CHAPTER I 1 CALDERON-ZYGMUND THEORY
I n 1952, A . P . C a l d e r 6 n and A . Zygmund [l] i n v e n t e d a s i m p l e b u t p o w e r f u l method which h a s become w i d e l y known a s t h e Calder6n-Zygmund decomposition. We aim t o d e s c r i b e h e r e t h i s method t o g e t h e r w i t h some of i t s most immediate and i n t e r e s t i n g a p p l i c a t i o n s . The f i r s t two s e c t i o n s g i v e a d e s c r i p t i o n of t h e method i n c o n n e c t i $ > n w i t h t h e ( v e r y c l o s e l y r e l a t e d ) H a r d y - L i t t l e w o o d maximal o p e r a t o r . Apart from t h e u s u a l e s t i m a t e s f o r t h i s maximal f u n c t i o n , we a l s o o b t a i n some w e i g h t e d i n e q u a l i t i e s which a n t i c i p a t e t h e A t h e o r y t o P be d e v e l o p e d i n C h a p t e r IV, and we s t u d y some v a r i a n t s o f t h e HardyL i t t l e w o o d o p e r a t o r when Lebesgue measure i s r e p l a c e d by a more gene r a l measure. T h i s l e a d s u s i n a n a t u r a l way t o t h e d e f i n i t i o n and s t u d y of C a r l e s o n m e a s u r e s . T h i s i s n o t t h e o n l y maximal o p e r a t o r t o a p p e a r i n t h i s c h a p t e r . The s o - c a l l e d s h a r p maximal f u n c t i o n s h a r e s enough p r o p e r t i e s w i t h t h e H a r d y - L i t t l e w o o d o p e r a t o r , b u t b e h a v e s i n a d i f f e r e n t way i n L m , which i s somehow r e p l a c e d by o u r f r i e n d t h e s p a c e i n t e r e s t i n g r e l a t i o n between w e i g h t s and
BMO
BMO.
There i s an
which w i l l be f u r t h e r
e x p l o i t e d i n C h a p t e r IV. T h i s r e l a t i o n comes t o l i g h t a f t e r p r o v i n g t h e John-Niremberg i n e q u a l i t y f o r BMO f u n c t i o n s , which i s y e t a n o t h e r a p p l i c a t i o n of t h e Calder6n-Zygmund d e c o m p o s i t i o n . The l a s t two s e c t i o n s c o n t a i n a v e r y condensed a c c o u n t on s i n g u l a r i n t e g r a l o p e r a t o r s and t h e i r a p p l i c a t i o n t o m u l t i p l i e r t h e o r e m s , s i n c e t h e s e o p e r a t o r s o r i g i n a l l y m o t i v a t e d t h e Calder6n-Zygmund d e c o m p o s i t i o n , and t h e y a r e s t i l l t h e most s t r i k i n g and i m p o r t a n t a p p l i c a t i o n of t h e method.
133
1I.CALDERON-ZYGMUND THEORY
134
1.
THE HARDY-LITTLEWOOD MAXIMAL FUNCTION AND THE CALDERON-ZYGMUND DECOMPOSITION
be a l o c a l l y i n t e g r a b l e f u n c t i o n i n
Let f define
Rn.
For
x
6
Wn
we
where t h e supremum i s t a k e n o v e r a l l c u b e s Q c o n t a i n i n g x ( c u b e w i l l a l w a y s mean a compact cube w i t h s i d e s p a r a l l e l t o t h e a x e s a n d nonempty i n t e r i o r ) , and s t a n d s f o r t h e Lebesgue measure of Q .
IQI
Mf w i l l be c a l l e d t h e ( H a r d y - L i t t l e w o o d ) maximal f u n c t i o n o f f , and t h e o p e r a t o r M s e n d i n g f t o Mf, t h e ( H a r d y - L i t t l e w o o d ) maximal o p e r a t o r . Observe t h a t we o b t a i n t h e same v a l u e M f ( x ) , which c a n b e + m , if we a l l o w i n t h e d e f i n i t i o n o n l y t h o s e c u b e s Q f o r which x i s an i n t e r i o r p o i n t . I t f o l l o w s from t h i s remark t h a t t h e f u n c t i o n Mf i s lower semicontinuous, i . e . , f o r every t > 0 , t h e s e t
i s open.
I n o r d e r t o s t u d y t h e s i z e of Mf, we s h a l l l o o k a t i t s d i s t r i b u t i o n function h ( t ) = I E t l . I t w i l l be i n s t r u c t i v e t o s t a r t with t h e c a s e n = 1 , which i s p a r t i c u l a r l y s i m p l e . L e t f 6 L 1 ( R ) . The open s e t Et i s a d i s j o i n t u n i o n o f open i n t e r v a l s I . : i t s c o n n e c t e d compo3 n e n t s . L e t u s l o o k a t one of t h e I . ' s , and l e t u s c a l l i t I . 3 Take any compact s e t K c I . For e a c h x 6 K , we have some compact i n t e r v a l Q, c o n t a i n i n g x i n i t s i n t e r i o r and s a t i s f y i n g
Since
Q,
c E,,
it follows t h a t
Qx c I .
Since
K
i s c o m p a c t , we
c a n c o v e r i t w i t h t h e i n t e r i o r s of j u s t f i n i t e l y many o f t h e QI's, s a y { Q j I . We c a n even assume t h a t t h i s f i n i t e c o v e r i n g i s minimal i n t h e s e n s e t h a t n o Q j i s s u p e r f l u o u s . Then, no p o i n t i s i n more t h a n two of t h e i n t e r i o r s o f t h e Q j ' s . I t f o l l o w s t h a t :
11.1. HARDY-LITTLEWOOD MAXIMAL FUNCTION
Since this is true for every compact
+I
III
(1.1)
I
KcI, we obtain:
If(Y)IdY
This implies,in particular, that I is bounded. Then, since b c 7 and b 6 Et, we can write: 1 l-q
Finally
(1.1)
1
I
135
If(y)Idy
5 Mf(b1
Let
I
=
(a,b)
.
6 t
implies:
We have obtained the following result: L e t f 6 L'(R) . T h e n , f o r e v e r y t > 0 , t h e s e t R : Mf(x) > t } c a n b e w r i t t e n a s a d i s j o i n t u n i o n of b o u n d e d o p e n i n t e r v a l s I. s u c h t h a t , f o r e v e r y j = 1 , 2 , ... : THEOREM
Et
=
{x
1.2.
6
1'
and. a s a conseauence:
Now we seek an analogue of theorem extension is not straightforward.
1.2
in dimension
n > 1.
The
Let f 6 L1(IRn) , n > 1 , and let t > 0. Instead of looking at the maximal function Mf, we shall try to obtain directly a family of cubes { Q j } such that the average of If I over each is comparable to t in the sense that a relation like ( 1 . 3 ) holds. This is quite easy and it will be done most effectively by considering only
11. CALDERON-ZYGMUND THEORY
136
d y a d i c c u b e s . For k 6 ZL formed by t h o s e p o i n t s of
,
we c o n s i d e r t h e l a t t i c e A k = 2-kZIn IRn whose c o o r d i n a t e s a r e i n t e g r a l mul-
Let Dk b e t h e c o l l e c t i o n of t h e c u b e s d e t e r m i n e d t i p l e s of 2 - k . by Ak, t h a t i s , t h o s e c u b e s w i t h s i d e l e n g t h Z m k and v e r t i c e s 03
The c u b e s b e l o n g i n g t o D =-k Dk a r e c a l l e d d y a d i c c u b e s . in Ak. Observe t h a t i f Q , Q ' 6 D and ( Q ' ( 2 I Q I , then e i t h e r Q ' c Q o r e l s e Q and Q ' do n o t o v e r l a p (by which we mean t h a t t h e i r interiors are disjoint).
Each
Q
6
Dk
i s t h e u n i o n of
2"
non-
We s h a l l c a l l ct t h e f a m i l y overlapping cubes belonging t o D k + l . formed by t h e c u b e s Q 6 D which s a t i s f y t h e c o n d i t i o n : (1.4)
t <
1 -
IQI
Q
If(x)Idx
and a r e maximal among t h o s e which s a t i s f y i t . Every Q c D s a t i s fying ( 1 . 4 ) i s c o n t a i n e d i n some Q ' 6 C t b e c a u s e c o n d i t i o n imposes an u p p e r bound on t h e s i z e of Q ( I Q I 2 t - ' ~ ~ f ~ ~ l ) . (1.4) The c u b e s i n C t a r e , by d e f i n i t i o n , n o n o v e r l a p p i n g . Also, i f Q 6 Dk is in Ct and Q ' i s t h e only cube i n Dk-, containing Q,
we s h a l l h a v e :
but, since
I Q ' I = 2"1Q1,
we g e t :
We have a c h i e v e d o u r p u r p o s e by o b t a i n i n g a f a m i l y cubes such t h a t , f o r every
Ct
= {Qj}
of
j:
N e x t , w e s h a l l i n v e s t i g a t e t h e r e l a t i o n w i t h t h e maximal f u n c t i o n M f . Suppose x 6 IRn i s such t h a t M f (x) > t . There w i l l be some c u b e
R
containing
x
i n i t s i n t e r i o r and s a t i s f y i n g
11.1. HARDY-LITTLEWOOD MAXIMAL FUNCTION
137
We l o o k f o r a d y a d i c c u b e of c o m p a r a b l e s i z e o v e r which t h e a v e r a g e
of
If1
i s comparab y b i g .
Let
T h e r e i s a t most one p o i n t of
k
be t h e only i n t e g e r such t h a t
interior to
Ak
R.
Consequently,
of them, m e e t i n g t h e t h e r e i s some c u b e i n D ~ , and a t most 2" i n t e r i o r of R . I t f o l l o w s t h a t t h e r e i s some Q 6 D k m e e t i n g t h e i n t e r i o r of R a n d s a t i s f y i n g : '
Since
IR1 5
191
we h a v e :
< Zn1RI,
and t h e r e f o r e :
I t follows t h a t
Q c Q.
J
6
C
4-"t
f o r some
I n g e n e r a l f o r any c u b e Q and any t h e cube w i t h t h e same c e n t e r a s Q
j
I
a > 0 , we s h a l l d e n o t e by Q" but with s i d e length a times
I n o u r p a r t i c u l a r s i t u a t i o n , s i n c e R and Q meet t h a t of Q . 3 and I R I 5 I Q I , i t f o l l o w s t h a t R c Q3 c Q j . We c o n c l u d e t h a t i f and t h i s l e a d s t o the estimate c E t c U Q ? t h e n = {Qj}, 4-"t 3 1
We h a v e o b t a i n e d t h e f o l l o w i n g r e s u l t : THEOREM
1.6.
n
Et = {x G IR of c u b e s { Q i }
Let f 6 L1(Rn). Then, f o r every t > 0 , t h e s e t : M f (x) > t } i s c o n t a i n e d i n t h e u n i o n o f a f a m i l y w h i c h r e s u l t f r o m e x p a n d i n g b y a f a c t o r of
nonoverlapping cubes
{Qj}
which s a t i s f y :
3
the
11. CALDERON-ZYGMUND THEORY
138
I t follows t h a t :
where t h e c o n s t a n t
C
d e p e n d s o n l y on t h e d i m e n s i o n
n.
0
We s h a l l d e r i v e some c o n s e q u e n c e s o f t h e b a s i c i n e q u a l i t y ( 1 . 8 ) which i l l u s t r a t e t h e r o l e p l a y e d by t h e maximal o p e r a t o r M . The importance of t h e o p e r a t o r M stems from t h e f a c t t h a t i t c o n t r o l s many o p e r a t o r s a r i s i n g n a t u r a l l y i n A n a l y s i s . A s a n e x a m p l e , we a r e going t o prove a n e x t e n s i o n of Lebesgue's d i f f e r e n t i a t i o n theorem.
.
1.9.
THEOREM
Q(x;r)
=
{y
every
x
G
G
IR":
1 L e t f G L ~ ~ ~ ( I RFX ~ ) x G IR" & a r > 0 , let n : IR ( y - x l , :m a x l y . - x . ) 5 r l . T h e n , f o r a l m o s t j J 1
We may assume
Proof:
f o r every
f
G
L1(IRn).
I t w i l l b e enough t o
show t h a t ,
t > 0, t h e set
h a s z e r o measure. m precisely U Al,j.
I n d e e d , t h e s e t where
(1.10)
does not h o l d , i s
j=1
Given
E
>O,
we c a n w r i t e
compact s u p p o r t and
Therefore
llhl <
f = g + h, E.
For
is continuous w i t h w e c l e a r l y have:
where g
g
MAXIMAL FUNCTION
11.1. HARDY-LITTLEWOOD
But
1
{x
6
R" : M h ( x )
11 5 C I I h l ( l / t < C
> t/2
E
139
/t
and
Thus
i s c o n t a i n e d i n a set of measure 5
At
b e done f o r any
we g e t
> 0,
E
lAtl
The p o i n t s x f o r which ( 1 . 1 0 ) f o r f . We c a n r e p h r a s e t h e o r e m point
x
G
COROLLARY
a)
1
whilst If
x 3
IQ(x;r)
b)
f.
Then, f o r e v e r y Lebesgue a.e.
point
x
G
IR":
f ( y ) dy
In o r d e r t o prove
\ Q ( x ; r )I
Q1
f
f(x) = l i m
Proof:
I
for
1
f G Lloc(Rn). and, therefore, f o r Let
il
0.
h o l d s a r e c a l l e d Lebesgue p o i n t s 1 . 9 by s a y i n g t h a t a l m o s t e v e r y
i s a Lebesgue p o i n t f o r
IRn
1.11.
x
point
=
Since t h i s can
CE/t.
f(y)dy
a ) , just note that
-
f(x)
1
5
IQ(x;r) I
i s a n immediate c o n s e q u e n c e o f
JQ(x;r) If(y) a).
-
f(x)Idy
'0
f and we have a sequence of cubes fl Q . = { X I , t h e n :
i s a Lebesgue p o i n t f o r Q,
3
....
with
1
'
3
f(x) = l i m flyldy Qj j+w
IQj(
Indeed i f
Q. 3
has side length
rj,
we h a v e
Qj c Q(x;rj)
and
11. CALDERON-ZYGMUND THEORY
140
rn = I Q . J J
I
J.
0,
so t h a t
r. J
-+
Therefore
0.
Ct(f) = IQ.1 be the c o l l e c t i o n 3 f o r m e d by t h o s e maximal d y a d i c c u b e s o v e r w h i c h t h e a v e r a g e o f If( i s > t ( c a l l e d Calderh-Zygmund cubes f o r f corresponding t o t ) . Let
f 6 L1(IRn)
and l e t
Ct
I
Let x $ U Q . Then t h e a v e r a g e o f If o v e r any d y a d i c c u b e w i l l be 5 t. "Let {Rk} b e a s e q u e n c e o f d y a d i c c u b e s o f d e c r e a s i n g size such t h a t Rk = { X I . F o r e a c h o f them
'
ft
I f , b e s i d e s , x i s a L e b e s g u e p o i n t f o r f ( a n d h e n c e f o r I f ( ) we g e t , by p a s s i n g t o t h e l i m i t : I f ( x 1 5 t . Thus I f ( x ) 6 t f o r
I
I
a.e. x $ U Q j . 3
IRn i n t o a s u b s e t R made up o f n o n If I i s o v e r l a p p i n g cubes Q j o v e r e a c h of which t h e a v e r a g e of between t and Z n t , a n d a c o m p l e m e n t a r y s u b s e t F where (f(x)1 5 t a.e., i s t h e f i r s t s t e p of t h e s o - c a l l e d Calder6n-Zygmund d e c o m p o s i t i o n w h i c h w i l l b e a t o o l o f c o n s t a n t u s e i n t h e s e q u e l . Let u s r e c o r d t h e f o l l o w i n g : The s p l i t t i n g o f t h e s p a c e
THEOREM
1.12.
Given
non-overlapping cubes
f c L1(Rn) Ct = C t ( f )
&
t > 0,
t h e r e i s a f a m i l y of
c o n s i s t i n g of t h o s e m a x i m a l d y a -
If
d i c c u b e s o v e r w h i c h t h e a v e r a g e of
I
> t.
T h i s famiZy
satisfies: (il
f o r every
(ii)
f o r a.e.
Q
x
Besides, f o r every where
f
ct
: t <
UQ,
t > 0,
ranges over
where
1
1
IQI
Q
Q
I f ( x ) Idx 6 2"t
ranges over
ct,
is
If(x)l 6 t.
E t = { X c R n : M f (x) > t } c U Q 3
c4-nt.
0
11.1. HARDY-LITTLEWOOD MAXIMAL FUNCTION
141
Next we a r e g o i n g t o s t u d y a u s e f u l g e n e r a l i z a t i o n o f t h e maximal f u n c t i o n . Let p b e a p o s i t i v e B o r e 1 m e a s u r e on IR", f i n i t e on compact s e t s and s a t i s f y i n g t h e f o l l o w i n g "doubling" c o n d i t i o n :
f o r e v e r y c u b e Q , w i t h C > 0 i n d e p e n d e n t o f Q.We s h a l l o f t e n s a y s i m p l y t h a t . 1-1 i s a d o u b l i n g m e a s u r e . T h i s i m p l i e s , o f c o u r s e , t h a t f o r e v e r y c1 > 0 , t h e r e i s a c o n s t a n t C = C c1 > 0 , d e p e n d i n g o n l y on c1 , s u c h t h a t p(Q') S Cp(Q) f o r e v e r y cube Q. Since w e a r e i n R n , t h e f i n i t e n e s s o f p on c o m p a c t s u b s e t s i m p l i e s p ( Q ) > 0. t h a t p i s r e g u l a r . Notice t h a t f o r every cube Q , I n d e e d , i f w e h a d p(Q) = 0 f o r some c u b e Q , we w o u l d h a v e k p ( Q ) 2 Ckp(Q) = 0 , f r o m w h i c h p(lRn) = 0 , w h i c h i s e x c l u d e d a s trivial.
Now, f o r
p
as above,
f
G
1
Lloc(p)
and
x
G
IRn
,
define:
w h e r e t h e s u p . i s t a k e n o v e r a l l c u b e s Q c o n t a i n i n g x . As b e f o r e , we o b t a i n t h e same v a l u e Mu f ( X I i f we j u s t t a k e i n t h e d e f i n i t i c q those cubes Q containing x i n t h e i r i n t e r i o r . This is a consequence of t h e r e g u l a r i t y o f p .
Let f E L 1 ( p ] a n d t > 0 . We w a n t t o o b t a i n a CalderBn-Zygmund decomposition f o r f and t r e l a t i v e t o t h e measure p and, a t t h e same t i m e , w e w a n t t o e s t i m a t e t h e p - m e a s u r e o f t h e s e t E t = { x G IRn : Mu f ( x ) > t l , w h i c h i s , o f c c u r s e , o p e n . We a r e g o i n g t o a p p l y t h e same i d e a s t h a t l e d t o t h e o r e m 1 . 1 2 . We n e e d t o make two o b s e r v a t i o n s .
First, we a r e g o i n g t o see t h a t t h e r e i s a c o n s t a n t K > 1 s u c h C it follows t h a t t h a t , e v e r y t i m e we h a v e d y a d i c c u b e s Q ' + Q , p(Q) 2 Kp(Q'). To see t h i s , l e t Q" be a dyadic cube contained i n Q, contiguous t o Q' a n d w i t h t h e same d i a m e t e r . Then Q ' c Q 1 1 3 a n d c o n s e q u e n t l y , f o r C = C 3 we h a v e : i i ( Q ' ) 2 C p ( Q " ) 5 C(p(Q) - p ( Q ' ) ) . T h i s i m p l i e s ( 1 + C ) u ( Q ' ) 6 Cp(Q), which g i v e s p ( Q ) 2 Kp(Q') w i t h K = ( 1 + C ) / C > 1 , and o u r claim is j u s t i f i e d . As a c o n s e q u e n c e , i f w e h a v e a s t r i c t l y i n c r e a s i n g s e q u e n c e
11. CALDERON-ZYGMUND THEORY
142
C
o f d y a d i c c u b e s Qo Q, Q2 k p(Qk) 2 K p(Qo) m as k m. of dyadic cubes is such t h a t t h e -+
...
,
we have t h e i n e q u a l i t y
The c o n c l u s i o n i s t h a t i f a c h a i n p - m e a s u r e o f t h e c u b e s i s bounded
-+
a b o v e , t h e n t h e i r d i a m e t e r i s a l s o bounded a b o v e o r , what i s t h e same, t h e c h a i n t c r m i n a t e s a t a g i v e n c u b e c o n t a i n i n g a l l t h e o t h e r s . The o t h e r o b s e r v a t i o n w e n e e d i s t h e f o l l o w i n g :
f o r every
t h e r e i s B > 0 s u c h t h a t e v e r y time we h a v e c u b e s Q a n d which meet a n d s a t i s f y 1 Q l < A I R I , then they a l s o s a t i s f y p(Q) < B p ( R ) . To s e e t h i s , j u s t n o t e t h a t Q c R' with c1 = 2A1'n t 1, and choose B a c c o r d i n g l y . Now we g o b a c k t o o u r p r o b l e m .
D e n o t e by
t i o n f o r m e d by t h e maximal d y a d i c c u b e s
Since t h i s condition forces
Q
A > 0
R
C = Ct(f;v) the collect satisfying the condition
t o b e bounded by
p(Q)
t - ' lRn ( f ( y ) ( d p ( y ) c m , O U T f i r s t o b s e r v a t i o n i m p l i e s t h a t e v e r y d y a d i c c u b e s a t i s f y i n g o u r c o n d i t i o n i s c o n t a i n e d i n some member o f Ct. Take Q G C t . I f Q G Dk a n d Q ' i s t h e o n l y c u b e i n Dk-, containing
Q,
Thus, f o r e v e r y
we h a v e
Q
6
C t:
Let x G E t , t h a t i s : Mp f (XI > t . Then t h e r e w i l l b e some c u b e R containing x i n i t s i n t e r i o r such t h a t
A s we d i d f o r t h e c a s e when
p = Lebesgue measure,
d y a d i c cube which o v e r l a p s w i t h
R
and s a t i s f i e s
let
Q
be a
I R I 6 IQ I < I R 1 2 "
11.1. HARDY-LITTLEWOOD MAXIMAL FUNCTION
iRnQI I
and
f dv > 2 - " t v ( R )
.
L e t B be t h e c o n s t a n t c o r r e s p o n d i n g t o s e r v a t i o n . Then
jRnQ I
' -'tv
I
f du > B-
2
143
A = 2
n
i n o u r s e c o n d ob-
(Q)
and h e n c e
Q c Qj
I t follows t h a t = I f c i-n - 1 B t
,
f o r some Q j 6 3 then Et c U Q . . j J
'2 - " B - ' t
and
R c Q3 c Q 3j .
We f i n a l l y o b t a i n t h e e s t i m a t e :
This b a s i c estimate
c a n be u s e d t o e x t e n d t h e o r e m
1 . 9 and i t s
corollary, obtaining: THEOREM
With
1.14.
almost every
x
6
li
IR"
as above, l e t
f
( w i t h r e s p e c t t o 111
Then, f o r
:
u
C)
Ct(f,v) = CQ.1, I (with respect t o
In p a r t c u l a r , i f a.e.
1
Lloc(p).
f
x B U Q. j J
we have
v).
If(x)l S t
for
We c a n f i n a l l y s t a t e t h e f o l l o w i n g : THEOREM
1.15.
For
1-1
a s above,
let
t h e r e i s a f a m i l y of n o n - o v e r l a p p i n g
1 f 6 L ( p ) g& t > 0. Then, consistcubes Ct = c t ( f , p ) ,
144
11. CALDERON-ZYGMIJND THEORY
If\
i n g of t h o s e m a x i m a l d y a d i c c u b e s o v e r w h i c h t h e u v e r a g e of relative t o
il
Q
for e v e r y
for a.e. x iil -
wit
fi
p
Here
UQ
@
f
ctIc,
which s a t i s f i e s
: t
V(Q)
Q
where
IR":
M
P
jQI f l d p
5 Ct
ranges over
If ( x )
we h a v e :
pI
Et = { x
ranges over
Ct
G
respect t o
the set
> t,
f (xj>t}
I
6 t.
ct
(and
a.e.
i s
Besides, for every t >
UQ3
is c o n t a i n e e
where
1,
Q
and we h a v e a n e s t i m a t e :
r e p r e s e n t s an a b s o l u t e c o n s t a n t , p o s s i b l y d i f f e r e n t a t each
C
occurrence.
2.
NORM ESTIMATES FOR THE MAXIMAL FUNCTION
THEOREM
t
0.
2.1.
Let
b e a m e a s u r a b l e f u n c t i o n on
IR" a n d l e t
Then we h a v e t h e f o l l o w i n g e s t i m a t e s f o r t h e L e b e s g u e mea-
E t = { x c IR":
s u r e of t h e s e t
with constants
Proof:
f
Write
f,(x) = 0
C
and C '
f = f, + f2,
otherwise.
Then
M f (x) > t}:
w h i c h d o n o t d e p e n d on
f
or
t
where f , ( X I = f ( x ) i f I f ( x ) l > t / Z , a n d M f(x) 5 M f ,
( x ) + M f 2 ( x ) 6 M f l (x)+
11.2. NORM ESTIMATES FOR THE MAXIMAL FUNCTION
since
+ t/2,
which g i v e s
f2 2 t/2
implies t h a t
Mf2 2 t / 2
also.
145
Thus
(2.2).
As f o r (2.3), we may a s s u m e t h a t f 6 L 1 ( R n ) ( o t h e r w i s e we t r u r r c a t e a n d a p p l y a l i m i t i n g p r o c e s s ) . Then we u s e t h e C a l d e r B n Zygmund d e c o m p o s i t i o n f o r f a n d t . We h a v e n o n - o v e r l a p p i n g c u b e s Q j9
such t h a t
f o r every X
f
Qj
j,
and
If(x)I 5 t
implies t h a t
x d UQ.. J J w rite: we c a n
for
Mf(x) > t ,
a.e
Now, s i n c e
1% and
(2.3)
i s proved with
= 2-".
C'
c]
The n e x t r e s u l t i s p r o v e d i n e x a c t l y t h e same way.
THEOREM
Rn
2.4.
Suppose
p
i s a r e g u l a r p o s i t i v e Borel measure i n
s a t i s f y i n g a "doubling" condition l i k e
are constants,
C,C',
(1.13).
Then, t h e r e
such t h a t , f o r any Borel f u n c t i o n
f
and any
t > 0:
we c a n e a s i l y d e r i v e s e v e r a l norm e s t i m a t e s f o r t h e maximal f u n c t i o n .
From t h e o r e m
THEOREM
c
P
> 0
2.1.
p such t h a t , f o r every 2.5.
For e v e r y
with f
G
1 < p <
L p ( R n ):
m,
t h e r e is a c o n s t a n t
11. CALDERON-ZYGMUND THEORY
146
I n e x a c t l y t h e same way we o b t a i n t h e f o l l o w i n g THEOREM
Let
2.6.
1~
be a r e g u l a r p o s i t i v e Bore1 measure i n
s a t i s f y i n g a "doubZing" c o n d i t i o n l i k e with
p
1
C
there i s a constant
a,
(1.131.
f e ~p(p):
P
> 0
Then, f o r each
Rn p
such t h a t f o r every
We h a v e s e e n t h a t t h e o p e r a t o r bl i s b o u n d e d i n L p ( R n ) f o r 1 < p 5 w. H o wev er , i t i s n o t b o u n d e d i n L 1 ( I R n ) A s a matter of f a c t , f o r f 2 0 , Mf f a i l s t o b e i n L 1 u n l e s s f ( x ) = 0 f o r a . e . x , s i n c e Mf(x) 2 Clxl-" f o r l a r g e x , with C > 0 i f f
.
is not t r i v i a l .
Th e b a s i c e s t i m a t e
(1.8)
L 1- b o u n d e d n e s s , a s w i l l b e s e e n b e l o w .
a c t s a s a substitute €or As regards local integrabi-
l i t y o f t h e m a x i mal f u n c t i o n , we h a v e t h e f o l l o w i n g r e s u l t : THEOREM
Mf
I f ( x ) I l o g + l f ( x ) Idx <
(2.8) Proof:
f b e an i n t e g r a b l e f u n c t i o n s u p p o r t e d i n u b u l l i s i n t e g r a b l e o v e r B i f a n d o n l y if:
Let
2.7.
B c RP.=
If
m.
(2.8) holds, then co
Mf(x)dx = j,l{x
m
f
B : M f ( x ) > t l / d t = Z j I{x e B : Mf(x1 > Z t } / d t 5 0
11.2. NORM ESTIMATES FOR THE MAXIMAL FUNCTION
147
O b s e r v e t h a t f o r t h i s p a r t o f t h e p r o o f we do n o t n e e d t o u s e t h e f a c t t h a t f i s supported i n B. I n d e e d , t h e same p r o o f shows t h a t i f IIRn If ( x ) I l o g + l f ( x ) ldx < a, which we s h a l l i n d i c a t e by s a y i n g f E L l o g L(IRn 1 ,
that
then
Mf
is locally integrable.
Going b a c k t o t h e p r o o f of t h e t h e o r e m , s u p p o s e t h a t IBMf(x)dx < m . I f we d e n o t e by B ' the b a l l concentric with 5 b u t w i t h r a d i u s t w i c e a s b i g , we c a n e a s i l y s e e t h a t I B I M f ( x ) d x < I t is sufficient to realize that for
*
x
6
m.
Mf(x) 5 CMf(x*),
B'W,
i s t h e p o i n t s y m m e t r i c t o x w i t h r e s p e c t t o t h e bounwhere x d a r y o f B. I n t h e complement o f B ' , Mf i s b o u n d e d , s i n c e we
a r e a t l e a s t a f i x e d d i s t a n c e f a r from t h e s u p p o r t of f . I t is a l s o o b v i o u s t h a t Mf(x) 0 as 1x1 a. Thus, we c o n c l u d e t h a t , +
f o r any
+
to > 0
Mf(x)dx < jfx:Mf ( x ) > t O }
m.
to = 1 , t h i s i n t e g r a l i s b i g g e r t h a n o r e q u a l t o
For
/ ; I {X
: Mf(x) > t l l d t 2
Thus
(2.8)
( f(x) ( d x d t =
h o l d s and t h e p r o o f i s c o m p l e t e .
The t h e o r e m e x t e n d s c l e a r l y t o doubling condition.
Mp
0
f o r a measure
!J
satisfying a
T h e r e i s no n e e d t o w r i t e a new s t a t e m e n t .
Suppose now t h a t we hav.e two m e a s u r e s p a c e s w i t h r e s p e c t i v e m e a s u r e s 1-1
and
Lq(v), (2.9)
Then,
V
, and t h a t
that is:
T
i s an o p e r a t o r bounded from
LP(u)
to
11. CALDERON-ZYGMUND THEORY
148
a n d we o b t a i n v({x : ITf(x)
(2.10)
I
> t}) 5
[ c II t II LP f
When T s a t i s f i e s ( 2 . 1 0 ) we s a y t h a t t h e o p e r a t o r T i s o f weak t y p e (p,q) w i t h r e s p e c t t o t h e p a i r o f m e a s u r e s ( v , p ) . F o r example, ( 1 . 8 ) i s r e a d by s a y i n g t h a t M i s o f weak t y p e ( 1 , l ) ( w i t h r e s p e c t t o L e b e s g u e m e a s u r e ) . However, we know t h a t M f a i l s t o b e bounded i n L 1 . I n g e n e r a l , (2.10) may h o l d w h e r e a s ( 2 . 9 ) does n o t hold f o r a given operator T. I t i s c o n v e n i e n t t o see (2.10) a s a s u b s t i t u t e o r a weakening of ( 2 . 9 ) . With t h i s i n m i n d , when ( 2 . 9 ) h o l d s , w e s a y t h a t T i s o f s t r o n g t y p e (p,q) w i t h r e s p e c t t o t h e p a i r of measures ( v , p ) . Sometimes i t i s c o n v e n i e n t t o i n d i c a t e t h a t ( 2 . 1 0 ) h o l d s by s a y i n g t h a t T s e n d s L p ( p ) b o u n d e d l y i n t o L:(v). T h i s means t h a t w e a r e c o n s i d e r i n g t h e s p a c e ( c a l l e d weak-Lq(v))
L:(v)
f o r m e d by t h o s e f u n c t i o n s
g
f o r which
T h i s s p a c e w i t h t h e "norm" n ( f a i l s t o be s u b a d d i t i v e even though 9 we h a v e a s i m i l a r i n e q u a l i t y w i t h a c o n s t a n t i n t h e r i g h t h a n d s i d e ) is bigger (topologically a l s o ) than
Lq(v).
Weak type i n e q u a l i t i e s such a s (2.10) can be used t o o b t a i n s t r o n g t y p e i n e q u a l i t i e s . T h i s i s w h a t we h a v e d o n e t o p r o v e t h e o r e m 2 . 5 . We a r e g o i n g t o p r e s e n t a r e s u l t , w h i c h i s a p a r t i c u l a r c a s e o f t h e M a r c i n k i e w i c z i n t e r p o l a t i o n t h e o r e m a n d i s b a s e d upon t h e same i d e a a s o u r proof of 2.5. 2.11.
THEOREM
measures
S u p p o s e we h a v e t w o m e a s u r e s p a c e s w i t h r e s p e c t i v e
p
L'o(~) + ~ P 1 ( p ) pose t h a t :
ii
T
v
to
.
T
b e an o p e r a t o r s e n d i ' n g f u n c t i o n s i n
+measurable
f u n c t i o n s , 1 6 po < p 1 5
i s subadditive, that i s , f o r
fl,f2
6
m.
L PO ( p ) + L p ' ( p ) ,
%-
11.2. NORM ESTIMATES FOR THE MAXIMAL FUNCTION
ii) T
iii) T p1 < m,
i s of weak t y p e whiZe, i f
def i n it i o n :
IITf
Then, f o r every
(p,p)
(po,po),
i s of weak t y p e
~
p1 =
11 Lm (") p
149
that i s :
(pl,pl) w h i c h means t h e same a s a b o v e i f weak t y p e and s t r o n g t y p e c o i n c i d e by
m,
5 Clllfll
such t h a t
Lrn ( p 1
p,
< p < pl,
T
i s of s t r o n g t y E
/lTflPdv 5 C /Iflpdp. P
that i s :
P r o o f : F i x p w i t h Po < P < P l t a n d l e t f G L p ( u ) c L p o ( p ) + L p l ( p ) . t For e v e r y t > 0 w r i t e f ( x ) = f ( x ) + f t ( x ) where f ( x ) = f ( x ) t if I f ( x ) > t a n d f ( x ) = 0 o t h e r w i s e . Clearly f t 6 LpO(u),
I
I
and s i n c e I f t ( x ) 1 t , f t 6 L p l ( p ) . S u p p o s e p 1 < m. Then, we c a n w r i t e : s i n c e ITf(x) 1 5 IT(ft) (x) 1 + I T ( f t ) (XI
I,
Thus Tf(x) 1 2 P o C o p ~ ; l t P - P " -1
I
> t1)dt 5
L:
If(x
x) =
P-Po
J '
P1-P
J
11. CALDERON-ZYGMUND THEORY
150
For t h e c a s e
where
2-1
=
CL
p, =
=
2
=
c
PO
P
we s i m p l y o b s e r v e t h a t
m y
and,consequently
C;'
co P j
1
Jf(x1
N e x t we s h a l l e s t a b l i s h a g e n e r a l i n e q u a l i t y f o r t h e maximal f u n c t i o n . This i n e q u a l i t y involves a weight f u n c t i o n
@(x).
THEOREM 2 . 1 2 . F o r e v e r y p __ with 1 < p < m y there i s a constant s u c h t h a t , f o r a n y m e a s u r a b l e f u n c t i o n s o n IRn @ 2 0 and f , -
C
P
we h a v e t h e i n e q u a Z i t y :
Proof:
E x c e p t when
trivially,
M@
M$(x) =
m
a.e.,
i n which case
is t h e d e n s i t y of a p o s i t i v e measure
(2.13)
holds
p(du(x) =
i s t h e d e n s i t y of a n o t h e r p o s i t i v e measure ( 2 . 1 3 ) means t h a t M i s a b o u n d e d o p e r a t o r f r o m
M$(x)dx) and @ w(dv(x) = $(x)dx). =
Lp(u) t o LP(v). This i s c l e a r l y t r u e f o r p = m. Indeed, i f M$(x) = 0 f o r some x , t h e n $ ( X I = 0 a . e . a n d L m ( v ) = 0 , s o t h a t nothing needs t o be proved. I f M$(x) > 0 f o r e v e r y x a n d
, we h a v e IIx : [ f ( x ) l > a l l = 0 which
Mf(x) 5
c1
a.e.
1
t If I > c d
M$ = 0
and consequently
o r , w h a t i s t h e same, Thus
I/MflI
5
If(x)I 5 a a.e., c1
from
and, f i n a l l y ,
L"(V)
Having t h e
(m,m)
result,
i f we a r e a b l e t o show t h a t
M
i s of
11.2. NORM ESTIMATES FOR THE MAXIMAL FUNCTION
151
weak t y p e ( 1 , l ) w i t h r e s p e c t t o t h e p a i r ( v , p ) , the interpolation theorem 2 . 1 1 w i l l give (2.13). T h u s , a l l we n e e d i s t o show t h a t :
We c a n o b v i o u s l y assume t h a t f t 0 . We c a n a l s o assume t h a t f G L1 (Wn) I n d e e d , we c a n f i n d i n t e g r a b l e f u n c t i o n s f . such 3' and o b s e r v e t h a t t h a t f l S f 2 5 --- + f a . e .
.
{ X : Mf(x) > t j = U j
{X
: Mf.(x) > t } .
J
f G L1(IRn) a n d f b 0 . Given t > 0 , we know (Theorem t h a t t h e r e i s a f a m i l y of n o n - o v e r l a p p i n g c u b e s { Q j } s u c h
So, l e t
1.6)
t h a t , f o r each
j:
and a l s o {X
: Mf(x) > t } c U Q3 j J
Then
3"*4"
5 t J
f ( x ) ( M @ ) ( x ) d x6
C
Qj
f(x)(M@)(x)dx
.
fl
The t h e o r e m we h a v e j u s t p r o v e d i d e n t i f i e s a whole c l a s s o f w e i g h t f u n c t i o n s @ f o r which t h e o p e r a t o r M i s bounded i n L p ( @ ) f o r every
p
E
(1
,a]
and o f weak t y p e
(1,l)
with respect t o
$,
namely, t h e c l a s s , c u s t o m a r i l y d e n o t e d by A 1 , o f t h o s e @ 2 0 s a t i s f y i n g M@(x) 2 C @ ( x ) a . e . f o r some c o n s t a n t C . For i n s t a n c e , i t i s e a s y t o c h e c k t h a t @ ( x ) = 1x1' i s an A 1 w e i g h t i n IRn provided
-n <
c1 S
0.
We s h a l l 20 back t o w e i g h t s i n c h a p t e r
IV.
11. CALDERON-ZYGMUND THEORY
152
T h e r e i s a n i n t e r e s t i n g e x t e n s i o n of t h e o r e m 2 . 1 2 whose p r o o f i s b u t a r e p e t i t i o n o f t h e a r g u m e n t s which l e d t o 1 . 6 , 2 . 5 and 2.12. I n o r d e r t o p r e s e n t t h i s r e s u l t we make s e v e r a l d e f i n i t i o n s : IR", we d e f i n e a f u n c t i o n , t 2 01 by s e t t i n g
Given a f u n c t i o n f in = { ( x , t ) : x G IRn
I
M f ( x , t ) = sup{--- 1
IQI
If(y)ldy :
Q
Given a p o s i t i v e B o r e 1 m e a s u r e ~ ( p ) in Wn by s e t t i n g
in
1-1
x
Wn+ 1
where t h e s u p i s t a k e n o v e r a l l c u b e s cube
+
Q
Q
G
,
Mf
in
and s i d e l e n g h t ( Q ) t t ) we d e f i n e a f u n c t i o n
containing
x
and f o r a
Q, 'L
Q = {(x,t)
that is,
'L
Q
f
IRn++l : x
G
Q
--
i s t h e cube i n
Rn++l
and
0 5 t 5 side length
having
Q
as a face.
(Q))
,
With t h e
above d e f i n i t i o n s , we c a n s t a t e t h e f o l l o w i n g : THEOREM
C
P
2.15.
p
For e v e r y
such t h a t , f o r every
f
with
1 < p <
and e v e r y
m,
t h e r e is a c o n s t a n t
p:
B e f o r e we s t a r t t h e p r o o f , l e t u s n o t e t h a t t h i s r e s u l t i n c l u d e s t h e p r e v i o u s o n e . J u s t t a k e d p ( x , t ) = Q(x)dxrndG(t) where
Proof:
i s t h e u n i t mass c o n c e n t r a t e d a t t h e o r i g i n i n t h e t a x i s . Then since M f ( x , O ) = Mf(x) a n d , f o r o u r p a r t i c u l a r p , U p ( x ) = M Q ( x ) , (2.16) reduces t o (2.13) i n t h i s case. 6
Now we p r o v e t h e t h e o r e m . A s i n t h e p r o o f o f t h e p r e c e d i n g r e s u l t , i f we e x c l u d e t h e t r i v i a l c a s e when flp(x) = m a . e . , Up(x)dx is a measure and M i s bounded f r o m L a ( N p ( x ) d x ) t o Lm(IRn++' , p ) . A l l we n e e d t o do i s t o p r o v e a weak t y p e ( 1 , l ) & q u a l i t y and t h e n
u s e i n t e r p o l a t i o n . I f we c a l l E~ = { ( x , t ) G IR"++' : M f ( X , t ) > c r ~ , we h a v e t o show t h a t t h e r e i s a c o n s t a n t C s u c h t h a t , f o r e v e r y a > o
153
11.2. NORM ESTIMATES FOR THE MAXIMAL FUNCTION
is integrable. R and s u c h t h a t
Let us s e e t h i s .
W e may assume t h a t
and s u p p o s e t h a t
(x,t)
6
Ea.
x , w i t h s i d e l e n g t h (R) t t
Let
k
f
Fix
Then, t h e r e i s a c u b e
be t h e only i n t e g e r such t h a t
< ]R1 4 2
2-(k+1)n
t h e proof t h a t l e d t o theorem 1.6, t h e r e i s some meets t h e i n t e r i o r o f R and s a t i s f i e s
Q
G
ct >
0
containing
-kn
Dk
.
As i n
which
so t h a t
3 3 I t f o l l o w s t h a t Q c Q j G C4-na f o r some j a n d x G R c Q c Q j . 3 On t h e o t h e r hand t S s i d e l e n g t h ( R ) 5 s i d e l e n g t h ( Q . ) , so t h a t "3 J ( x , t ) G Q j . Thus, we h a v e s e e n t h a t Ea c U where C4-n,= {Qj}. 1 Then
4
I n p a r t i c u l a r , i f t h e measure
f o r every cube ~ ( x S) C and
Q c IRn
(2.16)
i s such t h a t
p
with C independent of Q , then i m p l i e s t h a t f W Mf i s an o p e r a t o r boun-
f o r every p ded from Lp(IRn) t o LP(IRn++l , u ) A c t u a l l y , g i v e n any p w i t h 1 < p < m, (2.17) c i e n t but a l s o necessary f o r LP(Rn+" , P I . Indeed, s i n c e t h e b o u n d e d n e s s of
M
M M(x
with 1 < p < m. i s not only s u f f i -
t o b e bounded f r o m
Q
)(x,t) 2 1
implies t h a t
Lp(IRn) to 21 f o r every ( x , t ) G Q ,
11. CALDERON-ZYGMUND THEORY
154
P(Q plr ) 5 ja(ULXg)(x,t))Pdu(x,tl
5 ClQl
The i m p o r t a n c e of t h e o p e r a t o r M stems f r o m t h e f a c t t h a t c o n t r o l s t h e P o i s s o n i n t e g r a l o f f , P ( f ) , d e f i n e d by:
for
x
and
IR"
6
c
=
t > 0,
where
[IR"
J k
2 t
Actually,
Mf
for
ktl,
1
f 2 0
'L
In p a r t i c u l a r i f f = x Q a n d ( x , t ) G Q , we g e t P(X Q ) ( x , t ) 2 a n > O , w h e r e an d e p e n d s o n l y on t h e d i m e n s i o n n . T h e n , t h e same a r g u m e n t
11.3. SHARP MAXIMAL FUNCTION AND B.M.O.
155
t h a t we u s e d f o r M shows t h a t i f t h e o p e r a t o r f W P ( f ) i s b o unded f r o m L p ( I R n ) t o LP (Rn++l,p), t h e n p s a t i s f i e s ( 2 . 1 7 ) . The m e a s u r e s p s a t i s f y i n g ( 2 . 1 7 ) a r e c a l l e d C a r l e s o n m e a s u r e s . We c a n s t a t e t h e f o l l o w i n g : THEOREM
Let
2.18.
let
Then
i f and o n l y i f
(2.17)
IRn+l and i s a b o u n d e d o p e r a t o r from L P ( R n )
b e a p o s i t i v e B o r e 2 m e a s u r e on
p
1 < p < 03. p n + l ,p) to L (IR+
f W P ( f )
i f and o n l y i f
i s a C a r l e s o n m e a s u r e , that&,
p
h o l d s for some c o n s t a n t
C.
0
O b s e r v e t h a t t h e c o n d i t i o n o b t a i n e d d o e s n o t d e p e n d on p a n d i s a l s o e q u i v a l e n t t o t h e f a c t t h a t f H P ( f ) sends L1(Rn) boundedly i n t o L ,1( I- R + ,p).
3.
THE SHARP MAXIMAL F U N C T I O N AND THE SPACE
For a r e a l l o c a l l y i n t e g r a b l e f u n c t i o n
mal f u n c t i o n
is defined a t
f#
x
G
f IRn
where t h e s u p . i s t a k e n o v e r a l l t h e c u b e s f s t a n d s f o r t h e average of f o v e r Q,
Q
f
1
Q=lQl
Q
in
B.M.O. R",
t h e s h a r p m a xi-
by s e t t i n g
containing t h a t is:
Q
x,
a nd
f(x)dx.
The s h a r p maximal o p e r a t o r
f
H f#
i s a n a n a l o g u e o f t h e H a rdy-
L i t t l e w o o d maximal o p e r a t o r M , b u t i t h a s c e r t a i n a d v a n t a g e s o v e r i t wh ich we s h a l l p r e s e n t l y s e e . O f c o u r s e , f # ( x ) 5 Z M f(x). I t is a l s o c l e a r t h a t i n t h e d e f i n i t i o n o f f#(x) one c a n t a k e o n l y t h o s e cubes
Q
containing
x
in its interior
Jtctual l y
wh e re
i s u s e d t o i n d i c a t e t h a t e a c h s i d e i s bounde d b y t h e o t h e r
11. CALDERON-ZYGMUND THEORY
156
times an a b s o l u t e c o n s t a n t . ( 3 . 1 ) i s 5f'
I t i s c l e a r t h a t t h e r i g h t ha nd s i d e o f
F o r t h e o p p o s i t e i n e q u a l i t y we see t h a t
(x).
I t f o l l o w s t h a t f # ( x ) i s bounde d by t w i c e t h e (3.1) We a l s o n o t e t h a t :
f o r e v e r y a G IR. r i g h t hand s i d e of
.
( I f l ) # ( x ) 2 2f#(x)
(3.2) Indeed
dx 5 f # ( x ) f o r each
x
G
By u s i n g
Q
we g e t
(3.11,
(3.2).
is a function I f f i s such t h a t f # i s bounded, we s a y t h a t f o f bounded mean o s c i a l l a t i o n , a n d w e d e n o t e by t h e i n i t i a l s B . M . O . t h e s p a c e formed by t h e s e f u n c t i o n s . B.M.O.
We w r i t e For
f
G
{f
=
B.M.O.(IRn) B.M.O.
G
T hus
: f #
Lloc(IRn)
G
Lwl
when we n e e d t o s p e c i f y t h e u n d e r l y i n g s p a c e .
we w r i t e x)
Of c o u r s e we g e t a f t e r
-
f
Q
Idx.
(3.1):
Thus, i n o r d e r t o be a b l e t o say t h a t make s u r e t h a t t h e r e e x i s t s
C <
w
aldx 2
IIflI.
f 6 B.M.O., and, f o r each
it s u f f i c e s t o Q, a constant
11.3. SHARP MAXIMAL FUNCTION A N D B.M.O.
(1
157
T h i s i s t h e u s u a l way t o s e e t h a t a c e r t a i n
Then [If * 5 2C. f c B.M.O.
C l e a r l y , f W l l f I I * i s a seminorm a n d IIf I I * = 0 i f a n d o n l y i f f is constant. I t i s n a t u r a l t o consider the quotient space of B . M . O . modulo c o n s t a n t s , which i s a normed s p a c e a n d , a c t u a l l y a Banach s p a c e ( t h e c o m p l e t e n e s s i s l e f t a s a n e x e r c i s e f o r t h e I t c a n b e s e e n i n Neri [l]). reader. T h i s space of e q u i v a l e n c e c l a s s e s modulo c o n s t a n t s w i l l a l s o b e c a l l e d B . M . O . The a m b i g u i t y does n o t c a u s e any problem. Of course
Lm c B . M . O . a n d IIflI. 5 211fllm. However, t h e r e a r e B.M.O. f u n c t i o n s a s we s h a l l s o o n s e e . We s h a l l g i v e
u n bounded
two r e s u l t s w h i c h p r o v i d e many e x a m p l e s o f THEOREM
a.e.,
A,
3.3.
then
IQI
w,
i.e.
e'(x)dx
Q
the smallest
that is
log w = 4 ,
Call
1
functions.
If w i s an A1 w e i g h t , t h a t i s , i f Mw(x) i Cw(x) l o g w i s i n B.M.O. u i t h a norm d e p e n d i n g o n l y on t h e
constant f o r
Proof:
B.M.O.
w
=
C.
e'.
for
5 Ce'")
We h a v e , f o r e v e r y c u b e Q a.e. x c Q
or, equivalently
I ,Q 1
eo(x)dx]
e s s . s u p (e-"')) x f Q implies
But
- 11 IQI Thus,
e'(x)dx
'Q
exp(QQ
-
=
.
e s s . s ~ p . ( e - ' ( ~ ) )5 C x f Q
e x p ( - e s s . i n f . @ ( x ) ) , and J e n s e n ' s i n e q u a l i t y x f Q
2 exp($ )
Q
ess. i n f . '(x))
f i e s , f o r some o t h e r c o n s t a n t QQ
-
e s s . i n f . '(x) x f Q
5 C
C
and, consequently,
independent of
Q,
@
satis-
the property
6 C
We e x p r e s s t h i s by s a y i n g t h a t $ i s o f bounde d l o w e r o s c i l l a t i o n , t h e c l a s s f o r m e d by a l l t h e f u n c t i o n s o f a n d d e n o t e by B . L . O .
11. CALDERON-ZYGMUND THEORY
158
Now, we s e e t h a t
bounded l o w e r o s c i l l a t i o n .
Q
Averaging over
IQI
I,
Indeed
we o b t a i n
[ $ ( X I - OQldx
and t h e i n c l u s i o n
c B.M.O.
B.L.O.
B.L.O.
Observe t h a t t h e c l a s s
-
6 Z($Q
c B.M.0 B.L.O.
ess. i n f . +I
Q
0
follows readily.
i n t r o d u c e d above f a i l s t o b e a vec-
t o r s p a c e e v e n t h o u g h i t i s s t a b l e u n d e r t h e sum a n d t h e p r o d u c t by
.
a n o n - n e g a t i v e n u m b e r . A c t u a l l y B . L . O . n (-B.L.O .) = L Indeed, i f both and -0 a r e i n B . L . O . , w e h a v e a t t h e same t i m e m
+
QQ - e s s . i n f . $
Q
A d d i n g u p we g e t : cube
2 C
ess.sup @
Q
and
-
Theorem
3.3
gives us
B.M.O.
Q
Q
C
f u n c t i o n s from M.
6 C
independent of t h e
i s e s s e n t i a l l y bounded.
$J
p r e s e n t l y see a n i c e way t o p r o d u c e L i t t l e w o o d maximal o p e r a t o r
+ ess. sup. @
e s s . i n f $J 6
This is only possible i f
Q.
-$JQ
A1
weights.
We s h a l l
w e i g h t s by u s i n g t h e H a r d y -
A,
Let p b e a p o s i t i v e B o r e l m e a s u r e on ELn, f i n i t e on c o m p a c t s e t s , and hence r e g u l a r . I t makes s e n s e t o c o n s i d e r t h e m a xim a l f u n c t i o n Mp(x) where t h e
sup
=
sup xfQ
1
~
IQI
Q
dp
is taken over a l l cubes containing
x.
Exactly as
i n t h e c a s e of i n t e g r a b l e f u n c t i o n s , one o b t a i n s f o r measures t h e fundamental e s t i m a t e
with
d e p e n d i n g o n l y on t h e d i m e n s i o n .
C
THEOREM Mp(x) < w(x)
=
3.4. m
Let
for a.e.
p
We c a n s t a t e t h e f o l l o w i n g :
be a gositive Borel measure such t h a t
x
( ~ p ( x ) ) y is a n
G
IR",
and l e t
0 < y < 1.
T h e n t h e function
A, w e i g h t w i t h a c o n s t a n t d e p e n d i n g o n l y
on
11.3. SHARP MAXIMAL FUNCTION AND B.M.O.
y
159
a n d t h e d i m e n s i o n n.
Let
Proof:
1
IQI
with
Q
be a f i x e d cube. w ( x ) d x 5 Cw(x)
independent of
C
for
Q
Q.
We s h a l l s e e t h a t a.e.
x
G
Q
'Q =L Q 3 , t h e 3 - d i l a t e d of Q . We 'L P p , t h e r e s t r i c t i o n o f p t o Q. Q and, s i n c e 0 < y < 1 , a l s o
Let
write p = p, + p2 with p l = Then Mp(x) 5 Mpl(x) + MpZ(x)
( M ~ ( X ) )2 ~ ( M p l ( x ) ) ' + (Mp2(x))'. T h e r e f o r e , i t w i l l b e enough t o s e e t h a t t h e averages of (Mpl(x))' and ( M I . I , ( X ) ) ~ over Q a r e b o t h bounded by Cw(x) f o r any x c Q w i t h C d e p e n d i n g o n l y on y
and t h e d i m e n s i o n .
&[lo
R
=
We c a r r y o u t t h e s e two e s t i m a t e s s e p a r a t e l y :
I,]
m
+
b e s p l i t t h e i n t e g r a l by u s i n g an a r b i t r a r y
R > 0).
Near
0
we
u s e t h e t r i v i a l e s t i m a t e f o r t h e d i s t r i b u t i o n f u n c t i o n , which i s ,
IQI.
clearly, 5 From R t o m we u s e t h e weak t y p e e s t i m a t e , t h e d i s t r i b u t i o n f u n c t i o n i s 5 C t - 1 lip, 1 1 , where l l p l 11 = p 1 ( R n ) Thus
1-Y RIQI
f o r e v e r y x E Q . What we h a v e j u s t done i s t o r e a l i z e t h a t e v e r y in a f i n i t e measure s p a c e , a c t u a l l y o p e r a t o r of weak t y p e ( 1 , l ) t a k e s L 1 boundedly i n t o L p , i f p < 1 . T h i s f a c t i s known a s Kolmogorov's i n e q u a l i t y ( s e e a l s o C h a p t e r V , Lemma 2 . 8 . )
.
11. CALDERON-ZYGMUND THEORY
160
To d e a l w i t h
I t i s enough t o see t h a t ,
i s even s i m p l e r .
Mp2
b e c a u s e o f t h e fact. t h a t p 2 l i v e s f a r f r o m Q ( o u t s i d e a n y two p o i n t s x , y G Q ,we h a v e Mu2(x) 5 CMp2(y), w i t h i s a cube containing so t h a t
absolute constant. I n d e e d i f Q' m e e t i n g R n \ :, then Q c Q I 3 ,
&
'Q'
dP2 5 3n
lQt31
1Q
a), C
x
for an
and
1 3 d p 2 5 3"Mp2(y).
Thus
f o r every
x
For example, g i n i n Rn. x = (xl,
...
G
[I
Q.
take = 6 , t h e Dirac d e l t a o r u n i t mass a t t h e o r i Then M6(x) = Ixlmn where 1x1, = max I x j I f o r 15j5n , x n ) . Thus M6(x)
I t f o l l o w s t h a t f o r any Y w e i g h t , o r , i n o t h e r words
with 1x1'
0 5 Y < 1, Ixl-nY i s an i s a n A1 w e i g h t f o r a n y
A1 a
with
-n < a 5 0 ( o n l y f o r t h e s e a ' s a c t u a l l y , s i n c e w h a s t o b e l o c a l l y i n t e g r a b l e a n d w-' l o c a l l y b o u n d e d ) . However, o u r main c o n c e r n h e r e i s t h e f a c t t h a t l o g 1x1 i s a n e x a m p l e o f a n unboun1 is a c t u a l l y i n B.L.O. ded B.M.O. f u n c t i o n . Note t h a t l o g I n g e n e r a l we have COROLLARY
a)
3.5.
For any p o s i t i v e Bore1 measure
~ p ( x )< m f o r a . e . x G IR", l o g M ~ ( x ) w i t h norm d e p e n d i n g o n l y on t h e d i m e n s i o n . bl
log
1x1
i s in
B.M.O.
!J
such t h a t function
B.M.O.
we know t h a t f G B . M . O . implies B.M.O. is a lattice ( i f f , g G B.M.O., t h e n t h e f u n c t i o n s max ( f , g ) = ( I f - g l + f + g ) / 2 a n d min ( f , g ) = However, we may h a v e ( f + g - If-g ) / 2 w i l l a s o b e i n B . M . O . ) . For example i f : If1 G B . M 0 . w i t h o u t h a v i n g f G B . M . O . 0 f o r 1x1 > 1 if O < X < I f x) = -log X I Since ( I f l ) # ( x ) 6 2f#(x), If1 G B.M.O. Consequently
1
log
XI
i f -1 < x <
o
11.3. SHARP MAXIMAL FUNCTION AND B.M.O.
is in l-$p
it is c l e a r t h a t I f ( x ) ) = max(1og f i s n o t i n B.M.O. Since f is
average
1 2'
I
a -a
0
on e v e r y i n t e r v a l
B.M.O. However, odd a n d , c o n s e q u e n t l y , h a s
[-a,a],
If(x)Idx =
=
-
1
161
we j u s t n e e d t o o b s e r v e t h a t
log a
-+
m
for
a
+
0.
T h e r e i s an i n t i m a t e r e l a t i o n between t h e o p e r a t o r f H f # and t h e H a r d y - L i t t l e w o o d maximal o p e r a t o r M . I t is contained i n the f o l lowing s t a t e m e n t :
po <
0
a,
f
If
3.6.
THEOREM
then f o r every
J Rn(Mf (xDPdx with
C
Proof:
s
i s such t h a t
p
M f
f
such t h a t
L
PO
po
f o r some
po 6 p
with
we h a v e :
a,
2 C
independent of
f.
We may assume t h a t
f 2 0
since
Mf = M(1f
1)
and
(If[)#2
2f#.
First The p r o o f i s b a s e d upon t h e Calder6n-Zygmund d e c o m p o s i t i o n . we s e e t h a t t h i s d e c o m p o s i t i o n c a n b e c a r r i e d o u t f o r o u r f u n c t i o n f . L e t t > 0 and f o r every x 6 Q
suppose
Q
i s a cube such t h a t
fQ > t.
Then,
and t h u s tpo 2
I
1
IQI
Q
P ( M f ( x ) ) Odx 2
,
I t follows t h a t i f Q Q, c u b e s f o r e a c h of which i s 1 -
IQkI
I
Qk
...
1
IQI
P (Mf ( x ) ) Odx =
-!?
IQI
i s an i n c r e a s i n g f a m i l y o f d y a d i c
f(yldy > t,
t h e n t h e f a m i l y i s n e c e s s a r i l y f i n i t e s i n c e IQ,I i s bounded i n d e p e n d e n t l y o f k. T h u s , e a c h d y a d i c c u b e Q s a t i s f y i n g f Q > t w i l l b e c o n t a i n e d i n a maximal o n e . I f 19.1 i s t h e f a m i l y c o n s i s t i n g 3 of t h e s e maximal d y a d i c c u b e s , f o r e a c h o f them w i l l b e
11. CALDERON-ZYGMUND THEORY
162
t < --1 IQj
I
I
Qj
f ( y ) d y 5 2"t.
I n o r d e r t o i n d i c a t e t h e d e p e n d e n c e on t , we s h a l l d e n o t e t h i s For a . e . x f4 U Q t , j i s f ( x ) 2 t . f a m i l y by { Q . I . t,J 1 Observe t h a t i f
t < s,
then each
Qs,j C Qt,k and t a k e Given t > 0 w e f i x Qo = Q 2 - n - 1 two p o s s i b i l i t i e s : e i t h e r t,jo
f o r some k . A > 0. There a r e
I n t h e f i r s t case
I n t h e second case
and,taking
i n t o account t h a t
2"2-'-lt
= t/2,
we can w r i t e
Q05
dyS
Adding up i n a l l t h e p o s s i b l e
I n terms of
CI
Qo's, we g e t :
we h a v e g o t t h e f o l l o w i n g i n e q u a l i t y :
163
11.3. SHARP MAXIMAL FUNCTION AND B.M.O.
a(t) 5 [Ex Now, for
:
f#(x) > t/A}I + 2A-'a(2 -n-1 t)
N > 0, we consider
IN
=
jNpfP-la(t)dt 0 5 jNptP-lB(t)dt 0
since we are assuming
IN s
1
N
Mf
6
Lpo.
2
Also
I
N
ptp-l I{x : f#(x) > t/A) Idt + 2A-
0
ptP-la(2 -n-1 tldt
0
from which: 5 f N ptP-l I{x : f#(x)
I
>
t/A) ldt + CA-lIN
Jo
with a
depending only on
C
n
and
p.
Take
A = 2C
and obtain:
I N 4 ZINptP-ll{x : f#(x) > t/A}ldt. 0
Letting
N
-+
m,
we arrive at
and then
I
m
m
(Mf(x))Pdx
=
0
ptP-'B(t)dt
6 C 1 j0ptP-'a(t/CZ)dt
=
=
11. CALDERQN-ZYGMUND THEORY
164
We have s e e n t h a t t h e maximal f u n c t i o n s Mf and f # a r e c l o s e l y related. We have t h e t r i v i a l p o i n t w i s e e s t i m a t e f '(x) 2 ZMf(x), b u t we a l s o have a n e s t i m a t e g o i n g i n t h e o p p o s i t e d i r e c t i o n , t h i s t i m e an Lp e s t i m a t e . For f s u f f i c e s t o s e e t h a t f # c Lp
"good enough", and 0 < p < w , it t o c o n c l u d e t h a t Mf, and t h e r e f o r e
F o r f qfgood" and f , a r e a l s o i n Lp. Mf c Lp i s e q u i v a l e n t t o s a y i n g t h a t f #
1 i p < m, saying t h a t c L p and t h i s i s a l s o e q u i v a l e n t t o saying t h a t f c Lp. The s i t u a t i o n i s d i f f e r e n t f o r p = m. S a y i n g t h a t M f c L m i s t h e same a s s a y i n g t h a t f E L m . However, t o s a y t h a t f # c L w i s e q u i v a l e n t t o s a y i n g t h a t f 6 B.M.O. The s p a c e B . M . O . i s a n a t u r a l s u b s t i t u t e f o r L m , and t h e o p e r a t o r f b f ' a l l o w s u s t o t r e a t t h e s p a c e s L p and B . M . O . i n a u n i f o r m way. We s h a l l s e e t h a t many c l a s s i c a l o p e r a t o r s c a r r y Lm t o B.M.O. b o u n d e d l y . T h i s i s what makes t h e f o l l o w i n g i n t e r p o l a t i o n theorem i n t e r e s t i n g .
T be a l i n e a r o p e r a t o r bounded i n some w i t h 1 < po < m. Assume a l s o t h a t T Po B.M.O. boundedZy. T h e n , f o r e v e r y p with po < p < bounded i n Lp. THEOREM
3.7.
We c o n s i d e r t h e o p e r a t o r
Proof:
for
LP O
Let
m,
T
This i s a s u b l i n e a r
f'(Tf)#.
o p e r a t o r bounded i n Lpo and a l s o i n Lw. By M a r c i n k i e w i c z ' s i n t e r p o l a t i o n t h e o r e m , i t w i l l a l s o b e bounded i n L p . L e t f G L p .n. Lpo. Then
Tf E
and
I(Tf)'p
L'O
and
M(Tf) E L p o .
S Cllf p .
On t h e o t h e r hand
(Tf)'
G
Lp
The p r e c e d i n g t h e o r e m g i v e s :
and t h i s i n e q u a l i t y e x t e n d s t o e v e r y
The most i m p o r t a n t r e s u l t r e g a r d i n g
B.M.O.
f E Lp.
Ll
i s the following theo-
rem of F . John and L . N i r e n b e r g . THEOREM
Q (3.9)
There e x i s t constants n , s u c h t h a t for e v e r y f and e v e r y t > 0: 3.8.
dimension
)Ix
E
Q : If(x)
- fQI
G
C,,C2 B.M.O.
d e p e n d i n g onZu on t h e = B.M.O.(IRn) , e v e r y
It
-CC,/llfll >
t l l 2 Cle
*
191
11.3. SHARP MAXIMAL FUNCTION AND B.M.O.
165
I t i s a g a i n an a p p l i c a t i o n of t h e Calder6n-Zygmund decompos i t i o n . O b s e r v e , f i r s t of a l l , t h a t we c a n assume IIflI* = 1 , because t h e i n e q u a l i t y ( 3 . 9 ) d o e s n o t change i f we r e p l a c e f by a c o n s t a n t t i m e s i t . We f i x Q and t a k e a > 1 . We know t h a t
Proof:
We make t h e Calder6n-Zygmund d e c o m p o s i t i o n of f
-
f
relative to
Q
o b t a i n i n g cubes
a,
Q1 , j
Q ) f o r e a c h of which:
I
a < -
If(x)
Bes d e s , f o r a . e . x $ U Q ,j f o r each Q 1 , j i s I f Q , j - f Q 5 2"a. A l s o :
-
f
is
Q
Q
f o r the function ( d y a d i c s u b c u b e s of
Idx I Zna
If(x)
-
f
Q
1
I t follows t h a t
5 a.
I
On e a c h Q 1 function f of d y a d i c
I f Q2,k If(x)
-
f f
we make t h e Calder6n-Zygmund d e c o m p o s i t i o n f o r t h e - f r e l a t i v e t o a . Thus w e o b t a i n a f a m i l y Q 2 , k Q 1 s j subcubes of Q . , f o r e a c h of which i s
Q1,j
I
I
<
Zna,
151 and a l s o f o r a . e .
Besides,
I a.
Q1 , j together a l l the families
ilQ2,kl
x
G
Ql,j\
(!
Q2,k)
is
Now we p u t
6 a1 l Q l , j l .
{Q2,k} corresponding t o d i f f e r e n t
and c a l l t h e r e s u l t i n g f a m i l y a l s o Q1 ,j t h e u n i o n of t h e Q 2 , k ' s we h a v e : 's
{Q2,k}.
Then, o u t s i d e
and a l s o
S u b s e q u e n t l y , we o b t a i n f o r e a c h n a t u r a l number o v e r l a p p i n g cubes union i s
If(x)
{QN,j}
- f QI
N,
a f a m i l y o f non-
i n s u c h a way t h a t o u t s i d e of t h e i r and s u c h t h a t
? I Q , , ~ 5I
a - N ~ ~ ~ .
11. CALDERON-ZYGMUND THEORY
166
If
N.2"a
S t c (N
+ 1).2"a
with
N = 1,2,
...,
then
On t h e ( w i t h C 2 = 2-"-l ( l o g a ) / a ) s i n c e t < ( N + l ) Z n a 5 N2""a. o t h e r h a n d , i f t < 2"a, t h e n C 2 t < ( l o g a ) / 2 , and we u s e t h e t r i v i a 1 ma j o r i z a t i o n
Thus, we g e t
f o r every
(3.9)
C1 = / a . Finally, a v a l u e of t h e c o n s t a n t COROLLARY
3.10.
II II* f
I f
Q
by c h o o s i n g
C2
a s above and
c a n be c h o s e n i n o r d e r t o g e t a n o p t i m a l C2 (a = e). f
sup(l
,p
t
IQI
then:
B.M.O.
E
1Q
If(x)
-
fQ/Pdx]'/p
s
CpIlfl),
f , i n s u c h a way t h a t , f o r 1 < p < ff-, I l f l l * , p i s a n o r m e q u i v a l e n t t o f ) - - , l l f l I *on B . M . O .
with P
i n d e p e n d e n t of
C
i i ) For e v e r y
X
1 sup -
Q
IQl
1
Q
0 < X < C 2 / \ \ f \ l * , where
such t h a t
same c o n s t a n t a p p e a r i n g i n
e
(3.91,
I f ( x ) -fQ I
dx <
A f t e r a change of v a r i a b l e s
we h a v e : m
C2
m,
i s the
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
167
1 < p , w e h a v e Ilf 11 * 5 Ilf ( I * , p S CpIIf 11 * , s o t h a t t h e norms a n d II a r e e q u i v a l e n t o v e r B.M.O. Also, i f p > 1 , S t i r l i n g ' s f o r m u l a T ( p ) = 6e - p p P - l I 2 c a n b e u s e d t o c o n c l u d e t h a t C 6 C - p w i t h an a b s o l u t e c o n s t a n t C . P If
II I I *
4.
ll,,p
HARMONIC AND SUBHARMONIC FUNCTIONS IN A HALF-SPACE
I n t h e f i r s t two s e c t i o n s of c h a p t e r I , we s t u d i e d h a r m o n i c and s u b h a r m o n i c f u n c t i o n s i n a d i s k o r i n a e u c l i d e a n b a l l , and s o l v e d t h e D i r i c h l e t p r o b l e m f o r s u c h d o m a i n s . Our p u r p o s e i n t h i s s e c IRn++l = t i o n w i l l be t o extend t h i s s t u d y t o t h e h a l f - s p a c e { ( x , t ) f IR"+1 : t > 01. We a l r e a d y p o s e d t h e D i r i c h l e t p r o b l e m f o r t h i s domain i n t h e f i r s t s e c t i o n o f C h a p t e r I , and s t a r t e d
=
l o o k i n g f o r a s o l u t i o n . We s h a l l c o m p l e t e t h i s t a s k i n t h e p r e s e n t s e c t i o n . The main d i f f e r e n c e between t h e s i t u a t i o n a n a l i z e d i n C h a p t e r I and o u r p r e s e n t s e t t i n g i s t h e unboundedness of t h e domain, which f o r c e s u s t o l o o k c a r e f u l l y a t t h e b e h a v i o u r o f o u r functions a t infinity. We s t a r t by showing t h a t P o i s s o n ' s k e r n e l d o e s i n d e e d s o l v e t h e A t t h e end o f s e c t i o n i n t r o d u c e d t h e P o i s s o n k e r n e l f o r iRn++'
D i r i c h l e t problem.
1
i n Chapter
I
we
11. CALDERON-ZYGMUND THEORY
168
so t h a t
a s c a n b e s e e n by i n t e g r a t i n g i n p o l a r c o o r d i n a t e s . We a l s o h a v e , f o r a n y
I X b 6
I
Pt(x)dx =
because
P1
1x1 > 6 / t
I
J
iii)
Ixl>6
Pt(x)dx
I n o t h e r words,
-
6
+
'n a n-1 a t
T h u s , we h a v e : IR"
,
t >
for all 0
as
t
+
o t > 0
+
0
f o r every
i s harmonic i n
(x,t)iPt(x)
I (t2
t * 0
6 > 0.
i s an approximate i d e n t i t y i n
{Ptlt>O
Also, t h e function P (x) = t
x
2 0,
Pt(x)dx = 1
ii)
as
Pl(x)dx * 0
is integrable. P,(x)
i)
6 > 0
IR".
IRn+l
.
Indeed
1 lx12)(n-l)/2 1
and
is Itthe" r a d i a l harmonic f u n c t i o n i n THEOREM
4. I.
g r a l of
f:
For
f
6
??
p= 1
Lp(IRn)
IRn+l\ C O l .
, we c o n s i d e r t h e P o i s s o n i n t e -
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
Then
u(x,t)
a
a)
f
as
LP
in -
E
If
i s harmonic i n
LP(IR") t
with
169
Rn+' and:
+
I 5 p <
-
u(*,t) * f
it f o l l o w s t h a t
m,
0.
+
f i s c o n t i n u o u s and bounded, it f o l l o w s t h a t u ( . , t ) * f u n i f o r m l y on c o m p a c t s u b s e t s a s t 0. c ) Lf f i s u n i f o r m l y c o n t i n u o u s and bounded, t h e c o n v e r g e n c e b)
+
as
u(-,t) * f
Lf
d)
weak-*
f
G
t *
2a
Pt*v(x)
, then
l o g y of
M(IRn)
( f i n i t e ) Borel measure i n
u
.
c i t y of
Pt(x). u(x,t)
u(.,t)
+
f
i n the
Lm.
i s harmonic and
The h a r m o n i c i t y o f
Proof:
R".
i s uniform i n
L m ( R n ) , a l l we c a n s a y i s t h a t
t o p o l o g y of
Also if
o
u(x,t)
u(.,t)
Rn * p
u(x,t)=P(v)(X,t)= i n - t h e weak-*
topo-
i s a consequence o f t h e harmoni-
Besides
-
f(x) =
(f(x
-
y)
-
f(x))Pt(y)dy.
T h u s , by u s i n g M i n k o w s k i ' s i n e q u a l i t y f o r i n t e g r a l s , w e g e t :
c ) , given E > 0 , 6 > 0 can be chosen i n such - y ) - flI < E / Z w h e n e v e r IyI < 6 . W i t h t h i s P t h e f i r s t term i n o u r sum o f i n t e g r a l s i s < ~ / 2
In c a s e s a ) and a way t h a t llf( choice of
6,
independently of
-
t.
The s e c o n d
term i n t h a t sum i s
j l y l , 6 P t ( y ) d y * 0 a s t * 0 a s we know f r o m p r o p e r t y i i i ) of t h e P o i s s o n k e r n e l . T h e r e f o r e , t h e s e c o n d term i n t h e 5 211fllp
~ / 2 by t a k i n g t c l o s e t o 0 . This proves sum c a n a l s o b e made a ) a n d c ) . The p r o o f o f b ) is e n t i r e l y analogous. P a r t d)
a n d t h e f i n a l s t a t e m e n t c o n c e r n i n g a B o r e l m e a s u r e p a r e p r o v e d by d u a l i t y e x a c t l y a s i n t h e o r e m 1 . 1 8 i n C h a p t e r I . Now M ( I R n ) is t h e d u a l o f Co(lRn) , t h e s p a c e o f c o n t i n u o u s f u n c t i o n s v a n i s h i n g at
m
w i t h t h e supremum norm, a n d t h e s e f u n c t i o n s a r e u n i f o r m l y
continuous, so t h a t p a r t COROLLARY
4.2.
Fo r
f
c)
applies.
[I
c o n t i n u o u s and bounded i n
Rn,
the func-
u(x,t) defined by u(x,t) = P(f)(x,t) 2 2 t > 0 and u ( x , O ) = f ( x ) , i s c o n t i n u o u s z' n a n d h a r m o n i c i n R n + l . I& with i s t h e r e f o r e a s o l u t i o n o f t h e D i r i c h l e t p r o b l e m i n IRn+l + -
.-t i o n
+
11. CALDERON-ZYGMUND THEORY
170
boundary f u n c t i o n Proof:
rem.
f.
I t f o l l o w s i m m e d i a t e l y from p a r t
0
4.3.
PROPOSITION
I(u(
b)
W i t h t h e same h y p o t h e s i s
.,t)llpsllfllp
f o r euery
of t h e p r e v i o u s t h e o -
of
theorem
we
4.1,
t > 0.
Since t h e function x H u ( x , t ) i s t h e c o n v o l u t i o n of Pt and f ( u ( . , t ) = P t * f ) , t h i s i s a p a r t i c u l a r i n s t a n c e o f Y o u n g ' s i n e q u a l i t y and i t i s e a s i l y o b t a i n e d by w r i t i n g u ( x , t ) = Proof:
=
IRn P t ( r ) f ( x - y ) d y
grals.
and a p p l y i n g M i n k o w s k i ' s i n e q u a l i t y f o r i n t e -
u
Now we s h a l l o b t a i n P o i s s o n ' s r e p r e s e n t a t i o n f o r a c l a s s o f n i c e harmonic f u n c t i o n s . 4.4.
THEOREM
R'+'
monic i n
+
Let
-
u(x,t)
be a c o n t i n u o u s f u n c t i o n i n
and bounded.
Then
u
Rn+l + '
harcoincides necessarily with
x + $ u(x,O),
t h e P o i s s o n i n t e g r a l of t h e b o u n d a r y f u n c t i o n
that
i s , we h a v e t h e P o i s s o n r e p r e s e n t a t i o n :
proof:
Consider t h e f u n c t i o n I
V(X,t)
=
v ( x , t ) g i v e n by:
r
if
t > O
1
T h i s f u n c t i o n i s c o n t i n u o u s i n lRn++l , b o u n d e d , h a r m o n i c i n IRn++' and v a n i s h e s a t e v e r y p o i n t of t h e b o u n d a r y . Theorem 1 . 3 3 i n chapter I t e l l s u s t h a t v is i d e n t i c a l l y 0.
[I
Theorem 4 . 4 . c a n b e r e a d by s a y i n g t h a t t h e D i r i c h l e t p r o b l e m i n Rn + 1 f o r a bounded and c o n t i n u o u s b o u n d a r y f u n c t i o n h a s a u n i q u e bounded s o l u t i o n , b u t , o f c o u r s e , we know t h a t u n i q u e n e s s d i s a p p e a r s a s s o o n a s we a l l o w unbounded s o l u t i o n s .
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
171
I n o r d e r t o e x t e n d t o o u r s i t u a t i o n Theorems 1 . 3 and 1 . 8 from C h a p t e r I , and a l s o f o r o t h e r a p p l i c a t i o n s , we s h a l l make some b a s i c e s t i m a t e s f o r harmonic and s u b h a r m o n i c f u n c t i o n s i n Rn++' . v ( x , t ) be a non-negative subharmonic f u n c t i o n IFP++w h i c h i s u n i f o r m l y i n L p ( l R n ) f o r some 1 5 p < m , &
THEOREM
in -
4.5.
Let
w h i c h we mean t h a t :
~ ( x , t ) ~ d =x
Mp <
m
.
C depending only on p & n, such ( x , t ) G Rn:.' In p a r t i c u l a r v ( x , t ) IC M t - " l P f o r every i s bounded i n each p r o p e r s u b - h a l f - s p a c e I ( x , t ) G lRn++' : t 2 v(x,t) 2 t > 01. A c t u a l l y , t h e f o l l o w i n g s t r o n g e r p r o p e r t y h o l d s : 0 v(x,t) + 0 as ( x , t ) + m i n each proper sub-half-space. Then t h e r e i s a c o n s t a n t
that
Given ( x o , t o ) G Rn++' , l e t Bo = B ( ( x o , t o ) , t o / 2 ) t h e b a l l c e n t e r e d a t (xo, to) with r a d i u s t 0 / 2 . Then
Proof:
1 v ( x 0 , t ) I-
v(x,t)dx d t i
0
I C M
denote
tin/P.
Let u s p r o v e now t h a t t o >0 . S i n c e we know t h a t g i v e n E > 0 , we c a n f i n d t l > t o v ( x , t ) IC M t - n / P , s u c h t h a t v ( x , t ) 5 E p r o v i d e d t 2 t 1 ' We j u s t n e e d t o show t h a t f o r t o It 5 t l , v ( x , t ) c a n b e made s m a l l e r t h a n E by t a k i n g x big. P r o c e e d i n g a s i n t h e f i r s t p a r t o f t h e p r o o f , we see t h a t f o r 1x1 > t l , s a y , a n d f o r t o I t It 1 T h i s p r o v e s t h e f i r s t p a r t of t h e t h e o r e m .
v(x,t)
+
0
as
(x,t)
-+
m,
t 2 t 0 > 0.
Fix
11. CALDERON-ZYGMUND THEORY
172
11
and t h e proof i s completed.
We s h a l l s e e b e l o w t h a t t h e o r e m
I
4.5
s t i l l holds f o r
v(x,t) =
w i t h u h a r m o n i c i n Illn+’ a n d a n y p > 0 . When t h e proof of theorem 4 . 5 cannot be used, s i n c e t h e second i n e q u a l i t y i n t h a t p r o o f i s J e n s e n ’ s i n e q u a l i t y which i s no
= lu(x,t) 0 < p < 1,
longer available f o r LEMMA
4.6.
Let
3. T h e n , i f -_ in
p < 1.
We s h a l l u s e , i n s t e a d , t h e f o l l o w i n g
u be harmonic i n a b a l l B c ( x o , t o ) i s t h e c e n t e r o f B,
and c o n t i n u o u s we h a v e , f o r a n y
p > 0:
where
C
P
i s a c o n s t a n t d e p e n d i n g o n l y on
p
& n.
P r o o f : O f c o u r s e , we a l r e a d y know t h a t t h e lemma i s t r u e when p 2 1 w i t h C = 1 . Let u s l o o k now a t t h e c a s e 0 < p < 1 . We P may a s s u m e t h a t B i s t h e u n i t b a l l c e n t e r e d a t t h e o r i g i n a n d a l s o t h a t j B l u ( x , t ) l P d x d t = IB . Write
r o ) lPdo do
YP
b e i n g L e b e s g u e m e a s u r e on t h e u n i t s p h e r e , a n d
mm(r) 2 1 f o r e v e r y r w i t h 0 < r < 1 , s i n c e o t h e r w i s e t h e maximum p r i n c i p l e w o u l d i m m e d i a t e l y g i v e u s t h e required inequality
We may a l s o a s s u m e t h a t
From t h e r e p r e s e n t a t i o n o f u a s a P o i s s o n i n t e g r a l o v e r t h e s p h e r e of r a d i u s r (see t h e formula r i g h t b e f o r e theorem 1.30 i n Chapter I ) , we o b t a i n , f o r 0 < s < r : m m ( s ) S 2 ( 1 t a k e s = r a w i t h a > 1 . We h a v e
- s r - l ) - nm , ( r ) .
Now
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
173
By t a k i n g l o g a r i t h m s and i n t e g r a t i n g we g e t :
l o g m ( r ) d- r P r The l a s t i n t e g r a l i s bounded by a c o n s t a n t d e p e n d i n g Dnlyon p n,
and
s i n c e o u r normalizing assumption i s e q u i v a l e n t t o (n
t
1)
lo 1
mp(r)P
rn d r
=
1.
T h e r e f o r e , a f t e r a c h a n g e of v a r i a b l e s i n t h e i n t e g r a l on t h e l e f t hand s i d e , we c a n w r i t e :
/2
But a > 1 mm(r) 2 1,
implies
(1/2)a
< 1/2
log mm(r)
dr r
-
a n d , s i n c e we h a v e assumed
it f o l l o w s t h a t 2 log mm(r) drr
I
r)
dr
.
Thus log mm(r) Now w e c h o o s e a 1 < a < (l-p)-'.
dr
2 Ca + ( 1
so close t o 1 t h a t Then we o b t a i n :
dr log mm(r) - 5 C
- PI l / a > 1-p,
dr ,log m m ( r ) r t h a t i s , we t a k e
P
ro > 0 ( ( / 2 ) a 5 r o 2 l ) , mm(r ) S C 0 P' a c o n s t a n t d i f f e r e n t from t h e p r e v i o u s o n e , b u t s t i l l d e p e n d i n g o n l y on p and n . Then t h e maximum p r i n c p l e g i v e s u s I 5 cP a s we wanted t o p r o v e .
T h i s i m p l i e s t h a t f o r some
IU(O,O)
Now we c a n g i v e t h e p r o m i s e d e x t e n s i o n o f t h e o r e m
4.5.
11. CALDERON-ZYGMUND THEORY
174 THEOREM
Let
4.7.
i s uniformly i n
u(x,t)
Lp(lRn)
Then t h e r e i s a c o n s t a n t
that
l
u(x,t)
b e a harmonic f u n c t i o n i n 0 < p <
f o r some
C
Rn+l which
+
that i s :
m,
p
d e p e n d i n g o n l y on
u ~ x f o r r e v e r y ( x , t ) f IR"++~ i s bounded i n e a c h p r o p e r s u b - h a l f - s p a c e
and
.
n,
-
such
In particular ( x , t ) G IRn+tl : t t
2 t > 01. A c t u a l l y , t h e f o l l o w i n g s t r o n g e r p r o p e r t y h o l d s 0 u(x,t) + 0 (x,t) m i n each proper sub-half-space. -+
I t i s e x a c t l y t h e same a s t h e p r o o f o f t h e o r e m ing with t h e inequality:
Proof:
with
Bo
=
4.5
start-
B ( ( x o , t o ) , t o / Z ) ) , w h i c h was e s t a b l i s h e d i n lemma 4 . 6 .
We c a n now p r e s e n t t h e a n a l o g u e s o f t h e o r e m s
1.3
and
1.8
in
Chapter I , providing c h a r a c t e r i z a t i o n s of t h e Poisson i n t e g r a l s o f LP f u n c t i o n s , p > I , o r m e a s u r e s i n IR"
.
THEOREM
4.8.
the function a) u bl u
Let
u(x,t)
1
p S
Then t h e f o l l o w i n g t u o c o n d i t i o n s on
m,
defined i n
IRnt+'
are equivalent:
i s harmonic i n and i s u n i f o r m l q i n Lp(IRn) i s t h e P o i s s o n i n t e q r a l o f some f u n c t i o n f G L p ( I R n )
and 4 . 3 , that (b) implies ( a ) i m p l i e s ( b ) . Assuming (a) holds, consider t h e f u n c t i o n s f . ( x ) = u ( x , t . ) for a 3 J s e q u e n c e t . + O . From ( a ) , (fj) i s a bounded sequence i n 1 Lp(IRn) = LP'(JRn)*. A s i n t h e proof of theorem 1.3 i n Chapter
Proof:
(a). that
We a l r e a d y know, f r o m
.
4.1
Let u s p r o v e t h a t , c o n v e r s e l y ,
( f j ) h a s a s u b s e q u e n c e c o n v e r g i n g i n t h e weak-* t o p o l o g y o f L p . I, We may a s s u m e t h a t ( f j ) i t s e l f c o n v e r g e s i n t h e weak-* t o p o l o g y t o a c e r t a i n f G Lp(lRn) , t h a t i s , f o r e v e r y g G L p ' ( l R n )
j, the function (x,t)w u(x,t t t . ) is continuous J it i n IR"++l , h a r m o n i c i n IRn+l a n d , a c c o r d i n g t o t h e o r e m 4 . 7 , i s a l s o bounded. I t f o l l o w s from theorem 4.4 t h a t t h i s f u n c t i o n
NOW, f o r each
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
175
i s t h e Poisson i n t e g r a l of i t s boundary f u n c t i o n , t h a t i s , f o r every j u(x,t + t . ) = J Letting
J IR" P t ( x
go t o
j
since the function
-
y ) u ( y , t . ) d y = jJRnPt(x J
m,
we g e t
y
H Pt(x
As in the torus,
the case p similar p r o o f , t h e following THEOREM
a) b)
in -
y)
=
1
belongs
to
y ) f .J ( y ) d y .
Lp'(IRn)
. fl
i s d i f f e r e n t , a n d we g e t , w i t h a
T h e f o l l o w i n g t w o c o n d i t i o n s on t h e f u n c t i o n
4.9.
an+'
defined i n
-
-
u(x,t)
are equivalent:
u i s h a r r n z n i c i n Rn;l and i s u n i f o r m l y i n L1(IRn) u i s t h e P o i s s o n i n t e g r a l o f some ( f i n i t e ) B o r e 1 m e a s u r e IR", that i s u(x,t) = P(u)(x,t) = P (X - Y ) d U ( y ) . JR"
B a s e d u p o n t h e same i d e a s i s t h e f o l l o w i n g r e s u l t o n h a r m o n i c m a j o r i z a t i o n , which w i l l be a v e r y u s e f u l tool i n t h e s e q u e l
1
Let
4.10.
THEOREM
v
be a n o n n e g a t i v e subharmonic f u n c t i o n i n
w h i c h is u n i f o r m Z y i n
ha: a l e a s t h a r m o n i c m a j o r a n t
Lp(JRn) f o r some 1 6 p IRn++' . M o r e o v e r , i f
iz
m. Then v p > 1 , & I@
h a r m o n i c m a j o r a n t is t h e P o i s s o n i n t e g r a l o f some f u n c t i o n i n Lp(IRn)
a n d if
Bore1 measure on Proof:
p = 1, IR" .
i t i s t h e P o i s s o n i n t e g r a l of some ( f i n i t e )
As before, consider the functions
We may a s s u m e t h a t f . sequence t . G O . J J t h e weak-* t o p o l o g y o f Lp(IRn) if p > logy of M(IRn) if p = 1. Just t o f i x Then f . J f o r every
+
f
j
E
Lp(IRn) t h e r e is
f.(x) = v(x,tj) for a J converges as j m in 1 o r i n t h e weak-* t o p o the notation, let p > 1.
i n t h e weak-* t o p o l o g y .
+
Now w e c l a i m t h a t
The way t o s e e t h i s i s t o o b s e r v e t h a t b o t h f u n c t i o n s
176
11. CALDERON-ZYGMUND THEORY
( x , t ) H v(x,t + t . )
and
1
tend t o
as
0
(x,t) R > 0
h a v e t o make
in
+ m
IRn+l
.
Thus, given
E
we j u s t
> 0,
b i g enough s o t h a t
+ t . ) - P(f.)(x,t)
V(X,t
P(f.)(x,t) 3
3
1
i n t h e boundary of t h e r e g i o n
5E
KR =
I ( x , t ) c JRn++l : I x I 2 + t 2
6
R2 1 .
Then we c a n a p p l y c o r o l l a r y 2 . 6 f r o m C h a p t e r I t o c o n c l u d e t h a t v ( x , t + t . ) - P ( f . 1 ( x , t ) 5 E f o r every ( x , t ) c KR. Since t h i s is 3 1 t r u e f o r a l l l a r g e enough R ' s , we h a v e a c t u a l l y v ( x , t + t . ) 3 - ~ ( f . ) ( x , t )5 E f o r e v e r y ( x , t ) c IR"++' . N O W , s i n c e E was 1 a r b i t r a r y , we g e t ( 4 . 1 1 ) . That t h e function ( x , t ) W v ( x , t + t . ) 3 t e n d s t o 0 a s ( x , t ) + m i n IRn+l f o l l o w s f r o m t h e o r e m 4 . 5 . As f o r t h e f u n c t i o n P ( f . ) , we j u s t nLed t o o b s e r v e t h a t f j c Co(lRn) , 3 t h e s p a c e o f c o n t i n u o u s f u n c t i o n s v a n i s h i n g a t m, a n d t h i s a l r e a d y guarantees t h a t let
h
Co(JRn).
G
By t a k i n g
R
Take
E
+
0
> 0.
as
(x,t) *
in
m
IRn++'
-+
f o r every
.
Indeed,
Then
b i g e n o u g h , t h e s e c o n d i n t e g r a l c a n b e made
absolute value. t h a t P,(x) 0 (4.11)
P(fj)(x,t)
< ~ / 2 in
F o r t h e f i r s t i n t e g r a l w e make t h e o b s e r v a t i o n as (x,t) + i n IR"++' . T h u s , we h a v e e s t a b l i s h e l j
and every
(x,t) c
.
Letting
j
+ m,
we
have:
Thus case
u ( x , t ) = P ( f ) ( x , t ) i s a harmonic majorant of p = 1 we g e t a h a r m o n i c m a j o r a n t u = P(p)
v . For t h e with G M(IRnI
That u i s indeed t h e l e a s t harmonic m a j o r a n t of v f o l l o w s from t h e f a c t t h a t P ( f i ) ( x , t ) i s t h e l e a s t harmonic m a j o r a n t of ( x , t ) l - v ( x , t + t . ) b e c a u s e , i f h i s a h a r m o n i c m a j o r a n t o f v , we 1 would h a v e h ( x , t + t . ) 2 v ( x , t + t . ) a n d , c o n s e q u e n t l y h ( x , t + t . ) t 1 3 1 2 P ( f j ) ( x , t ) . Letting j +m, we g e t : h ( x , t ) 2 u ( x , t ) . We s h a l l n e x t s t u d y t h e p o i n t w i s e c o n v e r g e n c e o f P o i s s o n i n t e g r a l s .
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
177
The a p p r o a c h w i l l be t h e same a s t h a t we h a v e a l r e a d y u s e d t o p r o v e t h e L e b e s g u e t h e o r e m ( c o r o l l a r y 1 . 1 1 ) . Given f G U L p ( I R n ) , 1
o end o f s e c t i o n 2 we p r o v e d t h a t IPt*f(x) S CMf(x,t) with +
1
M f ( x , t ) = s u p I- 1
1QI
'Q
If1 : x E Q ,
s i d e l e n g t h (Q) 2 t )
Of course, it follows t h a t
* P f(x) 5 C
Mf(x,t)
SUP
t>O
CMf(x)
=
T h u s , P * i s a bounded o p e r a t o r i n L p € o r a n y p > 1 a n d i t i s a l s o o f weak t y p e ( 1 , l ) . T h i s i s a l l we n e e d t o p r o v e t h e f o l l o w i ng
f o r some p I t w i l l b e enough t o show t h a t f o r e a c h
Proof:
Assume f i r s t t h a t
1 5 p <
w.
A~
h a s measure true that
=
{x 0.
G
IR"
f
G
LP(IRn)
Indeed, t h e s e t of p o i n t s
Pt*f(x)
+
f(x)
as
t
+
According t o theorem Consequently,
-
4.1,
f(x)
I
part
5 lirn
c),
x
G
>
s
5
0, t h e s e t
S }
IRn
is p r e c i s e l y
0,
Given E > 0 , we c a n w r i t e f = g + h , w i t h compact s u p p o r t a n d J R n l h l P < E .
l i m sup IPt*f(x) t+O
- f(x) I
: l i m sup IPt*f(x) t + O
such t h a t
where i t i s n o t
.
m
U Al,j j=l
where g i s c o n t i n u o u s We h a v e , f o r e v e r y x a n d t :
Pt*g(x)
sup IPt*h(x) t + O
I
+
g(x)
+ Ih(x)
as
1
5
t
+
0.
11. CALDERON-ZYGMUND THEORY
178
I t follows that
a n d we g e t :
Since t h i s is t r u e f o r every
we a c t u a l l y have
> 0,
E
lAsl
=
0.
Thus, t h e theorem i s proved i n t h i s c a s e . The c a s e
f
s e e how.
Take
as t
f o r almost every
+
0
G
Lm(IRn) can be reduced t o t h e previous one. Let u s B = B ( O , R ) , R > 0. We s h a l l p r o v e t h a t P t * f ( x ) + f ( x ) x
G
T h i s w i l l b e enough, s i n c e
B.
R
i s a r b i t r a r y . Let B ' = B ( 0 , R + 1 ) . Write f = f l + f 2 w i t h fl(x) = f(x) if x G B' a n d f , ( x ) = 0 e l s e w h e r e . Then f,
G
L1(Rn)
and, consequently
Pt*fl(x)
-+
fl(x)
a . e . x G IR". T h u s , we j u s t n e e d t o p r o v e t h a t f o r a . e . x G B. But f o r x f B :
as
t
-+
0
for
Pt * f 2 ( x ) + f 2 ( x ) = 0
and
In general, i f
@
G
L1(IRn)
t h e approximate i d e n t i t y =
t-"@(t-'x).
I,n
t > 0,
$ ( x ) d x = 1 , w e may c o n s i d e r o b t a i n e d by m a k i n g
@t(x) =
T h e n , i f we now s e t
a l l p a r t s of theorem 11,
at,
and
4.1,
with t h e exception of t h e harmonicity of
s t i l l h o l d , s i n c e t h e y depend fsnly on t h e s e t h r e e f a c t s :
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
@(xldx= 1
ii)
t
t > 0,
I@(x)
For e v e r y 6 > 0 :
iii)
as
f o r every
179
and Idx
+
0
0.
+
Theorem 4 . 1 2 , h o w e v e r , d e p e n d s upon t h e i n e q u a l i t y P " f ( x ) 6 5 CMf(x). I f we want t o e x t e n d i t t o o t h e r a p p r o x i m a t e i d e n t i t i e s * @,, we s h a l l h a v e t o s t u d y t h e maximal f u n c t i o n @ ( f ) ( x ) =
I.
sup I@,*f(x) I f we g e t a n i n e q u a l i t y @ * ( f ) ( x ) S CMf(x), t>O e x t e n d s immediately t o t h e a p p r o x i m a t e i d e n t i t y {@t}. theorem 4 . 1 2 I f @ i s r a d i a l and d e c r e a s i n g , t h e i n e q u a l i t y i s v e r y e a s y t o =
obtain. THEOREM
$(x) t 0
Let
4.13.
IRn . Then f G u LP(IR") a n d e v e r y 15 p 9 n.
dimension -
Let
Proof:
Call
be a r a d i a Z , d e c r e a s i n g , i n t e g r a b Z e
$ * ( f ) (x) 5 C l l + l l ,Mf(x) f o r e v e r y x G I R ~ , with c d e p e n d i n g o n l y on t h e
function i n
Then
B. = B(0,r.). J J
I
IR"
@(x)dx=
and f o r e v e r y
f
G
m
1
a.IB.1 <
j=1
1
Lp(iRn)
1
,
1 5 p <=
By a p p l y i n g t h i s t o t h e f u n c t i o n
11
IRn f ( x
-
m
f(x
y)@(y)dyl 5 C[jRn
Now o b s e r v e t h a t , f o r
@
m,
-
a )
we obtain
@]Mf(x).
a s above and
t > 0,
@t i s a f u n c t i o n of
11. CALDERON-ZYGMUND THEORY
180
11+, 111
t h e same t y p e a n d
=
llCplll.
Therefore
i s r a d i a l , d e c r e a s i n g a n d i n t e g r a b l e , we c a n f i n d a s e q u e n c e o f f u n c t i o n s $ ( J ) , e a c h o f w h i c h i s a f i n i t e l i n e a r comb i n a t i o n of c h a r a c t e r i s t i c f u n c t i o n s of b a l l s c e n t e r e d a t 0 w i t h
Now i f
J,
x,
c o e f f i c i e n t s 2 0, such t h a t , f o r every monotonically t o $ (x) Then
.
Since, f o r each
Cp(j)(x)
increases
j
we f i n a l l y g e t :
CII
J , * ( f ) ( x ) S CII$IIIMf(x). COROLLARY
4.14.
that the function
i s called every
R".
f
+
$(XI
j I R n $ ( x ) d x = 1 and s u c h i s i n t e g r a b l e ($
= s u p { ) @ ( y ) I :IyI t 1x11
t h e l e a s t r a d i a l d e c r e a s i n g m a j o r a n t of
u
LP (R") 15p5m
G
,
Cpt*f(x)
-t
f(x),
as
is i d e n t i c a l t o that of theorem
It
Proof:
with
Cp G L 1 ( l R n )
Let
t
+
0,
4.12.
4).
Then, f o r
f o r almost every
The f a c t t h a t
i s i n t e g r a b l e a n d J,nCp = 1 guarantees t h e uniform convergence f o r f c o n t i n u o u s w i t h c o m p a c t s u p p o r t . T h e n , we j u s t h a v e t o
observe t h a t
+ * ( f ) ( x ) 2 $ * ( l f l ) ( x ) S CllJ,ll,Mf(x).
A c t u a l l y , t h e p o i n t w i s e convergence o f a P o i s s o n i n t e g r a l a t a bound a r y p o i n t h o l d s i n a s t r o n g e r f o r m t h a n t h e o n e we h a v e d i s c u s s e d . We c a n a l l o w a n y n o n - t a n g e n t i a a p p r o a c h . L e t u s g i v e p r e c i s e definitions. F o r a p o i n t x 6 IRn a n d a n y r e a l number N > 0 , we s h a l l c a l l TN(x) t o t h e o p e n v e r t i c a l c o n e w i t h v e r t e x x a n d aperture
N , t h a t is
rN(x) = { ( y , t )
G
n + l .. y IR+
XI
< Ntj.
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
181
,
Given a f u n c t i o n u d e f i n e d on JRn+l and a p o i n t x G IRn we s h a l l s a y t h a t u ( y , t ) c o n v e r g e s t o II a s ( y , t ) t e n d s t o x ( a c t u a l l y t o (x,O)) n o n t a n g e n t i a l l y , and we s h a l l w r i t e u ( y , t )
+
II
a s ( v , t ) N;T*x, i f and o n l v i f , f o r e v e r y N > 0 , u ( y , t ) c o n v e r ges t o R a s ( y , t ) tends t o x remaining always i n TN(x). This i s t h e n a t u r a l e x t e n s i o n t o o u r c o n t e x t of t h e n o t i o n of n o n - t a n g e n t i a l convergence i n t r o d u c e d f o r t h e d i s k i n Chapter I ( i n theorem 1 . 2 0 ) . To p r o v e t h e n o n - t a n g e n t i a l c o n v e r g e n c e of P o i s s o n i n t e g r a l s we s h a l l l o o k a t t h e n o n t a n g e n t i a l P o i s s o n maximal f u n c t i o n o f a p e r t u r e N > 0 , d e f i n e d f o r any f G U L P ( R n ) as: 1< p 6 m * PV,Nf(X) = sup IPt*f (Y) I (y,t i G r N ( X ) We know t h a t I(Pt*f)(y)l 5 C M f ( y , t ) w i t h C d e p e n d i n g o n l v on n . However, i f ly < Nt, we c a n e a s i l y s e e t h a t M f ( y , t ) 5 S CNMf ( x ) , where CN i s a c o n s t a n t dependinr! on N . To p r o v e t h i s i n e q u a l i t y we j u s t n e e d t o o b s e r v e t h a t i f Q i s a c u b e c o n t a i n i n g y and h a v i n g s i d e l e n g t h 2 t, then x G Q Z N + l , so t h a t w e have
XI
and, consequently.
Thus we c a n w r i t e : (4.15)
P
*
v ,Nf ( x )
T h i s i n e q u a l i t y i s a l l we n e e d t o p r o v e t h e f o l l o w i n g :
(y,t)N;T'x Proof:
f
U Lp 1
4.16.
THEOREM
f
(IR") , x
6
then
Pt*f(y)
+
f(x)
IR'.
The p r o o f i s e n t i r e l y s i m i l a r t o t h a t of t h e o r e m
Suppose f i r s t t h a t
f
G
LP(Rn)
and
1 5 p <
a.
4.12.
Then, a f t e r f i x * P
with the operator ing N > 0, we proceed a s i n 4 . 1 2 , * i n s t e a d of P I n t h i s way, we show t h a t t h e s e t
.
as
v ,N
11. CALDERON-ZYGMUND THEORY
182
h a s measure pt * f ( y )
I f we c a l l
0.
f(x)
+
as
fl
E =
(y,t)N;T.x
we s h a l l h a v e x E.
EN,
4
N=l f o r every
IEl = 0
and
A s f o r t h e c a s e f G Lw(lRn) , we r e a l i z e t h a t t h e a r g u m e n t g i v e n i n 4.12 extends t o our c a s e , s i n c e , as can be e a s i l y s e e n , Pt * f 2 ( y )
+
as
0
( y , t ) N;T.x
if
x
6
n
B.
We s h a l l b e a b l e t o g i v e a more p r e c i s e r e s u l t by u s i n g a more d i r e c t a p p r o a c h b a s e d upon t h e i n e q u a l i t y :
v a l i d f o r every
x
lRn
G
and e v e r y
6
lRnttl
satisfying
w i t h a c o n s t a n t C N t h a t d e p e n d s o n l y on N we may a s s u m e t = 1 . n . To p r o v e ( 4 . 1 7 ) ,
IyI < N t , dimension
n e e d t o show t h a t , f o r e v e r y
lxlprovided
(y,t)
XI2
+ 1
y12
IyI < N .
t
1
x
G
and t h e T h e n , we
IRn,
S CN
This is very simple, since f o r
1x1 > 2 N ,
we c a n
make
and f o r
1x1 5 2 N
we s i m p l y u s e
+
Ix
-
yI2 + 1
5
1x1' + 1 5 4 N 2 + 1 .
The more p r e c i s e v e r s i o n o f t h e n o n t a n g e n t i a l c o n v e r g e n c e i s as f o l lows.
Proof:
Let x b e a L e b e s g u e p o i n t f o r f . G i v e n F > 0 , by d e f i n i t i o n of L e b e s g u e p o i n t , t h e r e i s a 6 > 0 s u c h t h a t f o r e v e r y
O < r < 6
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS Consider t h e f u n c t i o n
XI
g
d e f i n e d by
Iy < 6 and g(y) = 0 otherwise. t e e s t h a t Mg(x) 5 C E . Now, i f Iy -
-
g(y) = f ( y )
XI
183
f(x)
if
The i n e q u a l i t y a b o v e g u a r a n < Nt,
B u t , s i n c e y - z = x - z - ( x - y ) a n d Ix - y I < N t , inequality ( 4 . 1 7 ) a p p l i e s t o y i e l d P t ( y - z ) 5 CNPt(x - z ) Hence
.
The f i r s t i n t e g r a l i n t h i s sum i s Pt * l g l ( x ) 5 CMg(x) 6 C E . Now we c l a i m t h a t t h e s e c o n d i n t e g r a l i n t h e sum c a n a l s o b e made < E by m a k i n g t c l o s e e n o u g h t o 0 . I n d e e d , t h i s s e c o n d i n t e g r a l c a n b e b o u n d e d by
a n d we j u s t n e e d t o o b s e r v e t h a t f o r every
[ I I ~ I > ~ P ~ ( Z ) +~ 0~ Za s] ' t/ ~ 0 +
This is a very simple computation
q 2 1.
A s a c o n s e q u e n c e , we o b t a i n a n e x t e n s i o n t o o u r c o n t e x t o f F a t o u ' s
c l a s s i c a l theorem ( s t a t e d a f t e r c o r o l l a r y COROLLARY
IRn+l
& I
X E
IRn
Proof:
1
.
4.19.
Then __
1.21
i n Chapter
I.)
u ( x , t ) b e harmonic and bounded has non-tangential limits a t almost every p o i n t
Let the function
u
t h e b o u n d a r y of
IRn+l
According t o theorem
.
4.8,
u(x,t)
=
P, * f ( x )
f o r some
11. CALDERON-ZYGMUND THEORY
184 f G L~(R")
.
ing theorems
Then t h e c o n c l u s i o n o f t h e c o r o l l a r y f o l l o w s by a p p l y 4.16 o r 4.18.
We s h a l l p r e s e n t now a l o c a l v e r s i o n o f Fatou's t h e o r e m .
This w i l l
imply, i n p a r t i c u l a r , t h a t , f o r a harmonic f u n c t i o n u ( x , t ) in IRn+ 1 t h e e x i s t e n c e o f n o n t a n g e n t i a l l i m i t s a t a l m o s t e v e r y boun+ ' dary p o i n t is e q u i v a l e n t t o t h e n o n - t a n g e n t i a l boundedness almost F i r s t o f a l l , we make p r e c i s e t h e n o t i o n o f n o n - t a n g e n everywhere. t i a l boundedness. F o r a p o i n t x G IRn a n d r e a l numbers N > 0 , h h > 0 , we s h a l l c a l l T N ( x ) t o t h e open v e r t i c a l c o n e w i t h v e r t e x x
and a p e r t u r e
N , truncated a t height
h rN(x) = { ( y , t )
G
Rn++' : [ y
-
h,
that is
XI<
Nt
and
0 < t < h}.
Then we make t h e f o l l o w i n g : DEFINITION
4-20.
non-tangentially N > O
&
h
u
A function
x G IRn i s bounded i n
bounded a t %he p o i n t
> o
such t h a t
u
JRn++l i s s a i d t o b e
defined i n
_ .
i f t h e r e a r e numbers
Tk(x),
that i s ,
such t h a t
sup{
(Y
O b s e r v e t h a t , whi e t h e n o n - t a n g e n t i a l b o u n d e d n e s s o f u a t x h r e q u i r e s o n l y t h e e x i s t e n c e o f a t r u n c a t e d c o n e r N ( x ) on w h i c h u i s bounded, f o r n o n - t a n g e n t i a l convergence one h a s t o c o n s i d e r a l l possible
apertures.
Thus, even though t h e e x i s t e n c e of a non-tan-
g e n t i a l l i m i t of u a t x c l e a r l y i m p l i e s t h e n o n - t a n g e n t i a l b o u n d e d n e s s o f u a t x , t h e c o n v e r s e i s by n o means o b v i o u s . A c t u a l l y t h e converse i s f a l s e i f one l o o k s a t an i n d i v i d u a l p o i n t x , b u t it i s t r u e i f one l o o k s a t a whole s e t of p o i n t s and d i s r e g a r d s a s e t of measure 0 . T h i s i s t h e c o n t e n t of t h e f o l l o w i n g r e s u l t , which c a n b e v i e w e d a s a l o c a l v e r s i o n o f F a t o u ' s t h e o r e m .
Let u
Rn++l. Let E c IRn and s u p p o s e t h a t u i s n o n - t a n g e n t i a l l y b o u n d e d a t e v e r y x G E . Then u h a s n o n - t a n g e n t i a l l i m i t s a t a l m o s t e v e r y p o i n t x c E . THEOREM
Proof:
4.21.
be a harmonic f u n c t i o n i n
A l l we n e e d t o p r o v e i s t h a t i f
u
is non-tangentially
bounded a t e v e r y p o i n t o f a s e t o f p o s i t i v e m e a s u r e , t h e n t h e r e i s some s u b s e t o f p o s i t i v e m e a s u r e s u c h t h a t
u
has non-tangential
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
185
l i m i t s a t every point of t h i s subset.
Indeed, once t h i s i s proved, i f u i s n o n - t a n g e n t i a l l y bounded a t e v e r y p o i n t x G E , then the s e t { x G E : u d o e s n o t have a n o n - t a n g e n t i a l l i m i t a t XI
n e c e s s a r i l y must have m e a s u r e
0.
Assume t h a t u i s n o n - t a n g e n t i a l l y bounded a t e v e r y x 6 E w i t h [ E l > 0 and l e t u s t r y t o f i n d F c E w i t h IF1 > 0 s u c h t h a t u has non-tangential limits a t every
x
F.
G
We s t a r t by making s e v -
e r a l r e d u c t i o n s f o r which t h e h a r m o n i c i t y of u d o e s n o t p l a y any r o l e . F o r t h e s e p r e p a r a t o r y s t e p s we c o u l d assume t h a t u i s merely continuous.
F i r s t of a l l , E c a n b e t a k e n t o b e compact. A l s o , s i n c e E = U E N,h,M) where E(N,h,M) = Cx G E : l u ( y , t ) I S M f o r e v e r y h ( y , t ) c T N ( x ) l and t h e u n i o n i s t a k e n o v e r a l l N , h , M p o s i t i v e and r a t o n a l ; we may p e r f e c t l y w e l l assume t h a t E c o i n c i d e s w i t h a g i v e n E(N,h,M) o r , i n o t h e r words, t h a t t h e r e a r e N > 0 , h > 0 , M > 0, such t h a t f o r every x c E : sup I l u ( y , t ) I : ( y , t ) G r N h (x)}S 5 M. The n e x t s t e p w i l l b e t o show t h a t , f o r e v e r y p o s i t i v e i n t e g e r
k > N,
t h e r e i s a set Ek c E w i t h l E k l > 0 and such t h a t f o r every x G E k , u i s bounded o v e r Tkk ( x ) w i t h a bound Mk independent of x . T h i s p r o o f w i l l be b a s e d upon L e b e s g u e ' s d i f f e r e n t i a t i o n t h e o r e m . We know t h a t i f x G E i s a Lebesgue p o i n t f o r X E , the c h a r a c t e r i s t i c f u n c t i o n of E , then
C o n s e q u e n t l y , t h i s c o n v e r g e n c e h o l d s f o r a l m o s t e v e r y x G E . The p o i n t s x G E f o r which t h i s h o l d s a r e c a l l e d d e n s i t y p o i n t s of E . Take 0 < q < 1 . A f u r t h e r r e s t r i c t i o n on r- w i l l b e imposed b e l o w . If
x
G
E
i s a d e n s i t y p o i n t , we s h a l l h a v e
Now, i f we t a k e with
IF\ > 0
6 > 0
small enough, w e s h a l l have a s u b s e t
such t h a t , f o r every
x
G
F
and e v e r y
F c E
0 < r < 6
is
11. CALDERON-ZYGMUND THEORY
186
I B ( x , r ) n E 1 , i-. S u p p o s e we h a v e a f i x e d i n t e g e r k > N . We c l a i m IB(x,r) t h a t if q i s t a k e n c l o s e e n o u g h t o 1 , d e p e n d i n g on k , a n d i f
1
s > 0
(4.22)
i s t a k e n s m a l l e n o u g h , a l s o d e p e n d i n g on h ziEI'N(~) f o r every
Ti(x) c
x
G
k,
we have:
F.
L e t u s show t h i s . T a k e x G F a n d ( y , t ) G T z ( x ) , t h a t i s : Iy < kt, t < s . We must p r o v e t h a t t h e r e i s some z G E s u c h that Iy - z l < N t (we may a s s u m e , t o s t a r t w i t h , t h a t s < h ) . If
XI
z,
t h e r e e x i s t e d no such
we w o u l d h a v e
B(y,Nt)=
k:I z - y ) < N t j c I E n \ E
i n s u c h a way a n d , c o n s e q u e n t l y , B ( y , N t ) fl B ( x , k t ) c B ( x , k t ) \ E , t h a t t h e set B(x,kt)\E c o n t a i n s a t least a b a l l of diameter N t . Thus :
if q h a s b e e n s o c h o s e n . Now, i f s i s taken so small t h a t k s < 6 , we would h a v e a c o n t r a d i c t i o n w i t h t h e s e l e c t i o n o f 6 d e p e n d i n g on o u r
F
s,
(4.22)
q.
I t follows t h a t , with our choice of
h o l d s and hence, f o r e v e r y
I
x
G
F
and e v e r y
and and
F
(y,t)
G
TE(x), l u ( y , t ) S M. Suppose t h a t F c B ( 0 , R ) a n d t a k e Mk2 M 2 a n d a l s o M 2 s u p { l u ( y , t ) I : IyI 2 R + k , s 5 t I k l ( s i n c e u i s k c o n t i n u o u s , i t w i l l b e b o u n d e d on t h e c o m p a c t s e t E ( o , R + k 2 ) x x [s,k] c IRn++l 1 . Then f o r e v e r y x G F a n d e v e r y ( y , t ) G Tkk ( x ) , s o t h a t , b y s e t t i n g Ek = F , we h a v e t h e s e t we l u ( y , t ) I 5 Mk, were l o o k i n g f o r .
G
O b s e r v e t h a t , g i v e n k > N a n d E > 0 , t h e s e t Ek c a n b e t a k e n such t h a t IE\EkI < E. I n d e e d , o n c e i- h a s b e e n s e l e c t e d , we r e a l i z e t h a t t h e set m
U A. j=1 J
where
Since
(A.)
Eo
of d e n s i t y p o i n t s o f
IA~I
E
c a n be w r i t t e n a s
i s an i n c r e a s i n g f a m i l y , J E = ~J E~ ~ a s j -t a. I Thus by t a k i n g 6 > 0 small e n o u g h , s a y 6 = l / j , F = A . can be 1 t a k e n w i t h m e a s u r e a s c l o s c t o /El a s w e w i s h . -f
Our f i n a l p r e p a r a t o r y s t e p w i l l b e t o r e a l i z e t h a t t h e r e i s a :>et
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS G c E with c o n e r kk ( x ) ,
187
IGI > 0 such t h a t f o r every x G G and every truncated u i s b o u n d e d on r kk ( x ) w i t h a bound Mk d e p e n d i n g
on k , b u t n o t on x G G f o r f i x e d k . A c t u a l l y , g i v e n E > 0 , G c a n b e t a k e n i n s u c h a way t h a t I E \ G I < E . A l l w e have t o do i s t o consider f o r each integer k > N , a s e t Ek c E s a t i s f y i n g , a s i n t h e p r e v i o u s p a r a g r a p h t h a t u i s bounded on U { Tkk ( x ) : x G E k I and a l s o IE\ E k l < 2 - k ~ . Then, w e t a k e G = kfNEk so t h a t
k, u
and,for every
i s b o u n d e d on
U { rkk ( x ) : x
G
GI.
Once t h e s e p r e p a r a t o r y s t e p s h a v e b e e n t a k e n , o u r t a s k h a s b e e n r e d u c e d t o t h e f o l l o w i n g : We h a v e a c o m p a c t s e t E c J R n , and t h e h r e g i o n R = u T N ( x ) f o r some N > 0 a n d h > 0 f i x e d . We know XG E lu(x,t) I S 1 t h a t u i s a harmonic f u n c t i o n i n R n t l such t h a t f o r every (x,t) G R. Then we m u s t show t h a t f o r a l m o s t e v e r y X G E , there exists l i m u(y,t) as ( y , t ) t e n d s t o (x,O) r e m a i n i n g always i n s i d e of j , define wise. For write @ j( x )
R.
Let u s show t h i s .
For every p o s i t i v e i n t e g e r
if ( x , l / j ) G R a n d @ j ( x ) = 0 o t h e r @j(x) = u(x,l/j) ( x , t ) G lRnttl we d e f i n e Q j ( x , t ) = P t * @ j ( x ) , a n d we
u(x,t t l/j) = $.(x,t) t $.(x,t). The s e q u e n c e o f f u n c t i o n s 1 1 i s bounded i n Lm(IRn) a n d , c o n s e q u e n t l y , it h a s a sub-
sequence
converging i n t h e weak-* topology of
(@j
to a
Lm
we d e f i n e @ ( x , t ) = f u n c t i o n @ G L m ( R n ) . F o r ( x , t ) G IRnt+' P t * @ ( x ) . The weak-* c o n v e r g e n c e i m p l i e s t h a t @ j l ( x , t )- + @ ( x , t )
=
u(x,t) and f o r e v e r y ( x , t ) G IRnt+' . S i n c e u ( x , t + l / j ) ~ + ~ , ( x , +t )@ ( x , t ) , i t f o l l o w s t h a t , a l s o $ . l ( x , t ) $(x,t) for 1 e v e r y ( x , t ) G IRnttl, a n d w e h a v e : u ( x , t ) = @ ( x , t ) t $ ( x , t ) . Now, -f
+
since
I$(x,t)
=
Pt
* @ ( x ) and
@
G
Lm(IRn)
,
the ordinary
Fatou
implies t h a t @ ( y , t ) has non-tangential theorem ( c o r o l l a r y 4.19) l i m i t s a t a l m o s t e v e r y p o i n t x G IR" . We s h a l l p r e s e n t l y s e e t h a t f o r almost every x f E , $ ( y , t ) converges t o 0 as ( y , t ) (x,O) remaining i n s i d e of $2. This w i l l f i n i s h t h e proof of t h e theorem. Write t h e b o u n d a r y o f R a s a R = E U B w h e r e B = I ( x , t ) f a R : t > O I . +
We s h a l l c o n s t r u c t a f u n c t i o n
a)
H
b)
H 2 0 i n IR"" H t 2 i n B , and For almost e v e r y x tangentially.
c) d)
i s harmonic i n
H(x,t)
with the following properties:
IRn+tl
6
E
is
H(y,t)
+
0
as
(y,t)
+
(x,O)
non-
11. CALDERON-ZYGMUND THEORY
188
Assuming f o r a moment t h e e x i s t e n c e o f
we s h a l l s e e t h a t l $ ( x , t ) I 5 H ( x , t ) f o r e v e r y ( x , t ) G R , f r o m which t h e c o n v e r folgence $ ( y , t ) + 0 a s ( y , t ) + (x,O) remaining i n s i d e of R , lows i m m e d i a t e l y f o r a l m o s t e v e r y x G E . Now, t o p r o v e t h a t H,
I $ ( x , t ) ( 5 H ( x , t ) f o r e v e r y ( x , t ) G R , we j u s t n e e d t o s e e t h a t , f o r a g i v e n ( x , t ) 6 R , and f o r an a r b i t r a r y E > 0, w e have Ibj(x,t)
I
I H(x,t) +
E
for
b i g enough.
j
If
l / j < h,
call
where B . = I ( x , ~ )G an. : t > 0 1 . J J
we h a v e , f o r j b i g e n o u g h , ( x , t ) G R . a n d J so t h a t l u ( x , t + l / j ) I 5 1 . Also, 1 , and hence I J l j ( x , t ) I 5 2 , and t h i s h o l d s a l s o f o r We know t h a t 2 5 H ( x , t ) f o r ( x , t ) G B . T h u s , by g i v e n E > 0 , we s h a l l have 2 S H ( x , t ) + E f o r e v e r y p r o v i d e d j i s b i g enough. Thus, f o r j b i g enough H(x,t) + E f o r every ( x , t ) c B . . Also, since
Given ( x , t ) G R , ( x , t + l / j ) G ll,
I
I ~ $ ~ ( x , t )6 (x,t) G B j* continuity, (x,t) G B. IQj(x,t)
I
1 5
J
w i t h u n i f o r m c o n v e r g e n c e on c o m p a c t s e t s , i t t u r n s o u t t h a t
I
6 E for ( x , t ) G R and t s m a l l enough. Then, t h e f a c t I$j(x,t) t h a t H 2 0 i m p l i e s I $ j ( x , t ) 6 H ( x , t ) + E. Thus, given E > 0, we know t h a t f o r j b i g e n o u g h a n d f o r t o > 0 small e n o u g h , t h e
I
inequality I q j [ x , t ) 1 5 H ( x , t ) + E h o l d s i n t h e boundary of t h e s e t R t. 0 = I ( x , t ) G R . : t > t o } . But i s a subharmonic funcJ 1 t i o n a n d H + E i s h a r m o n i c . C o n s e q u e n t l y we h a v e I q j ( x , t ) l 6 6 H ( x , t ) + E a l l through Rto and, since t h i s i s v a l i d f o r a l l j s u f f i c i e n t l y small t o > 0 , w e a c t u a l l y h a v e I q j ( x , t ) I 5 H ( x , t ) + E f o r every ( x , t ) c R . . We h a v e s u c c e e d e d i n p r o v i n g w h a t w e w a n t e d : J g i v e n ( x , t ) c Q a n d g i v e n E > 0 , we h a v e l $ j ( x , t J I 5 H ( x , t ) + E f o r b i g enough j . From t h i s w e i m m e d i a t e l y g e t I$(x,t) I 6 H(x,t) f o r e v e r y ( x , t ) G R. I t only remains t o c o n s t r u c t t h e function
H.
Let
X
be t h e charac-
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
t e r i s t i c f u n c t i o n o f t h e complement o f
E,
189
t h a t i s X = XIRn,E.
T h e n , we c l a i m t h a t , f o r a n a p p r o p r i a t e c o n s t a n t
C,
the function
H ( x , t ) = C{(Pt * X ) ( x ) + t } s a t i s f i e s t h e f o u r p r o p e r t i e s r e q u i r e d . In f a c t , a ) , b ) and d) a r e c l e a r and o n l y c ) needs t o be v e r i f i e d . For t h o s e Ch 2 2 .
(x,t)
with
B
6
The p o i n t s
(x,t)
we have
t = h, G
B
with
0 < t < h
s e t { ( x , t ) G Rn++l : d i s t ( x , E ) = N t l , 0 < t h , we h a v e B ( x , N t ) c IRn\ E
T h u s , w e j u s t n e e d t o make H(x,t) 2 2
also
f o r those
H(x,t) 5 2
i f w e make
are included i n the
so t h a t , i f (x,t) and, consequently
6
B
and
C appropriately big t o guarantee t h a t
(x,t)
with
B
6
0 < t < h.
we s e e t h a t , i f a function u(x,t) i s harmonic i n Rn+' and it i s uniformly i n Lp(IRn) f o r some 1 < p < m, then the functions ut(x) = u ( x , t ) i n t h e Lp norm a s converge t o a g i v e n f u n c t i o n f G Lp(Rn) t + 0. B e s i d e s , theorem 4 . 1 2 tells us t h a t there is pointwise c o n v e r g e n c e a l m o s t e v e r y w h e r e , i n s u c h a way t h a t , f o r a l m o s t e v e r y x G R~ is f(x) = l i m u(x,t). By c o m b i n i n g t h e o r e m
4.8
and theorem
4.l(a)
t+O
I n case u ( x , t ) with p = m o r 4.9
i s h a r m o n i c i n IRn" and i s uniformly i n p = 1 , we c a n s t i l l s e e by u s i n g t h e o r e m
and t h e n p a r t
d)
i n theorem
4.1
o r the closing sentence i n
t h i s same t h e o r e m , t h a t t h e f u n c t i o n s f
G
ut o r t o a c e r t a i n Bore1 measure
Lm(IRn)
c o r r e s p o n d i n g weak-* Thus, f o r
u
topology a s
t
harmonic, t h e f a c t t h a t
+
Lp(Rn) 4.8 or
converge t o a c e r t a i n p G M(IRn) in the
0.
u
i s uniformly i n
Lp(IRn)
11. CALDERON-ZYGMUND THEORY
190
with 1 5 p S m implies t h e convergence of t h e family ut a s t + O i n t h e s e n s e o f t e m p e r e d d i s t r i b u t i o n s ( a l l t h e k n o w l e d g e a b o u t temp e r e d d i s t r i b u t i o n s t h a t we s h a l l n e e d i s c o n t a i n e d i n S t e i n - W e i s s [Z], Chapter I , s e c t i o n 3 ) . A l s o , t h e boundary d i s t r i b u t i o n ( f o r p a s t h e c a s e may b e ) u n i q u e l y d e t e r m i n e s u . Now s u p p o s e t h a t u i s s t i l l h a r m o n i c i n IRn++l a n d u i s u n i f o r m l y i n Lp(IRn) but Then t h e o r e m 4 . 7 t e l l s u s t h a t each ut i s a bounded f u n c t i o n , h e n c e a t e m p e r e d d i s t r i b u t i o n . The q u e s t i o n a r i s e s n a t u r a l l y : Does l i m u t e x i s t i n t h e sense of tempered d i s t r i b u t i o n s ? t+O The a n s w e r i s c o n t a i n e d i n t h e f o l l o w i n g : 0 < p < 1.
THEOREM
Let u ( x , t )
4.23.
suppose t h a t
u
IR n tl
be a harmonic f u n c t i o n i n
Lp(IRn)
i s uniformly i n
f o r some
p
and
t
-
0.
l i m u t = f e x i s t s i n t h e s e n s e of t e m p e r e d d i s t r i b u t i o n s , a n d t h i s t+O l i m i t f uniquely determines u.
we assume 0 < p < 1 . F o r ( x , t ) 6 IRn+tl a n d 6 > 0 , we d e f i n e u 6 ( x , t ) = = u ( x , t + & ) . Each u 6 i s h a r m o n i c i n IRn++l. From t h e o r e m 4 . 7 we We c a n u s e t h i s e s t i m a t e t o o b t a i n l u ( x , t ) ) 5 CMt-n'P. know t h a t Proof:
S i n c e we know t h e t h e o r e m t o h o l d f o r
This implies,in particular,that
I t follows t h a t , f o r each
f o r each
6 >O,
u (x,t)
g r a l o f some f i n i t e B o r e 1 m e a s u r e .
6
6 > 0
1 5 p 5
a,
is
w i l l be t h e Poisson i n t e -
A c t u a l l y , s i n c e t h i s measure has
t o b e t h e weak-* l i m i t o f t h e f u n c t i o n s
x n u6(x,t)
as
t
+
0,
we
see t h a t it coincides with t h e i n t e g r a b l e f u n c t i o n u,(x) = u ( x , 6 ) . I f q > 6 > 0 , w e have u ( x ) = u ( x , q ) = u ( x , n - 6 ) = P * u,(x). rl 6 ri-6 T a k i n g F o u r i e r t r a n s f o r m s we g e t :
This allows us t o d e f i n e a function 6 > 0.
j,
$(c)
= ~ ( ~ ) e * n ~ 6c G~ I 6 R " ,,
is a well defined continuous function because t h e r i g h t
11.4. HARMONIC AND SUBHARMONIC FUNCTIONS
hand side does not depend on
we obtain the estimate 1$(5)e-Z'151tl where we have made
N
i
lu(x,t) Idx 2 CMt-n((l'P)-l)= IRn n( (l/p) - 1 ) > 0. Thus 2
=
6 > 0. Now, since for any
191
t > 0,
Ct-N
This estimate implies that $ is a slowly increasing function and, consequently, a tempered distribution. We know (see Stein-Weiss [Z]) that the Fourier transform establishes an isomorphism from the topological vector space S ' , formed by the tempered distributions, onto itself. Therefore, there is a unique f G S' such that $ = f. Now it is easy to see that ut + f in S' as t + 0. We have to see that, for every function @ in the Schwartz class s h
as t
+
0. But, by using the Fourier transform
Observe that u.
f
=
0
forces
u = 0, so that
f
uniquely determines
1_1
It is important to note that the estimate obtained for $ in the above proof involves M, and it implies I
l 2 C(@)M. We shall have to appeal to this estimate in the next chapter, when we shall d e a l w i t h t h e r e a l v a r i a b l e t h e o r y o f Hardy s p a c e s .
11. CALDERON-ZYGMUND THEORY
192
5.
SINGULAR INTEGRAL OPERATORS
A l l t h r o u g h t h i s c h a p t e r we have s e e n t h e a c t i o n o f t h e Calder6n-Zyg-
mund d e c o m p o s i t i o n i n s e v e r a l s i t u a t i o n s . We s h a l l now a p p l y t h i s p o w e r f u l d e v i c e t o t h e p r o b l e m f o r w h i c h i t was o r i g i n a l l y c r e a t e d ( i n A . C a l d e r 6 n a n d A . Zygmund [ l ] ) , n a m e l y , t h e e s t i m a t i o n o f o p e r a t o r s of t h e form Tf(x) = where
P.V.
I R n Q ( y ) lyl-"f(x
-
y)dy
i s homogeneous o f d e g r e e z e r o a n d i t s i n t e g r a l o v e r t h e
Q
I t t u r n s o u t t h a t t h e same m e t h o d w o r k s f o r a unit sphere is n u l l . w i d e r c l a s s o f o p e r a t o r s w h i c h we s h a l l now d e s c r i b e : DEFINITION
Given a tempered d i s t r i b u t i o n
5.1.
K, t h e c o n v o l u t i o n
opera t o r
is c a l l e d a s i n g u l a r i n t e g r a l o p e r a t o r i f t h e f o l l o w i n g t w o c o n d i tions are satisfied:
function
(a)
i
(b)
K
K(x)
f
L"(IR") coincides i n
Eln\
{Ol
with a l o c a l l y integrabZe
s a t i s f y i n g Hbrmander ' s c o n d i t i o n :
The f i r s t c o n d i t i o n g i v e s , by P l a n c h e r e l ' s t h e o r e m , t h e i n e q u a l i t y
and t h e r e f o r e , h
T
e x t e n d s t o a bounded o p e r a t o r i n
L2(IRn)
with
Under t h e a s s u m p t i o n ( a ) o n l y , n o t h i n g more c a n b e norm IIKII,. s a i d a b o u t T , b u t i f we a d d ( b ) , t h e n o t h e r e s t i m a t e s c a n b e p r o v e d , a s we s h a l l s e e b e l o w . Let u s now l o o k a t t h e e f f e c t w h i c h H o r m a n d e r ' s c o n d i t i o n i s d e s i g n d t o produce: I f K G L:oc(IRn \ I O l ) and a ( x ) i s a n i n t e g r a b l e f u n c t i o n s u p p o r t e d i n a cube Q c e n t e r e d a t t h e o r i g i n and w i t h
1 1 . 5 . S I N G U L A R INTEGRAL
193
mean v a l u e z e r o , t h e n t h e c o n v o l u t i o n K * a(x)
= IQK(x =
makes s e n s e f o r Writing
8
=
%
and x 6 Q ,
Q
a.e. x
[K(x 6
y)a(y)dy =
-
y)
-
K(x1)
and i s l o c a l l y i n t e g r a b l e away from
Q
it i s obvious t h a t
QZfi,
and c o n d i t i o n
I
-
5.l(b)
1x1 > 21yl
6
Q
.
i n an a r b i t r a r y c u b e .
If
5.2.
in a c u b e
y
then implies
By t r a n s l a t i o n i n v a r i a n c e , t h e same i s t r u e i f
LEMMA
whenever
Q.
Q
K
a(x)
is supported
T h u s , we have p r o v e d
satisfies
with
S.l(b)
a(y)dy = 0,
&
a
f
L 1 ( R n ) is supported
then (with
'L Q
= QZ f i )
Before proving t h e e s t i m a t e s f o r s i n g u l a r i n t e g r a l o p e r a t o r s , l e t u s l o o k f o r i n t e r e s t i n g e x a m p l e s t o which t h e t h e o r y c a n b e a p p l i e d . More a p p l i c a t i o n s w i l l be g i v e n i n t h e n e x t s e c t i o n . ~EXAMPLES:
( a ) We a r e g o i n g t o d e s c r i b e t h e s i n g u l a r i n t e g r a l o p e r a t o r s d e f i n e d by c o n v o l u t i o n w i t h p r i n c i p a l v a l u e d i s t r i b u t i o n s .
These d i s t r i b u t i o n s K ( @ ) = p.v. where
k G Lioc(Rn growth c o n d i t i o n
K = p.v.k(x)
J
k(x)r$(x)dx = l i m
\ {O))
E+O
J
IXI>E
k ( x ) r$ ( x ) dx
i s a f u n c t i o n t o which we impose t h e
( k ( x ) Idx 5 C 1
(5.3)
a c t i n t h e f o l l o w i n g manner:
(r > 0 )
(which i s n a t u r a l i n view of t h e b a s i c example m e n t i o n e d a t t h e b e g i n n i n g of t h i s s e c t i o n ) . Assuming ( 5 . 3 1 , i t i s easy t o check that
K($)
i s w e l l d e f i n e d f o r a l l Schwartz f u n c t i o n s
r$
and
K
is
11. CALDERON-ZYGMUND THEORY
194
a tempered d i s t r i b u t i o n i f
Indeed, then
if
+
(5.3)
I
and
hold,
(5.4)
with
L
=
p.v.j
Ixl
k(x)dx,
k(x)@(x)dx= !L$(O) + I1 + I2 1x121
where t h e i n t e g r a l s
I,
and
I2
a r e a b s o l u t e l y c o n v e r g e n t , and
moreover
and
A l l these principal value d i s t r i b u t i o n s give r i s e t o singular i n t e -
g r a l o p e r a t o r s provided t h a t Harmander's c o n d i t i o n i s s a t i s f i e d : PROPOSITION
5.5.
and
a n d if
15.41,
Lf
k
f
1
Lloc(Rn\
K = p.v.
k(x),
T f ( x ) = I( * f ( x ) = l i m E*O
J / yI
s a t i s f i e s ( 5 . lib)), ( 5 . 3 1
{Ol)
then >E
k(x
-
y)f(y)dy
(f
G
S(Rn))
i s a singular integral operator. I n o r d e r n o t t o d e l a y t o o much t h e s t u d y o f t h e p r o p e r t i e s o f s i n g u l a r i n t e g r a l o p e r a t o r s , t h e p r o o f s of t h i s and t h e n e x t p r o p o s i t i o n
195
11.5. SINGULAR INTEGRAL OPERATORS
a r e p o s t p o n e d t o t h e end of t h e s e c t i o n . ( b ) L e t u s c o n s i d e r now t h e p a r t i c u l a r c a s e i n which i s homogeneous of d e g r e e - n , i.e.
k(x)
w i t h R homogeneous o f d e g r e e 0 ( w e s h a l l s y s t e m a t i c a l l y u s e t h e notation: x ' = x/lxl). The o p e r a t o r T o b t a i n e d by c o n v o l u t i o n w i t h k w i l l t h e n b e , wherever i t may b e d e f i n e d , d i l a t i o n i n v a r i ant: T(f6) = (TfI6 Now, c o n d i t i o n s
(5.3)
(with and
(5.4)
f 6 (x) = f ( 6 x ) ,
6 > 0)
a r e respectively equivalent t o
and R(x')da(x') = 0 where da d e n o t e s t h e u n i t sphere.
( n - 1 ) - d i m e n s i o n a l Lebesgue measure on t h e
F i n a l l y , some c o n t i n u i t y c o n d i t i o n must b e imposed on R i n o r d e r t o e n s u r e t h a t S . l ( b ) h o l d s . To t h i s e n d , we i n t r o d u c e t h e f o l l o w i n g L 1 -modulus o f c o n t i n u i t y :
PROPOSITION 5 . 6 . S u p p o s e that R i s homogeneous of d e g r e e integrable over t h e u n i t sphere w i t h i n t e g r a l equal t o zero.
L 1-Dini c o n d i t i o n
holds,
then
0 If
the
11. CALDERON-ZYGMUND THEORY
196
is a s i n g u l a r i n t e g r a l o p e r a t o r . M o r e o v e r , i f 52 is o d d , t h e n t h e e x t e n s i o n o f T 2 L2(lRn) i s g i v e n , i n terms o f t h e Fourier tranof o r m , by ( T f I 1 ( 5 ) = i ( S ) m ( S ) , w h e r e
Observe t h a t
m(S) = ( P . v . Q ( x ) l x l - " ) ' ( C )
i s homogeneous o f d e g r e e
z e r o , s o m e t h i n g w h i c h c o u l d h a v e b e e n p r e d i c t e d d u e t o t h e homog e n e i t y o f 52(x) and t h e behaviour o f t h e F o u r i e r t r a n s f o r m w i t h r e s p e c t t o d i l a t i o n s . An e x p l i c i t f o r m u l a f o r m ( S ) when R i s n o t n e c e s s a r i l y odd c a n b e f o u n d i n S t e i n [l] o r S t e i n - W e i s s [Zl. We a l s o p o i n t o u t t h a t t h e L 1 - D i n i c o n d i t i o n i s r a t h e r w e a k ; i n p a r -
XI-^
t i c u l a r , it i s v e r i f i e d i f
IR(x)
-
R(y)
I
2 C
[ X I
-
f o r some
y'Ia
a > 0. c ) I n IR1 , t h e r e i s b a s i c a l l y o n e homogeneous s i n g u l a r i n t e g r a l o p e r a t o r , c o r r e s p o n d i n g t o Q ( t ) = rr1 s i g n ( t ) ( o r k ( t ) = 1
x),
namely
This i s t h e Hilbert transform,
(Hf)-(E)
= -i
sign
which i s a l s o d e f i n e d i n
L2(IR)
by
([)f(E)
In f a c t , t h e formula of Proposition
5.6
g i v e s i n t h i s case
I n IRn , we h a v e a f a m i l y o f a n a l o g u e s o f t h e H i l b e r t t r a n s f o r m c o r r e s p o n d i n g t o R h ( x l ) = c n ( x ' - h ) , where h i s a n y f i x e d v e c t o r i n IRn , a n d t h e n o r m a l i z i n g c o n s t a n t c n i s c h o s e n ( f o r a r e a s o n w h i c h w i l l become c l e a r i n a moment) s o t h a t
f o r e v e r y u n i t v e c t o r u ( a n Advanced C a l c u l u s c o m p u t a t i o n shows t h a t c n = TI - ( n + 1 ) ' 2 r ( y ) ) . S i n c e Qh d e p e n d s l i n e a r l y on h , it s u f f i c e s t o c o n s i d e r t h e o p e r a t o r s corresponding t o t h e v e c t o r s of t h e s t a n d a r d b a s i s : h = e l , e 2 , ..., e n , n a m e l y R.f(x) = 1
P.V.
cn
J+
f ( x -y)dy
Cj = 1 , 2 ,
...,n )
11.5. SINGULAR INTEGRAL OPERATORS
which a r e c a l l e d t h e R i e s z t r a n s f o r m s . The a c t i o n of c i a l l y s i m p l e i n t e r m s of t h e F o u r i e r t r a n s f o r m :
197
R
j
i s spe-
7
(f
T h i s i s a consequence of
(5.6)
G
L'
; j = I , 2,
..., n )
and t h e f o l l o w i n g i d e n t i t y
whose p r o o f i s now, w i t h o u r c h o i c e of c n , a l m o s t t r i v i a l : We can f i x 5 with 151 = 1 , and t h e n , t h e l e f t hand s i d e i s a l i n e a r f u n c t i o n of
h,
say
such t h a t
!L(h),
lL(h)
I
5
lhl
and
L(5)
= 1;
L(h) = E - h .
t.his n e c e s s a r i l y im plies
We c a n now s t a t e t h e main r e s u l t c o n c e r n i n g s i n g u l a r i n t e g r a l o p e r a tors : THEOREM
5. 7 .
Every s i n g u l a r i n t e g r a l o p e r a t o r s a t i s f i e s t h e i n -
equalities
where
~
C
P'
1 2 p 2
d e p e n d s o n l y on
m,
~ & k BK ~ ~of tmh e
p,n
and on t h e c o n s t a n t s
kernel.
Thus, we can c o n s i d e r e v e r y s i n g u l a r i n t e g r a l o p e r a t o r e x t e n d e d a s a bounded o p e r a t o r from
Lp
t o i t s e l f , from
L r = I L m f u n c t i o n s w i t h compact s u p p o r t )
L 1 t o weak-L1 t o BMO.
and from
The p l a n of t h e p r o o f i s a s f o l l o w s : We o b t a i n f i r s t t h e b a s i c e s t i mate ( 5 . 9 ) . I n t e r p o l a t i n g by M a r c i n k i e w i c z ' theorem 2 . 1 1 between t h i s and t h e L 2 -boundedness o f T , the inequalities (5.8) follow f o r 1 < p 5 2 . We t h e n p r o v e a t e c h n i c a l lemma (5.11) which w i l l a l s o be u s e d l a t e r , and from such a r e s u l t , t h e Lm-BMO e s t i m a t e F i n a l l y , we u s e ( 5 . 1 0 ) and t h e i n t e r p o l a t o o b t a i n t h e remaining L P - i n e q u a l i t i e s :
w i l l e a s i l y be d e r i v e d .
t i o n theorem 2 < p
3.7
11. CALDERON-ZYGMUND THEORY
198
Take
f
L1
n
L2
and, given
t > 0,
l e t {Qj} b e t h e c u b e s o f t h e Calder6n-Zygmund d e c o m p o s i t i o n c o r r e s p o n d i n g t o If I a t h e i g h t t . (see 1 . 1 2 ) . T h i s decomposition of t h e underl y i n g s p a c e i n t o c u b e s a l l o w s t o d e f i n e what i s c a l l e d t h e CalderBnZygmund d e c o m p o s i t i o n , f ( x ) = g ( x ) + b ( x ) , of t h e f u n c t i o n f i n t o i t s "good p a r t " g a n d i t s "bad p a r t " b , w h i c h a r e g i v e n a s P r o o f of
(5.9):
G
follows:
IRn\ R with
fi = U Q . 3 1
(observe t h a t
-
b(x) = f ( x ) where
b. J
g(x) =
i s supported i n b.(x) = {f(x) 3
Ifi
I
6 Ct- 1
(XI
\ I f 11 1 )
1 b.(x)
j
Qj
J
a n d h a s mean v a l u e z e r o ; p r e c i s e l y :
- -
To e s t i m a t e Tg we u s e t h e f a c t t h a t T i s bounded i n L' gether with the observation t h a t \g(x) \ = (f(x) \ 5 t f o r a, a n d I g ( x ) I 5 2"t f o r a l l x G R ; t h u s a.e. x
to-
4
N e x t , we o b s e r v e t h a t b j (x)
Lemma
can be a p p l i e d t o each p i e c e
5.2
o f t h e bad p a r t , b e c a u s e
4
Tb. (x) = K * b . (XI f o r a . e . x Qj 3 1 b . by t e s t f u n c t i o n s s u p p o r t e d J
( t h i s c a n b e s e e n by a p p r o x i m a t i n g 2& in Qj). Thus, if Q . = Q . J J QJ
On t h e o t h e r h a n d , s i n c e 2
b
G
L2(IRn)
c o n v e r g e i n t h e L -norm t o b lar, ITb(x)\ 5 L)Tb.(x)) a.e., J J
, t h e series
a n d Tb, and
b. 5.1 respectively.
and
LTb.
J
.J
In p a r t i c u -
11.5. SINGULAR INTEGRAL OPERATORS
199
B e f o r e s t a t i n g t h e a u x i l i a r y lemma, we i n t r o d u c e a v a r i a n t of t h e H a r d y - L i t t l e w o o d maximal o p e r a t o r which w i l l a l s o a p p e a r i n t h e sequel : NOTATION:
LEMMA
For
5.11.
1 5 p <
Let
e x i s t s f o r every
f
E
Cp
L:(Rn)
> 0.
ITf(x)
E-n
with
f
w e denote
m,
i n d e p e n d e n t of
,
M f = M(lflP)l'P,
P
so that the integral
1 < p <
Then, f o r a l l
-
E
i.e.
we h a v e
m,
IEldx 5 C M f(0) + P P
and
f
S i n c e M f i n c r e a s e s a s p i n c r e a s e s , we c a n assume t h a t P and i n t h i s c a s e , we have a l r e a d y p r o v e d t h a t T i s bounded i n L p . Set Proof:
1 < p 5 2,
f
1
= fX
tx:
IXl
'
f2 =
-
1
Then 1Tf(x)
-
IEI 5 ITfl(x)I +
and w e o n l y have t o o b s e r v e t h a t , i f of
P,
[K(x p ' = -2P-1
-
y)
-
K(-y)]f(y)dy(
i s t h e d u a l exponent
11. CALDERON-ZYGMUND
200
The f i n a l s t e p t o e s t a b l i s h of
Proof
p = 2,
with all
An
f
(5.10):
because
G
Theorem
THEORY
is:
5.7
We o n l y n e e d t o u s e t h e p r e v i o u s lemma w i t h ( s a y ) M2f (0) 6 ( I f and
(Im
d e p e n d i n g o n l y on t h e d i m e n s i o n of t h e s p a c e .
,
Lr(IRn) (Tf)
#
Thus, f o r
we o b t a i n
(0) 5 A n ( C 2 + B K I
Ilfllm
and s i n c e e v e r y t h i n g i s t r a n s l a t i o n i n v a r i a n t , we a l s o have
which i s ( 5 . 1 0 ) . I f one w i s h e s t o g e t t h e same i n e q u a l i t y f o r a l l (even though t h i s i s a r a t h e r i r r e l e v a n t q u e s t i o n ) , f E L 2 fl La j u s t d e f i n e f . = fX I x : s o t h a t T f = l i m T f . ( i n L 2 ) and J j+a J
~
Il~fllBMo6 l i m
~
SUP
l
<
~
I l ~ f j l I B M o2
~
cIlfllm *
The e s t i m a t e s of Theorem 5 . 7 seem s p e c i a l l y s a t i s f a c t o r y i n L p w i t h 1 < p < m . I t i s n o t t r u e , however, t h a t s i n g u l a r i n t e g r a l o p e r a t o r s map L 1 ( o r L”) t o i t s e l f , and t h i s i s what makes t h e s u b s t i t u t e r e s u l t s (5.9) and ( 5 . 1 0 ) i n t e r e s t i n g . We c a n e a s i l y s e e t h i s i n t h e c a s e of t h e H i l b e r t t r a n s f o r m a p p l i e d t o t h e f u n c tion f = 6 L~ n L”:
xLalbI
I t is clear that also follows t h a t
Hf Hf
4 L”, 4
and s i n c e (but
L1
Hf
Hf(x) 6
Q
-,b-a
(weak-Ll)fl
1x1
+
m,
it
BMO).
I n o r d e r t o g e t a b e t t e r u n d e r s t a n d i n g of t h e b e h a v i o u r of o u r o p e r a t o r s i n L 1 and L m , we p o s e o u r s e l v e s two q u e s t i o n s : (Ql) Are t h e r e f u n c t i o n s f G L 1 f o r which we c a n a s s e r t
that
Tf
G
L1
f o r a l l s i n g u l a r i n t e g r a l o p e r a t o r s T?
11.5. SINGULAR INTEGRAL OPERATORS
(4.2)
201
T i s a s i n g u l a r i n t e g r a l o p e r a t o r , i s i t poss i b l e t o d e f i n e " i n a n a t u r a l way" Tf f o r a l l f G L m , s o t h a t T : Lm + BMO?.
If
Looking f o r an answer t o t h e f i r s t q u e s t i o n , we i m m e d i a t e l y f i n d a n e c e s s a r y c o n d i t i o n : I f f G L 1 i s s u c h t h a t R . f G L 1 f o r some J we must h a v e Riesz transform R . 1'
and s i n c e t h e l e f t hand s i d e i s c o n t i n u o u s , s o must be t h e r i g h t g ( 0 ) = I f = 0.
hand s i d e , which f o r c e s :
T h i s s u g g e s t s t h e p o s s i b i l i t y of u s i n g we a l s o assume t h a t
Lemma
i s supported i n a cube
f
5.2, Q.
provided t h a t In f a c t
and t h u s , a u n i f o r m e s t i m a t e w i l l be o b t a i n e d , f o r i n s t a n c e , i f llfll,
5
Let 1.
IQI
u s c o l l e c t t h e c o n d i t i o n s imposed s o f a r and g i v e
a name t o t h e f u n c t i o n s s a t i s f y i n g them: DEFINITION
cube
Q
5.12.
'
i s a bounded f u n c t i o n supported i n a Ilallm 5 l a ( x ) d x = 0.
An a t o m ( * )
and such t h a t
IQI
Now, what t h e p r e c e d i n g r e m a r k s p r o v e i s t h a t
f o r e v e r y atom C
a(x)
d e p e n d i n g o n l y on
k e r n e l of
and every s i n g u l a r i n t e g r a l o p e r a t o r n
a n d on t h e c o n s t a n t s
BK
and
I)iII
T,
with of t h e
T.
One may a r g u e t h a t
(5.13)
i s n o t a good a n s w e r t o
(Ql)
due t o
t h e v e r y s p e c i a l c o n d i t i o n s imposed t o a ( x ) . A t r i v i a l ( b u t n e v e r t h e l e s s i n t e r e s t i n g ) e x t e n s i o n c o n s i s t s i n d e f i n i n g t h e Banach (*)
This w i l l be c a l l e d a
(1,m)-atom i n
C h a p t e r 111.
11. CALDERON-ZYGMUND THEORY
202
1 H,~(IR~I
space
f f o r some
(atomic iff
6
(Aj)
G
II'
The s e r i e s I f = 0 f o r 5e v' jearj y
H
1
I as f o l l o w s :
f(x) =
and atoms
1j A J.
a.(x> J
a j (x)
,
and
converges i n L 1 , so t h a t f G H a1 t . Now, we have
H a1t
COROLLARY 5 . 1 4 : Every s i n g u l a r i n t e g r a l o p e r a t o r H a1 t ( l R n ) boundedly i n t o L1(IRn) ,
G.
c L1,
and c l e a r l y
T
More i n s i g h t i n t o HAt w i l l b e g a i n e d i n C h a p t e r 1 1 1 . For t h e time b e i n g , l e t u s merely observe t h a t a Schwartz f u n c t i o n f 1 b e l o n g s t o Hat i f and o n l y i f I f = 0 . Turning t o
(QZ),
l e t us f i r s t observe t h a t i t i s n o t a t r i v i a l
q u e s t i o n . I n f a c t , t h e p r o o f of Theorem 5 . 7 shows t h a t we c a n a c t u a l l y d e f i n e T : Lp fl L m + BMO f o r a r b i t r a r y p my but s i n c e Lp fl Lm i s n o t d e n s e i n L m , t h i s d o e s n o t a l l o w t o e x t e n d T by c o n t i n u i t y t o a l l bounded f u n c t i o n s . F o l l o w i n g t h e argument i n t h e proof of (5.10), one would b e t e m p t e d t o d e f i n e Tf = l i m T ( f X B j ) , where B . = I x : 1x1 2 j } . Such a l i m i t , however, may n o t e x i s t i n 1
But, any r e a s o n a b l e s e n s e ( s e e t h e example below P r o p o s i t i o n 5 . 1 5 ) . s i n c e w e want t o c o n s i d e r Tf and T(fXBj) a s e l e m e n t s of BMO, we may t r y t o add a c o n s t a n t t o e a c h t e r m T(fXBj) s o a s t o make t h e c o r r e c t e d sequence converge. PROPOSITION
nel
K,
5.15.
f o r each
This, w e can achieve:
G i v e n a s i n g u l a r i n t e g r a l opera-
f s Lm
a.e.,
with ker-
L1 and a l s o p o i n t satisfies
The s e q u e n c e t o t h e r i g h t c o n v e r g e s l o c a l l y i n wise
T
we d e f i n e
and t h e e x t e n d e d o p e r a g
T
11.5. SINGULAR INTEGRAL OPERATORS
is t h e same c o n s t a n t of
Cm
where
Observe t h a t , i f
f E L,:
203
(5.10).
t h e o l d and new d e f i n i t i o n s of
Tf(x)
d i f f e r only i n a constant: I l y l > , K ( - y ) f ( y ) d y ; thus they agree a s e l e m e n t s of BMO. I n g e n e r a l , i f f E L m , we d e n o t e by Tf t h e c l a s s i n BMO r e p r e s e n t e d by t h e f u n c t i o n d e f i n e d by ( 5 . 1 6 ) . In t h i s way, we e x t e n d t h e o p e r a t o r T : L: T : Lm + BMO w i t h t h e same norm.
.+
t o an o p e r a t o r
BMO
L e t u s d e n o t e by
g . ( x ) t h e j - t h term of t h e J (5.16). Given a compact s e t F , s e q u e n c e i n t h e r i g h t hand s i d e of l e t R b e t h e f i r s t n a t u r a l number s u c h t h a t R 2 2 s u p l x l . Then, XGF f o r a l l x E F and j > II: Proof
of
(5.15):
The i n t e g r a l t o t h e r i g h t i s u n i f o r m l y bounded (when
x E F)
[Im,
by
and c o n v e r g e s when j * m t o t h e same i n t e g r a l e x t e n d e d BKIIf over a l l ( y I > R. Thus, g j ( x ) c o n v e r g e s p o i n t w i s e a n d i n L 1 ( F ) . A s a c o n s e q u e n c e , we h a v e IITflIBMOI l i m s u p j+co
where we have u s e d f e r in a constant.
I
and t h e f a c t t h a t
u
(5.101
gj
and
T(fXB.) 3
dif-
The n e c e s s i t y o f s u b s t r a c t i n g t h e c o n s t a n t t e r m s i n ( 5 . 1 6 ) can be s e e n i n t h e f o l l o w i n g i n s t r u c t i v e example: Compute t h e H i l b e r t transform of have
f(x) = sign(x).
1 g.(x) = 7 {log 1
and l e t t i n g
=
$
j *
m
1-1X -X J
l o g 1x1 ?
Since
-
we f i n d :
1
log
fXB. = 3
rr2
I
+
2
-
Xc-j,ol,
we
=
+ -
X
2 .2 l o g Ix -1
Hf ( x ) =
X[o,ji
log j
l o g 1x1.
Our n e x t o b j e c t i v e i s t o g i v e more p r e c i s e e s t i m a t e s f o r some s i n g u -
11. CALDERON-ZYGMUND THEORY
204
l a r i n t e g r a l o p e r a t o r s f o r w h i c h more r e g u l a r i t y o f t h e k e r n e l i s assumed . DEFINITION
A singular integral operator
5.17.
Tf = K * f
c a l l e d r e g u l a r i f i t s k e r n e l s a t i s f i e s t h e f o l l o w i n g two c o n d i t i o n s :
Observe t h a t
(5.19)
t r i v i a l l y i m p l i e s Hbrmander's c o n d i t i o n
Ix~-~-'
I
S.l(b),
IVK(x) 6 C o n s t . and it i s a u t o m a t i c a l l y v e r i f i e d i f away f r o m t h e o r i g i n . F o r homogeneous o p e r a t o r s a s t h o s e d e s c r i b e d i n Proposition 5.6, a s u f f i c i e n t condition t o be a regular singular integral operator is:
R c C ' (IR" \ { o I ) .
The g r o w t h l i m i t a t i o n
(5.18)
enables us t o define the truncated
operators
d i r e c t l y f o r L p f u n c t i o n s f ( x ) , 1 5 p < m, a n d o n e n a t u r a l l y w i s h e s t o h a v e a more e x p l i c i t d e f i n i t i o n o f Tf a s a l i m i t o f T E f . T h u s , we a r e i n t e r e s t e d i n u n i f o r m e s t i m a t e s f o r ( T E ) E , O , a n d we a r e g o i n g t o s e e t h a t w e c a n a c t u a l l y e s t i m a t e t h e maximal
If
T
THEOREM
5.20.
f c Lp,
1 S p <
(i)
# (Tf) (x) 5 C M f ( x ) 9 9
(ii)
T*f(x) 5 C M f ( x )
m
9
-
i s a regular singular integral operator and
then the following inequalities are v e r i f i e d :
9 4
t
( 1 < 9) CM(Tf)(x)
( 1 < 9)
By t r a n s l a t i o n i n v a r i a n c e , we o n l y n e e d t o p r o v e t h e p o i n t wise e s t i m a t e s ( i ) a n d ( i i ) a t x = 0 . The b a s i c p o i n t i s t h a t Proof:
we c a n u s e Lemma
5.11
( w h i c h h o l d s now f o r e v e r y
f
G
Lp,
since
11.5. SINGULAR INTEGRAL OPERATORS
205
was o n l y imposed t o e n s u r e t h e e x i s t e n c e o f t h e a s s u m p t i o n f 6 L: w i t h a n i m p r o v e d e s t i m a t e f o r t h e l a s t term, n a m e l y IE)
Since
Mf 2 M f 9
which i m p l i e s IE = TEf(0),
f o r every
we o b t a i n
q > 1,
( i ) ( a t x = 0 ) . On t h e o t h e r h a n d , w e o b s e r v e t h a t and it a l s o follows t h a t
a n d t a k i n g t h e supremum o v e r a l l
E
> 0 ,we g e t
(ii).
which i s a consequence of t h e s t r o n g e r L e t u s now p r o v e ( 5 . 2 1 ) , In f a c t , r e g u l a r i t y p r o v i d e d by ( 5 . 1 9 ) . m
r
(
5
5
Finally,
(iii)
is a t r i v i a l consequence of
(ii) and t h e
Lp
i n e q u a l i t i e s f o r t h e o p e r a t o r s M and T , and t h e proof of (iv) i s p o s t p o n e d t o C h a p t e r V , where i t w i l l a p p e a r i n a n a t u r a l context.
0
COROLLARY
(5.4)
,
5.22.
(5.18)
Tf = ( p . v . k ( x ) ) * f 5.5)
satisfies
Let k
L~oc(IRn\.03) be a f u n c t i o n s a t i s f y i n p (5.19). Then, the singular integral operator G
( w h o s e e x i s t e n c e i s g u a r a n t e e d by P r o p o s i t i o n
11. CALDERON-ZYGMUND THEORY
206
F o r a l l f G S(IRn) , we know t h a t l i m T , f ( x ) = T f ( x ) a t e v e r y x G IR". S i n c e S(IRn) i s d e n s e inE+' L P ( R n ) , t h e r e s u l t f o l l o w s f r o m 5 . 2 0 ( i i i ) a n d ( i v ) by a s t a n d a r d t e c h n i q u e a l r e a d y
Proof:
used t o d e r i v e t h e d i f f e r e n t i a t i o n theorem f o r t h e H a r d y - L i t t l e w o o d maximal o p e r a t o r .
1.9
from t h e e s t i m a t e s
To c o n c l u d e t h i s s e c t i o n , we remember t h a t t h e r e s u l t s n e e d e d t o e s t a b l i s h some e x a m p l e s of s i n g u l a r i n t e g r a l o p e r a t o r s were s t a t e d w i t h o u t p r o o f s . Here we p r o v i d e t h e p r o o f s :
K = p.v.k(x).
We must o n l y show t h a t 1? G L m ( l R n ) Let u s d e f i n e t h e t r u n c a t e d k e r n e l s
Since
R kE = K
P r o o f of
15.51:
lim
E+O, R+m
,
w he re
( i n t h e s e n s e of t e m p e r e d d i s t r i b u t i o n s ) ,
i t s u f f i c e s t o p r o v e t h a t t h e F o u r i e r t r a n s f o r m s of { k:lo < < a r e u n i f o r m l y bounded. We b e g i n by o b s e r v i n g t h a t H o r m a n d e r ' s condition t r a n s f e r s t o the truncated kernels i n the following sense:
and t h e r e f o r e ,
Now, we f i x
5
G
IRn
a n d decompose
11.5. SINGULAR INTEGRAL OPERATORS
by t h e p r e c e d i n g o b s e r v a t i o n .
On t h e o t h e r h a n d ,
( t h i s t y p e of i n e q u a l i t y i s a c t u a l l y e q u i v a l e n t t o
Proof of show t h a t
(5.6):
(5.3)
IxI-~
implies
(5.3))
The f i r s t a s s e r t i o n w i l l f o l l o w f r o m
k(x) = Q(x)
it does, because
207
and thus
(5.5)
s a t i s f i e s Hormander's c o n d i t i o n .
if we But
11. CALDERON-ZYGMUND THEORY
208
m(6)
F o r t h e s e c o n d a s s e r t i o n , we h a v e t o p r o v e t h a t
ier transform of
K = p.v.(R(x)
[XI-").
Since
k
i s t h e Four-
i s odd,
The i n n e r i n t e g r a l i s a l w a y s b o u n d e d i n a b s o l u t e v a l u e by
i t s l i m i t when E + 0 , desired expression f o r
R
+
m,
is
7I Ts .i g n ( x ' . ~ ) .
n,
and
This gives the
m(S).
MULTIPLIERS
6.
I n t h e p r e c e d i n g s e c t i o n we o b t a i n e d
Lp
i n e q u a l i t i e s f o r convolu-
t i o n o p e r a t o r s whose k e r n e l s a r e n o t i n t e g r a b l e . k
G
L1(IRn)
,
then
Tf = k * f
Of c o u r s e , i f is also a singular integral operator,
since
(Bk
denoting t h e c o n s t a n t i n Hormander's condition
t h i s c a s e , Young's i n e q u a l i t y g i v e s
1 6 p 6
m,
and theorem
Lp
S.l(b)).
In
estimates for a l l
namely
5.7
seems t o be o f no
i n t e r e s t here.
T h e r e i s , how-
e v e r , o n e p o i n t i n t h a t t h e o r e m w h i c h ma ke s i t u s e f u l e v e n f o r t h i s simple s i t u a t i o n , and it i s t h e f a c t t h a t , f o r a f i x e d 1 < p <
11c11,
m,
and
p
with
t h e e s t i m a t e of I l k * f l l p d e p e n d s o n l y on t h e c o n s t a n t s Bk, w h i c h may b e c o n s i d e r a b l y s m a l l e r t h a n IIklIl.
To p u t i t i n a more p r e c i s e f o r m : I f w e a r e g i v e n a f a m i l y o f k N 6 L 1 , a n d we w s h t o o b t a i n u n i f o r m e s t i m a t e s f o r
kernels
Ilp
IlkN*f by means o f Young s i n e q u a l i t y , we a r e f o r c e d t o i m p o s e the strong condition s u p I k N I I l < m . H ow e ve r, t h e o r e m 5 . 7 h a s N
11.6. MULTIPLIERS
209
t h e f o l l o w i n g c o n s e q u e n c e w h i c h w i l l b e u s e d f o r o u r main r e s u l t b e low:
Let
6.1.
LEMMA
(kd
be a sequence o f k e r n e l s i n
suppose t h a t t h e r e e x i s t s
C > 0
lkN(x-y)
b)
-
kN(x) ldx S C
&
L1(IRn), N = 1,2,
such t h a t , f o r a l l
(y
...
IR")
f
.. .
Then, T f = kN*f, N = 1 , 2 , , are uniformly bounded operators from N Lp t o i t s e l f ( 1 < p < a ) , from L 1 t o w e a k - L 1 a n d f r o m Lm to
BMO
.
This suggests a d i f f e r e n t (though equivalent) approach t o s i n g u l a r i n t e g r a l o p e r a t o r s d e f i n e d by p r i n c i p a l v a l u e d i s t r i b u t i o n s . Indeed, under t h e hypothesis of Proposition 5.5, the kernels k = N s a t i s f y ( a ) a n d ( b ) of t h e p r e c e d i n g lemma. = k X ~ xI :/ N S ~ S N I Therefore IIkN
with limit
C
*
flip
' CplIfllp
independent of
P
Tf
=
(f
N = 1,2
,..., (in
l i m kN * f
6
LP; 1 < p <
and f o r a l l
f
G
w)
Lp,
the
LP-norm)
N+W
exists (because it obviously e x i s t s f o r Schwartz f u n c t i o n s ) d e f i n i n g 1 < p < w, and which c e r an o p e r a t o r T which i s bounded i n L p , t a i n l y a g r e e s w i t h t h e u n i q u e bounded e x t e n s i o n t o Lp of t h e ft+ (P.v. k(x))*f, i n i t i a l l y d e f i n e d i n convolution operator: S(IR").
T h i s i s n o t , h o w e v e r , o u r r e a s o n f o r s t a t i n g lemma 6 . 1 . h e r e . We aim a t a d i f f e r e n t a p p l i c a t i o n o f t h e Calder6n-Zygmund method w h i c h gives sufficient conditions f o r Fourier multipliers in DEFINITION
6.2.
Let
1 5 p <
a.
Given
i s a ( F o u r i e r ) m u l t i p l i e r f o r Lp by t h e r e l a t i o n d e f i n e d i n L2(IRn)
m
m
f
Lm(IRn)
if t h e o p e r a t o r
Lp.
, we s a y t h a t Tm,
initiaZZy
11. CALDERON-ZYGMUND THEORY
210
satisfies the inequality
(f E L2
llTmflIp 5 C l l f l l P Tm
In t h i s ease,
n
LP)
Lp
h a s a u n i q u e bounded e x t e n s i o n t o
w h i c h we
Tm.
s t i l l denote by
Some g e n e r a l f a c t s a b o u t m u l t i p l i e r s a r e c o n t a i n e d i n 7 . 1 5 a n d a t t h e
m
By P l a n c h e r e l ' s t h e o r e m , e v e r y
end of t h i s s e c t i o n .
6
Lm
is a
L 2 , a n d t h e n o r m o f T~ a s a n o p e r a t o r i n L' is The f a c t t h a t t h e R i e s z t r a n s f o r m s a r e b o u n d e d Lp, c a n b e r e s t a t e d by s a y i n g t h a t m j ( t ) = [ . / I F 1
multiplier for e q u a l t o Ilrnll,. operators in (1 = 1 , 2
,...,n )
are multipliers for
Lp
if
1 < p <
-.
1
The Horman
d e r - M i h l i n m u l t i p l i e r t h e o r e m p r o v i d e s a g e n e r a l i z a t i o n of t h i s :
If
Let
6.3.
THEOREM
n 7 .
m
G
{R-"
(6.4)
+ 1
be t h e f i r s t i n t e g e r g r e a t e r than
ca ~outside the
o r i g i n and s a t i s f i e s
Ill< I x I < 2 R
for every multi-index
LP, 1
p l i e r for
[y]
a =
L - ( R ~ ) is of c l a s s
< p
c1
-.
such t h a t
10.1
5 a,
then
m
is _a m ti- ~ _u l _
F o r many a p p l i c a t i o n s , o n e m e r e l y v e r i f i e s t h e c o n d i t i o n
which i s s t r o n g e r t h a n
m([) (with
When
of c l a s s
Ca
b E IR)
b = 0
,
(6.4).
6 - n f ($1
.
ib
i.e.
(which i s t h e most i n t e r e s t i n g c a s e ) ,
is dilation invariant, i.e., =
T h i s i s s a t i s f i e d by e v e r y f u n c t i o n
o u t s i d e t h e o r i g i n a n d hom oge ne ous o f d e g r e e
'Tm(fg) = ( T m f ) 6 ,
the operator
where
f6(x)
=
We w i s h t o p r o v e t h e t h e o r e m by r e d u c i n g i t t o a n a p p l i c a t i o n O K
Lemma
6.1.
Two s t a n d a r d t e c h n i q u e s a r e n e e d e d f o r t h i s r e d u c t i o n .
m
11.6. MULTIPLIERS
211
The f i r s t o n e i s t h e smooth c u t t i n g o f t h e m u l t i p l i e r i n t o d y a d i c p i e c e s , which i s b a s e d on t h e f o l l o w i n g LEMMA
T h e r e i s a non n e g a t i v e f u n c t i o n
6.5.
15
i n the spherical shell
Take
Proof:
@ 6
@(El
such t h a t
Cm
> 0
:
4 < 151 < 2 1
supported i n when
1 6
J2
$
supported
such t h a t
4 < 151 < 2 ,
151 S J Z .
c"(Rn)
6
non n e g a t i v e a n d
Then,
i s a Cm f u n c t i o n s t r i c t l y p o s i t i v e a t e v e r y 5 f 0 a n d s u c h t h a t 00(25) = O o ( < ) . Thus, $ ( 5 ) = @ ( 5 ) / @ o ( 5 ) s a t i s f i e s t h e r e q u i r e d
0
conditions.
The s e c o n d p r e v i o u s r e s u l t i s a n e x p l i c i t f o r m u l a t i o n o f t h e w e l l known f a c t t h a t t h e r e g u l a r i t y o f t h e m u l t i p l i e r i s t r a n s l a t e d i n t o c o n t r o l of t h e s i z e of t h e k e r n e l : LEMMA
Let
6.6.
(so that
s
a = 21. I-f
6
n + 1 + 1 , and l e t s b e s u c h t h a t a = s 2 k 6 L2(Rn) i s such t h a t i s of c l a s s C a ,
];[
then, -
Proof:
Since
Ixla 6 C(lxl
la+ ...
+Ixnla),
i s (-2niy a Da^ .k(t) 1 1 Hausdorff-Young's i n e q u a l i t y t o g e t t r a n s f o r m of
xak(x)
(with
and s i n c e t h e F o u r i e r
D . = 9/85.), 1 1
we u s e
We c a n now p r o c e e d t o p r o v e t h e m u l t i p l i e r t h e o r e m .
Proof of function
6.3: $
of
W e u s e t h e p a r t i t i o n o f t h e u n i t y d e f i n e d by t h e 6.5
i n o r d e r t o decompose t h e m u l t i p l i e r a s
11. CALDERON-ZYGMUND THEORY
212
s u p p ( m j ) c 1 5 : Z j - ’ < l c l < Z j + l } , and t h a t we c a n c o n t r o l t h e s i z e o f t h e d e r i v a t v e s o f m. a s f o l l o w s : J
Observe t h a t
llDa m j / I s
(6.7)
6 C Zj(-I’
I n d e e d , by t h e L e i b n i t z r u l e o f d i f f e r e n t i a t i o n , i f
and i t i s now t h a t t h e h y p o t h e s i s
(6.4)
la1 5 a
is used, together with
Holder’s inequality, t o obtain
from which
(6.7)
follows.
Now
o u r p l a n i s t o a p p l y lemma = k . ( x ) , with -N 3
$
k.(x) = i . ( - x ) = 3 J Since
Llc.(S)
J
J
=
Im(S)
I
t o the kernels
6.1
kN ( x ) =
m j (SIdS B
Lm(Rn)
,
we o n l y have t o p r o v e
I f we a r e a b l e t o d o s o , t h e o p e r a t o r s
TNf ( x ) w i l l be u n i f o r m l y bounded i n
( N = 1, 2,
Lp,
1 < p <
m,
and s i n c e
1;. J
=
...) m.
1’
11.6. MULTIPLIERS
TN
i s t h e o p e r a t o r d e f i n e d by t h e m u l t i p l i e r N m (5) =
N
1
j=-N
which c o n v e r g e s t o TNf
213
Tmf
+
(in
l i m inf N - t m
L2)
N
I
m. ( 5 ) = m ( 6 )
j=-N
J
m(5)
when
N
f o r every
IT N f ( x )
-
+
w.
f
f
L
I
=
0
Tmf(x)
2
$(2-j~)
,
By P l a n c h e r e l ' s t h e o r e m , and i n p a r t i c u l a r a.e.
Then, F a t o u ' s lemma g i v e s , f o r e v e r y
f
Thus, m a t t e r s a r e reduced t o p r o v i n g
(6.8).
G
L 2 fl L p
For a f i x e d
y c IR",
we s h a l l s e p a r a t e t h e sum i n t o two p a r t s : W
Ik.(x-y) I
J=-
-
k.(x)\dx= 1
1
jGI
+
1
jcII
I = { j : Z1lyl 2 1 ) and I 1 = { j : 2 J 1 y l < 1 ) . For t h e t e r m s i n t h e f i r s t sum, w e u s e t h e t r i v i a l m a j o r i z a t i o n
where
(x-y)
which i s b a s e d on
-
k . ( x ) Idx 5 3
and
(6.6)
(6.7)
(with
Therefore
For t h e terms corresponding t o k . (x J
-
y) 2.
-
k . (x) 3
j
G
must p l a y a r o l e .
k.(x) = k.(x-y) I 3
-
11,
s
such t h a t
a-fls
1 2
= -).
t h e c a n c e l l a t i o n of
Define
kj(x)
Our t a s k c o n s i s t s now i n o b t a i n i n g a n e s t i m a t e f o r t h e d e r i v a t i v e s 2. of m . which i s good e n o u g h , namely 1
11. CALDERON-ZYGMUND THEORY
214
j ( 1 - a +n/s) sup \\Da%.\\ 5 C ) y \ 2 la =a I S
(6.9)
(l5s52; 2’1y)
I
5
To p r o v e t h i s , we f i r s t o b s e r v e t h a t , f o r a l l
I Dl ( e - 2 n i y .
5 -1)
( t h i s i s o b v i o u s when
cly12J(1-l~l)
y = 0
because
IDy(e-2niY‘S 1
we h a v e
IyI > 0
I
I
=
‘L
G
supp(m.)
1
(j
Iy.[I
5 2j”
f
Iy
I ( 2 . r r ~ ) ~2 I Clyl’).
11)
I,
a n d when By t h e L e i b -
nitz rule sup
lal=a
ID
c42’
m.(c) 1
1
5
c IY
and i n s e r t i n g t h e e s t i m a es b t a i n e d i n ( 6 . 7 ) f o r D’m. we h a v e 3’ proved ( 6 . 9 ) . Now, we a r e i n p o s i t i o n t o i n v o k e a g a i n ( 6 . 6 ) , which g i v e s
and t h e r e f o r e ,
Under t h e h y p o t h e s i s o f type
(l,l),
6.3,
the operator
Tm
i s a l s o o f weak
and s a t i s f i e s
I t i s n a t u r a l t o a s k whether t h e l a s t i n e q u a l i t y c a n be improved t o o b t a i n t h e same k i n d o f e s t i m a t e t h a t r e g u l a r s i n g u l a r i n t e g r a l o p e r a t o r s s a t i s f y (see
5.20(i)).
We s h a l l now p r o v e , w i t h a l m o s t
n o a d d i t i o n a l e f f o r t , a more p r e c i s e f o r m o f h i g h e r smoothness of t h e m u l t i p l i e r of t h e o p e r a t o r
Tm.
6.3
w h i c h shows how
implies higher regularity
III
In p a r t i c u l a r , the operators described in the
l a s t theorem always s a t i s f y : ( T m f ) # 5 C M Z f , and t h e y behave e x a c t l y a s r e g u l a r s i n g u l a r i n t e g r a l o p e r a t o r s i f we a s s u m e t h e d e c a y ( 6 . 4 ) f o r a l l t h e d e r i v a t i v e s of o r d e r 5 n
THEOREM
6.10.
__ Let
a
&an
of
m(t).
i n t e g e r such t h a t
n < a 5 n,
arid
__
11.6. MULTIPLIERS
m(S)
suppose that the multiplier
la1 2 a .
Then, for e v e r y
q >
n
--,
215
satisfies the operator
(6.4)
Tm
f o r all satisfies
We u s e t h e same n o t a t i o n a s i n t h e p r o o f o f 6 . 3 . f i c e s t o o b t a i n t h e p o i n t w i s e estimate f o r e v e r y o p e r a t o r
Proof:
N T f ( x ) = kN * f ( x ) =
N
1
j=-N
I t suf-
k. * f(x) J
(with C independent of N) and t h i s w i l l b e a n e a s y consequence 9 of t h e c r u c i a l i n e q u a l i t y f o r t h e k e r n e l s kN:
where denote (6.11)
E >
0
w i l l b e f i x e d below.
t . = 2 J Iy
1 that
1,
In fact, given
and f o r an a r b i t r a r y
f,
y E IR",
we
it follows from
$ 7
j=1
5
cly
m
1 t ;-E - n / q t n 'q3M
j=1
9
f ( 0 ) 5 C'Mqf(0)
This i s a s u b s t i t u t e , f o r our p r e s e n t problem of t h e i n e q u a l i t y (5.21),
a n d t h e r e s t of t h e p r o o f i s a s i n t h e o r e m
5.2O(i).
Now, i n o r d e r t o e s t a b l i s h ( 6 . 1 1 1 , g i v e n q , we t a k e s 5 2 s u c h n s c q . We c a n a l s o a s s u m e t h a t E = a - < 1 , and . t h i s that S i s o u r c h o i c e of E . The v a r i a n t o f lemma 6 . 6 w h i c h w e n e e d h e r e is as follows: I f k G L2 ( I R n ) and i(5) i s of c l a s s C a , then
11. CALDERON-ZYGMUND THEORY
216
The p r o o f i s e n t i r e l y s i m i l a r , b u t H o l d e r ' s i n e q u a l i t y i s a p p l i e d i n
t o order
\Ir
ll-l\ql
5 11. 1 1 - ( I s l , w i t h -r = -s - -q ' remain t o h o l d f o r t h e d e r i v a t i v e s of m
t h e form: and (6.9)
a,
if
t 2
IyI
, we
j
have
T h e r e f o r e , t h e l e f t hand s i d e of
Since (6.7) 'L and m . up 1
(6.11)
i s m a j o r i z e d by
ii
and t h e proof is ended.
To c o n c l u d e t h i s s e c t i o n ,we l i s t some e l e m e n t a r y p r o p e r t i e s o f multipliers:
1 < p <
is a muZtipZier f o r
Lp
if and
only if it is a multiplier f o r L p ' , and t h e norms of o p e r a t o x L p and on L p ' are identical.
Tm
as an
Let
(6.22).
m
m.
T h i s f o l l o w s from t h e i d e n t i t y jTmf(xl (f
6
L2
n
Lp,
n i t i o n of
Tm
g(x) dx
1
-_.
f ( x ) T m g ( x ) dx
w h i c h i s o b t a i n e d by u s i n g t h e d e f i g f L2 n L p ' ) , and P l a n c h e r e l ' s theorem.
m
(6.13).
If
then
is a multiplier=
m
=
The c o n d i t i o n on
is a muZtiplier for
q
Lp,
and if
I-1
~ 9 .
means t h a t , e i t h e r
p 6 q 5 p'
9
-
or
- 11
6
2
I-1
P
- - 11
2
p' 5 q S p.
The r e s u l t i s a c o n s e q u e n c e o f t h e p r e c e d i n g s t a t e m e n t a n d
11.6. MULTIPLIERS
217
Marcinkiewicz' i n t e r p o l a t i o n theorem,
2 , l l . . I f one u s e s i n s t e a d t h e (see 7 . 5 b e l o w ) , i t f o l l o w s t h a t i s n o t g r e a t e r t h a n t h e norm i n L p . In
Riesz-Thorin i n t e r p o l a t i o n theorem t h e norm o f
Tm
in
particular, taking
Lq
q = 2,
we a l w a y s h a v e
The m u l t i p l i e r s f o r
(6.14).
Lp
Ilmll,.
IITmllp,p 2
Lm(Rn)
f o r m a s u b a l g e b r a of
w h i c h i s i n v a r i a n t u n d e r t r a n s l a t i o n s , r o t a t i o n s and d i l a t i o n s .
f = T
( T f ) . The ml m2 i n v a r i a n c e p r o p e r t i e s f o l l o w from t h e b e h a v i o u r of t h e F o u r i e r t r a n s form w i t h r e s p e c t t o a f f i n e t r a n s f o r m a t i o n s : A(x) = h + L ( x )
The f i r s t a s s e r t i o n i s o b v i o u s , b e c a u s e
(L l i n e a r ) ,
(with
"v
L = (L*)-').
(6.15).
all 1 -
which i s very simple
c
The f o l l o w i n g f u n c t i o n s a r e m u l t i p l i e r s f o r p c m:
m.(S) = s i g n ( S . 1 3 J
where
P
,
j = l,Z,
i s a (bounded o r unbounded) polyhedron i n
LP(IRn)
for
...,n IRn
, h., F
i s t h e i n t e r s e c t i o n of a f i n i t e number of h a l f - s p a c e s
In f a c t , the multiplier
m, c o r r e s p o n d s t o t h e H i l b e r t t r a n s f o r m a c t i n g on t h e f i r s t v a r i a b l e : Tm f ( x 1 , x 2 , 1
... '
xn ) = i H ( f ( . , x 2 ,
which i s bounded i n L p ( I R n ) , 1 < p and F u b i n i ' s t h e o r e m . S i m i l a r l y f o r
m,
m. 1'
..., x n ) ) ( x l ) by t h e b o u n d e d n e s s of 2 5 j 5 n.
H
C o n c e r n i n g XF, i t s u f f i c e s t o p r o v e t h e r e s u l t f o r t h e c h a r a c t e r i s t i c f u n c i t o n of a h a l f - s p a c e (because t h e product of m u l t i p l i e r s is a g a i n a m u l t i p l i e r ) , a n d by t r a n s l a t i o n and d i l a t i o n i n v a r i a n c e , we
11. CALDERON-ZYGMUND THEORY
218
o n l y have t o prove it f o r
s = s eo
1
But
7.
7.1
Xs
1
= z(l
= { c ~ I R ": t , = ~ * e ~ s 0 1
+ ml)
.
NOTES AND FURTHER RESULTS
.-
The d e f i n i t i o n o f t h e maximal f u n c t i o n i n
IR"
i s i n Wie-
n e r [l]. I t i s t h e n - d i m e n s i o n a l a n a l o g u e of t h e maximal f u n c t i o n d e f i n e d by Hardy a n d L i t t l e w o o d [l] f o r f u n c t i o n s i n t h e t o r u s T . The c l a s s L l o g L was i n t r o d u c e d by Zygmund t o g i v e a s u f f i c i e n t c o n d i t i o n f o r t h e l o c a l i n t e g r a b i l i t y of i s a c t u a l l y necessary (theorem 2.7) 7.2.-
Mf.
That t h i s condition
was o b s e r v e d by S t e i n [4].
T h e r e a r e many v a r i a n t s o f t h e maximal f u n c t i o n i n
IR".
It
i s e q u i v a l e n t , f o r i n s t a n c e , t o consider b a l l s i n s t e a d of cubes. More g e n e r a l l y , g i v e n a f a m i l y o f s e t s F w h i c h c o v e r s IRn i n t h e
belongs t o s e t s " n a r r o w s e n s e " ( i . e . , e v e r y x c IRn a r b i t r a r i l y small d i a m e t e r ) , we can d e f i n e MFf(x) =
F c P
of
SUP
I f every set
F E F c a n b e p a c k e d w i t h i n two c u b e s : Q1 c F c Q 2 C = fixed constant, i n s u c h a way t h a t d i a m (Q,) S C d i a m ( Q 2 ) , t h e n MF a n d M a r e e q u i v a l e n t , i n t h e s e n s e t h a t C-"Mf(x)
5 M,f(x)
5 CnMf(x)
This i s not the case f o r the family
i?
o f a l l bounded n - d i m e n s i o n a l
MRf i s c a l l e d t h e i n t e r v a l s : R = [ a l , b l ] x [aZ,b2] x . . . x [an,bI,]. s t r o n g m a x i m a l function a n d c o n t r o l s t h e d i f f e r e n t i a t i o n w i t h r e s p e c t t o a r b i t r a r y i n t e r v a l s i n IRn , a s w e l l a s t h e u n r e s t r i c t e d s u m m a b i l i t y o f m u l t i p l e F o u r i e r s e r i e s ( s e e Zygmund [I], Chap. X V I I ) . I t was f i r s t s t u d i e d by J e s s e n , M a r c i n k i e w i c z a n d Zygmund [l], who proved t h a t M i s a bounded o p e r a t o r irom Lp(IRn) t o i t s e l f , K 1 < p < -, f r o m L ( 1 o g L ) " t o L' a n d f r o m L ( l o g L ) " - ' t o weak L 1 . A s a c o r o l l a r y of t h e l a s t r e s u l t :
11.7.
1i m XER diam (R)+O f o r every
IRI I R
NOTES AND FURTHER RESULTS
f(y)dy = f(x)
219
a.e.
w h i c h i s l o c a l l y i n L(1og L ) ~ - ' ( R ~ )The . estimates f o r
f
M R a r e b a s e d o n i t s m a j o r i z a t i o n by t h e n - f o l d a p p l i c a t i o n o f o n e d i m e n s i o n a l m a xi mal f u n c t i o n s ( s e e s e c t i o n I V . 6 ) . The b o u n d s o b t a i n e d i n t h i s c h a p t e r f o r t h e m a xim a l f u n c t i o n
7.3.-
in
Lp(IRn)
large
n
, for a fixed [with
a > 1).
operator over centered b a l l s i n M(")f(x)
B
(with
=
=
sup
O
are of t h e o r d e r of an f o r M[n) d e n o t e s t h e m a xim a l
p > 1,
Ho wev er , i f
IBlrn
rB
,
IRn
namely
If ( x + y ) Idy
I x E IRn : 1x1 < 1 1 1 ,
then, the following inequalities
hold
with Stein
independent of
C
$1, [a].
n.
T h i s s t r i k i n g r e s u l t is due t o
A s a n a p p l i c a t i o n , o n e c a n o b t a i n p o i n t w i s e summa-
b i l i t y o f F o u r i e r s e r i e s o f i n f i n i t e l y many v a r i a b l e s . We m e n t i o n two o p e n q u e s t i o n s i n t h i s d i r e c t i o n (Ql)
I s t h e r e a weak t y p e a n a l o g u e o f
(Q2)
I s ( * ) t r u e i f we r e p l a c e t r i c , o p e n s e t i n IR"?
Concerning
(Ql),
B
for
(*)
p = l?
by a c o n v e x , c e n t r a l l y symme-
a weak t y p e e s t i m a t e w i t h a f a c t o r
o b t a i n e d by S t e i n a n d S t r o m b e r g [l].
As for
(Q2),
n
h a s been
B o u r g a i n [3]
h a s r e c e n t l y g i v e n a n a f f i r m a t i v e a n s w e r f o r p 2 2 when n B = { x E IR : IIxII 5 1 1 , b e i n g a n u n c o n d i t i o n a l norm : T h i s i n c l u d e s t h e maxi= ( x , , x2,. ,xn) ( 2x, , 2 x 2 , . ,+ x n )
11
..
11
1 1 . 11 11
..
11.
mal f u n c t i o n o v e r c e n t e r e d c u b e s .
7.4.-
C a l d e r h a n d Zygmund [l].
i n t r o d u c e d t h e d e c o m p o s i t i o n which
b e a r s t h e i r name i n o r d e r t o s t u d y t h e e x i s t e n c e a n d b o u n d e d n e s s o f singular integrals.
The a p p r o a c h f o l l o w e d h e r e t o d e r i v e t h e e s t i -
mates f o r t h e max i mal f u n c t i o n f r o m s u c h a d e c o m p o s i t i o n i s a l s o
11. CALDERON-ZYGMUND THEORY
220
s u g g e s t e d i n t h e same p a p e r . The more u s u a l a p p r o a c h t o s u c h e s t i mates i s v i a c o v e r i n g lemmas, a p a r t i c u l a r example of which i s B e s i c o v i t c h C o v e r i n g Lemma:
each
*en
A c IR”,
a set
suppose t h a t f o r
Q(x) c e n t e r e d & x . Then, f r o m t h e , f a m i Z y { Q ( x )l x G A i t i s p o s s i b l e t o s e l e c t a s u b f a m i l y of c u b e s { Q j } which s t i l l c o v e r A and such t h a t i x Q j ( x ) 5 4 n ( i . e . , no more t h a n 4” c u b e s Q j c a n o v e r l a p ) . x
G
A
we h a v e a c u b e
For t h i s , s i m i l a r r e s u l t s and t h e i r a p p l i c a t i o n t o e s t i m a t e s of maximal f u n c t i o n s , we r e f e r t o t h e monographs b y d e G u z m h [l], The B e s i c o v i t c h lemma c a n b e u s e d S t e i n [lJ, S t e i n a n d Weiss [2]. t o g i v e an improved v e r s i o n of theorems
2.4
and
2.6:
“Let p a r e g u l a r p o s i t i v e B o r e 1 m e a s u r e i n EXn, and l e t b e t h e m a x i m a l o p e r a t o r d e f i n e s in s e c t i o n I , b u t w i t h c e n t e r e d
cubes
only.
Then
G,,
bounded i n
Lp(p)
a n d of weak t y p e
(l,l)I!
Observe t h a t no d o u b l i n g c o n d i t i o n i s imposed. For t h e (non-cent e r e d ) o p e r a t o r M p , t h e r e s u l t i s s t i l l t r u e i n R1 , b u t f a l s e in
IR”
for
n > 1
( S j o g r e n [I]).
C o v e r i n g lemmas f o r f a m i l i e s F s u c h a s t h o s e c o n s i d e r e d i n 7 . 2 a r e s o m e t i m e s much h a r d e r t o o b t a i n . One s u c h lemma f o r t h e f a m i l y R h a s b e e n o b t a i n e d by A . CBrdoba a n d R . F e f f e r m a n yielding a d i f f e r e n t ( g e o m e t r i c ) p r o o f o f t h e Jessen-Marcinkiewicz-Zygmund t h e @ rem.
131,
7.5.-
The M a r c i n k i e w i c z i n t e r p o l a t i o n t h e o r e m
(2.11)
can be
s t a t e d more g e n e r a l l y f o r o p e r a t o r s o f weak t y p e ( p o , q o ) and ( p l , q l ) w i t h po 5 q o , p 1 2 4,. A companion o f t h i s i n t e r p o l a t i o n t h e o r e m whose p r o o f ( b a s e d on t h e maximum m o d u l u s p r i n c i p l e f o r a n a l y t i c functions) is completely d i f f e r e n t i n s p i r i t , is: Riesz-Thorin -(p,,qo) and
tMPe
Theorem:
(Po,q0)9
a n d we h a v e
(pl,ql),
wherv
If T -
with
i s a l i n e a r o p e r a t o r of s t r o n g t y p e s
1 ,< p i , q i
5
a,
then
T
i s of s t r o n g
NOTES AND FURTHER RESULTS
11.7.
221
The M a r c i n k i e w i c z a n d R i e s z - T h o r i n t h e o r e m s a r e t h e p r o t o t y p e s o f t h e r e a l and complex methods of i n t e r p o l a t i o n , r e s p e c t i v e l y .
These
a r e d e s c r i b e d i n B e r g h a n d L o f s t r o m [l]. Thorin theorem due t o S t e i n with t h e exponents
If TZ a r e l i n e a r o p e r a t o r s depending 0 5 Re(z) 5 1 , the hypothesis
p,q:
z,
a n a l y t i c a l l y on
An e x t e n s i o n o f t h e R i e s z allows t h e o p e r a t o r T t o change
[S]
provided t h a t
7:;
a m o d e r a t e g r o a t h when
-t
and
Ml(t)
have
An a p p l i c a t i o n o f t h i s t h e o r e m w i l l
m.
be i n d i c a t e d i n C h a p t e r V , 5.19
Mo(t)
and
7.7.
Further generalizations
h a v e b e e n o b t a i n e d by C o i f m a n , C w i c k e l , R o c h b e r g , S a g h e r a n d Weiss
C1I -
The i n e q u a l i t y
7.6.-
i s d u e t o C . F e f f e r m a n a n d S t e i n El].
(2.13)
The i d e a o f r e l a t i n g i n e q u a l i t i e s o f t h i s t y p e w i t h C a r l e s o n measu r e s i s t a k e n f r o m t h e same p a p e r . The s p a c e
BMO
was i n t r o d u c e d i n J o h n a n d N i r e m b e r g [l],
p r o v e d t h e t h e o r e m b e a r i n g t h e i r name, S t e i n [Z] equivalence BMO
(theorems
7.7.-
lip
3.6
The c o n d i t i o n
Zygmund
C. Fefferman and
(3.8).
d e f i n e d t h e s h a r p maximal f u n c t i o n
IIMf
c11,
%
llf#llp and
where t h e y
f#
and obtained t h e
Lp
and t h e i n t e r p o l a t i o n between
and
3.7).
S.l(b)
was a l r e a d y i m p l i c i t i n C a l d e r B n a n d
b u t i t was Hormander
[l]
who f i r s t f o r m u l a t e d i t e x p l i -
c i t l y i n t h i s form and p o i n t e d o u t t h a t o t h e r o p e r a t o r s a p a r t from t h e homogeneous s i n g u l a r i n t e g r a l s c o u l d b e d e a l t w i t h b y t h e same method. 6.3,
He u s e d i t , i n p a r t i c u l a r , t o p r o v e t h e m u l t i p l i e r t h e o r e m
.
i m p r o v i n g a p r e v i o u s r e s u l t o f M i h l i n [l]
One o f t h e e a r l y
r e a s o n s t o d e v e l o p t h e t h e o r y o f s i n g u l a r i n t e g r a l s was i t s a p p l i c a b i l i t y t o problems i n l i n e a r p a r t i a l d i f f e r e n t i a l equations.
Just
t o show t h i s c o n n e c t i o n , we w r i t e a s i m p l e consequence o f theorem 6 . 3 :
Let
P(D)
of degree
b e a n e l l i p t i c c o n s t a n t c o e f f i c i e n t o p e r a t o r homogeneous k.
IIDaflIp<
Then, t h e a p r i o r i i n e q u a l i t i e s
CP 11 P ( D ) f l / p
(la1
=
k, 1 < p <
m)
11. CALDERON-ZYGMUND THEORY
222
hold f o r every =
T (P(D)f) m
f
Ck
E
w i t h compact s u p p o r t ( o b s e r v e t h a t
with the multiplier
m(E,) = E,'/P(t)
DQf =
satisfying
(6.4l)).
The t h e o r y o f s i n g u l a r i n t e g r a l o p e r a t o r s h a s b e e n g e n e r a l i z e d a l o n g many d i f f e r e n t l i n e s . five notes.
o r i n p r o d u c t domains) 7.8.-
by
J u s t a few of them a r e d e s c r i b e d i n t h e n e x t
Others (singular i n t e g r a l s f o r vector valued functions w i l l be considered i n Chapters
One c a n c o n s i d e r " n o n - i s o t r o p i c " A x H 6(x) = 6 x
,
dilations in
V
and
,
IRn
IV.
defined
6 > 0
i s a p o s i t i v e - d e f i n i t e n x n m a t r i x (When A = i d e n t i t y , we g e t t h e u s u a l " i s o t r o p i c " dilations). If d = t r a c e (A) is where
A
t h e homogeneous d i m e n s i o n o f
IRn with respect t o these d i l a t i o n s , then t h e analogue of Proposition 5.6 is true f o r kernels k(x) S e e d e Guzman w i t h t h e r i g h t homogeneity: k(6(x)) = 6-dk(x).
p],
Chapter 1 1 , and t h e r e f e r e n c e s c i t e d t h e r e . T h i s n o t i o n o f d i l a t i o n c a n b e c a r r i e d o v e r t o t h e more g e n e r a l s e t t i n g o f l o c a l l y c o m p a c t g r o u p s ( R i v i e r e Cl]).
These i d e a s have been
s p e c i a l l y f r u i t f u l when a p p l i e d t o some n i l p o t e n t Lie g r o u p s ( l i k e t h e Heisenberg group) i n c o n n e c t i o n w i t h s o l v a b i l i t y and r e g u l a r i t y p r o p e r t i e s of n o n - e l l i p t i c p a r t i a l d i f f e r e n t i a l o p e r a t o r s ( s e e F o l l a n d a n d S t e i n [l]). The H i l b e r t t r a n s f o r m a l o n g a f i x e d d i r e c t i o n 7.9.IuI = 1 , i s d e f i n e d a s f o l l o w s f
f
u
G
IR" ,
.
L2(lRn)
T h i s i s t h e s i m p l e s t e x a m p l e o f a s i n g u l a r i n t e g r a l whose k e r n e l i s supported in a submanifold of
the line
IRn :
Itu : t
G
R1.
In
t h i s c a s e , t h e r o t a t i o n i n v a r i a n c e and F u b i n i ' s theorem immediately
HU i s b o u n d ed i n L p ( I R n ) a n d o f weak t y p e ( 1 , l ) . A e x t e n s i o n c o n s i s t s i n r e p l a c i n g t h e l i n e by a c u r v e l i k e
prove t h a t non-trivial y(t)
=
$1,
ta2
,...)t a n )
The H i l b e r t t r a n s f o r m a l o n g
y
, is
tsIR
1 1 . 7 . NOTES AND FURTHER RESULTS
I t i s known t h a t i n e q u a l i t y for
1 < p < m, IIHyfllp 5 CplIflIp, p = 1 i s s t i l l an open q u e s t i o n .
a n d W a i n g e r Cl]
b u t t h e weak t y p e We r e f e r t o S t e i n
f o r t h i s and r e l a t e d r e s u l t s .
The f a c t t h a t
7.10.-
223
IIHUflIp 6 C p I l f l l p
s u g g e s t s t h a t t h e same
i n e q u a l i t y w i l l b e t r u e f o r any "convex combination'! o f d i r e c t i o n a l Hilbert transforms:
HUf ( x ) R ( u ) d o ( u )
Tnf(x) = lul=l bith
R
L
G
1
When
i s odd, i n t e g r a t i o n i n p o l a r coordi-
R
n a t e s shows t h a t
which a r e t h e o p e r a t o r s c o n s i d e r e d i n P r o p o s i t i o n l a r i t y b e i n g now a s s u m e d o n
R.
Thus, f o r
R
5.6,
no regu-
odd
C = Norm i n L p ( R ) of t h e H i l b e r t transform. T h i s simple P a n d e l e g a n t m e t h o d , c a l l e d t h e m e t h o d of r o t a t i o n s , i s a l s o d u e t o
with
[z],
C a l d e r 6 n a n d Zygmund
r e s u l t is obtained f o r
i t s m a j o r d r a w b a c k b e i n g t h a t n o weak t y p e
.
p = 1
w o r k s p r o v i d e d t h a t we a s s u m e I f we a p p l y
IIRjlll
independent of P following:
C
for a l l
n
G
N
When R i s n o t o d d , t h e m e t h o d s t i l l G L log L(Cn-l).
t o the Riesz transforms
(*)
turns out t h a t
R
and
n.
=
1,
and t h e r e f o r e ,
R . j = 1 , 2 ,...,n , it 7' I I R j f l / P 5 Cpllfllp with
T h i s h a s been improved by S t e i n
1 < p <
m.
[8]
t o the
F o r a p r o o f o f t h i s r e s u l t b a s e d on
t h e method o f r o t a t i o n s , see Duoandikoetxea and Rubio d e F r a n c i a 7.11.-
[l].
The C a l der 6 n - Z y g mu n d m e t h o d c a n a l s o b e a p p l i e d t o o p e r a t o r s
which a r e n o t t r a n s l a t i o n i n v a r i a n t . C o if m a n a n d Weiss [l]
A g e n e r a l s e t t i n g p r o v i d e d by
is the following:
11. CALDERON-ZYGMUND THEORY
224
We c o n s i d e r
a s p a c e of h o m o g e n e o u s t y p e X , w h i c h means t h a t X i s endowed w i t h a p s e u d o - m e t r i c p and a "doubling" measure dm(x), and we t r y t o s t u d y o p e r a t o r s o f t h e form
lx
Tf(x) =
K(x,y)f(y)dm(y)
Now, H o r m a n d e r ' s c o n d i t i o n s p l i t s i n t o two p a r t s :
I
(HI
P(x,Yo)>kP(Y ,Yo)
f o r some f i x e d
k, C > 0
is the condition i)
LP,
IK(x,y)
-
and f o r a l l
y,yo
for the kernel:
(H)
K(x,yJIdm(x) G
X,
11
i i ) IITf
)I2 2
2 < p <
Cllf m,
)I2
plus and from
( H I )
Lm
to
and
imply t h a t BMO.
which
(HI)
K'(x,y) = K(y,x).
llTf ( 1 6 C I I f p l u s (H) imply t h a t 1 < p < 2 , a n d o f weak t y p e ( 1 , l )
Lp,
5 C
Then
i s bounded i n
T T
i s bounded i n
Examples o f o p e r a t o r s i n c l u d e d i n t h i s g e n e r a l framework a r e t h o s e considered i n
7.8
a n d s i n g u l a r i n t e g r a l s i n some c o m p a c t g r o u p s o r
i n homogeneous s p a c e s u n d e r t h e a c t i o n o f s u c h g r o u p s , l i k e t h e u n i t sphere
of
IR",
t h e u n i t b a l l Bn
of
En,
etc.
When X = IRn , t h e c o n d i t i o n s a n a l o g o u s t o t h o s e o f r e g u l a r s i n g u l a r i n t e g r a l o p e r a t o r s (see 5.17) are
(it i s obvious t h a t
i m p l i e s (H) a n d ( H I ) ) . Operators bounded i n L 2 ( I R n ) a n d d e f i n e d b y a k e r n e l s a t i s f y i n g (CZ.l) and ( C Z . 2 ) are sometimes c a l l e d Calderdn-Zygmund operators. See C o i f man a n d Meyer
(CZ.2)
111, J o u r n 6
[l].
is not a convolution operator, the Fourier transf o r m i s no l o n g e r a n e f f e c t i v e t o o l f o r p r o v i n g L 2 - b o u n d e d n e s s , a n d t h i s i s u s u a l l y t h e d i f f i c u l t p a r t when a n a l y s i n g w h e t h e r T i s a Calder6n-Zygmund o p e r a t o r . A n i c e necessary and s u f f i c i e n t condit i o n h a s b e e n f o u n d by D a v i d a n d Journt? El]. For o p e r a t o r s w i t h 7.12.-
When
T
225
1 1 . 7 . NOTES AND FURTHER RESULTS
antisymmetric kernels, t h i s c r i t e r i o n takes t h e following s p e c i a l l y s i m p l e form:
-
If
Theorem":
T
i s g i v e n by a kerneZ s a t i s f y i n g
K(x,y) = - K ( y , x ) , T ( 1 ) E BMO.
(CZ.2) and onZy i f
then
T
is b o u n d e d i n
A s a n a p p l i c a t i o n , we c o n s i d e r t h e commutator of o r d e r
(CZ.l),
if
L2(rd)
k:
where A i s a L i p s c h i t z f u n c t i o n , i . e . A ' G Lm ( s u c h c o m m u t a t o r s a p p e a r n a t u r a l l y when t r y i n g t o c o n s t r u c t a n a l g e b r a o f p s e u d o Now, s i n c e To i s d i f f e r e n t i a l o p e r a t o r s , see A.P. C a l d e r 6 n [4]). t h e 'IT1 t h e o r e m " p l u s t h e H i l b e r t transform and Tk(l) = T k - l ( A ' ) , induction gives
This i s t h e theorem of
A.P. C a l d e r B n [3],
which c a n a l s o b e formu-
l a t e d i n terms o f a n o t h e r i m p o r t a n t o p e r a t o r : along a Lipschitz curve
where
11,
z(t)
=
< 1,
r
The Cauchy i n t e g r a l
i n t h e complex p l a n e , d e f i n e d by
t + iA(t) i s t h e p a r a m e t r i z a t i o n o f r . Now, i f we c a n e x p a n d t h e i n t e g r a n d i n t o a g e o m e t r i c s e r i e s
and, w r i t i n g
The e s t i m a t e s
E
= 1/C,
(*)
(*)
is equivalent t o
have been improved by Coifman, McIntosh a n d
a l l o w i n g t o remove t h e r e s t r i c t i o n llA'\I, < E i n ( * * ) . Meyer [l], We r e f e r t o Y.hleyer T h i s h a s a l s o b e e n o b t a i n e d by D a v i d [l]. [Z. f o r a n e x c e l l e n t e x p o s i t i o n o f t h e s e a n d r e l a t e d r e s u l t s .
D],
7.13.-
Lemma
4.6
i s d u e t o H a r d y a n d L i t t l e w o o d , b u t we h a v e p r e -
11. CALDERON-ZYGMUND THEORY
226
The a r g u m e n t u s e d s e n t e d h e r e t h e p r o o f o f F e f f e r m a n a n d S t e i n [2]. t o p r o v e 4 . 1 4 comes f r o m C a l d e r d n a n d Zygmund [l]. By u s i n g S t e i n ' s s p h e r i c a l m e a n s , which w e s h a l l d i s c u s s i n C h a p t e r V , 7 . 7 , t h i s r e s u l t c a n b e p a r t i a l l y i m p r o v e d : F o r J, r a d i a l a n d i n t e g r a b l e i n Rn , t h e o p e r a t o r f ( x ) t - + ; y g l $ t * f ( x ) i s b o u n d e d i n Lp(IRn) , p > L A d i f f e r e n t r e s u l t f o r approximations of t h e i d e n t i t y i s n-1' Zo's theorem (see s e c t i o n V . 4 ) .
1
i s d u e t o A.P. C a l d e r d n [l] who s u c c e e d e d i n 7 . 1 4 . - Theorem 4 . 2 1 e x t e n d i n g t o h a r m o n i c f u n c t i o n s i n IRn++' a p r e v i o u s theorem of P r i v a l o v [I] v a l i d f o r h a r m o n i c f u n c t i o n s i n t h e u n i t d i s k D . Pri-
v a l o v ' s t h e o r e m was p r o v e d o r i g i n a l l y v i a c o n f o r m a l m a p p i n g . We s h a l l g i v e a n o u t l i n e o f t h i s p r o o f b e l o w . The method i s n o l o n g e r a v a i l a b l e i n h i g h e r d i m e n s i o n s . T h i s i s w h a t makes C a l d e r 6 n ' s c o n t r i b u t i o n a b a s i c one. In o r d e r t o given a n account of P r i v a l o v ' s p r o o f , l e t as assume, w i t h o u t l o s s of g e n e r a l i t y , t h a t u i s a harmonic f u n c t i o n i n D such t h a t f o r e v e r y t f o r which ei t 6 E ,
a s u b s e t of T = boundary of D w i t h I E l > 0 , (u(z)I is bounded by a f i x e d number n on t h e S t o l z domain r a ( t ) , where c1 is also fixed. (The S t o l z d o m a i n s a r e d e f i n e d i n p a g e 1 0 9 ) . We may a l s o a s s u m e t h a t E i s c o m p a c t . We c o n s i d e r t h e s e t U = U T a ( t ) where e i t r a n g e s o v e r E . Then U i s a n open s e t bounded by a r e c t i f i a b l e Jordan curve.
We know t h a t
I
lu(z)
2 n
on
U.
Now t h e
U and look a t t h e idea is t o use a conformal equivalence $ : D f u n c t i o n u ( $ ( z ) ) w h i c h i s h o l o m o r p h i c a n d bounded i n D . We c a n -+
a p p l y F a t o u ' s theorem t o c o n c l u d e t h a t u ( $ ( z ) ) c o n v e r g e s nont a n g e n t i a l l y a t a l m o s t e v e r y p o i n t i n t h e b o u n d a r y o f D . We know (corollary 4.7 i n c h a p t e r I ) t h a t , e x c e p t f o r t h e p o i n t s where t h e boundary of
U
h a s n o t a n g e n t , which f o r m a s e t o f a r c l e n g t h
t h e c o n f o r m a l mapping r e m a i n s c o n f o r m a l a t t h e b o u n d a r y p o i n t s . We a l s o know ( s e e a f t e r c o r o l l a r y 3 . 1 3 i n c h a p t e r I ) t h a t t h e 0,
homeomorphism i n d u c e d b e t w e e n t h e b o u n d a r i e s o f
sets of length
0
t o s e t s of Lebesgue measure
U 0.
and
D
carries
T h u s , we h a v e
t h a t f o r almost every t and f o r every 6 , $ ( r g ( t ) i s a r e g i o n non-tangential a t $(eit) w i t h r e s p e c t t o U, a n d we f i n a l l y g e t t h e e x i s t e n c e of n o n - t a n g e n t i a l limits f o r u a t a most e v e r y p o i n t o f E , w h i c h i s p a r t o f t h e b o u n d a r y of U. Note t h a t i n E a r c l e n g t h c o i n c i d e s w i t h Lebesgue measure. The method works e v e n f o r a f u n c t i o n meromorphic i n D . a f t e r u n i f o r m i z i n g t h e s i t u a t i o n , so t h a t w e c a n assume
Indeed, c1 and n
1 1 . 7 . NOTES AND FURTHER RESULTS
227
I
f i x e d , we r e a l i z e t h a t t h e f a c t t h a t lu(z) I n f o r each z s ra(t) it with e G E, i m p l i e s t h a t t h e s i n g u l a r i t i e s of u i n U a r e a l l i n s i d e a d i s k D(o,r) with r < 1 and, consequently, t h e r e is o n l y a f i n i t e number of them. M u l t i p l y i n g by a n a p p r o p r i a t e p o l y n o m i a l , we g e t a h o l o m o r p h i c f u n c t i o n on U, t i a l b o u n d a r y v a l u e s e x i s t a t a . e . p o i n t of
f o r which n o n - t a n g e n E. Obviously, t h e
same t h i n g h a p p e n s f o r t h e o r i g i n a l f u n c t i o n
u.
Note t h a t t h e same t e c h n i q u e o f c h a n g i n g t h e domain c o n f o r m a l l y , c a n b e u s e d t o p r o v e t h e f o l l o w i n g t h e o r e m , a l s o due t o P r i v a l o v [l]: u(z)
If a f u n c t i o n
meromorphic i n
T
a t e a c h p o i n t of a s u b s e t of identically
D
has non-tangential
limit
of p o s i t i v e m e a s u r e , t h e n
0
u
D.
0
By u s i n g t h e two m e n t i o n e d t h e o r e m s , o n e c a n e a s i l y o b t a i n t h e f o l lowing result, due t o Plessmer
Let u(z)
111 ( s e e
b e an a n a l y t i c f u n c t i o n i n
p o i n t s of L e b e s g u e m e a s u r e
0,
a l s o Zygmund D.
to
eit
o r e l s e , t h e image
u(r,(t))
XIV).
Then, e x c e p t f o r a s e t of
a t every point
e i t h e r the function has a f i n i t e l i m i t a s
c ] , Chap.
z
e it
of t h e b o u n d a r y ,
tends non-tangentially
i s dense i n t h e plane f o r
a.
every
A c t u a l l y A . P . CalderBn [l] e x t e n d s P r i v a l o v ' s theorem t o p l u r i h a r monic f u n c t i o n s i n a C a r t e s i a n p r o d u c t o f e u c l i d e a n h a l f - s p a c e s and o b t a i n s non-tangential convergence a t a . e . p o i n t of t h e d i s t i n guished boundary.
By u s i n g t h i s r e s u l t , h e i s a b l e t o e x t e n d
P l e s s n e r ' s t h e o r e m t o a n a l y t i c f u n c t i o n s o f s e v e r a l complex v a r i a b l e s . T h e r e i s a c o n v e n i e n t way t o r e f l e c t a n a l y t i c a l l y t h e f a c t t h a t a harmonic f u n c t i o n u h a s n o n - t a n g e n t i a l l i m i t s a t a . e . p o i n t of a s u b s e t E of t h e boundary w i t h IEl > 0. This i s achieved through the area f u n c t i o n
For
u
harmonic i n
I f we j u s t f i x
A(u) D,
i n t r o d u c e d by
Lusin.
we d e f i n e
a, we c a n s i m p l y w r i t e
r(t)
and
A(u)(t).
11. CALDERON-ZYGMUND THEORY
228
F = u + iv
Observe t h a t i f
is analytic i n
D,
then
is the t h e J a c o b i a n o f t h e mapping F . T h u s , we s e e t h a t A , ( u ) ( t ) a r e a ( p o i n t s c o u n t e d a c c o r d i n g t o t h e i r m u l t i p l i c i t y ) of F ( T , ( t ) ) . T h i s e x p l a i n s t h e name " a r e a f u n c t i o n " . The f o l l o w i n g r e s u l t h o l d s :
Let u
D with a.e. x
f o r a.e.
D and l e t E b e a s u b s e t o f t h e boundary o f [ E l > 0. Then, f o r u t o have a non-tangential l i m i t a t E, i t i s n e c e s s a r y and s u f f i c i e n t t h a t A(u)(x) i s f i n i t e
b e harmonic i n 6
x
6
E.
The n e c e s s i t y was p r o v e d by M a r c i n k i e w i c z a n d Zygmund [2] s u f f i c i e n c y by S p e n c e r [IJ
.
Note t h a t i f
is analytic in
F = u + iV
by t h e Cauchy-Riemann e q u a t i o n s . u
has a non-tangential
v
same i s t r u e f o r
For a f u n c t i o n
A(u)
l i m i t f o r a.e.
then:
=
A(v)
point of
a n d we g e t : E,
then the
and c o n v e r s e l y .
u(x,t)
harmonic i n t h e upper h a l f - s p a c e
(generalized) area function
A.P. C a l d e r B n [7]
Thus
D
and t h e
A(u)
Rn+'
,
the
is defined a s follows:
e x t e n d e d t h e t h e o r e m o f M a r c i n k i e w i c a a n d Zygmund
t o t h i s higher dimensional s e t t i n g and t h e extension of Spencer's The g e n e r a l i z e d a r e a f u n c r e s u l t was c a r r i e d o u t by E.M. S t e i n t i o n was p r e v i o u s l y c o n s i d e r e d i n c o n n e c t i o n w i t h o t h e r r e l a t e d
@I.
11.7.
o p e r a t o r s i n E.M. S t e i n In s e c t i o n
N O T E S AND FURTHER R E S U L T S
GO].
of c h a p t e r
8
229
I11
we s h a l l i n d i c a t e some r e s u l t s on t h e
a r e a f u n c t i o n which a r e c o n n e c t e d w i t h t h e t h e o r y of Hardy s p a c e s . L 2 , the Fourier multipliers f o r Lp a r e c o m p l e t e l y c h a r a c t e r i z e d o n l y when p = 1 : t h e c l a s s of L’ m u l t i p l i e r s c o i n c i d e s w i t h t h e F o u r i e r - S t i e l t j e s t r a n s f o r m s of f i n i t e Bore1 measures i n lRn. Sufficient conditions f o r m(S) to be an Lp m u l t i p l i e r f o r a l l 1 < p < = a r e g i v e n by t h e HBrmander7.15.-
A p a r t from t h e t r i v i a l c a s e of
M i h l i n theorem, 6 . 3 , a n d by a n o t h e r c l a s s i c a l r e s u l t : t h e Marcink i e w i c z m u l t i p l i e r theorem, whose 1 - d i m e n s i o n a l v e r s i o n w i l l be There i s an e x t e n s i v e l i t e r a t u r e c o n proved i n c h a p t e r V , 5 . 1 3 . c e r n i n g more s p e c i f i c m u l t i p l i e r s f o r d i f f e r e n t r a n g e s of p ’ s . We s h a l l b r i e f l y d i s c u s s h e r e t h o s e o n e s r e l a t e d t o s u m m a b i l i t y of Fourier series o r i n t e g r a l s . Given
a 20,
f o r every f t h e r a n g e of
i s it t r u e t h a t
G
Lp(Rn) ? The q u e s t i o n i s e q u i v a l e n t t o t h e s t u d y of p ’ s corresponding t o t h e Bochner-Riesz multipliers:
Our p r e s e n t knowledge a b o u t t h i s c h a l l e n g i n g problem i s t h e f o l l o w i n g :
i) kernel
( c r i t i c a l index).
Ka
Then
ma(S)
= i?,(C)
which c a n b e e x p l i c i t l y computed and b e l o n g s t o
Thus, m_U Weiss [ZJ.
i s an
Lp
multiplier for a l l
1 5 p < =.
with a L1(Rn)
.
See S t e i n and
ii) a = 0 . For n = 1 ’ mo = X[-1,1] i s an LP m u l t i p l i e r 1 < p < m ( t h i s i s e q u i v a l e n t t o M. R i e s z t h e o r e m ) , w h i l e f o r i s n o t an LP m u l t i p l i e r f o r any p 2 n 2 2 , m 0 - X[]l’l51’ ( C Fef f erman n- 1 iii) 0 < a S The c o n j e c t u r e i s t h a t ma 1 s an Lp multi2 p l i e r i f and o n l y i f
for
+
.
-.
Pa
=
2n n + I + 2a < P < n
-
2n 1
-
2a = P A
11. CALDERON-ZYGMUND THEORY
230
The n e c e s s i t y o f t h i s c o n d i t i o n i s e a s i l y s e e n , b e c a u s e Ka $ L p a For n = 2 , t h e c o n j e c t u r e i s t r u e , and i t was f i r s t p r o v e d by
n];
.
d i f f e r e n t p r o o f s h a v e b e e n g i v e n by C . F e f For n > 2 , t h e c o n j e c t u r e h a s been ferman [4] and C6rdoba [lJ. n- 1 p r o v e d when a T h i s f o l l o w s f r o m r e s u l t s o f S t e i n a n d Tomas on r e s t r i c t i o n o f F o u r i e r t r a n s f o r m s ( s e e P. Tomas [l]); it can a l s o C a r l e s o n and S j a l i n
=.
be p r o v e d by u s i n g t h e a p p r o a c h i n C6rdoba [l].