a more separated solid phase of an ordered aggregate of sol particles (like opals), see Fig. 711(refs. 96, 97).

I

I1

Schematic representation

Micrograph picture

Fig. 7. Alkaline gel forms. Schematic representation and micrograph picture of I ) a dispersed low density gel (ref. 96b) of branched chains of sol particles and 11) a separated high density gel form resulting in spheres consisting of an ordered aggregate o f sol particles (like opals)

.

94

Si(IV)

Si(lV) O h

80 60 40

20 0

a)

6

a

10

12

pH

O.lm Si(IV)

Fig. 8. S i l i c a t e d i s t r i b u t i o n v e r s u s pH a t c o n c e n t r a t i o n ( r e f . 98).

a)

high

and

b)

low s i l i c a t e

The pH o f t h e l i q u i d phase, i n t h e case o f OH- as t h e m i n e r a l i z i n g agent, l i e s g e n e r a l l y between 8-12. As d e p i c t e d i n F i g . 8 t h e most abundant f orm(s) o f S i sp ec ies a t r e l a t i v e l y h i g h pH a r e t h e monomeric i o n s , whereas a t l o w e r pH v a l u e monomeric n e u t r a l S i - s p e c i e s can be formed, when t h e S i - c o n c e n t r a t i o n i s low. A t h i g h c o n c e n t r a t i o n , however, c y c l i c

tetramers

a r e most

abundant

species

( r e f . 98).

b . Hydrolysis and condensation o f silicate Monomers

and

ol i g o m e r s

i n s o l u t i o n a r e i n e q u i l i b r i u m w i t h t h e g e l phase. A t

t h i s ambient s t ag e o f t h e r e a c t i o n m i x t u r e released e.g.

from

monomeric

silica

species

can

be

t h e g e l v i a h y d r o l y s i s r e a c t i o n s and a r e p r e s e n t i n s o l u t i o n as

Si(OH)30- and Si(OH),022-.

The d i s s o l u t i o n o f t h e g e l i s promoted by

the

OH'-coordination o f s i l i c o n above f o u r , t h u s weakening t h e o t h e r s i l o x a n e bonds t o t h e g e l network. T h i s n u c l e o p h i l i c mechanism i s p r e s e n t e d t o o c c u r v i a a SN2-Si t r a n s i t i o n s t a t e as shown i n Scheme 3a ( r e f . 9 ) .

95

Scheme 3. a) H y d r o l y s i s and b) condensation mechanism o f s i l i c a t e species a t room temperature.

gel phase

1 Relative

<

branching

> of SiOH

Scheme 3c. Growth s i t e i n t h e g e l phase f o r monomers from s o l u t i o n .

The mechanism o f t h e condensation r e a c t i o n s

in

aqueous

systems

at

high

pH

i n v o l v e s t h e a t t a c k o f a n u c l e o p h i l i c d e p r o t o nat ed s i l a n o l group on a monomeric n e u t r a l species as r e p r e s e n t e d i n Scheme 3b ( r e f . 9 ) . The a c i d i t y o f t h e s i l a n o l group depends on t h e number and t y p e of s u b s t i t u e n t s on t h e s i l i c o n - a t o m . The more s i l i c o n s u b s t i t u e n t s a r e present , the

more

a c i d i c t h e OH-groups o f t h e c e n t r a l s i l i c o n atom. As shown i n Scheme

3c, a t h i g h pH t h e most f a v o u r a b l e p o l y m e r i z a t i o n i s t h e r e a c t i o n between l a r g e most h i g h l y branched species and t h e monomer s i l i c a species. A t more

specific

neutral bonding

pH,

hydrolysis

configurations,

and see

condensation

of

pe nt a c oord inat e s t a t e o f S i , i l l u s t r a t e d i n Scheme 3, i s 99 ).

clusters,

containing

F i g . 9, i n d i c a t e t h a t i n v e r s i o n i n t h e not

essential

(ref.

96

+ I

I

+

F ig . 9. Condensation o f octamers,

The

pentacoordinate

silicon

H20

with r e t e n t i o n o f t h e configuration.

intermediate

state

is,

however,

conf irmed

c r y s t a l l o g r a p h i c a l l y ( r e f . 100). Condensation

of

m i x t u r e i s above t h e

the

monomers

isoelectric

lead, point

as of

the silica

pH o f t h e z e o l i t e s y n t h e s i s

(ref.

t o ramified c l u s t e r s can be r e o r g a n i z e d i n t o fewer l a r g e r p a r t i c l e s w i t h a

c l u s t e r s . Such co rres ponding r e d u c t i o n i n s u r f a c e energy, according t o

the

101)

Ostwald

ripening

p r i n c i p l e . The s t r u c t u r a l e v o l u t i o n o f a g r owing c l u s t e r i s s c h e m a t i c a l l y g i v e n i n F i g . 10.

F i g . 10. S t r u c t u r a l e v o l u t i o n o f s i l i c a t e c l u s t e r s .

97

c. Evidence f o r silicate clusters In the course of the gel dissolution the monomers form dimers, according to 29Si-NMR studies (ref. 94), via condensation reactions whereafter trimers and tetramers, cyclic trimers and tetramers and higher order rings are observed as condensation products, see Fig. 11.

Fig. 11. Numerous oligomers characterized in solution at low temperature by *'Si -NMR (ref. 101).

Evidence for the existence of e.g. double four rings resulted from the s ngl e crystal structure analysis of so-called pseudo-A, a material, not a zeo i t e , crystallized at ambient temperature from a mixture of SiOp, TBAOH and H20 see Fig. 12 (ref. 93).

Fig. 12. Model of a part of the framework of pseudo-A; the double four ring units are indicated by asterisks (*).

The silicate species identified in the liquid phase by a.0. NMR, SAXS (ref. 102) and IR, (ref. 103) are products in a simple reaction mixture of Si02, NaOH and H20 at room temperature.

98

The i n t e r a c t i o n o f a l k a l i - i o n s i n such suggested

(ref.

systems

is

not

clear.

is

It

104) t h a t t h e o r d e r e d h y d r a t i o n sphere o f a.0. Na'

often

stabilizes

s i l i c a t e species. Recent NMR r e s u l t s i n d i c a t e t h a t i n t e r a c t i o n between

cations

and s i l i c a t e s p e c i e s ( r e f . 105) do occur. An o r g a n i c c a t i o n / t e m p l a t e added as i n g r e d i e n t ( s ) mixture

to

the

simple

reaction

shows i n t y p i c a l experiments a c c o r d i n g t o NMR measurements i n t e r a c t i o n

w i t h t h e g e l and s i l i c a t e species, r e s p e c t i v e l y ( r e f s . 106-108). However, t h e h i g h l y c o m p l i c a t e d s e t o f i n t e r a c t i o n s and f a s t changing e q u i l i b r i a , due t o t h e i n c r e a s e d number o f t y p e o f s p e c i e s a f t e r a d d i t i o n o f t e m p l a t e and/or A13'

has

n o t been u n r a v e l l e d y e t .

V. THE TEMPERATURE RAISE OF THE REACTION MIXTURE Temperature

raise,

< 60

from

OC

up t o < 200 O C , can be p e r f o r m e d i n s e v e r a l

ways as shown i n F i g . 13 f o r one t y p e o f a u t o c l a v e and

reaction mixture.

The

d i f f e r e n t h e a t i n g r a t e s a r e achieved i n s t a t i c systems. 200 'C

100

-

501// 0

0

5 ml

t (min)

2

4

6

8

10

12

F i g . 13. D i f f e r e n t h e a t i n g r a t e s f o r one t y p e o f a u t o c l a v e a c h i e v e d

by

(a)

microwave, (b) h o t sand b a t h and (c) h o t a i r oven. The s i z e o f t h e a u t o c l a v e , t h e v i s c o s i t y o f t h e r e a c t i o n m i x t u r e and t h e way o f a g i t a t i n g e.g.

static,

tumbling

o r t u r b o s t i r r i n g a r e f a c t o r s modulating t h e

temperature r a i s e o f t h e r e a c t i o n mixture. During

the

temperature

raise

of

the

reaction

mixture

f r o m ambient t o

r e a c t i o n c o n d i t i o n s p r i m a r y events a r e : - A c c e l e r a t e d d i s s o l u t i o n o f t h e g e l i n t o monomeric s i l i c a t e species. - D i s s o c i a t i o n o f s i l i c a t e o l i g o m e r s i n s o l u t i o n and i n c r e a s e

measured

by

NMR up t o

-

of

monomers

as

100 O C ( r e f s . 109-112). As shown i n F i g . 14 a model

s t u d y w i t h NMR on t r i m e t h y l s i l y l a t e d s i l i c a t e c o n f i r m s ( r e f . 109) a s h i f t o f t h e s i l i c a t e anion e q u i l i b r i u m f r o m r e l a t i v e h i g h - m o l e c u l a r , m a i n l y d o u b l e f o u r r i n g s , t o l o w - m o l e c u l a r w e i g h t , monomers and dimers.

99 ( % I mol

.

.

y c u b i c oc!amer \

€0

\

monomer,

R

* \ :

‘\

- --.

dim-er0 0

20

60

40

00

100

‘C

changes i n c o m p o s i t i o n

F i g . 14. Main

(X mol) o f t r i m e t h y l s i l y l a t e d s i l i c a t e

s o l u t i o n versus temperature.

- Higher

concentration

and

mobility

of

monomeric

s i l i c a t e - and e v e n t u a l l y

a l u m i n a t e species. - Association o f primary b u i l d i n g u n i t s . - P o s s i b l e n u c l e a t i o n and c r y s t a l l i z a t i o n o f unwanted ( m e t a s t a b l e ) phases. Some secondary events a r e : - The s t a r t o f t h e d e g r a d a t i o n

o f q u a t e r n a r y ammonium i o n s , which s u b s t a n t i a l i n a ZSM-5 s y n t h e s i s ( r e f . 4 2 ) as d e p i c t e d i n F i g . 15.

- S t a r t o f t h e d r o p i n pH caused by t h e Hoffman d e g r a d a t i o n .

100.; \

%

:TPA

\

t

i

\

50

‘, .‘A

.. .

- - t r - - - - > _ - -

- - - -._ -

-_

0. . -‘(hr)

F i g . 15. D e g r a d a t i o n o f tetrapropylammonium v e r s u s t i m e .

can

be

100

V I . THE HIGH TEMPERATURE REACTION PROCESS

a. Introduction reaction

The main e v e n t o c c u r r i n g i n t h e s y n t h e s i s m i x t u r e a t t h e is

the

formation

of

zeolites

from

amorphous

material.

temperature

Chemical r e a c t i o n

processes a c c e l e r a t e d by t h e h i g h t e m p e r a t u r e l e a d t o :

i) f u r t h e r r e o r g a n i z a t i o n o f t h e l o w t e m p e r a t u r e s y n t h e s i s m i x t u r e ; ii)w h e r e a f t e r p r i m a r y (homogeneous

or

c r y s t a l s ( r e f . 113)) n u c l e a t i o n ; iii) and f i n a l l y , p r e c i p i t a t i o n (based

heterogeneous) on

and

reactions)

secondary as

a

(seed

form

of

crystallization.

b. Nucleation At

t h e high temperature o f t h e r e a c t i o n mixture the z e o l i t e c r y s t a l l i z a t i o n i s

expected a f t e r an i n d u c t i o n p e r i o d i n which t h e n u c l e a t i o n o c c u r s . induction period the

gel

During

the

and s p e c i e s i n s o l u t i o n ( a f o r e m e n t i o n e d i n t h e l o w

t e m p e r a t u r e s e c t i o n ) r e a r r a n g e from a c o n t i n u o u s changing phase o f monomers and clusters,

e.g.

polysilicates

and

aluminosilicates.

These c l u s t e r s f o r m and

d i s a p p e a r t h r o u g h i n h o m o g e n e i t i e s i n t h e s y n t h e s i s m i x t u r e v i a c o n d e n s a t i o n and hydrolysis

processes.

The

c o n t i n u o u s d i s s o l u t i o n o f t h e g e l phase i n c r e a s e s ,

however, t h e amount o f c l u s t e r s and t h e p o s s i b i l i t y o f f u r t h e r the

clusters

and c a t i o n s .

In

the

s t a b l e . N u c l e i o f c e r t a i n dimensions, e.g. and

-

-

association

of

o f t h i s p r o c e s s p a r t i c l e s become

course

10 A f o r z e o l i t e Na-A

(ref.

114)

20 A f o r z e o l i t e ZSM-5 ( r e f . 115), a r e formed and c r y s t a l l i z a t i o n s t a r t s .

c. Crystallization The

l i n e s a l o n g which ideas on z e o l i t e c r y s t a l f o r m a t i o n a r e developed, e i t h e r

based on b u l k and macroscopic o b s e r v a t i o n s o r on are

described occur

mechanistic

scale

i n t h i s paragraph. Four cases o f n u c l e a t i o n and c r y s t a l l i z a t i o n

a r e s c h e m a t i c a l l y p r e s e n t e d i n Table 8. might

molecular

in

clear

synthesis

r e a c t i o n m i x t u r e s where ( b )

(a)

Zeolite

crystallizations,

which

s o l u t i o n s , o r , more o f t e n , i n heterogeneous

highly

dispersed

or

(c)

dense

gel

forms

are

p r e s e n t , see a l s o F i g . 7. I n some occasions ( d ) m e t a s t a b l e s o l i d phases undergo transformation during synthesis.

Homogeneous

n u c l e a t i o n whereafter

crystal -

l i z a t i o n has been observed i n ( a ) c l e a r s o l u t i o n e x p e r i m e n t s ( r e f s . 91, 9 2 ) .

101

Table 8. Four cases of crystal growth environment representation of nucleation and crystal 1 ization. Crystal growth environment

(a)

Clear solution

(c)

Separated high density gel

(d)

Solid phase

and

schematic

Nucleation Crystallization (+) ( a )

k

H

Fig. 16. a) Powder and b) a twinned elongated prismatic crystal o f ZSM-5 from a dispersed gel phase and c) a cubic form of ZSM-5 from a dense gel phase.

102

Nucleation

(heterogeneous) o c c u r s a t t h e l i q u i d - g e l i n t e r f a c e i n t h e d i s p e r s e d

g e l - s o l u t i o n m i x t u r e s (b) ( r e f . 108). The forms o f t h e c r y s t a l l i z a t i o n p r o d u c t s in

the

case

of

a

dispersed

gel

phase

a r e shown f o r ZSM-5 i n F i g . 16a,b.

S i m i l a r l y t o t h e c l e a r synthesis solutions, the driving force for c r y s t a l l i z a t i o n i s equal i n a l l d i r e c t i o n s as shown i n T able 8a,b. I n t h e case o f a dense g e l phase p r e s e n t i n t h e s y n t h e s i s m i x t u r e , see T able 8c, c r y s t a l lization

proceeds

g e l ( r e f . 42) as shown s c h e m a t i c a l l y i n F i g . 17.

into t h e

D e v i a t i n g c r y s t a l forms compared t o c r y s t a l forms f r o m d i s p e r s e d a r e t h e n observed, as shown i n F i g . 16c.

gel

systems

G enera lly , t h e t y p i c a l f o r m and morphology o f a z e o l i t e c r y s t a l r e v e a l s n o t i n f o r m a t i o n on t h e t y p e o f t h e z e o l it e formed b u t a1 so on t h e c r y s t a l

only

growth h i s t o r y , as shown above. a/c

ratios

v i e w s on gelsphere surface

Pyramidal crystals

perpendicular

basal piano 2nd afc piano

@

3

1

.4

.8

.6

.7

.7

along

ib gel s p h e r e

0

a/c r a t i o s o f d e v e l o p i n g c r y s t a l s and schematic drawing o f g ro w t h process i n t h e g e l spheres.

F ig . 17. Average

As

a

l i q u i d phase

is

c o n t i n u o u s l y p r e s e n t between t h e d i s s o l v i n g dense g e l

phase and t h e gro w i n g c r y s t a l , t h e c r y s t a l l i z a t i o n i s , however,

still

solvent

mediated. When a me t a s t a b l e s o l i d phase, e . g . a z e o l i t e , i s p r e s e n t i n mixture,

a

transformation

the

synthesis

i n t o a more s t a b l e phase i s p o s s i b l e , a c c o r d i n g t o

t h e Ostwald r u l e o f s u c c e s s i v e t r a n s f o r m a t i o n s ( r e f . 116).

103 The

nucleation

and c r y s t a l l i z a t i o n o f t h e new phase, i l l u s t r a t e d i n T a b l e 8d,

occurs i n t h e s u p e r s a t u r a t e d s o l u t i o n

generated

by

the

dissolution

of

the

f o r m e r phase ( r e f . 117).

I n t h e l a s t t h r e e cases o f Table 8 dynamic steps

of

equilibria

between

successive

d i s s o l u t i o n , i o n t r a n s p o r t a t i o n and p r e c i p i t a t i o n , can be r e c o g n i z e d

( r e f . 118). E s p e c i a l l y , t h e precipitation/crystallization s t e p , i.e.

the

type

o f c r y s t a l b u i l d i n g u n i t s and t h e way o f c r y s t a l growth on m o l e c u l a r l e v e l , has been s u b j e c t t o many s t u d i e s .

d. Crystal building units A t l e a s t t h r e e t y p e s o f c r y s t a l b u i l d i n g u n i t s have been

suggested

which

are

d e s c r i b e d be1 ow. d.1. The Drimarv b u i l d i n q u n i t t h a t p r i m a r y b u i l d i n g u n i t s , i .e. t e t r a h e d r a l monomeric s p e c i e s , can

Arguments

be i n v o l v e d i n t h e c r y s t a l l i z a t i o n are: i ) The g e n e r a l view from c r y s t a l growth t h e o r i e s t h a t c r y s t a l s a r e formed v i a p r i m a r y b u i l d i n g u n i t s ( r e f . 119);

ii) The general view i n s o l / g e l c h e m i s t r y ( r e f s . 8, 10) t h a t t h e most f a v o u r e d condensation r e a c t i o n occurs between a monomeric and p o l y m e r i c s p e c i e s . I n terms

o f t h e z e o l i t e c r y s t a l l i z a t i o n : between a p r i m a r y b u i l d i n g u n i t and

a c r y s t a l s u r f a c e ; see S e c t i o n IVb; iii) At

raising

increases

temperatures (ref.

measurements

109)

at

( t i l l 200

(up the OC)

t i l l 100 OC) t h e c o n c e n t r a t i o n o f monomers expense are

not

of

clusters.

actually

Though

performed,

e x p e r i m e n t a l r e s u l t s might i n d i c a t e t h a t a t r e a c t i o n

in

situ

the

above

temperatures

mainly

monomers a r e p r e s e n t ; i v ) S t u d i e s on t h e c r y s t a l l i z a t i o n o f z e o l i t e have shown t h a t t h e g r o w t h o f z e o l i t e occurs by a s u r f a c e r e a c t i o n o f monomeric a n i o n s ( r e f . 120). d.2. As

a

A t y p i c a l c l u s t e r as b u i l d i n q u n i t shown

in

Chapter

r e l a t i v e l y low several

decades

(5

3

of

this

16-Si-tetrahedra) ago

book

secondary b u i l d i n g u n i t s (SBU’s) a r e

polymer

units.

SBU’s

and f u r t h e r p h y s i c a l f e a t u r e s o f t h e z e o l i t e s . A t t h e same t i m e non-chiral

independent

were

introduced

( r e f . 121) and used s i n c e t o p r e s e n t s t r u c t u r a l ( r e f . 6 )

SBU’s a c t i n g as

u n i t s can generate a c e r t a i n z e o l i t e s t r u c t u r e . It i s ,

however, though t h e SBU’s show sometimes a s u p e r f i c i a l resemblance t o

silicate

104

anions,

not

t h a t SBU's a r e t h e b u i l d i n g b l o c k s o f t h e growing c r y s t a l

likely

( r e f . 1 2 2 ) . On t h e o t h e r hand, t h e b u i l d i n g o f t h e porous and d i f f e r e n t z e o l i t e frameworks w i t h monomers c o n d e n s a t i n g i n t h e r i g h t t o p o l o g y seems l e s s f a v o u r a b l e compared t o a t y p i c a l c l u s t e r b u i l d i n g u n i t ( r e f .

123).

From t h i s

p o i n t o f view s u g g e s t i o n s a r e r a i s e d about a t y p i c a l o r common c l u s t e r b u i l d i n g u n i t f o r a l l z e o l i t e structures. d.3. The c a t i o n t e m l a t i n q theor! Organic

as

well

water-ordering,

as

inorganic

properties.

cations

Typical

show

structure

directing,

c r y s t a l s t r u c t u r e a n a l y s i s o f o r g a n i c w a t e r c l a t h r a t e d c a t i o n s ( r e f . 124). wat e r

i.e.

examples a r e g i v e n i n a r e v i e w o f s i n g l e The

mo lec ules c o m p r i s i n g a t e t r a h e d r a l n e t work i n t h e f i r s t l a y e r around t h e

c a t i o n m i g h t be p a r t l y r e p l a c e d by s i l i c a t e and aluminat e

anionic

tetrahedra.

The c l a t h r a t e d c a t i o n s m i g h t s e r v e t h i s way as c r y s t a l b u i l d i n g u n i t s . An example o f such a t e m p l a t i n g / c l a t h r a t i n g r o l e i s t h e f o r m a t i o n s o d a l i t e w i t h tetramethylammonium (TMA')

of

c a t i o n s ( r e f . 125).

The h i g h t e mp era t u r e events, d i s c u s s e d above, a r e summarized i n Scheme 4.

met as t ab 7 e phase

I

ion t r a n s p o r t a t i o n

I

II

s t a b l e phase

I

I

-

gel or

c

small c l u s t e r s

I

I

I

hydrolysis

I

association

condensat ion

Scheme 4. Re p r e s e n t a t i o n o f crystallization.

I

1

precipitation

successive

steps

in the evolution o f zeolite

105

e. Nucleation-crystal 7 iration kinetics

Nucleation and crystal1 ization events are generally illustrated on characteristic S-shaped crystallization curves (ref. 126). The yield (wt % of crystalline material), often determined by indirect methods, plotted against time gives an impression of the nucleation and crystallization time and certain reaction temperatures. More accurate information on the crystallization kinetics can be provided when, based on crystal size and size distribution, the linear crystal growth rate and the rate of nucleation can be determined. Of the studies (ref. 127) on zeolite crystallization, one contribution (ref. 128) reporting on a method to collect kinetic data is briefly described here.

20

30

40

x 100

5

0

10

a

**

,''

b

,~*opr'-l'OOX conversion of

]50the

.lo2

dt

zo!

A

t7\ p

p/"

10

0 6-A 0 40

> O ,\{

80

120

,

160

Time j h I

I

I

I

200

mars of crystals

C

240

Fig. 19. a) Histogram o f the crystal size distribution in the final product, b) diameter of the largest crystals o f different unfinished crystallization runs versus time, resulting in the crystal growth rate graph and c) (i) the nucleation rate (number o f crystals of each unfinished crystallization run versus time) together with (ii) the yield curve.

106

A number of i d e n t i c a l synthesis experiments, b u t d i f f e r i n g i n t o t a l synthesis time, were performed. The average diameter o f t h e l a r g e s t c r y s t a l s which could be c o l l e c t e d from t h e various products was measured. I n t h e case o f z e o l i t e Na-X i t was found t h a t i n a p l o t o f c r y s t a l s i z e versus time t h e l i n e a r c r y s t a l growth r a t e (.5 A L / A t ) was constant, i r r e s p e c t i v e o f t h e c r y s t a l

size,

even u n t i l near exhaustion o f t h e c r y s t a l b u i l d i n g u n i t s , see Fig. 19b. The n u c l e a t i o n time can be determined now product

for

any

crystal

in

the

final

o f t h i s Na-X c r y s t a l l i z a t i o n , knowing the growth r a t e . For instance, a

c r y s t a l o f 16.5 pn nucleated a t t

- 90

h.

Together

with

the

particle

size

d i s t r i b u t i o n curve, Fig. 19a, t h e r a t e o f n u c l e a t i o n was found, see F i g . 19c. The n u c l e a t i o n r a t e curve and the

c a l c u l a t e d from both the growth r a t e and p a r t i c l e s i z e d i s t r i b u t i o n curve, i n d i c a t e t h a t as soon as t h e c r y s t a l l i z a t i o n s t a r t s the chemical n u t r i e n t s are consumed f o r c r y s t a l growth. The formation o f conclusion, i t can crystal1ine

yield

curve

f r e s h n u c l e i i s from be said t h a t z e o l i t e

product

can d e l i v e r

then on l a r g e l y suppressed. I n synthesis, r e s u l t i n g i n a good

accurate

i n f o r m a t i o n on

n u c l e a t i o n and

c r y s t a l 1iz a t i o n k i n e t i c s . f . Energy o f a c t i v a t i o n

Though z e o l i t i c m a t e r i a l can be prepared a t low temperature (20-60 'C) most n u c l e a t i o n and c r y s t a l l i z a t i o n processes are performed a t temperatures between 60 and 250

OC.

The choice o f t h e r e a c t i o n temperature i s governed by t h e energy

o f a c t i v a t i o n r e q u i r e d f o r the z e o l i t e c r y s t a l l i z a t i o n .

Table 9 shows the energy o f a c t i v a t i o n (E,)

as

a

function

of

the

Si/Al

ratio. Table 9. Ea's o f d i f f e r e n t z e o l i t e framework types and S i / A l r a t i o s . Guest molecule Na';

H20

TPA+

TPA+ Na';

H20

Ea (kcal/mol)

Framework

Si/A1

Y

1.5

11.8

MF I MF I MF I

1.8

12.3

2.2

14.1

2.5

15.6

30 W

80

7 11 18

Ref. 129

a

b C

107

I t appears t h a t t h e Ea's a r e n o t r e l a t e d t o d i f f u s i o n o f c r y s t a l b u i l d i n g u n i t s

in

(Ea ( d i f f . ) < 5 k c a l m o l - l ) b u t t o condensation r e a c t i o n s between

solution

t h e c r y s t a l s u r f a c e and c r y s t a l b u i l d i n g u n i t . As shown i n T a b l e 9 Na-X

changes

as

a

Ea

the

of

f u n c t i o n o f t h e S i / A l r a t i o which i n d i c a t e s t h a t t h e more

s i l i c i o u s the zeolite, the

larger

the

Generally,

Ea.

this

trend

is

also

observed between d i f f e r e n t z e o l i t e s , a l t h o u g h t h e c o n t r i b u t i o n t o Ea o f c a t i o n s and t e m p l a t e s , as shown f o r ZSM-5, can be s u b s t a n t i a l .

VII. ISOLATION OF THE ZEOLITE PRODUCT Products o f z e o l i t e p r e p a r a t i o n s can be composed o f e i t h e r phase, quartz,

a

one

pure

zeolitic

m i x t u r e o f z e o l i t i c phases o r a m i x t u r e o f a z e o l i t i c phase and e.g. cristobalite

or

gel

phase.

Mostly

the

product

is

isolated

by

d e c a n t a t i o n / c e n t r i f u g a t ion o r f i1t r a t i o n .

I f the product consists o f c r y s t a l s w i t h a uniform recognized

as

characteristic

for

the

expected

crystal

form

which

is

p r o d u c t , t h e z e o l i t e can be

separated by d e c a n t i n g t h e mother l i q u o r f o l l o w e d by washing w i t h w a t e r .

If there precipitated dissolution

is, as

however, e.g. some g e l phase p r e s e n t , t h i s may be e i t h e r c o a

separate

phase

e l e v a t e d temperature i s s t r o n g l y zeolite.

or

adsorbed

on

the

crystals.

Careful

o f t h e g e l phase w i t h e.g. a d i l u t e b a s i c OH' s o l u t i o n a t s l i g h t l y

Especially

in

the

advisable

case

of

prior

adsorbed

to gel

the on

isolation

of

the

t h e c r y s t a l surface

elemental a n a l y s i s (AAS, I C P o r EMPA) i s r e q u i r e d t o c o n t r o l t h e Si/A1 r a t i o o f the

c r y s t a l s b e f o r e and a f t e r t h e washing procedure ( r e f . 130). The f i n a l s t e p

i n t h e z e o l i t e p r e p a r a t i o n i s t h e d r y i n g o r c a l c i n a t i o n procedure

after

which

t h e z e o l i t e v o i d volume i s f r e e f o r d i f f e r e n t m o d i f i c a t i o n and/or a p p l i c a t i o n .

VIII. REACTION PARAMETERS a. Introduction

The t y p e o f r e a c t a n t s , t h e way t h e r e a c t a n t m i x t u r e i s made, temperature formation.

typically

affect

the

crystallization

the

kinetics

pH and

and

the

product

108

Furthermore

the pre-treatment o f the reaction mixture, the addition o f c r y s t a l

growth i n h i b i t o r s , t h e r e a c t i o n m i x t u r e t e m p e r a t u r e t r a j e c t o r y and t h e

use

of

seeds have an i n f l u e n c e on t h e z e o l i t e p r e p a r a t i o n . Some aspects o f t h e t y p e o f t h e above mentioned f a c t o r s a r e d i s c u s s e d i n t h e f o l l o w i n g paragraphs. I l l u s t r a t i o n s a r e m a i n l y g i v e n on t h e z e o l i t e A and ZSM-5 formation.

b. The 5i-source As mentioned i n

Section

I1 of

this

chapter

the

different

types

of

the

S i - s o u r c e s c o n t a i n i m p u r i t i e s which may a f f e c t z e o l i t e c r y s t a l l i z a t i o n . Another parameter, t h e s p e c i f i c s u r f a c e a r e a o f t h e s e sources, can r e s u l t i n d i f f e r e n t nucleation

c r y s t a l l i z a t i o n t i m e s as shown f o r z e o l i t e A i n F i g . 20a ( r e f .

and

4 7 ) . The s h o r t e r i n d u c t i o n and c r y s t a l l i z a t i o n t i m e s l e a d t o more

and

smaller

c r y s t a l s , see F i g . 20b.

.-

-

/,..

Silica source

I

I1 111

a

I

1

2

3

4

5

6

7

Crystals r e 1 . number size 48 .7 30 2.6 15 4.8

b

8

tlme(h)

Fig. 20. a) The y i e l d o f z e o l i t e A versus t i m e o f d i f f e r e n t s i l i c a

sources.

b) The s p e c i f i c s u r f a c e a r e a s o f t h e s i l i c a sources ( I > I 1 > 111) r e s u l t i n d i f f e r e n t amounts and s i z e s o f c r y s t a l s .

c. The type o f template Many t y p e s o f t e m p l a t e chapter).

The

are

surprising

regularly

t y p e o f z e o l i t e framework formed i s template

can

used

(see

e.g.

Section

I1 o f t h i s

performance o f c e r t a i n t e m p l a t e s on s t a b i l i z i n g t h e illustrated

in

Table

10.

One

type

of

be used t o c r y s t a l l i z e v a r i o u s z e o l i t e s whereas t h e same t y p e o f

z e o l i t e may be c r y s t a l l i z e d w h i l e u s i n g d i f f e r e n t t e m p l a t e s .

109

T a b l e 10. S i n g l e

and m i x t u r e

of

i n t h e preparation o f

templates/cations

d i f f e r e n t z e o l i t e types. Single

Zeolite

Ref.

Mixture o f

temp1 a t e

/

TMA'

Zeol it e

Ref.

x,

Y

135

L (+ K')

136 136

template/cation

Sodalite

--A,

131 TMA',

Na'

Gismondine 132

Sodalite,

P, S and R ZSM-6 and

137

ZSM-47

TPA+ Na'

\

/

TEA

133 ZSM-5

-

EDA Ethanolamine

134

138

ZSM-5

139

j ,

Propanol ami n

- Omega

Na'

A1 coho1 Glycerol Morphol i n e Hexanediol TPA

-

The r o l e o f t h e s i n g l e t e m p l a t e / c a t i o n i n

stabilizing

subunits

of

different

z e o l i t e types i s n o t unravelled y e t .

A common f a c t o r , however, appears t o be t h e s i z e diameter

in

the

structures

of

r e s p e c t i v e l y , and t h e d i a m e t e r o f

-

of

a

certain

free

void

6.8 A and 7.0 A, 6.7 A o f t h e t e m p l a t e TMA', see F i g . 21.

sodalite

and

gismondine,

110

Fig. 21. Models

of

a)

the

s o d a l i t e and b) t h e gismondine v o i d and t h e v o i d

f i l ler/template/cation TMA+.

Although

TPA'

and Na' are r a t h e r d i f f e r e n t templates/cations a common f a c t o r

might be the s t a b i l i z a t i o n o f voids ( e i t h e r i n t e r s e c t i o n o f channels o r channel windows), see Fig. 22.

Fig. 22. View along s t r a i g h t channels o f w i r e model o f ZSM-5 with e i t h e r TPA' (*) o r hydrated Na' (0) on i n t e r s e c t i o n s o f channels and channel windows, r e s p e c t i v e l y .

Charged temp1 ates

compensate

negative

framework charges, due t o isomorphous

by A13'. A range o f S i / A l r a t i o s i s possible, see Scheme If, however, t h e number o f charged templates r e q u i r e d f o r charge compensation cannot be accommodated f o r dimensional reasons t h e zeol i t e substitution o f Si4'

5.

111

combines charged t e m p l a t e s w i t h e.g. Na'. for

one

Sodalite

zeolite

type

are

T h i s way, s t i l l v a r i o u s Si/A1

ratios

as shown i n Scheme 5 f o r z e o l i t e ZSM-5.

possible

can be prepared w i t h two d i f f e r e n t Si/A1 r a t i o s .

ZSM-5

Si/A1

Soda1 it e

TPA+

23 - <10000

TMA+

TPAt/Nat

23 - 11

Na'

Si/A1

Na'

11

Scheme 5. D i f f e r e n t Si/A1 r a t i o s f o r ZSM-5 and s o d a l i t e .

d. The reactant mixture The way

reactant

mixtures

are

made,

e.g.

r e a c t a n t s , t h e s t i r r i n g and g e l aging can r e s u l t

the

addition

sequence

i n method-dependent

o f the factors

i n f l u e n c i n g n u c l e a t i o n . As shown i n F i g . 23 c r y s t a l s o f z e o l i t e A s t a r t e d growing i n a z e o l i t e X s y n t h e s i s m i x t u r e w h e r e a f t e r z e o l i t e X c r y s t a l s s t a r t e d growing on and o v e r t h e z e o l i t e A c r y s t a l ( r e f s . 140, 141).

F i g . 23. Overgrowth o f z e o l i t e X o n t o z e o l i t e A.

112

Though t h e thermodynamic v a r i a b l e s were c o r r e c t l y chosen t o prepare z e o l i t e X, s y n t h e s i s m i x t u r e s o f z e o l i t e A and X, g i v e n below, do have comparable elements and a p p a r e n t l y l o c a l k i n e t i c f a c t o r s i n i t i a t e d t h e s y n t h e s i s o f z e o l i t e A. Na2Si03.9H20

NaA102 T r i e t h a n o l a m i n e

H20

z e o l i t e A:

.4

.1

.7

28

z e o l i t e X:

.4

.05

.7

28'

Ref. (142)

\

(molair)

e. The pH e. I.

Introduction

The pH and t h e s o l u b i l i t y o f r e a c t a n t s i n t h e s y n t h e s i s m i x t u r e a r e governed by t h e presence o f OH- o r F - .

111 F- compared t o OH- i s t h e h i g h e r s o l u b i l i t y o f e.9. Fe and T i " and t h e c o n d e n s a t i o n c a p a b i l i t y f o r e.g. Ge". A too high c o n c e n t r a t i o n o f F - , however, p r e v e n t s t h e polycondensat ion mechanisms. A compromise between s o l u b i l i t y o f c e r t a i n elements and i n h i b i t i o n o f z e o l i t e framework formation leads to Fs y n t h e s i s m i x t u r e s which a r e l e s s su pers a t u ra t e d t h a n OH- media. Hence, o n l y a few z e o l i t e t y p e s a r e obt ained, u n t i l now ( r e f . 16). An

advantage

of

e.2. OH-

Raising

pH

of

synthesis

mixtures

using

OH-,

mainly

c r y s t a l l i z a t i o n o f a c e r t a i n z e o l i t e i n a p o s i t i v e way

within

influences the

the

synthesis

A and z e o l i t e ZSM-5, r e s p e c t i v e l y , i n c r e a s i n g t h e pH shows an i n c r e a s e i n t h e c r y s t a l l i z a t i o n r a t e . The OH- i s a s t r o n g m i n e r a l i z i n g agent f o r b r i n g i n g r e a c t a n t s i n t o s o l u t i o n . field.

As

depicted

in

Fig.

24a

and

b

for

zeolite

The h i g h e r t h e pH and t h u s t h e c o n c e n t r a t i o n o f d i s s o l v e d

reactants

t h e r a t e o f c r y s t a l g r o w t h o f z e o l i t e s i s enhanced ( r e f s . 47, 143).

the

more

113

Zeolite A &]

b

a

F i g . 24. The

influence

of

a l k a l i n i t y on

a)

zeolite

A

and

b)

ZSM-5

c r y s t a l 1 iz a t i on.

e.3. F A f t e r t h e f i r s t p u b l i c a t i o n s on s y n t h e s i s w i t h F- ( r e f . 4 6 ) have

been

undertaken

to

investigate

the

extensive

studies

e f f e c t o f F- and p o s s i b i l i t i e s i n

z e o l i t e s y n t h e s i s ( r e f s . 16, 4 6 ) . Replacing OH- by F- w i t h e.g. NH4HF, NH4F and

BF3 t h e pH values o f t h e s y n t h e s i s m i x t u r e l i e s g e n e r a l l y between 3 and 10. A t y p i c a l synthesis formulation i s given i n Section

zeolites

obtained

XI1

of

this

chapter.

The

so f a r by t h i s r o u t e a r e s i l i c a - r i c h m a t e r i a l s o f w h i c h t h e

s t r u c t u r e t y p e s are:

ZSM-5 F e r r ie r it e Theta-1 and ZSM-23

f . The temperature I t has been shown f o r many z e o l i t e s t h a t r a i s i n g s y n t h e s i s t e m p e r a t u r e s

a certain zeolite

synthesis

field

within

increases the c r y s t a l growth r a t e ( r e f s .

47, 1 4 4 , 1 4 5 ) . As shown i n F i g . 25a and b f o r z e o l i t e A and z e o l i t e ZSM-5, i n c r e a s i n g temperature i n f l u e n c e s t h e c r y s t a l growth r a t e whereas i n t h e case o f z e o l i t e A t h e c r y s t a l s i z e does n o t change s u b s t a n t i a l v a r i a t i o n s i n t h e ZSM-5 p r o d u c t .

s i g n i f i c a n t l y compared

to

114

.

Crystol size

(pm)

200'C 165

'C

170 ' C

150 'C

10

a

i Time [hours]

bo

10

20

30

t(h)

Fig. 25. Influence of temperature on the crystallization of a) zeolite A and b) zeolite ZSM-5.

I X . ALL S I L I C A MOLECULAR SIEVES

a . Introduction

Two preparation routes can be followed to obtain all silica molecular sieves: i) A direct synthesis to crystallize molecular sieves with a Si02 composition and well known zeolite topologies. i i ) A secondary synthesis. After the direct synthesis of a zeolite a dealumination procedure, e.g. steaming (ref. 146), ammonium silicon hexafluoride (ref. 147) or silicon tetrachloride (ref. 148) can lead to an all silica molecular sieve. b. Synthesis

Though the neutral all silica molecular sieves do formally not need to be stabilized with cations the silica structures usually contains the cations used in the synthesis. For example, tetrapropylammonium for silicalite-1, tetrabutylammonium for silicalite-2, and tetraethylammonium for silica-ZSM-12. Recently, amines, di-amines (ref. 149) and poly-amines (ref. 150) have been used as templates. Table 11 contains a list of all silica molecular sieves with two examples of synthesis recipes and references.

115

Table 11. All silica zeolites, recipes and references. Product

Ref

Sil ica-ZSM-48

150

Recipe: 14.6 g of triethylenetetramine is dissolved in 18 ml H20 whereafter the solution is stirred into dry 1.2 g Si02. The smooth dispersion is then autoclaved between 120-180 OC for 28-105 days, respectively. Sil ica-ferrierite Recipe: 0.75 g Si(OC3)4 is added to a solution of 1.2 g ethyldiamine (EDA) in 10 ml H20. After adding 2 ml 1 M aqueous boric acid the solution is sealed in a silica tube and heated at - 170 O C for 56 days. Sil ical ite-1 (Sil ica-ZSM-5) Sil ical ite-2 (Silica-ZSM-11) Sil ica-ZSM-22

151

152 153 149

c . Remark

The main property of the silica molecular sieves is the strong hydrophobic character of the pores. The preferential uptake o f e.g. traces o f organic compounds (ref. 152) from water, which is not accommodated (ref. 154), in silicalite-1 is a good example.

X. CLATHRASILS or actually silicates and zeolite molecular sieves? a. Introduction

The name "clathrasil" has been introduced for a subclass of porous tectosilicates different from zeolites. The windows of the framework, connecting the cages, are too small to let guest species, stabilized during the synthesis, pass.

116

This characteristic of a clathrate together with the all silica composition is considered as specific for the members of the clathrasils (ref. 29). There are, however, exceptions. The recently synthesized decadodecasil-3R (DD-3R) (ref. 155) contains windows of eight-rings of oxygen, indicating that diffusion of small molecules through the porous structure is possible after calcination. This structure can therefore be considered to form an interface between the clathrasils and the silica molecular sieves. A modified type of DD-3R denoted as Sigma-1 (ref. 156) can, however, be seen as a link between clathrasils and zeolites, because some Si-framework sites are isomorphously substituted by Al. Finally, there is a novel tectosilicate, Sigma-2 (ref. 157). The recently solved structure of which two different polyhedra, see Fig. 26, have not been found before, reveals eight-rings of oxygen and cages with a free diameter of 75 nm. Sigma-2 has been prepared in the silicalite as well as in the zeolite form and can thus be considered as an intermediate between clathrasils, zeolites and silicates.

Fig. 26. The nonahedral and eikosahedral cages o f Sigma-2.

b . Experimental

The clathrasils can be synthesized generally from .5 M silica, prepared by hydrolyzing an alkoxysilane, e.g. Si(OCH3)4, in solutions containing an amine as guest template molecule. The syntheses are mainly carried out between 160-240 OC. The clathrasils, together with detailed synthesis data and products expected, are given in Table 12.

117

w i t h r e f e r e n c e s t o s y n t h e s i s p r e s c r i p t i o n s and two examples o f s y n t h e s i s r e c i p e s .

T a ble 12. C l a t h r a s i l s

Product

Ref.

Me1anophlogi t e

158

Dodecasil 3C

159

Dodecasil 1H

160

S i 1ica-soda1 it e

161

Sigma- 1

156

DD-3R ( s i l i c a )

155 Recipe: 0.75 g Si(OCH3)4 i s added t o a s o l u t i o n o f 1.2 g e thylenediamine (EDA) i n 10 m l H20. A f t e r adding 350 mg l-aminoadamantane t h e s o l u t i o n i s sealed i n a s i l i c a tube and heated a t 170

-

OC

for

70 days.

Sigma-2 ( s i l i c a and a l u m i n o s i l i c a t e )

157

S y n t h e s i s example: The molar oxyde r a t i o o f t h e s y n t h e s i s system i s : Na20 AN

2'3 Si02

3 20

(1-adamantanamine)

(0.6) 60

(Al-wire) (colloidal silica)

2400 H2° The system was c r y s t a l l i z e d a t 180 O C and c o n t i n u o u s l y s t i r r e d f o r a few days.

c. Remark

The t e m p l a t i n g r o l e o f some o f t h e guest molecules i s i l l u s t r a t e d i n F i g . 26. Polyhedra o f d i f f e r e n t c l a t h r a s i l s a r e f i l l e d w i t h a guest molecule. As o n l y 4-, 5 - o r 6 - r i n g f a c e s a r e p r e s e n t i n most o f t h e polyhedra i t l o o k s crystal

building

i s t o o l a r g e t o pass t h r o u g h one o f t h e r i n g s . The therefore

like

the

u n i t s have formed around t h e guest molecule as t h i s molecule clathrate

formation

might

be o b t a i n e d and based on s i n g l e b u i l d i n g u n i t s i n s o l u t i o n and/or a t

t h e growing c r y s t a l s u r f a c e ( r e f . 162).

118

Fig. 27. Orientation o f various guest molecules in clathrasils (ref. 163). a) H3CNH2 in [ 5 126 2 ] and b) adamantylamine in [51268] of melanophlogite and dodecasil l H , respectively.

OF SYSTEMATIC RESEARCH in the field of preparation to reach various objectives

X I . EXAMPLES

molecular

sieves

a . Introduction

A main thrust of research is: - to synthesize new molecular sieves - further optimization of recipes - to gain knowledge on the essential functions of reactants, e.g. structure directing role of cation/templ ate - to prepare relative large single crystals for fundamental studies The list can be longer, however, the examples given below illustrate generally the purpose and variety in the research o f molecular sieves preparation. b. Research examples

Objective 1)

Preparation o f zeolites

2) Preparation o f zeolites 3)

Investigation of crystal1 ization fields with pyrrolidine as template

Parameter ( s 1 Non-aqueous solvents F - as mineralizing agent

Na20-A1 203- Si O2 -H20 system was varied

119

b. Research examples (continued)

Objecti ve

Parameter(s)

4a) Investigation o f template-zeolite interaction 4b) Directing role o f template in the crystal1 ization

Systematic variation of template Use o f bis-quaternary ammonium compounds

5)

Large single crystals

Know1 edge on nucl eation/ crysta1 1 i zati on

6)

Morphology and form of zeol i te products

Change o f [Si02], temp1 ate, cation or additives

b.1. The use o f non-aqueous solvents

In contrast to the rich crop of zeolite types synthesized in aqueous systems the results in non-aqueous solvents are poor (refs. 164, 165). Solvents used, o f which the choice was a.0. based on boiling point (100-200 OC) and relative permittivity (10-45) (water: 78), are given in Table 13.

Table 13. Zeolite products formed. Solvents ~

Glycol Glycerol DMSO Sul fol ane C6C7 alcohol Ethanol

K+

Na' ~

~

HS HS HS

HS HS

HS

HS: Hydroxysodali te.

Lit

Cat+

120

Generally mixtures within the following molar oxyde ratio were used: Me0

1-20 1 1-100

2'3

Si02 Solvent 5-350 0.1-10 and MeO/Si02 As shown in the Table zeolite products could only be obtained in the case of .'aN The use o f other inorganic and organic cations was not successful. As the boiling point is a less critical factor than high relative permittivity (reduces the Coulomb force between ions and polar compounds thus enhancing dissolution) other non-aqueous solvents for zeolite crystallization which might be subject to zeolite synthesis tests are given below.

Non-aqueous solvent

Er

~~

formic acid formamide hydrogen peroxide hydrocyanic acid

b.2. The use o f

57 84 93 95

F- ( r e f . 166)

The compositional ratios of the reaction mixtures used were: A1 or B/Si F/Si Templ./Si H20/Si in molar ratio 0-0.5 0.05-6 0.05-6 4-500 with the pH of the mixtures between 1.5-10. The reaction mixtures were heated at 60-250 O C and autoclaved for a few hours t o a few months. After isolation the products were washed with water and dried. A typical example o f a " F - " synthesis of ZSM-5 is given below: - Reaction mixture composition: 36 g Ammonium aluminiumsilicate (Si/Al 7; NH4/A1 1) pH = 7 18.5 g NH4F 33.2 g TPABr t = 172 " C 180 g H20 time = 11 days

-

-

121

- Product Unit cell composition: 1.8 NH4+ t 4.1 TPA+ [A12~9Si93~101921 Crystal size 30 x 12 pm Advantages and differences using F - instead o f OH- as concluded so far: - Low pH compared to OH- Incorporation in the framework of elements sparingly soluble in alkaline medium, e.g. Fe111 - Synthesis without alkaline cations - New possibility to directly incorporate cations as NH4+ and divalent cations such as Co2' as well - Good stability of usual templates such as TAA' in this medium - Highly crystalline materials b.3. Pyrrolidine as template (ref. 87)

The crystallization o f zeolites in the system Na2O-Al2O3-SiO2-H20 t pyrrolidine as a template was studied. The reaction mixture compositions used are given in Table 14 in molar oxyde ratio.

Table 14. Reaction mixture ranges in molar oxyde ratios. Na20 A1 i03 Si02

0.05-0.5 0.002-0.05

H2S04 H2°

0-0.4 20-80

1

H t

-

0.7 pyrrolidine

Two procedures were used: I. To a stirred aluminium sulphate solution, calculated amounts of sodium silicate, sulphuric acid and pyrrolidine were added dropwise. 11. Calculated amounts of aluminium nitrate, colloidal silica and pyrrolidine were added to a stirred sodium hydroxide solution.

122

Si02/A1 203

A

4

t

A

A

A

H20/Si O2

F i g . 28. C r y s t a l l i z a t i o n

fields

of

product

Si02/A1203 v e r s u s H20/Si02 o f

ZSM-39 (A), ZSM-48 (+) and KZ-1 ( A ) .

The f o l l o w - u p o f b o t h procedures was t o a u t o c l a v e t h e r e a c t i o n m i x t u r e f o r 7 - 4 0 h a t 4 2 3 - 4 3 5 K w i t h s t i r r i n g . A f t e r i s o l a t i o n t h e p r o d u c t was washed w i t h w a t e r and d r i e d .

A

whereas

The main c o n c l u s i o n o f t h e s t u d y i s t h a t p u r e ZSM-5, ZSM-35, ZSM-39,

ZSM-48

The r e s u l t s o f t h e experiments a r e g i v e n i n F i g . 6 f o r p r o c e d u r e t h e r e s u l t s o f t h e experiments w i t h p r o c e d u r e B a r e g i v e n i n F i g . 28. and

KZ-l

can be c r y s t a l l i z e d w i t h p y r r o l i d i n e i n t h e a f o r e m e n t i o n e d s y n t h e s i s

system. No common f a c t o r , based on t h e use o f p y r r o l i d i n e , c o u l d be

recognized

i n the various z e o l i t e products. b.4.a. The

use

of

bis-quaternary

ammonium compounds

in

molecular

The o b j e c t i v e i n t h i s study was t h e s y s t e m a t i c v a r i a t i o n

of

template

sieves

s y n t h e s i s ( r e f . 58)

synthesis.

An

example

of

the

synthesis

is

given

in

the

below t o g e t h e r w i t h t h e

p r o d u c t s formed, see Table 15. The g e n e r a l f o r m u l a o f t h i s b i s - q u a t e r n a r y t e m p l a t e ( T ) i s :

123

T a b l e 15. S y n t h e s i s

mixtures

and

product

formation

with

bis-quat

as

template. Synthesis conditions

Product f o r m a t i o n

m o l a r oxyde r a t i o Si02

X

60

1

Zeol it e phases

2'3 Na20

10

3

ZSM-39

TBr2

10

4

ZSM-12

576

EU- 1

7,8

ZSM-23

H2°

3000

S i l i c a phases 3

EU-4

499

EU-2

( w i t h o u t A1 203)

The

reaction

conditions

were

180 O C , t h r e e days and c r a s h - c o o l i n g a f t e r t h e

s y n t e h s i s was t e r m i n a t e d . b . 4 . b . Another example (ref. 167) Systematic v a r i a t i o n o f t h e c h a i n l e n g t h o f t h e t e m p l a t e (T) g i v e n below i n t h e general formula

r e s u l t e d i n t h e p r o d u c t s , g i v e n i n Table 16. T a b l e 16. Z e o l i t e f o r m a t i o n s , o b t a i n e d w i t h b i s - q u a t . X

2-5

Zeol it e phase Ferrierit e ZSM-5

5-6

ZSM-5

7-10

ZSM- 11

124 The f u l l synthesis d e s c r i p t i o n i s given i n r e f . 167. b . 5 . The synthesis of relatively large single crystals of molecular sieves b . 5 . 1 . Znt roduct ion P e r t a i n i n g t o e.g. the v i s c o s i t y o f

the

synthesis

mixture

several

systems,

c l e a r s o l u t i o n , d i l u t e d gel and dense gel phase have been i n v e s t i g a t e d . b . 5 . 2 . Crystallization of ZSM-22 from a clear solution [ref. 149) I n a t y p i c a l experiment tetramethoxysilane was hydrolyzed i n 3 M diethylamine

(DEA) according t o the f o l l o w i n g reactions:

Si(OCH3)4

+

2 H20

-------- > Si02 + 4 CH30H -------DEA > 2 Si02(C2H5)2NH 180 OC 100 days

Single

crystals

of

silica-ZSM-22 o f 45 x 100 x 225 pm were i s o l a t e d and used

f o r s t r u c t u r e determination.

b . 5 . 3 . Synthesis of elongated prismatic ZSM-5 crystals The o b j e c t i v e o f t h i s study was t o Systems

using

Na'-TPA+,

Li'-TPA+

obtain

large

and NH4'-TPA'

single

crystals

of

ZSM-5.

were i n v e s t i g a t e d applying a

r e a c t i o n mixture given i n molar oxyde r a t i o f o r e.g. NH4'-TPA':

TPA20 (NH4)20 23' Si02 H2°

4 123

T = 453 K

1 59 2280

t = 7 days

Products A1 kal i n e - f r e e ,

homogeneous elongated p r i s m a t i c s i n g l e c r y s t a l s o f ZSM-5 o f 350

pm i n l e n g t h a t maximum ( r e f . 168).

125

b.5.4. Synthesis o f cubic shaped s i n g l e c r y s t a l s o f ZSM-5 ( r e f . 169) The s y n t h e s i s o f t h i s t y p e

of

crystals

developed

recently

(ref.

169)

was

s u b j e c t o f a s t u d y on t h e c r y s t a l growth h i s t o r y ( r e f . 42) o f t h i s t y p e o f c r y s t a l s . The o b j e c t i v e was: t o p i n p o i n t t h e d r i v i n g f o r c e s which change t h e ZSM-5 c r y s t a l f o r m from e l o n g a t e d p r i s m a t i c i n t o c u b i c . The c r y s t a l growth h i s t o r y s t udy r e v e a l e d t h a t t h e c u b i c c r y s t a l growth o c c u r r e d i n a dense g e l phase, P e r f e c t s i n g l e c r y s t a l s up t o 500 pm o f z e o l i t e ( E M - 5 ) and a l l s i l i c a (silicalite-1)

m o l e c u l a r s i e v e type, see F i g . 16c, c o u l d be o b t a i n e d u s i n g t h e

f o l l o w i n g mo lar oxyde r a t i o : ZSM-5

S i l i c a l it e - 1

S i O2

12

12

2'3 Na20

1 44

44

TPA20

44

44

2000

2000

H2°

A f t e r 5 days produc t .

at

180

OC

crystals

could

be i s o l a t e d and s e l e c t e d f rom t h e

b.5.5. Synthesis o f s i n g l e c r y s t a l s o f z e o l i t e A and X ( r e f . 142) S i n g l e c r y s t a l s o f z e o l i t e A and X up t o 100-500 pm i n s i z e c o u l d

be

obtained

u s i n g t h e f o l l o w i n g procedures. Procedure f o r z e o l i t e A: S o l u t i o n I: 100 g Na2Si03.9H20 i n 350 m l H20 t 50 m l TEA S o l u t i o n 11: 80 g NaA102 i n 350 m l H20 t 50 m l TEA Both s o l u t i o n s a r e f i l t e r e d w i t h m i l i p o r e f i l t e r s , w h e r e a f t e r s o l u t i o n I 1 i s added t o s o l u t i o n I w i t h s t i r r i n g . The c r y s t a l l i z a t i o n i s perf ormed a t 75-85 OC f o r 2-3 weeks, w i t h o u t s t i r r i n g . Procedure f o r z e o l i t e X: Identical

to

the

procedure

for

z e o l i t e A,

o n l y 40 g o f NaA102 i s used i n

s o l u t i o n I 1 now. The c r y s t a l l i z a t i o n t i m e i s 3 - 5 weeks.

126 Remark C a r e f u l f i l t e r i n g o f t h e s t a r t i n g s o l u t i o n s s u b s t a n t i a l l y reduces t h e amount o f heterogeneous n u c l e i such as d u s t and f o r e i g n p a r t i c l e s i n t h e c h e m i c a l s . The l o w e r t h e number o f n u c l e i , t h e l a r g e r t h e c r y s t a l s .

starting

b . 6 . Morphology and f o r m o f m o r d e n i t e and ZSM-5 The

morphology

and/or

form

of

zeolite

crystals

appear

generally

to

be

i n f l u e n c e d by: - [Si02] - Guest m o l e c u l e t y p e - C a t i o n ( r e f . 171) - Crystal growth i n h i b i t o r s

A

frequently

observed c r y s t a l f o r m o f m o r d e n i t e i s t h e n e e d l e f o r m ( w i t h p o r e

channel system p a r a l l e l t o n e e d l e d i r e c t i o n ) , see F i g . 29a.

F i g . 29. D i f f e r e n t

forms o f m o r d e n i t e . The n e e d l e f o r m a), t h e

forms b) and c ) and

the

disk

form

d).

The

pore

ntermed a t e d rection i s

i n d i c a t e d by a b a r ( r e f . 85).

As shown i n F i g . 29b, c and d, c o m p l e t e l y d i f f e r e n t c r y s t a l forms o f can

be

prepared.

According

to

mordenite

t h e s y n t h e s i s system used ( r e f . 85) t h e main

i n f l u e n c e i n t h e shape o f t h e c r y s t a l s seems t o be t h e [ S i 0 2 ] . The

higher

the

[Si02], i . e . t h e more t h e c r y s t a l l i z a t i o n o c c u r s i n a dense g e l , t h e more t h e e l o n g a t e d f o r m i s reduced and changed i n t o a d i s k form.

127

The

increase

i n p o r e e n t r i e s and decrease i n p o r e l e n g t h g o i n g f r o m n e e d l e t o

d i s k f o r m i s e v i d e n t and may be o f i n t e r e s t i n c a t a l y s i s ( r e f . 170). The

elongated

prismatic

f o r m i s t h e most f r e q u e n t l y found c r y s t a l f o r m o f

Z S M - 5 . Changing t h e [Si02] can change t h e c r y s t a l f o r m as shown i n F i g . 30a and

b f o r r e l a t i v e l y l o w and h i g h [Si02]c o n c e n t r a t i o n s , r e s p e c t i v e l y .

F i g . 30. The e l o n g a t e d p r i s m a t i c c r y s t a l f o r m (a) and t h e c u b i c c r y s t a l f o r m (b) o f z e o l i t e ZSM-5.

Changing t h e t e m p l a t e t y p e , i . e . r e p l a c i n g TPA' ammonium

ion,

f o r the divalent

bi-quaternary

hexapropyl-1,6-hexanediammonium, r e s u l t e d i n d i f f e r e n t c r y s t a l

forms f o r l o w as h i g h [Si02] as w e l l , see F i g . 31a and b.

F i g . 31. The

modification o f

the

c r y s t a l f o r m a t low (a) and a t h i g h (b)

[ S i 0 2 ] o f z e o l i t e ZSM-5 prepared w i t h b i q u a t as t e m p l a t e .

I n t h e case o f an a d d i t i v e ( i n h i b i t o r ) l i k e b o r i c a c i d an enrichment o f c r y s t a l faces i n t h e c - d i r e c t i o n was observed as shown i n F i g . 32.

128

F ig . 32. A d d i t i o n a l

crystal

face

compared

(001)

to

regular

elongated

p r i s m a t i c f o r m o f z e o l i t e ZSM-5.

XII. LITERATURE SOURCES PERTAINING ZEOLITE PREPARATION ASPECTS Though most o f t h e l i t e r a t u r e

sources

are

given

in

XIII, a more

Section

extended l i s t o f sources i s g i v e n below f o r reasons o f c l a r i t y and ease.

A

Chemical Abstracts literature

search

in

the

Chemical

A b s t r a c t s (CA) can be s u c c e s s f u l when

C o n t r o l l e d Vocabulary Index Terms (CVIT's) a r e used. As CVIT's a f t e r 1976 a r e n o t o n l y assigned t o words i n t h e t i t l e and t h e a b s t r a c t , b u t a l s o t hroughout the t e x t

of

thoroughly.

the The

paper choice

(open of

literature

CVIT's

must

or be

patent) correct.

the

search w i l l

be

I n t h e case t h e word

" s y n t h e s i s " i s used i n s t e a d o f " p r e p a r a t i o n " t h e main p a r t o f t h e search " h i t s "

w i l l p e r t a i n t o r e a c t i o n s w i t h t h e a i d o f z e o l i t e s whereas t h e p r e p a r a t i o n o f z e o l i t e s i s then d i f f i c u l t t o e x t r a c t . - Proceedings o f I n t e r n a t i o n a l Zeo7 i t e Conferences (IZC)

1. " Molec ular Sieves", SOC. Chem. I n d . , London, 1968; Proceedings I Z C , London, U.K.,

of

the

1st

1967.

2. " Mo lec ular Sieves I and I I " , Adv. Chem. Ser.,

101 and 102, ACS,

Washington,

D.C., 1971; Proceedings o f t h e 2nd I Z C , Worcester, Mass., U . S . A . , 1970. 3. " Mo lec ular Sieves", Adv. Chem. Ser., 121, ACS, Washington, D.C., 1973; W.M. Meier

and

J.B.

S w i t z e r l a n d , 1973.

Uytterhoeven,

Eds.,

Proceedings

o f t h e 3 r d IZC, Zurich,

129

4. " M o l e c u l a r S i e v e s - I I " , ACS Symp. Ser., 40, ACS, Washington, D.C.,

1977; J.R.

K a t z e r , Ed., Proceedings o f t h r e 4 t h I Z C , Chicago, Ill.,U.S.A., 5. "Proceedings

of

the

5th

International

London, P h i l a d e l p h i a , Rheine, 1980; L.V.C.

1977.

Conference

on z e o l i t e s " , Heyden,

Rees, Ed.,

Proceedings o f t h e 5 t h

I Z C , Naples, I t a l y , 1980. 6. "Proceedings o f t h e 6 t h I n t e r n a t i o n a l Conference on Z e o l i t e s " , B u t t e r w o r t h s , Guildford,

1984;

D.

Reno, Nev., U.S.A.,

Olson and A. B i s i o , Eds., Proceedings o f t h e 6 t h I Z C ,

1983.

7 . New Developments

in

Zeolites

Science

and

Technology", Kodansha, Tokyo,

E l s e v i e r , Amsterdam, Oxford, New York, Tokyo, 1986, Stud. S u r f . S c i . C a t a l . , 28;

Y. Murakami, A. I i j i m a and J.W. Ward, Eds., Proceedings o f t h e 7 t h I Z C ,

Tokyo, Japan, 1986. 8. " Z e o l i t e s :

Facts,

F i g u r e s , F u t u r e " , E l s e v i e r , Amsterdam, Oxford, New York,

Tokyo, 1989, Stud. S u r f . S c i . C a t a l . , 49; P.A. Jacobs and R . A .

van

Santen,

Eds., Proceedings o f t h e 8 t h I Z C , Amsterdam, N e t h e r l a n d s , 1989. - S y n t h e s i s p a r t i n r e c e n t i n t e r n a t i o n a l conferences

"Zeolites,

Synthesis,

Structure,

Technology

Amsterdam, Oxford, New York, Tokyo, 1985,

Stud.

and

Application",

Surf.

Sci.

Catal.,

Elsevier, 24;

B.

D r z a j , S. Hocevar and S. P e j o v n i k , Eds. " I n n o v a t i o n i n Z e o l i t e M a t e r i a l s Science",

Elsevier,

Amsterdam,

Oxford,

New

York, Tokyo, 1988, Stud. S u r f . S c i . Catal.,

37; P.J. Grobet, W.J. M o r t i e r , E.F.

Vansant and G. S c h u l z - E k l o f f , Eds. "Zeolite

Synthesis",

ACS

Symp.

Ser., 398, ACS, Washington, D.C.,

1989; M.L.

O c c e l l i and H.E. Robson, Eds.

-

Journal

Z e o l i t e s , L.V.C.

Rees and

R.

von

Ballmoos,

Eds.,

Publishers,

Butterworth,

Heinemann, Stoneham, MA, U.S.A.

"Zeolite

Molecular

Sieves",

S t r u c t u r e , Chemistry and Use, John W i l e y & Sons,

New York, London, Sydney, Toronto, 1974; D.W. "Hydrothermal R.M.

Chemistry

B a r r e r FRS.

Breck.

o f Z e o l i t e s " , Academic Press, London, New York, 1982;

130

"Synthesis Oxford,

of

High-Silica Alumiosilicate

New York,

Tokyo,

Zeolites",

Elsevier,

Amsterdam,

1987, Stud. Surf. Sci. Catal., 33; P.A. Jacobs and

J.A. Martens, Eds.

"Molecular

Sieves,

P r i n c i p l e s o f Synthesis and I d e n t i f i c a t i o n " , Van Norstrand

Reinhold, New York, 1989; R. Szostak. "An I n t r o d u c t i o n t o Z e o l i t e Molecular Sieves", John Wiley and Sons, Chichester, 1988, A. Dyer. ACKNOWLEDGMENT. I l i k e t o thank D r . H. Kouwenhoven f o r reading the manuscript.

XIII. REFERENCES 1 G. Gottardi and E. G a l l i , Minerals and Rocks, Natural Z e o l i t e s , SpringerVerlag, B e r l i n , 1985. 2 L.B. Sand and F.A. Mumpton, Natural Z e o l i t e s , Occurrence, Properties and Use, Pergamon Press, Oxford, 1978. 3 R.L. Hay, Geologic Occurrence o f Zeolites, i n : L.B. Sand and F.A. Mumpton (Eds.), Natural Zeolites, Pergamon, Oxford, 1978, pp. 135-143. 4 A. I i j i m a , Geology o f Natural Z e o l i t e s and Z e o l i t i c Rocks, i n : L. Rees (Ed.), Proc. 5 t h I n t . Conf. on Zeolites, Naples, I t a l y , June 2-6, 1980, Heyden, London, 1980, pp. 103-118. 5 R.M. Barrer, Synthesis o f Molecular Sieve Z e o l i t e s , i n : Molecular Sieves, London, England, SOC. Chem. Ind., London, 1968, pp. 39-46. 6 W.M. Meier and D.H. Olson, A t l a s o f Z e o l i t e S t r u c t u r e Types, 2nd edn., Butterworths, London, 1987. 7 C.A.G. Konings, D e l f t U n i v e r s i t y o f Technology, Central L i b r a r y . The L i b r a r y search was performed using C o n t r o l l e d Vocabulary Index Terms o f t h e Chemical Abstracts. 8 C.J. Brinker, D.E. C l a r k and D.R. U l r i c h (Eds.), Symp. Proc. Mat. Res. SOC., V o l . 32, B e t t e r Ceramics through Chemistry, Albuquerque, U.S.A., February, 1984, Elsevier, New York, 1984. 9 C.J. Brinker, J. Non-Crystalline Solids, 100, 1988, 31-50. 10 C.J. Brinker, D.E. C l a r k and D.R. U l r i c h (Eds.), Symp. Proc. Mat. Res. SOC., Vol. 73, B e t t e r Ceramics through Chemistry 11, Palo A l t o , U.S.A., A p r i l 15-19, 1986, Mat. Res. SOC., Pittsburgh, 1986. 11 S.D. Kinrade and T.W. Swaddle, Inorg. Chem., 27, 1988, 4253-4259. 12 A.V. McCormick, A.T. B e l l and C.J. Radke, J. Phys. Chem., 93, 1989, 1741-1744. 13 R.A. van Santen, G. Ooms, C.J.J. den Ouden, B.W. van Beest and M.F.M. Post, Computational Studies o f Z e o l i t e Framework S t a b i l i t y , i n : M.L. O c c e l l i and H.E. Robson (Eds.), Z e o l i t e Synthesis, ACS Symp. Ser. 398, ACS, Washington, DC, 1989, pp. 617-633. 14 A.G. Pelmenshschikov, G.M. Zhidomirov and K . I . Zamaraev, Quantum-chemical I n t e r p r e t a t i o n o f I n t r a z e o l i t e Chemistry Phenomena, i n : P.A. Jacobs and R.A. van Santen (Eds.), Stud. Surf. Sci. Catal., 49B, E l s e v i e r , Amsterdam, 1989, pp. 741-752. 15 D.C. Bradley, Chem. Rev., 89, 1989, 1317-1322. 16 J.L. Guth, H. Kessler, J.M. Higel, J.M. Lamblin, J. Patarin, A. Seive, J.M. Chezeau and R. Wey, Z e o l i t e Synthesis i n t h e Presence o f F l u o r i d e Ions, i n : M.L. O c c e l l i and H.E. Robson (Eds.), Z e o l i t e Synthesis, ACS Symp. Ser., 398, ACS, Washington, DC, 1989, pp. 176-195. 17 L.B. Sand, A. Sacco, Jr., R.W. Thomson and A.G. Dixon, Z e o l i t e s , 7, 1989, 387-392.

131 18

19 20 21 22

23

24 25 26

27 28

29 30 31 32 33 34 35 36 37 38

39

D.T. Hayhurst, P.J. M e l l i n g , Wha Jung K i m and W. Bibbey, E f f e c t o f G r a v i t y on S i l i c a l i t e C r y s t a l l i z a t i o n , i n : M.L. O c c e l l i and H.E. Robson (Eds.), Z e o l i t e S y n t h e s i s , ACS Symp. Ser., 398, ACS, Washington, DC, 1989, pp. 233-243. M. Niwa and Y . Murakami, J. Phys. Chem. S o l i d s , 50, 1989, 487-496. Chu Pochen, F.G. Dwyer and V.J. C l a r k e , C r y s t a l l i z a t i o n Method Employing Microwave R a d i a t i o n , E.P. 0358827. R.W. Thomson and A. Dyer, Z e o l i t e s , 5, 1985, 202-210. F . D i Renzo, F. F a j u l a , F . Figueras, S. N i c o l a s and T. des C o u r i e r e s , Are t h e General Laws o f C r y s t a l Growth A p p l i c a b l e t o Z e o l i t e Synthesis?, i n : P.A. Jacobs and R.A. van Santen (Eds.), Stud. S u r f . S c i . C a t a l . , 49A, E l s e v i e r , Amsterdam, 1989, pp. 119-132. L.Y. Hou and L.B. Sand, D e t e r m i n a t i o n s o f Boundary C o n d i t i o n s of C r y s t a l l i z a t i o n o f ZSM-5/ZSM-11 i n one System, i n : D. Olson and A. B i s i o J u l y 10-15, 1983, (Eds.), Proc. 6 t h I n t . Conf. on Z e o l i t e s , Reno, U.S.A., B u t t e r w o r t h s , London, 1984, pp. 887-893. E.G. Derouane, L. B a l t u s i s , R.M. Dessau and K.D. S c h m i t t , Q u a n t i t a t i o n and M o d i f i c a t i o n o f C a t a l y t i c S i t e s i n ZSM-5, i n : B. I m e l i k (Ed.), C a t a l y s i s by A c i d s and Bases, E l s e v i e r , Amsterdam, 1985, pp. 135-146. C.T-W. Chu, G.H. Kuehl, R.M. Lago and C.D. Chang, J. o f C a t a l . , 93, 1985, 451-458. M.F.M. Post, T . Huizinga, C.A. Emeis, J.M. Nanne and W.H.J. S t o r k , An I n f r a r e d and C a t a l y t i c Study o f somorphous S u b s t i t u t i o n i n P e n t a s i l Z e o l i t e s , i n : H.G. Karge and J. We tkamp (Eds.), Stud. S u r f . S c i . C a t a l . , Elsevier, 46, Proc. o f an I n t . Symp., Sept. 4 8, 1988, Wurzburg, F.R.G., Amsterdam, 1988, pp. 363-375. W.O. Haag, R.M. Lago and P.B. Weisz 72, Faraday Discuss. Chem. SOC., 1981, 317-330. F l a n i g e n , The R.L. Bedard, S.T. Wilson, L.D. V a i l , J.M. Bennett and E.M. Next Generation, S y n t h e s i s , C h a r a c t e r i z a t i o n , and S t r u c t u r e o f Metal S u l f i d e - b a s e d Microporous Sol i d s , i n : P.A. Jacobs and R.A. van Santen (Eds.), Stud. S u r f . S c i . C a t a l . , 49A, E l s e v i e r , Amsterdam, 1989, pp. 375-387. F. Liebau, H. Gies, R . P . Gunawardane and B. M a r l e r , Z e o l i t e s , 6, 1986, 373-377. L.V.C. Rees, Nature, 296, 1982, 491-492. P.B. Weisz and J.N. M i a l e , J . C a t a l . , 4, 1965, 527-529. R.M. B a r r e r , Hydrothermal Chemistry o f Z e o l i t e s , Academic Press, London, 1982, p. 106. Ref. 32, p. 105. L. Rees (Ed.), Proc. 5 t h I n t . Conf. on Z e o l i t e s , Naples, I t a l y , June 2-6, 1980, Heyden, London, 1980. D . Olson and A. B i s i o (Eds.), Proc. 6 t h I n t . Conf. on Z e o l i t e s , Reno, U.S.A., J u l y 10-15, 1983, B u t t e r w o r t h s , London, 1984. Y . Murakami, A. I i j i m a and J.W. Ward ( E d s . ) , New Developments i n Z e o l i t e Science and Technology, Proc. 7 t h I n t . Conf. on Z e o l i t e s , Tokyo, Japan, August 17-22, 1986, Kodansha, Tokyo, and E l s e v i e r , Amsterdam, 1986. P.A. Jacobs and R.A. van Santen ( E d s . ) , Stud. Surf. S c i . C a t a l . , 49, Z e o l i t e s , Facts, F i g u r e s , Future, Proc. 8 t h I n t . Conf. on Z e o l i t e s , Amsterdam, The Netherlands, J u l y 10-14, 1989, E l s e v i e r , Amsterdam, 1989. B. D r z a j , S. Hocevar and S. P e j o v n i k (Eds.), Stud. S u r f . S c i . C a t a l . , 24, Z e o l i t e s , S y n t h e s i s , S t r u c t u r e , Technology and A p p l i c a t i o n , P o r t o r o z , Yugoslavia, September 3-8, 1984, E l s e v i e r , Amsterdam, 1985, S y n t h e s i s Part. P.J. Grobet, W.J. M o r t i e r , E.F. Vansant and G. S c h u l z - E k l o f f (Eds.), Stud. Surf. Sci. Catal., 37, I n n o v a t i o n i n Z e o l i t e M a t e r i a l s Science, Nieuwpoort, Belgium, September 13-17, 1987, E l s e v i e r , Amsterdam, 1988, Synthesis Part.

132

40 41 42 43 44 45 46 47

48 49 50 51 52

53 54 55 56 57 58

59 60 61 62 63 64 65 66 67 68

69 70 71 72 73

M.L. O c c e l l i and H.E. Robson (Eds.), Z e o l i t e Synthesis, ACS Symp. Ser., 398, Los Angeles, U.S.A., September 25-30, 1988, ACS, Washington, DC, 1989. P.A. Jacobs and J.A. Martens, Stud. S u r f . S c i . C a t a l . , 33, Synthesis o f H i g h - s i l i c a A l u m i n o s i l i c a t e Z e o l i t e s , E l s e v i e r , Amsterdam, 1987, p. 71. Ref. 40, C r y s t a l Growth Regulation and Morphology o f Z e o l i t e S i n g l e C r y s t a l s o f t h e M F I Type, pp. 257-273. J.C. Pouxviel and J.P. B o i l o t , J. Mat. S c i . , 24, 1989, 321-327. B.M. Lok, T.R. Cannan and C.A. Messina, Z e o l i t e s , 3, 1983, 282-291. E . M o r e t t i , S. Contessa and M. Padovan, La Chimica e l ’ I n d u s t r i a , 67, 1985, 21-34. (a) E.M. Flanigen and R.L. Patton, US Pat. 4073865, 1978. (b) J.L. Guth, H. Kessler, M. Bourgogne, R. Wey and G. Szabo, F r . Pat. 2567868, 1986. W. Meise and F.E. Schwochow, K i n e t i c Studies on t h e Formation o f Z e o l i t e A, i n : W.M. Meier and J.B. Uytterhoeven ( E d s . ) , M o l e c u l a r Sieves, Proc. 3 r d I n t . Conf. on Z e o l i t e s , ACS Symp. Ser., 121, Z u r i c h , Switzerland, September 3-7, 1973, ACS, Washington, DC, 1973, pp. 169-178. J.B. Nagy, P. Bodart, H. C o l l e t t e , J. E l Hage-A1 Asswad, Z. Gabelica, R. A i e l l o , A. Nastro and C. P e l l e g r i n o , Z e o l i t e s , 8, 1988, 209-220. Rubin, E.J. Rosinski and C.J. Plank, US Pat. 4151189, 1979. (b) (a) M.R. G.F. Dwyer and P. Chu, Eur. Pat. 11362, 1980. J.M. Nanne, M.F.M. Post and W.H. Stork, NL Pat. 4251499, 1981. G.T. Kerr, US Pat. 3459676, 1969. Hickson, BE Pat. 8886833, 1981. ( b ) L . D . Rollman, US Pat. (a) D.A. 4296083, 1981. ( c ) L. Marosi, M. Schwarzmann and J. Stabenow, Eur. Pat. 49386, 1982. ( d ) . L.D. Rollman and E.W. Valyocsik, US Pat. 4139600, 1979. ( e ) L.D. Rollman and E.W. Valyocsik, US Pat. 4108881, 1978. ( f ) L.D. Rollman and E.W. Valyocsik, Eur. Pat. 15132, 1980. M.K. Rubin and E.J. Rosinski, US Pat. 4331643, 1982. R.J. Argauer and G.R. Landolt, US Pat. 3702886, 1972. R. Le Van Mas, 0. P i l a t i , E. M o r e t t i , R. C o v i n i and F . Genoni, US Pat. 4366135, 1982. A.J. Tompsett and T.V. Whitham, Eur. Pat. 107457, 1984. W. Sieber and W.M. Meier, Helv. Chim. Acta, 57, 1974, 1533. J.L. Casci, B i s - q u a t e r n a r y Ammonium Compounds as Templates i n the C r y s t a l l i z a t i o n o f Z e o l i t e s and S i l i c a M o l e c u l a r Sieves, i n : Y . Murakami, A. I i j i m a and J.W. Ward (Eds.), Proc. 7 t h I n t . Conf. on Z e o l i t e s , Tokyo, Japan, August 17-22, 1986, Kodansha, E l s e v i e r , Tokyo, Amsterdam, 1986, pp. 215-222. (a) G.T. Kerr, Science, 140, 1963, 1412. (b) G.T. K e r r , J. I n o r g . Chem., 5, 1966, 1539. J. C i r i c , US Pat. 3950496, 1976. G.T. Kerr, US P a t . 3459676, 1969. C.J. Plank, E.J. Rosinski and M.K. Rubin, US Pat. 4175114, 1979; US Pat. 4199556, 1980. J.L. Casci, B.M. Lowe and T.V. Whittam, Eur. Pat. 42225, 1981. M. Taramasso, G. Perego and 6. N o t a r i , Bel. P a t . 887897, 1981. T.V. Whittam, Eur. Pat. 0054386, 1982. E. M o r e t t i , M. Padovan, M. S o l a r i , C . Marano and R. C o v i n i , Germ. Pat. 3301798, 1983. M.K. Rubin, C.J. Plank and E.J. Rosinski, US Pat. 4021447, 1977. J. Keysper, C.J.J. den Ouden and M.F.M. Post, Synthesis o f H i g h - s i l i c a S o d a l i t e from Aqueous Systems, i n : P.A. Jacobs and R.A. van Santen, Stud. S u r f . S c i . Catal., 49A, Z e o l i t e s , Facts, Figures, Future, E l s e v i e r , Amsterdam, 1989, pp. 237-247. I d e n i t s u Kosan Co., L t d . Jpn., JP Pat. 8207816, 1982. C.A. Audeh and E.W. Valyocsik, US Pat. 4285922, 1981. P. Chu, US Pat. 3709979, 1973. See r e f . 71 and r e f . 41, p. 148 M. Baacke and P. K l e i n s c h m i t , Eur. P a t . 91537, 1983.

133

74 W.R. Moser, J.E. Cnossen, A.W. Wang and S.A. Krouse, J. C a t a l . , 95, 1985, 21-32. 75 W.R. Moser, C . C . Chiang and J.E. Cnossen, Advances i n M a t e r i a l s C h a r a c t e r i z a t i o n , Plenum, New York, 1985. 76 R.A. Laudise, Chemical & E n g i n e e r i n g News, 1987, 30-43. 77 Ref. 32, p. 18. 78 D.W. Breck, Z e o l i t e M o l e c u l a r Sieves, John W i l e y & Sons, New York, USA, 1974. 79 W.O. Haag, R.M. Lago and P.B. Weisz, Nature, 309, 1984, 589-591. 80 F.J. van d e r Gaag, Thesis D e l f t , The Netherlands, 1987. 81 G. Debras, A. Gourgue, J.B. Nagy and G. d e C l i p p e l e i e r , Z e o l i t e s , 6, 1986, 161-168. 82 L.D. Rollmann, S y n t h e s i s o f Z e o l i t e s , An Overview, i n F.R. R i b e i r o , A.E.

83 84 85 86

87 88

Rodrigues, L.D. Rollmann and C. Naccache, Proceedings o f t h e NATO AS1 on Z e o l i t e s , Science and Technology, Alcabideche, P o r t u g a l , May 1-12, 1983, M a r t i n u s N i j h o f f Pub1 ., The Hague, The N e t h e r l a n d s , 1984, pp. 109-126. Ref. 78, p. 270. A. Erden and L.B. Sand, J. C a t a l . , 60, 1979, 241-256. P. Bodart, 3.6. Nagy, E.G. Derouane and Z . Gabelica, Study o f M o r d e n i t e C r y s t a l l i z a t i o n , i n : P.A. Jacobs (Ed.), S t r u c t u r e and R e a c t i v i t y o f M o d i f i e d Z e o l i t e s , E l s e v i e r , Amsterdam, 1984, pp. 125-132. Z. Gabelica, N. Dewaele, L. M a i s t r i a u , J.B. Nagy and E.G. Derouane, D i r e c t Parameters i n t h e Synthesis o f Z e o l i t e s ZSM-20 and Beta, i n : M.L. O c c e l l i Robson (Eds.), Z e o l i t e S y n t h e s i s , ACS Symp. Ser., 398, ACS, and H.E. Washington, DC, 1989, pp. 518-543. K. Suzuki, Y . Kiyozumi, S. Shin, K. Fujisawa, H. Watanabe, K. S a i t o and K. Noguchi, Z e o l i t e s , 6, 1986, 290-298. E. T h i l o , W . Wieker and H. Stade, 2. Anorg. A l l g . Chem., 340, 1965,

261-276. 89 W. Wieker and D. Hoebbel, 2. Anorg. A l l g . Chem., 366, 1969, 139-151. 90 L.S.D. G l a s s e r and E.E. Lachowski, J. Chem. SOC. Chem. Comm., 1980, 973-974. 91 J.L. Guth, P. C a u l l e t , P. Jacques and R. Wey, B u l l . SOC. Chim. F r . , 34, 1980, 121-126. 92 D. Hoebbel, G. E n g e l h a r d t , A. Samoson, K. Ujszasky and Yu. I. Smolin, Z. Anorg. A l l g . Chem., 552, 1987, 236-420. 93 G. B i s s e r t and F. Liebau, Z e i t s c h r i f t f u r K r i s t a l l o g r a p h i e , 179, 1987, 357-371. 94 See Chapter 8 and r e f e r e n c e s c i t e d t h e r e i n . 95 S . Ueda, N. Kageama and M. Koizumi, C r y s t a l l i z a t i o n o f Z e o l i t e Y f r o m S o l u t i o n Phase, i n : D. Olson and A . B i s i o (Eds.), Proc. 6 t h I n t . Conf. on Z e o l i t e s , Reno, USA, J u l y 10-15, 1983, B u t t e r w o r t h s , London, 1984, pp. 905- 9 13. 96 R.K. I l e r , The Chemistry o f S i l i c a , W i l e y , New York, 1979. 97 J.V. Sanders, J o u r n a l de Physique, C3, 1985, 1-8. 98 C.F. Baes and R.E. Mesmer, The H y d r o l y s i s o f C a t i o n s , W i l e y , New York, USA, 1976. 99 W.G. Klemperer, V.V. Mainz and D.M. M i l a r , A M o l e c u l a r B u i l d i n g - b l o c k

Approach t o t h e S y n t h e s i s o f Ceramic M a t e r i a l s , i n : C.J. B r i n k e r , D.E. C l a r k and D.R. U l r i c h (Eds.), B e t t e r Ceramics t h r o u g h C h e m i s t r y 11, M a t e r i a l s Research S o c i e t y , P i t t s b u r g h , USA, 1986, pp. 3-13. 100 F. Liebau, I n o r g . Chim. Acta, 89, 1984, 1-7. 101 A.V. McCormick and A.T. B e l l , C a t a l . Rev.-Sci. Eng., 31 (1 & 2), 1989,

97-127. 102 D.W. Schaefer and K.D. K e e f e r , S t r u c t u r e o f S o l u b l e S i l i c a t e s ,

i n : C.J. B r i n k e r , D.E. C l a r k and D.R. U l r i c h (Eds.), Symp. Proc. Mat. Res. SOC., 32, B e t t e r Ceramics t h r o u g h Chemistry, Albuquerque, USA, February 1984, E l s e v i e r , New York, 1984. 103 G. Boxhoorn, 0. Sudmeijer and P.H.G. van Kasteren, J. Chem. SOC. Chem. Commun., 1983, 1416-1418.

134

104 Z. Gabelica, E.G. Derouane and N. Blom, F a c t o r s A f f e c t i n g t h e S y n t h e s i s o f P e n t a s i l Z e o l i t e s , i n : T.E. Whyte, Jr., A. D a l l a B e t t a , E.G. Derouane and R.T.K. Baker, C a t a l y t i c M a t e r i a l s , R e l a t i o n s h i p between S t r u c t u r e and R e a c t i v i t y , ACS Symp. Ser., 248, ACS, 1984, pp. 219-236. 105 A.V. McCormick, A.T. B e l l and C.J. Radke, The I n f l u e n c e o f A l k a l i Met al H y dro x ides on S i l i c a Condensation Rates, i n : C.J. B r i n k e r , D . E . C l a r k and D.R. U l r i c h (Eds.), B e t t e r Ceramics Through Chemist ry 111, 1988, Mat. Res. SOC., P i t t s b u r g h , 1988. 106 Z. Gabelica, J.B. Nagy, P. B o d a r t , N. Dewaele and A. Nastro, Z e o l i t e s , 7, 1987, 67-72. 107 Q. Chen, J.B. Nagy, J. F r a i s s a r d , J. E l Hage-A1 Asswad, Z. G abelica, E.G. Derouane, R. A i e l l o , F. Crea, G. Giordano and A. Nast ro, i n : Proc. NATO Workshop, A p r i l 24-27, 1989, Dourdan, France. Nagy, P. Bodart, H. C o l l e t t e , C. Fernandez, Z. G abelica, A. N a s t r o 108 J.B. and R. A i e l l o , J. Chem. SOC. Faraday Trans. 1, 85 ( 9 ) , 1989, 2749-2769. 109 E.J.J. Groenen, A.G.T.G. Kortbeek, M. Mackay and 0. Sudmeyer, Z e o l i t e s , 6, 1986, 403-411. 110 G. E ngelhar d t and D.Z. Hoebbel, Chem., 23, 1983, 33. 111 F. S c h l e n k r i c h , E. B e i l , 0. Rademacher and H. Scheler, Z. Anorg. A l l g . Chem., 519, 1984, 41. 112 0. Rademacher, 0. Ziemans and H. Scheler, Z. Anorg. A l l g . Chem., 519, 1984, 165. Thomson, 113 R.D. Edelman, D.V. K u d a l k a r , T. Ong, J. Warzywoda and R.W. Z e o l i t e s , 9, 1989, 496-502. 114 R.W. Thompson and A. Dyer, Z e o l i t e s , 5 , 1985, 292-301. 115 See r e f . 41, Chapter 1. 116 See r e f . 32, p. 174. 117 B. S ubot ic, D. S k r t i c and I . S m i t , J. o f C r y s t a l Growth, 50, 1980, 498-508. 118 P. B odart , J.B. Nagy, Z. G a b e l i c a and E.G. Derouane, J. Chim. Phys., 83, 1986, 777-790. 119 P r i v a t e communcation w i t h P r o f s . P. Bennema and G.M. van Rosmalen. 120 E. G r u j i c , B. S u b o t i c and L.J.A. D e p r o t o v i c , T r a n s f o r m a t i o n o f z e o l i t e A i n t o h y d r o x y s o d a l i t e 111, i n P.A. Jacobs and R.A. van Santen (Eds.), Stud. S u r f . S c i . C a t a l . , 49A, Amsterdam, 1989, pp. 261-270. 121 W.M. Me ier , i n : " M o l e c u l a r Sieves", London, England, SOC. Chem. Ind., London, 1968, p. 10. 122 The s i m i l a r i t y between t h e s t r u c t u r e s o f s i l i c a t e species i n s o l u t i o n and t h e SBU's i s t o o s m a l l , e.g. t h e open f i v e - , s i x - and eight-membered r i n g systems o f t h e SBU's a r e unknown i n aqueous s o l u t i o n . 123 Ref. 32, p . 122 and 153. 124 G.A. J e f f r e y , H y d r a t e I n c l u s i o n Compounds, i n : J.L. Atwood, J.E.D. Davies and D.D. MacNicol (Eds.), I n c l u s i o n Compounds, Vol. 1, S t r u c t u r a l Aspects o f I n c l u s i o n Compounds formed by I n o r g a n i c and Organometall i c Host L a t t i c e s , Academic Press, London, 1984, pp. 135-190. 125 T.C.W. Mate, J. Chem. Phys., 43, 1965, 2799. 126 a) J. C i r i c , J. C o l l o i d I n t e r f a c e S c i . , 28, 1968, 315-323. b ) E . F . Freund, J. C r y s t . Growth, 34, 1976, 11-15. 127 a) R.B. Borade, A.J. Chandvadkan, S.B. K u l k a r n i u and P. Ratnasamy, I n d i a n J. o f Techn., 21, 1983, 358-362. b) R . A i e l l o and R.M. B a r r e r , J. Chem. SOC., A, 1970, 1470. 128 S.P. Zdhanov and N.N. Samlevich, N u c l e a t i o n and C r y s t a l Growth o f Z e o l i t e s , i n : L.V.C. Rees (Ed.), Proc. o f t h e 5 t h I n t . Conf. on Z e o l i t e s , Naples, I t a l y , June 2-6, 1980, Heyden, London, 1980, pp. 75-84. 129 a) H. K a c i r e k and H. L e c h e r t , J. Phys. Chem., 80, 1976, 1291. b ) K.-J. Chao, T.C. T a s i , M.-S. Chen and I . Wang, J. Chem. SOC. Faraday I , 77, 1981, 465. C ) E . N a r i t a , K. Sato, N. Yatabe and T. Okabe, I n d . Eng. Chem. Prod. Res. Dev., 24, 1985, 507-512. 130 R. von Ballmoos, Thesis Z u r i c h , 1981. 131 C. B aerlo c h e r and W.M. M e i e r , H e l v . Chim. Acta, 52, 1969, 1853-1860.

135

132 133

134

135 136 137 138 139 140 141 142 143 144 145 146 147 148

149 150 151 152 153 154 155 156

157 158 159 160 161 162 163

C. B a e r l o c h e r and W.M. M e i e r , H e l v . Chim. Acta, 53, 1970, 1285-1293. a ) H. Nakamoto and H. Takahasi, Chem. L e t t . , 1981, 1739-1742, b ) F. Crea, J.B. Nagy, A . N a s t r o , G . Giordano and R. A i e l l o , Thermochimica Acta, 135, 1988, 553-357. c ) D.T. Hayhurst, A. Nastro, R. A i e l l o , F. Crea and G. Giordano, Z e o l i t e s , 8, 1988, 416-422. a ) See r e f . 129c. b) F . - Y . Dai, M. Suzuki, M . Takahashi and Y . Sato, i n : Y. Murakami, A. I i j i m a and J.W. Ward ( E d s . ) , Proc. 7 t h I n t . Conf. on Z e o l i t e s , Tokyo, Japan, Aug. 17-22, 1986, Kodansha, Tokyo, and E l s e v i e r , Amsterdam, 1986, pp. 223-230. c ) V.P. S h i r a l k a r and A. C l e a r f i e l d , 9, 1989, 363-370. Barrer, a) R.M. B a r r e r and P.J. Denny, J. Chem. SOC., 1961, 971. b ) R.M. P.D. Denny and E.M. F l a n i g e n , US Pat. 3306922, 1967. R. A i e l l o and R.M. B a r r e r , J. Chem. SOC. A, 1970, 1470. E.M. F l a n i g e n and E.B. K e l l b e r g , US Pat. 4241036, 1968. G.T. K o k o t a i l o and S. Sawruk, US Pat. 4187283, 1980. An e x t e n s i v e l i s t o f o r g a n i c t e m p l a t e s i s g i v e n i n T a b l e 5 o f r e f s . 44, 45. A. Gutze, J. Kornatowski, H. Neels, W . Schmitz and G. F i n g e r , C r y s t . Res. & Technol., 20, 1985, 151-158. E. de Vos B u r c h a r t , J.C. Jansen and H. van Bekkum, Z e o l i t e s , 9, 1989, 423-435. J. F. C h a r n e l l , J. C r y s t . Growth, 8, 1971, 291. D.T. Hayhurst, A. Nastro, R. A i e l l o , F. Crea and G. Giordano, Z e o l i t e s , 8, 1989, 416-423. Ref. 32, p . 145. N.N. F e o k t i s t o v a , S . P . Zhdanov, W. L u t z and M. Bulow, Z e o l i t e s , 9, 1989, 136-139. C.A. Fyfe, G.C. Gobbi, G.J. Kennedy, J.D. Graham, R . S . Ozubho, W.A. Murphy, A. Bothner-By, J. Dadok and A . S . Chesnick, Z e o l i t e s , 5, 1985, 179-183. G.W. Skeels and D.W. Breck, Z e o l i t e Chemistry V, i n : D. Olson and A. B i s i o (Eds.), Proc. 6 t h I n t . Conf. on Z e o l i t e s , Reno, USA, J u l y 10-15, 1983, B u t t e r w o r t h s , London, 1989, pp. 87-96. H.K. Beyer and I . B e l e n i j k a j a , A New Method f o r t h e D e a l u m i n a t i o n o f F a u j a s i t e - t y p e Z e o l i t e s , i n : B. I m e l i k , C. Naccache, Y. Ben T a a r i t , J.C. Vedrine, G. C o u d u r i e r and H. P r a l i a u d (Eds.), Stud. S u r f . S c i . C a t a l . , 5, E l s e v i e r , Amsterdam, 1980, pp. 203-210. B. M a r l e r , Z e o l i t e s , 7, 1987, 393-397. R.P. Gunawardane, H. Gies and B. M a r l e r , Z e o l i t e s , 8, 1988, 127-131. H. Gies and R.P. Gunawardane, Z e o l i t e s , 7, 1987, 442-445. E.M. Flanigen, J.M. Bennett, R.W. Grose, J.P. Cohen, R.L. P a t t o n , R.M. K i r c h n e r and J.V. Smith, Nature, 271, 1987, 512-516. D.M. Bibby, N.B. I n l e s t o n e and L.P. A l d r i d g e , Nature, 280, 1979, 664-665. D.H. Olson, W.O. Haag and R.M. Lago, J. C a t a l . , 61, 1980, 390-396. H. Gies, Z e i t s c h r i f t f u r K r i s t a l l o g r a p h i e , 175, 1986, 93-104. A. Stewart, D.W. Johnson and M.D. Shannon, S y n t h e s i s and C h a r a c t e r i z a t i o n o f C r y s t a l l i n e A l u m i n o s i l i c a t e Sigma-], i n : P. Grobet, W.J. M o r t i e r , E.F. Vansant and G. S c h u l z - E k l o f f (Eds.), Stud. S u r f . S c i . C a t a l . , Proc. I n t . Symp., September 13-17, 1987, Nieuwpoort, Belgium, E l s e v i e r , Amsterdam, 1988, pp. 57-64. A. Stewart, Z e o l i t e s , 9, 1989, 140.145. H. Gies, Z . K r i s t a l l o g r . , 164, 1983, 247-257. H . Gies, Z . K r i s t a l l o g r . , 167, 1984, 73-82. H. Gerke and H. Gies, Z . K r i s t a l l o g r . , 166, 1984, 11-22. D.M. Bibby and M.P. Dale, Nature, 317, 1985, 157-158. R.M. B a r r e r , Porous C r y s t a l s : A P e r s p e c t i v e , i n : Y . Murakami, A. I i j i m a and J.W. Ward (Eds.), Proc. 7 t h I n t . Conf. on Z e o l i t e s , Tokyo, Japan, August 17-22, 1986, Kodansha, E l s e v i e r , Tokyo, Amsterdam, 1986, pp. 3-11. F . Liebau, S t r u c t u r a l Chemistry o f S i l i c a t e s , S p r i n g e r - V e r l a g , B e r l i n , New York, Tokyo, 1985, p. 243.

136

164 W.A. van Erp, H.W. Kouwenhoven and J.M. Nanne, Z e o l i t e s , 7, 1987, 286-288. 165 Xu Wenyang, L i Jianquan, L i Wengyuan, Zhang Huiming and L i a n g Bingchang, Z e o l i t e s , 9, 1989, 468-473. 166 J.L. Guth, H. K e s s l e r and R . Wey, New Route t o P e n t a s i l - t y p e Z e o l i t e s u s i n g a non A l k a l i n e Medium i n t h e Presence o f F l u o r i d e I o n s , i n : Y. Murakami, A. I i j i m a and J.W. Ward (Eds.), New Developments i n Z e o l i t e Science and Technology, Proc. 7 t h I n t . Conf. on Z e o l i t e s , Tokyo, Japan, Aug. 17-22, 1986, Kodansha, Tokyo and E l s e v i e r , Amsterdam, 1986, pp. 121-128. 167 E.W. V a l y o c s i k and L.D. Rollmann, Z e o l i t e s , 5, 1985, 123-125. 168 U. M u l l e r and K.K. Unger, Z e o l i t e s , 8, 1988, 154-156. 169 H. Lermer, M. Draeger, J. S t e f f e n and K.K. Unger, Z e o l i t e s , 5 , 1985, 131- 134. 170 C.W.R. Engelen, u n p u b l i s h e d r e s u l t s . 171 D.E.W. Vaughan, Secondary C a t i o n E f f e c t s on Sodium and Potassium Z e o l i t e = 9, i n : M.M.J. Tracy, J.M. Thomas and J.M. White Synthesis a t S i / A l (Eds.), Mat. Res. So$. Symp. Proc., M i c r o s t r u c t u r e and P r o p e r t i e s o f Pittsburgh, C a t a l y s t s , V o l . 111, Nov. 30-Dec. 3, 1987, Boston, M.R.S., U.S.A., 1988, pp. 89-100.