CHAPTER 111
WHOLE BLOOD SAMPLE CLEAN-UP FOR CHROMATOGRAPHIC ANALYSIS U.
CHRISTIANS AND K.-FR. SEWING
Introduction Extraction procedures for blood samples Liquid-liquid extraction Solid-liquid extraction Col umn-switch i ng 3. Blood sample reparation and HPLC analysis o f SandimmunR (cyclosporine! 3.1 Introduction 3.2 Blood sample preparation for SandimmunR (cyclosporine) measurement 3.2.1 Liauid-1 iauid extraction orocedures 3.2.2 Solid-liquid extraction piocedures 3.2.3 Extraction and analysis by col umn-swiiching 3.3 Chromatographic analysis of Sandimmun (cyclosporine) and ts metabolites 4. Trouble shooting in development of blood sample clean-up p ocedures References
1. 2. 2.1 2.2 2.3
INTRODUCTION From all biological fluids, blood is of the greatest analytical interest, since it is the most important transport medium in the human body and blood levels of most therapeutic and diagnostic substances correlate with their function. This chapter is divided into two main parts: in the first part, general strategies for blood sample handling for various drugs are presented: in the second part, as an example measurement of cyclosporine and its metabolites is discussed in detail. Cyclosporine proved to be a good example since blood level measurement is of high clinical impact and the whole spectrum of sample preparation strategies has been applied for cyclosporine determination. 1.
Developing an adequate sample preparation method several factors must be considered: 1. the chemical properties of the constituents
in question.
2. the biological matrix.
The substance of interest must be extracted from its biological matrix prior to chromatographic analysis. Proteins and other macromolecules may interfere with detection and columns may get plugged or rapidly inactivated. A good extraction procedure should be reproducible with little
l o s s o f t h e m a t e r i a l o f a n a l y t i c a l i n t e r e s t . I t should b e r a p i d and a l l o w several samples t o be analyzed i n a s h o r t p e r i o d o f t i m e and i t should be inexpensive. Because o f b e t t e r h a n d l i n g t h e use o f plasma or serum as b i o l o g i c a l m a t r i x i s p r e f e r a b l e over blood. Plasma and serum i s produced by removing t h e c e l l u l a r components o f b l o o d by c e n t r i f u g a t i o n o r n a t u r a l c l o t t i n g . This s t e p must be regarded as a p r e - a n a l y s i s p u r i f i c a t i o n . However, t h e r e a r e some c o n d i t i o n s under which drugs r e q u i r e measurement i n blood r a t h e r than plasma o r serum: 1. The p a r t i t i o n between c o r p u s c u l a r components and plasma depends on
c o n d i t i o n s which cannot be e a s i l y c o n t r o l l e d and/or when t h e drug i s p r e f e r e n t i a l l y bound t o b l o o d c e l l s (e.g. 2. The sample volume i s small (e.g.
cyclosporine).
i n p e d i a t r i c s , experimental animals
o r i n v i t r o systems).
3. Blood samples a r e dehiscent and decomposed so plasma o r serum i s impossible (e.g.
t h a t t h e production o f
i n f o r e n s i c medicine).
4. The drug develops i t s e f f e c t s i n t h e b l o o d c e l l s (e.9.
chloroquine).
5 . Blood l e v e l s r e f l e c t t h e t h e r a p e u t i c and t o x i c e f f e c t s b e t t e r t h a n plasma o r serum l e v e l s (e.g. some drugs a c t i n g on t h e c e n t r a l nervous system) ( r e f . 1 ) . For development of
an e x t r a c t i o n procedure pK,,
p a r t i t i t i o n coef-
f i c i e n t s i n organic solvents and b i n d i n g t o blood components should be a v a i l a b l e . The d i s t r i b u t i o n i n t h e blood components i n f l u e n c e s t h e c h o i c e o f an adequate m a t r i x , Basic drugs o f t e n have a l a r g e volume of tribution
and a r e d e t e c t a b l e
i n blood only
in
low
dis-
concentrations,
e s p e c i a l l y when administered a t low doses (4 mg/kg body weight) ( r e f . 2 ) . Most a c i d i c and amphoteric drugs can be q u a n t i t a t i v e l y determined i n serum, plasma o r u r i n e . They u s u a l l y remain i n t h e i n t r a v a s a l compartment and have a h i g h a f f i n i t y t o plasma p r o t e i n s . Serum i s produced by n a t u r a l c l o t t i n g o f f i b r i n o g e n acquainted w i t h a removal o f hemo- and l i p o p r o t e i n s , which bears t h e r i s k o f l o o s i n g drugs i n t o t h e c l o t . On t h e o t h e r hand plasma, which must be a n t i c o a g u l a t e d , i s r i c h i n l i p i d s and l i p o p r o t e i n s ,
s i n c e these compounds cannot be
removed by c e n t r i f u g a t i o n . F r e s h l y drawn b l o o d w i t h i t s c o r p u s c u l a r components, l i p i d s , l i p o p r o t e i n s and p r o t e i n s r e q u i r e s a p u r i f i c a t i o n s t e p b e f o r e f u r t h e r e x t r a c t i o n , u s u a l l y hemolysis and p r o t e i n p r e c i p i t a t i o n .
84
The f o l l o w i n g steps o f t h e e x t r a c t i o n procedure a r e s i m i l a r t o those used f o r e x t r a c t i o n from plasma o r serum. To remove remaining m a t e r i a l i n t e r f e r i n g w i t h t h e a n a l y s i s u s u a l l y more extended p u r i f i c a t i o n steps a r e requ ired. The e x t e n t of sample p u r i t y r e q u i r e d depends on t h e a n a l y t i c a l system used and how much i m p u r i t i e s t h e d e t e c t i o n system t o l e r a t e s . For blood sample p r e p a r a t i o n v a r i o u s s t r a t e g i e s have been a p p l i e d : liquid-liquid
extraction
and
solid-liquid
extraction
including
column-switch techniques. I n most cases a n t i c o a g u l a n t s a r e added t o b l o o d samples.
Anticoagulants
a c i d - c i t r a t e dextrose
l i k e ethylenediamine t e t r a a c e t a t e (ACD)
c o n t a i n u l t r a v i o l e t - a b s o r b i ng
which can i n t e r f e r e w i t h t h e m a t e r i a l t o be detected
(EDTA)
and
impurities ,
(ref.
3).
The
a n t i c o a g u l a n t can a l s o i n f l u e n c e t h e accuracy o f t h e measurement ( r e f . 4), s i n c e w i t h EDTA a n t i c o a g u l a t e d b l o o d can be p i p e t t e d more r e p r o d u c i b l y than heparin a n t i c o a g u l a t e d b l o o d p a r t i c u l a r l y a f t e r storage f o r several days. The e f f e c t i v e n e s s o f t h e sample p r e p a r a t i o n procedure depends on t h e completeness o f p r o t e i n removal. Thus a s t e p o f hemolysis and p r o t e i n p r e c i p i t a t i o n i s e s s e n t i a l f o r a l l e x t r a c t i o n procedures from blood, plasma and serum. However, although i t i s almost mandatory t o remove a l l i n e r t proteins,
t h e components o f a n a l y t i c a l
i n t e r e s t should be recovered.
Hemolysis w i t h o u t p r o t e i n p r e c i p i t a t i o n i s achieved by
1. freezing (<-2O"C) 2. ultra-sound
and subsequent thawing o f t h e sample,
3. osmotic shock.
Other techniques 1 i k e mechanical membrane d i s r u p t u r e and enzymes a r e seldom i n blood a n a l y s i s . The f o l l o w i n g d e p r o t e i n a t i o n techniques a r e used ( r e f . 5 ) : 1. Change i n pH by adding a s t r o n g a c i d t o t h e sample (e.g.
c h l o r o a c e t i c a c i d , p e r c h l o r i c a c i d , h y d r o c h l o r i c acid)
.
tri-
2. Change i n t h e i o n i c s t r e n g t h by a d d i t i o n o f s a l t s (e.g. ammonium sulfate). 3. Change i n temperature by h e a t i n g t h e sample and d e n a t u r a t i n g t h e proteins. 4. Change i n t h e d i e l e c t r i c constant by a d d i t i o n o f o r g a n i c s o l v e n t s (e.9.
a c e t o n i t r i l e , methanol, e t h a n o l ) .
5. F i l t r a t i o n and u l t r a - f i l t r a t i o n .
a5 During o r a f t e r p r o t e i n p r e c i p i t a t i o n t h e pH r e q u i r e d f o r t h e ext r a c t i o n procedure has t o be adjusted. 2.
EXTRACTION PROCEDURES FOR BLOOD SAMPLES
2.1
LIQUID-LIQUID EXTRACTION
Blood sample p r e p a r a t i o n procedures u s i n g l i q u i d - l i q u i d e x t r a c t i o n can be d i v i d e d i n t o f o u r main steps: 1. hemolysis and p r o t e i n p r e c i p i t a t i o n ,
2. e x t r a c t i o n o f t h e components o f i n t e r e s t ,
3. p u r i f i c a t i o n and removal o f i n t e r f e r i n g m a t e r i a l s , 4. volume r e d u c t i o n and r e c o n s t i t u t i o n f o r chromatographic a n a l y s i s . Generally d e p r o t e i n a t i o n and hemolysis a r e associated w i t h pH adjustment f o r t h e f o l l o w i n g e x t r a c t i o n s t e p i n t o an o r g a n i c s o l v e n t . Thus t h e method chosen f o r d e p r o t e i n a t i o n depends on t h e pKa of
the
m a t e r i a l t o be analysed. A c i d i c drugs a r e e x t r a c t a b l e a t pH < 5.5
and
b a s i c drugs a t a pH > 5.5. I n blood one f r a c t i o n o f drugs i s bound t o plasma p r o t e i n s and t h e o t h e r blood components and t h e o t h e r f r a c t i o n i s free. By d e p r o t e i n a t i o n and e x t r a c t i o n t h e p r o t e i n bonds must be broken o r t h e recovery may be decreased. A decrease i n recovery can a l s o occur if t h e compounds o f i n t e r e s t a r e c o - p r e c i p i t a t e d o r p h y s i c a l l y entrapped i n the protein precipitate.
Basic drugs can be e x t r a c t e d from b l o o d
w i t h o u t p r i o r procedures by t h e use of a p p r o p r i a t e b u f f e r s o l u t i o n s w i t h a pH ranging from 6 t o 14. U s u a l l y t h e pH t o be chosen i s 3 u n i t s above t h e pKa because then more than 99% of t h e b a s i c drug i s i n i t s u n i o n i z e d form and can be e x t r a c t e d i n t o an o r g a n i c solvent.
Due t o t h e i r i o n i c
s t r e n g t h s these b u f f e r s o l u t i o n s cause p r o t e i n d e n a t u r a t i o n w i t h minimal
loss o f t h e drug (refs. a d j u s t i n g t h e pH < 5.5.
2,6,7). A c i d i c drugs can be e x t r a c t e d a f t e r The low pH causes p r o t e i n p r e c i p i t a t i o n w i t h t h e
r i s k o f c o - p r e c i p i t a t i n g t h e compounds of i n t e r e s t . For l i q u i d - l i q u i d p u r i f i c a t i o n o f blood samiles f o u r s t r a t e g i e s a r e used: 1. The drug i s converted i n t o i t s i o n i z e d form by changing t h e pH and can be e x t r a c t e d i n t o an aqueous phase. The o r g a n i c l a y e r i s removed and discarded. I n a second s t e p t h e l i p o p h i l i c , u n i o n i z e d form o f t h e drug i s r e - c o n s t i t u t e d by changing t h e pH i n t o t h e o p p o s i t e d i r e c t i o n and t h e drug can be back-extracted i n t o an organic s o l v e n t ( F i g . 2, s i d e columns)
.
86
2. The drug is dissolved in an aqueous/organic solvent, e.g. water/ acetonitrile, and the interfering compounds are removed by washing the sample with a lipophilic solvent, that is not miscible with the aqueous layer e.g. hexane. Compounds of interest dissolved in a lipophilic solvent can also be purified by washing with an aqueous solution (Fig. 1, middle column).
Liquid-liquid extraction can be combined with solid-liquid purification steps: 1. The extracted sample is spread on a TLC plate. After development the circle of silica adsorbing the compounds of interest is scraped off the plate and the silica gel is extracted (ref. 8). 2. Interfering materials are removed by adsorption on a solid phase or after liquid-liquid extraction the compounds of interest are adsorbed on a solid phase and thus separated from interfering materials.
Fig. 1 i s a schematic flow-diagram of steps used for liquid-liquid sample clean-up of basic and acidic drugs. The diagram demonstrates the way of blood sample preparation for GC and HPLC analysis. For reversed phase chromatography the aqueous back-extracts can be directly injected into the HPLC system The side columns of the diagram show purification steps by basic or acidic back-extraction, the middle column the removal of interfering materials with an organic solvent, inmiscible with the aqueous layer containing the compounds of interest, in which these materials are insoluble. Table 1 shows an overview of blood sample extraction strategies with subsequent chromatographic analysis. The extraction procedures 1 isted are used for sample preparation prior to chromatographic analysis (HPLC, GC, TLC). Usually the authors describe the extraction from several different kinds of biological matrices but only procedures and values for blood sample preparation and analysis are listed here. The procedures are divided into the four main steps as discussed above. In addition de Silva (refs. 9 and 10) describes schematically the extraction of various 1,4-benzodiazepines and Foerster et al. (ref. 11) the extraction of multiple acidic and neutral drugs from blood. Basic back-extraction describes the following procedure: the sample is acidified and the drugs are extracted into an aqueous phase. Then the pH is raised and the drugs are re-extracted into an organic solvent. If the solvents used for extraction and back-extraction are identical the solvent used for back-extraction is not mentioned.
a7
rn
blood sample c o n t a i n i n g a c i d i c druas
blood sample c o n t a i n i n g
protei n precipitation (pH < 5.5)
protein denaturation
I I
extraction into’ organic solvent
e x t r a c t i o n i n t o organic s o l v e n t shake,
I centrifuge
I
shake, c e n t r i f u g e
I I
I
9
d i s c a r d aqueous 1ayer
d i s c a r d a ueous l a y e r
pH r a i s e d > 7 + organic s o l v e n t
+ orga’nic s o l v e n t
decrease pH < 5.5 + organic s o l v e n t
shake,
shake, c e n t r i f u g e
shake, c e t r i f u g e
I centrifuge I
I I
I I
d i s c a r d organic l a y e r
discard organic layer
discard organic layer
decrease pH < 5.5 + organic s o l v e n t
HPLC,‘ GLC
increase PH > 7 + organic s o l v e n t
I
I
I I
I
shake, 2ent r i f uge
shake, c e r h r i f u g e
d i s c a r d aqueos l a y e r
d i s c a r d a ueous l a y e r
I
I I
evaporate o r g a n i c l a y e r -evaporate reconstitution
9
organic layer
I
HPLC. GLC Fig. 1
L i q u i d - l i q u i d clean-up procedures f o r blood sample a n a l y s i s .
rABLE I
m m
Liquid-liquid extraction of blood samples
Substance ( s )
pKa Ref. Deproteinization/ pH adjustment
Acebutolol
9.4 12
l-a acetyl-methadol Acetazol amide Ant i pyrine
Extraction
Purification/ Derivatization
%
rec. Analysis/ Detection
det. .g/l
distilled water, 2 N NaOH
ethylacetate
acidic backextraction
n.r. HPLC / UV (240 nm)
10
pH 9.2
n-butylchloride
basic back-extraction with CHCl,
>90 GC / MS
5
7.2 14 9.0
acetate buffer pH 5
CH C1 /diethylether methylation with /2zprGpanol (6/4/2) trimethylphenylammonium hydroxide
80- Gd3NiECD 90
25
15
filtration, ethanol
CH2C12/n-pentane (50/50) n-butanol/cyclohexane (70/30)
9095 HPLC / UV 9.9 (254nm)
6
13
N ammonium-
Atenolol
9.6 16
Bacmecillinam
6.8 17
CH3C1 /hexane (1/9)
Barbiturates
4.0 18
CH2C1
acidic back-extrac- 83- GC/FID tion, methylation 113
Barbiturates
4.0 19
acetone/ether (50/50)
derivatization with methyl iodide and KJO,
Benzodi azepine derivative
20
0.1
hydroxide
phosphate buffer PH 9
diethyl ether/ CH3C1 (70/30)
basicbackextraction
55
GC/63NiECD
96- HPLC/UV 104 (230 nm)
70
GC/FID
925 HPLC/UV 5.4 (230 nm)
10 0.6 100 16 ng/l
50
TABLE I
(continued) 21
Benzodiazepine derivatives Butaperazine
1
Carbamazepine
22
Carprofen
23
Chloroprocaine
8.7 24
distilled water, ammonium hydroxide
diethyl ether
70- HPLC / UV 100 (240 nm)
n.r.
distilled water, sodium carbonate
n-pentane/ isopropanol (97/3)
82- HPLC/UV 95
<40 n.r.
CH2C1
hexane wash, methyl ati on
94+ 12
acetate buffer pH 5
diethyl ether
TLC, deri vati zati on
42% HPLC/UV 83 (254 nm)
1.8% barium hydroxide
CH3C1
GC/FID
270
94105
GC/FID
10 25
Chl oroquine
8.4 25 10.8
buffer pH 10
diethyl ether
basic back-extraction n.r. from heptane
GC/FID
Chl oroquine
8.4 26 10.8
distilled water NaOH (pH >11)
hexane/ 1-pentanol (90/10)
basic back-extraction 85in CHC13 105
GC/NSD
8.4 27 10.8
distilled water, dipotassium hydrogen phosphate pH 9.5
CH2C12
acidic extraction into the aqueous phase
7397
HPLC/UV (254 nm)
3-4
8.4 28
deionized water, 0.001 N HC1
hexane
basic backextraction
95103
GC/NSD
5-15
6.8 29
freeze and thaw, 1 N NaOH pH 9.0
1-octanol
basic back-extraction 98in ethanol 106
Chl oroquine
Chloroquine Cimetidine
10.8
10
nMol /1
HPLC/UV (228 nm)
50
cn
W
TABLE
I
(continued)
L o
0
Clonazepam
1.5 10.5
30
b o r a t e b u f f e r pH 10
isoamyl a l c o h o l / hexane (10/90)
hydrolysis
3550
GC/ECD
5
Debri soqu ine
11.9
31
d i s t i l l e d water
diethyl ether
b a s i c back-extraction n.r. i n cyclohexane
GC/FID o r NSD
3
Diazepam
3.3
32
1 M phosphate b u f f e r pH 7.0
diethyl ether
b a s i c back-extraction 91116
HPLC/UV (240 nm)
20 30
Diazepam
3.3
33
phosphate b u f f e r pH 7.0
n-heptane
b a s i c back-extraction 9095
GC/63NiECD
D i py r idamol e
6.4
34
sodium hydroxide
diethyl ether
93.9 HPLC/FD(285/ 1 430 nm)
n-heptane
98- GC/TCD 100
pMo 1
Enf 1urane
35
50
4.1
/1
Flestolol
4.0 36
acetonitrile
acetoni t r i 1e/ CH2C12 ( U 5 )
acidic extraction i n t o aqueous phase
38
HPLC/UV (229 nm)
10
Tetrahydrocannabinol
10.6
37
2 N HC1 (pH 4)
hexane/ iso-amyl a1coho1 (98/2)
a c i d i c back-extract i o n i n t o hexane
n.r.
TLC/FD
0.4
116-9-tetrahydrocannabinol
10.6 10.4
38
CHC13
f i l t r a t i o n , TLC
98- GC/MS 100
diethyl ether
e x t r a c t i o n o f the organic l a y e r i n t o a c e t o n i t r i l e and phosphoric a c i d
85
Hydroxychloroquine
39
d i s t i l l e d water, ammonia (pH 13)
0.5
1 HPLC/FD (337/370 nm)
TABLE I
(continued)
Imipramine
9.5 40
ammonium hydroxide
butanol/hexane (20/80)
92.5 HPLC/FD 25 (240/370nm)
Ketamine
7.5 41
ammonium hydroxide pH 10.1
CHC13: isopropanol (75:25) isopropyl acetate
n.r. GC/FI
100
86% GC/MS 9
3
Mef 1 oquine
42
freeze and thaw
Mef 1 oquine
43
phosphate buffer pH 7.4
ethyl acetate
Mefloquine
44
0.2 N H2S04
diethyl ether
wash acidified sample with ether, deri vati zation
1005 HPLC/UV 9.9
935 GC/63Ni ECD 9.7 and FID
50
1
Methadone
8.3
45
4 M Na2C03
1-chlorobutane
basic back-extraction 935 GC/FID into CHC13 2
5
Morphine
8.0
46
phosphate buffer pH 8.7 - 9.0
ethyl acetate
aluminium oxide, deri vatization
1
47
acetate buffer pH 5 , B-glucuronidase
ethylacetatelisopropanol (90/10)
basic back-extraction 81
7.9 48
1 M carbonate buffer pH 10
diethyl ether
distilled water, 5M HC1 glacial acetic acid
Morphine-3glucuronide Naloxone Pentacaine Phenobarbital , Phenytoin, Primidone
9.9
49 7.4 50 8.3
83
GUb5Ni ECO HPLC/ECD
0.5
acidic extraction in aqueous phase
78+ HPLC/UV 3.2 (214 nm)
1
1,2 dichloroethane
heptane, Nap C03 fi 1 trati on
75- G U M S 92
5
CHC13
basic back-
90- HPLC/UV 110 (254 nm)
extraction
100
200
300
ID
c
TABLE I
W
(continued)
N
Phentolamine
7.7
51
1 M amnonium hydroxide
diethyl ether
acidic extraction in aqueous phase
83
Promethazine
9.1
52
borax buffer pH 10
n-heptane/isopentanol (99/1)
basic backextraction
97- GC/NSD 99
5
Propranolol
9.5
53
5 N NaOH
isoamyl-alcohol: nheptane (1.5: 98.5)
n.r. HPLC/FD
5
54
4.8 M KC1 pH 6.1
benzene
98 5 GC/ECD 8.9
2
glacial acetic acid
CHC13
90- GC/FID 110
1000
phosphate buffer pH 5.5
CH2C1
n.r. HPLC/UV (290 nm)
200
67- HPLC/UV 90 (225 nm)
0.03 ppm
Pyramidobenzazepine Theophylline Thiopental
c1 55 8.1
56
Tocainide
7.8 57
1 N NaOH, destilled water
CH3Cl
Warfarin
5.0 58
5 N HC1
CHCl
deri varization
fi 1 tration , wash with aqueous sodium pyrophosphate
HPLC/UV (280 nm)
HPLC/UV (270 nm)
ECD: electron capture detector, FD: fluorescence detector, FID: flame ionization detector, GC: gas chromatography HPLC: high performance 1 iquid chromatography, MS: mass spectrometry, NSD: nitrogen selective detector, TCD: thermal conductivity detector, TLC: thin layer chromatography, UV: ultraviolet absorbance detector, n. r. : not reported.
15
Another f orm o f l i q u i d - l i q u i d e x t r a c t i o n i s t h e use o f s i l i c a m a t e r i a l l i k e E x t r e l u t R ( r e f s . 59-62). Though t h e e x t r a c t i o n columns c o n t a i n s o l i d phase m a t e r i a l , t h e b a s i c p r i n c i p l e i s a l i q u i d - l i q u i d e x t r a c t i o n . E x t r a c t i o n w i t h diatomaceous e a r t h obeys t h e same b a s i c mechanism ( r e f s . 63-65).
Silica
gels
are
porous
carrier
materials.
Water
molecules
d i s t r i b u t e on t h e s u r f a c e of t h e s i l i c a g e l and become t h e s t a t i o n a r y phase. Compounds a r e d i s s o l v e d i n t h e w a t e r phase and a r e e l u t e d f rom t h e columns by o r g a n i c s o l v e n t s , u n m i s c i b l e w i t h wat er. Such columns can be used a t a pH range f r o m 1-13. A f t e r p r o t e i n p r e c i p i t a t i o n by a c i d o r b u f f e r t h e aqueous b l o o d sample i s p u l l e d by vacuum t h r o u g h t h e column ( r e f s . 61,62). S i l i c a g e l can a l s o be used f o r sample p u r i f i c a t i o n ( r e f s . 46,59) by a bs or b i n g i n t e r f e r i n g m a t e r i a l s from b l o o d w i t h o u t absorbing t h e components t o be e l u t e d . 2.2
SOL ID-L I Q U ID EXTRACTION Several methods f o r t h e e x t r a c t i o n o f compounds f rom b l o o d have been
r e p o r t e d u s i n g s o l i d s o r b e n t s as an a l t e r n a t i v e t o l i q u i d - l i q u i d extraction.
F o r t h e e x t r a c t i o n of b l o o d samples t h e use o f s o l i d phase
m a t e r i a l has t h e f o l l o w i n g advantages ( r e f s . 66,67): 1. The f o r m a t i o n o f emulsions d i s t u r b i n g e x t r a c t i o n i s avoided. 2. L i t t l e volume o f s o l v e n t s a r e necessary. 3. A c i d i c drugs can be e x t r a c t e d w i t h h i g h r e covery. 4. F a t t y a c i d s , t h e i r e s t e r s and c h o l e s t e r o l a r e n o t c o - e x t r a c t e d .
The s o l i d - l i q u i d e x t r a c t i o n procedures o f b l o o d samples can be d i v i d e d i n t o 4 main s t ep s : 1. hemolysis, d e p r o t e i n a t i o n and pH-adjustment,
2. a d s o r p t i o n o f t h e compounds of i n t e r e s t on t h e s o l i d phase m a t e r i a l , 3. p u r i f i c a t i o n b y washing t h e adsorbent w i t h l i p o p h i l i c o r h y d r o p h i l i c solvents, 4. e l u t i o n o f t h e drugs f r o m t h e adsorbent, 5. volume r e d u c t i o n and i f necessary d e r i v a t i z a t i o n . L i q u i d - l i q u i d e x t r a c t i o n of a c i d i c drugs i s sometimes complicat ed by the co-extraction
o f 1 i p i d s and 1 i p o p r o t e i n s .
Co-extraction
of
these
compounds i s l e s s i n s o l i d - l i q u i d e x t r a c t i o n and t h u s f u r t h e r clean-up st e ps 1 ike b a c k - e x t r a c t i o n s
o f t e n r e d u c i n g recovery a r e u s u a l l y n o t
r e q u i r e d . For s o l i d - l i q u i d e x t r a c t i o n t h e f o l l o w i n g s o l i d sorbent s a r e used :
94 1. Bonded phase s i l i c a gels, a l s o a v a i l a b l e as pre-packed disposable columns ( r e f s . 68-70), 2. anion and c a t i o n exchange r e s i n s ( r e f . 71), 3. n o n - i o n i c r e s i n s l i k e a c t i v a t e d charcoal ( r e f . 72) and A m b e r l i t e XAD-2 ( r e f s . 73-75)
.
Blood samples must be prepared f o r e x t r a c t i o n on bonded phase s i l i c a gel columns by hemolysis and p r o t e i n p r e c i p i t a t i o n
b e f o r e sucked by
vacuum through t h e e x t r a c t i o n columns. The columns a r e p r e v i o u s l y primed w i t h t h e same s o l v e n t , as used f o r e l u t i o n o f t h e drugs from t h e columns, i n o r d e r t o remove i n t e r f e r i n g substances. With a p o l a r s o l v e n t ( u s u a l l y water) t h e c o n d i t i o n s used f o r e x t r a c t i o n a r e e s t a b l i s h e d by l o a d i n g t h e columns with p o l a r groups. The drugs a r e r e t a i n e d by t h e column and can f u r t h e r be p u r i f i e d by washing t h e adsorbed m a t e r i a l s w i t h l i p o p h i l i c o r h y d r o p h i l i c s o l v e n t s i n which t h e y have a small p a r t i t i o n c o e f f i c i e n t . The columns are a l s o s u i t a b l e f o r an e x t r a c t i o n by i o n - p a i r chromatography ( r e f . 68) and can be cleaned and reused. The l i f e span of e x t r a c t i o n columns used f o r e x t r a c t s from blood i s s h o r t e r than f o r those from serum o r plasma,
s i n c e l a r g e amounts o f blood components
like
l i p o i d s and l i p o p r o t e i n s a r e c o - e x t r a c t e d and can p l u g t h e columns. The columns should n o t be c o n f r o n t e d w i t h s o l v e n t s w i t h a pH > 9. The ext r a c t i o n procedure w i t h disposable s o l i d phase e x t r a c t i o n columns can be automated u s i n g e x t r a c t i o n systems such as an advanced automated sample processing u n i t (AASP,
Varian, Walnut Creek, CA, USA). The p r e - e x t r a c t e d
blood samples a r e a u t o m a t i c a l l y loaded on t h e e x t r a c t i o n columns, p u r i f i e d and i n j e c t e d i n t o t h e HPLC-system ( r e f s . 76,77). I o n i c and non-ionic r e s i n s can be added t o t h e b l o o d sample i n ext r a c t i o n columns ( r e f s . 78-80), bags ( r e f .
i n capsules ( r e f . 69),
78) o r as r e s i n s l u r r y ( r e f s . 74-75).
i n nylon f a b r i c
Anion exchange r e s i n s
are s u i t a b l e f o r t h e e x t r a c t i o n of a c i d i c drugs such as b a r b i t u r a t e s , sal i c y l a t e s and phenylbutazone, c a t i o n exchange r e s i n s f o r t h e e x t r a c t i o n of basic drugs such as q u i n i d i n e , chlorpromazine, s t r y c h n i n e , and morphine. Charcoal i s i n e f f e c t i v e i n b i n d i n g most b a s i c drugs except s t r y c h n i n e and proved v a l u a b l e i n b i n d i n g n o n - i o n i c o r g a n i c compounds l i k e gluthetimide,
meprobamate and carbromal
(ref.
71).
I o n exchange
r e s i n s are a l s o used t o remove i o n i c i m p u r i t i e s from b l o o d samples ( r e f . 81)
.
The a n i o n i c r e s i n Amber1 i t e XAD-2, i n t r o d u c e d i n t o pharmacological and t o x i c o l o g i c a l a n a l y s i s by F u j i m o t o e t a l . ( r e f . 82) i s a nonpolar
styrene-divinylbenzene copolymer w i t h a p a r t i c l e s i z e o f 50-100 p ( r e f . 66).
It a l l o w s t h e e x t r a c t i o n of
deproteination
( r e f . 80).
The
drugs from b l o o d w i t h o u t preceeding
resin
s l u r r y i s prepared by washing t h e
95 r e s i n subsequently w i t h water, methanol and acetone. The r e s i n i s s t o r e d i n water o r a b u f f e r s o l u t i o n ( r e f s . 66,73,75).
A f t e r adsorption o f the
compounds o f i n t e r e s t t h e XAD-2 p a r t i c l e s a r e f i l t e r e d and e x t r a c t e d w i t h an organic s o l v e n t . S c h l i c h t e t a l . ( r e f . 66) and I b r a h i m e t a l . ( r e f . 79) described t h e e x t r a c t i o n o f several drugs from b l o o d samples u s i n g XAD-2 r e s i n s , Ford e t a l . t h e e x t r a c t i o n o f a c i d i c drugs from blood u s i n g CI8 bonded s i l i c a columns ( r e f . 67) and Missen e t a l . ( r e f . 75) compared t h e e x t r a c t i o n of benzodiazepines w i t h various r e s i n s . The e x t r a c t i o n o f drugs from b l o o d using s o l i d phase m a t e r i a l s i s acquainted w i t h some disadvantages t h a t must be taken i n t o account. 1. The e x t r a c t i o n may g i v e v a r i a b l e r e c o v e r i e s
o f the e l u t i n g solvent
and
due t o t h e pH and n a t u r e
t h e sorbent.
2 . The r e s i n s and column m a t e r i a l s loose t h e i r a d s o r p t i o n e f f i c i e n c y t h e
more o f t e n t h e y are reused. 3. The f r i t s and t h e column m a t e r i a l can b e plugged by n o t s u f f i c i e n t l y
d e p r o t e i n i z e d samples o r i f t h e columns a r e reused t o o o f t e n . Since i t i s o f t e n n o t p o s s i b l e t o perform ' d i g i t a l chromatography' on t h e e x t r a c t i o n columns, an i n t e r n a l standard may h e l p t o c o r r e c t recovery o f a compound and t o make e x t r a c t i o n more r e l i a b l e and r e p r o d u c i b l e . A good i n t e r n a l standard should 1. s t r u c t u r a l l y be as s i m i l a r t o t h e compound o f i n t e r e s t as p o s s i b l e , 2. have t h e same d i s t r i b u t i o n c o e f f i c i e n t s i n organic s o l v e n t s ,
3. have t h e same b i n d i n g c h a r a c t e r i s t i c s t o t h e blood compounds as t h e compound o f i n t e r e s t , 4. have a r e t e n t i o n time i n chromatographic a n a l y s i s c l o s e t o t h e compound o f i n t e r e s t , 5. be c l e a r l y separated from t h e compound o f i n t e r e s t d u r i n g a n a l y s i s , 6. have t h e same p r o p e r t i e s concerning t h e d e t e c t i o n system used. The i n t e r n a l standard i s added i n a known amount t o t h e sample p r i o r t o sample p r e p a r a t i o n and a n a l y s i s . A good i n t e r n a l standard i s a b l e t o e l i m i n a t e t h e b i a s caused by losses and compensates random e r r o r s d u r i n g e x t r a c t i o n o r a n a l y s i s ( r e f . 83). F i g . 2 shows a f l o w - c h a r t of s o l i d - l i q u i d e x t r a c t i o n procedures.
If
XAD-2 m a t e r i a l f o r t h e e x t r a c t i o n o f n e u t r a l and b a s i c drugs i s used i t can be renounced a t t h e d e p r o t e i n a t i o n s t e p ( r e f . 80). The p u r i f i c a t i o n s t e p can a l s o be performed a f t e r e l u t i o n o f t h e drugs from t h e s o l i d sorbent u s i n g l i q u i d - l i q u i d e x t r a c t i o n .
2-3
COLUMN-SWITCHING On-line sample preparation using column-switching has been applied to plasma, serum and urine samples and is discussed in detail i n Volume I. Blood sample analysis requires a preceeding purification step and is basically equal to analysis in plasma, serum or urine. Column-switching techniques for cyclosporine blood samples are described in part 3 . 2 . 3 of this chapter.
3. 3.1
BlOOD SAMPLE PREPARATION AND HPLC ANALYSIS OF SandimmunR (CYLOSPORINE) INTRODUCTION SandimmunR (Cyclosporine A, cyclosporine, Sandoz OL 27-400 N) is an immunosuppressive agent and i t s application after organ transplantation has proved to be of great value (refs. 84-85). Due to its narrow therapeutic range and its pharmacokinetic properties, blood level monitoring is mandatory. (ref. 86). Simultaneous measurement of the parent compound and the cyclosporine metabolites in blood by HPLC is of great clinical relevance, since the
97
commercially available and commonly used monoclonal radioimmuno assay (RIA) kits (Sandoz) (ref. 86) measure the parent compound or all metabolites to an mostly unknown extent. With HPLC it is possible to determine the metabolites and to quantify each of the metabolites separately. This will be of special value if one or more of the metabolites prove to be responsible for the cyclosporine adverse effects especially nephrotoxicity. Cyclosporine is a neutral, lipophilic and cyclic undecapeptide with a molecular weight of 1202.6. All its amino acids are S-configurated except D-alanine in position 8 (Fig. 1). Amino acids in positions 1, 3, 4, 6, 9, 10, and 11 are N-methylated. The amino acid in position 1 is a O-hydroxilated, N-methylated and unsaturated C9-amino acid. The tertiary structure of cyclosporine is an antiparallel R-pleated sheet conformation. Its partition coefficient octanol/water is 120/1. The cyclosporine molecule lacks of chromophoric substituents, making UV-detection more unspecific and demanding more extensive extraction procedures. The molar absorption coefficient at the wave-length maximum (195 nm) is 66 000 l/mol x cm. It shows good solubility in alcohols, ether, acetone and chlorinated hydrocarbons and poor solubi1 i ty in water and saturated hydrocarbons (refs. 88-91). Cyclosporine is metabolized by microsomal cytochrome P450 (ref. 92) in the liver to more than 30 metabolites (ref. 93). The structures of the metabolites 1, 8, 9, 10, 13, 16, 17, 18, 21, 25, 26 (refs. 94 and 95), 203-218 (ref. 96) and two aldehyde metabolites (ref. 97) have been elucidated. All metabolites retain the cyclic undecapeptide structure and prove to be more hydrophilic than the parent compound. The reactions involved in cyclosporine degradation are demethylation, hydroxilation, oxidation and cyclization (Table 11). Choice of the bioloaical matrix (ref. 98) For routine drug monitoring cyclosporine is usually measured in blood. However, the question of the biological matrix is still under discussion. 58% of cyclosporine are bound to the erythrocytes in blood, 10 to 20% to the lymphocytes. In plasma cyclosporine is bound to lipoproteins, preferentially those of high and low density (refs. 99-103). The free fraction is 1-1.5% at 37OC (ref. 104). The distribution between blood and plasma is temperature dependent and is lowered from 37OC to room temperature (refs. 99, 105-108). Binding of cyclosporine to the lipoproteins i s also temperature dependent being highest at body temperature and decreasing linearly with lower temperature. The cyclosporine metabolites 1 and 17 are associated with the erythrocytes
98 (>go%) ( r e f s . 109-111). The r e l a t i v e d i s t r i b u t i o n i n b l o o d i s constant u n t i l c y c l o s p o r i n e c o n c e n t r a t i o n s > 1000 ~ / 1 . Furthermore t h e r e l a t i o n between c o n c e n t r a t i o n i n b l o o d and plasma v a r i e s s i g n i f i c a n t l y w i t h t h e hematocrit ( r e f s . 112 and 113). The reasons f o r choosing blood as t h e b i o l o g i c a l m a t r i x are: 1. There a r e no t e c h n i c a l problems because o f t h e temperature dependent
d i s t r i b u t i o n between e r y t h r o c y t e s and plasma. 2. Measurement i s independent o f t h e hematocrit.
3. Plasma l e v e l s a r e considerably increased i n hemolysed b l o o d samples. The choice o f t h e a n t i c o a g u l a n t used f o r c y c l o s p o r i n e blood samples proved t o be o f importance. I n r o u t i n e h e p a r i n i z e d specimens s t o r e d > 1 days c o n t a i n small blood c l o t s .
Since c y c l o s p o r i n e i s bound t o a g r e a t
percentage t o t h e corpuscular blood components c l o t t i n g causes a decrease i n t h e c o n c e n t r a t i o n measured and t h e c l o t s p l u g t h e e x t r a c t i o n columns i n solid-phase e x t r a c t i o n procedures ( r e f s . 4, 98, 114-116). The
methods
developed
for
the
quantitative
determination
of
cyclosporine and i t s m e t a b o l i t e s i n blood cover almost t h e whole spectrum o f blood sample p r e p a r a t i o n s t r a t e g i e s .
99
I
CH2
I
AA8 Fig. 3
AA2
AAll AA1 -
AAlO
CH3
CH3
I
I
AA 7
CH-OH
I
AA6 -
I CH2
CH3
I
I
AA5
Structural formula of cyclosporine.
AA4
100
TABLE I 1
Structures o f the cyclosporine (Cs) metabolites, hitherto characterized (refs. 94-96) with their molecular weights.
I R
R1
R2
H
CH3
1 8
OH
CH3
CH3 CH3
OH
CH20H
CH3
9 10 13
OH
CH3
H
H
OH
OH
CH3
CH3
OH
H
16 17
OH
CH3
CH3
H
H H
CH20H CH20H
CH3
H
H
1234.64 1218.64
CH3
H
H AA1:cyclization
1218.64
H H
CH3 CH20H
H
H
H
1188.62
25
H
H
H
1204.64
26
OH
CH20H
CH3
H
H AA1:cyclization
1234.62
203-218
H
COOH
CH3
H
H
1232.62
Metabolite cs
18 21
modifications weight
R3
R4
H H
H
1202.64
H
1218.64 1234.64
hydroxyl ated and N-demethyl ated derivative of cs OH
1220.62 1234.64 1204.62
TABLE 111 Characteristics of various HPLC procedures for quantitative determination of cyclosporine
Extraction Ref. matrix preparation
extraction
117 plasma + water urine
diethyl ether
118 plasma
cv
HPLC clean-up recovery column elution det.-limit (pg/1 1
-
76+5% 10455%
RP8
gradient
extraction identical with ref. 117
n.r.
RP8
isocratic
5
119 blood + distilled plasma water
diethyl ether
hexane
74% 49%
RP18
isocratic
25
9.2
120 serum
C18 cartridge (Sep-Pak, Waters)
water/ 90+10% methanol
RP18
isocratic
n.r.
n.r.
step gradient
25
3
RP18
gradient
50
77.356%
TMS
isocratic
100
n.r.
83-99%
RP8 isocratic ultrasphere
31
3.6-
methanol
121 plasma heat (55OC), blood freeze + thaw
column-switching
122 serum
CN cartridge (Baker)
123 plasma
Clin Elut
water/ 50-70% methanol
cartridge (Fisher)
124 plasma acidification diethyl ether blood (HC1)
91.9+0.9% RP8, RP18
NaOH
20
comments
%
n.r.
4.4 derivatization o f cyclosporine with 2naphthyleneselenylchloride
9.314.1
6.0
TABLE I I I 125
blood serum
Tris-buffer pH 9.8
126/ plasma 127 blood
81 blood
c
(conti nued)
0 N
diethyl ether/ aceton- 34.7% C N cartridge nitrile/ (Baker) water, hexane
acetonitri le/water, column-switching freeze + thaw acetonitrile acetonitrile
128
blood freeze+thaw diethyl ether plasma buffer pH 10
129
serum
phosphoric colum-switching acid in acetonitri le
130
blood
freeze+thraw charcoal slurry acetonitrile ethyl acetate
131 blood,
plasma
132
blood
-
diethyl ether
10% isoC18 cartridge propanol in (Baker Bond) acetonitri le
RP8
isocratic
25
21
RP8, RP18
columnswitching
5 15
0.511.1
hexane, 90%+5% Dowex ion exchange resin
RP18
isocratic
25
acidifi- 74% cation, 85% hexane
RP18
isocratic
25
n.r.
RP8, RP18
columnswitching
n.r.
RP18
isocratic
50
CN
isocratic 100
6.04
isocratic
n.r.
hexane
100%
80%
alkalized 96+6% acidi fi ed met h ano 1 70%
methanol
86+108% C N
50
automated sample preparation
0.3-
8.0
7.0
2.512.5
8.6
modification of refs. 126, 127
TABLE 111
(continued)
110 blood acetonitrile/ CN cartridie serum, water (Bond Elut ) plasma (30/70,v/v)
acetonitrile/ acetic acid
90% 98%
CN
isocratic
133 blood
acetonitrile/ C18cartridfle di methy 1 (Bond Elut ) sulfoxide
acetoninitrile water, hexane
75-
CN
i socrati c
6.46.6
134 blood
--
acidification, hexane
n.r.
RP18
isocratic
n.r. modification o f ref. 119
135 blood
acetonitrile columnswitching
acetonitrile/ water
75~3% Ultrfl- columnpore switching RPSC (Altex) RP18, 3 vm
136 blood
HC1
diethyl ether
NAOH
137 blood
HCl
diethyl ether
heptane ~ 9 0 %
138 blood
acetonitrile
139 blood
freeze+thaw
diethyl ether
column-switching diethyl ether
hexane
80% ultrahere
15
n.r.
2
RP8
isocratic
20
RP8, 3 Ilm
isocratic
10
98.4100.2%
CN, TMS
columnswitching
5
108%
RP6, RP18
columnswitching
25
n.r.
2.6- determination of a 6.5 cell-bound metabolite
0.16.2
1.8
4.5
3.9 ion-pair chromato5.7 graphy (ammonium su 1 fate) 0.71 .8
5.7- extraction equal to 6.3 ref. 119, microbore analytical column c-l
0
w
c 0
TABLE 111
(continued)
140, blood 141
acetonitrile/ C18 cartridge methanol(9/1) (Bond Elut )
142 blood
HC1
76 blood
77 serum
145 blood, pl asma, bile
hexane, n.r. silica gel cartridge
25
4.9
88-90% RP8 isocratic methyl-t-butyl- NaOH, ether heptane mi crobore
1.5
4.8- small sample volume 5.9 (0.2-0.5 ml)
hexane, 98-104% aceton i tri 1 e/ water
RP18, 3 Pm
isocratic
20
4.5- extraction with ad7.8 vanced automatic sample unit AASP (Varian)
95-108%
CN
isocratic
15
6.6- modification of 6.9 ref. 135
75-83.9
RP18
isocratic
50
18.45.6
hexane, 87% aceton i tri 1 el water
CN,
isocratic
20
NaOH
RP18 3 Clm
gradient
22
C18 cartridge (Bond Elut ) HC1
diethyl ether
acetonitrile C8 cartridge (Analytichem)
HC1
RP1
isocratic
acetonitrile/ C8 cartridRe dimethyl(Bond Elut ) su 1 foxi de
143 blood 144 plasma, bile, urine
P
diethyl ether
NaOH
+7.7%
>96%
3 ccm
3.8- extraction with ad12.5 vanced automatic sample unit AASP (Varian), normal phase chromatography 5.6
determination of metabolite 1, 17, 18, 21
TABLE
II I
(conti nued)
I.46 blood,
plasma
147 blood
148 blood
HC1
diethyl ether
45~2% silica cartridge (Sep Pak, Waters), acetylacetate/ hexane
RP18
isocratic
1020
6
diethyl ether
heptane, 70% NaOH , hexane
RP8, 3 Pm
isocratic
25
5.311.5
acetoni- 47trile/ 95% water
CN isocratic 15a1 ternat i vely 25 RP 8, silica gel semi-preparative isolation of metabolites
acetoni- 73trile/ 85% water, hexane
RP8
acetonitrile/ CN cartridRe water (30/70) (Bond Elut )
149 blood, acetonitrile/ C8 extraction 150 bile, water(30/70) columns 151 urine
n.r.: not reported, RP: reversed phase.
gradient
25
7.1 determination of 9.6 metabolite 1 , 8, 13, 17, 18, 21, 25, 26, 203-218 and 1 yet unidentified metabolite
5.6 12.6
determination o f metabolite 1, 8, 9, 10, 13, 16, 17, 18, 21, 25, 26, 203-218 and 7 yet unidentified metabolites
106
BLOOD SAMPLE PREPARATION FOR SANDIMMUN~ (CYCLOSPORINE) MEASUREMENT 3.2 3.2.1 LIQUID-LIQUID EXTRACTION PROCEDURES A l l methods published u n t i l now use
c y c l o s p o r i n e C o r 0 as i n t e r n a l
standard. The e x t r a c t i o n procedures c o n s i s t o f f o u r steps:
1. hemolysis and d e p r o t e i n a t i o n , 2. e x t r a c t i o n o f cyclosporine, 3. sample p u r i f i c a t i o n , 4. volume r e d u c t i o n and t r a n s f e r i n t o t h e m o b i l e phase Hemolysis was achieved by r a p i d thawing and f r e e z i n g ( r e f . adding d i s t i l l e d water ( r e f . c h l o r i c a c i d (137).
119), a c e t o n i t r i l e ( r e f .
129) o r by
81) and hydro-
I n r o u t i n e a n a l y s i s c y c l o s p o r i n e was e x t r a c t e d from b l o o d by d i e t h y l methyl-t-butyl ether (ref. e t h e r ( r e f s . 117,119,124,127,128,136-138),
142) and a c e t o n i t r i l e ( r e f . 81). The advantage o f m e t h y l - t - b u t y l e t h e r over d i e t h y l e t h e r a r e i t s r e s i s t a n c e t o peroxide f o r m a t i o n and c l e a n e r e x t r a c t s than obtained by d i e t h y l e t h e r e x t r a c t i o n ( r e f . 142). The use of
acetonitrile
combines
s o l v e n t and i t s p r o t e i n
i t s p r o p e r t i e s as
an e f f e c t i v e e x t r a c t i o n
p r e c e p i t a t i n g potency
(ref.
81). Since t h e
e x t r a c t s c o n t a i n i n t e r f e r i n g l i p o p h i l i c m a t e r i a l and a c i d i c , b a s i c and i o n i c contamination ( r e f .
81) which may cause damage t o t h e column,
p u r i f i c a t i o n steps are required. P u r i f i c a t i o n was achieved by washing t h e sample w i t h hexane o r heptane ( r e f s . 119,128,134,137,139,142)w i t h a c i d i c and basic s o l u t i o n s ( r e f s . 124,128,131,134,142) o r by adding i o n exchange r e s i n s ( r e f . 81). A f t e r e v a p o r a t i o n o f t h e p u r i f i e d l a y e r and resuspension i n t h e mobile phase, some methods use a second p u r i f i c a t i o n s t e p by e x t r a c t i n g i n t e r f e r i n g substances w i t h a f i n a l wash ( r e f s .
hexane o r heptane
137, 142). Back e x t r a c t i o n o f c y c l o s p o r i n e from an aqueous
phase by changing pH i s n o t p o s s i b l e because o f i t s chemical p r o p e r t i e s . Thus t h e organic l a y e r c o n t a i n i n g c y c l o s p o r i n e i s washed by b a s i c and a c i d i c s o l u t i o n s and t h e aqueous l a y e r has t o be discarded i n e i t h e r case. G f e l l e r e t . a l . ( r e f . 118) used a d e r i v a t i z a t i o n o f c y c l o s p o r i n e w i t h 2-naphthylselenylchloride t o improve t h e d e t e c t i o n l i m i t . The method o f Sawchuck and C a r t i e r ( r e f .
119) i n t r o d u c e d a hexane
washing s t e p i n t o c y c l o s p o r i n e a n a l y s i s and many l a t e r p u b l i s h e d l i q u i d l i q u i d e x t r a c t i o n methods used a m o d i f i c a t i o n o f t h i s e x t r a c t i o n p r o cedure ( r e f s . 128,137,139,142). Blood, d i s t i l l e d water and t h e i n t e r n a l standard Cyclosporine D were g i v e n i n t o a c e n t r i f u g e tube. D i e t h y l e t h e r was added and t h e sample shaken and c e n t r i f u g e d . The aqueous phase was discarded and t h e organic l a y e r was evaporated. The sample was taken up
107 i n methanol and was washed w i t h hexane t w i c e . The hexane l a y e r s were removed, t h e aqueous l a y e r was b a s i f i e d w i t h NaOH and c y c l o s p o r i n e was e x t r a c t e d by d i e t h y l e t h e r . The d i e t h y l e t h e r phase was evaporated and t h e re ma ining m a t e r i a l s were r e c o n s t i t u t e d w i t h t h e m o b i l e phase. Most
of
these
extraction
Cy c los porin e D o r C.
procedures
use
an
internal
st andard:
Cyclosporine D i s cyclosporine w i t h v a l i n
and
c y c l o s p o r i n e C w i t h t h r e o n i n e as amino a c i d 2 (F ig. 3 ) . These c y c l o s p o r i n e d e r i v a t i v e s r e p r e s e n t o n l y a s m a l l m o d i f i c a t i o n o f t h e whole molecule. They
have
distribution
coefficients
in
organic
solvents
equal
to
c y c l o s p o r i n e and almost t h e same UV-absorbing p r o p e r t i e s . The use of t h e s e i n t e r n a l s t a ndar d s f o r t h e q u a n t i f i c a t i o n o f c y c l o s p o r i n e m e t a b o l i t e s i s critical
(ref.
152).
The b e h a v i o r d u r i n g e x t r a c t i o n
i s considerably
d i f f e r e n t f rom t h e m e t a b o l i t e s as shwon i n b i l e i n r e f . 151 and Table V . 3.2.2 SOLID-LIQUID EXTRACTION PROCEDURES U n t i l now a l l column e x t r a c t i o n
methods described f o r c y c l o s p o r i n e i n -
cl uded 5 s t e ps : 1. Hemolysis o f t h e c o r p u s c u l a r b l o o d i n g r e d i e n t s and d e p r o t e i n a t i o n , 2. sample l o a d i n g on t h e e x t r a c t i o n column, 3. sample p u r i f i c a t i o n , 4. e l u t i o n o f c y c l o s p o r i n e and i t s m e t a b o l i t e s f rom t h e e x t r a c t i o n column,
5 . volume r e d u c t i o n f o r HPLC a n a l y s i s . Yee e t a l . ( r e f . 122) used a p r o t e i n p r e c i p i t a t i o n s t e p w i t h a c e t o n i t r i l e c o n t a i n i n g t h e i n t e r n a l s t a n d a r d C y c l o s p o r i n e D. The sample was t h e n p u l l e d by vacuum through a prepacked d i s p o s a b l e cyanopropyl column, b e i n g washed w i t h a c e t o n i t r i l e and w a t e r . The column was washed w i t h methanol/ wat e r 40/60 ( v / v ) and c y c l o s p o r i n e was e l u t e d u s i n g methanol. Kates e t a l . ( r e f . 125) combined a d i e t h y l e t h e r e x t r a c t i o n w i t h p u r i f i c a t i o n on
prepacked d i s p o s a b l e cyano columns.
Blood samples were
a d j u s t e d a t pH 9.8 and e x t r a c t e d w i t h d i e t h y l e t h e r . D i e t h y l e t h e r was evaporated, t h e sample d i s s o l v e d i n methanol/water was d i l u t e d w i t h w a t e r and drawn t hro ug h t h e column w i t h water. The sample was subsequent ly cleaned by a c e t o n i t r i l e / w a t e r 25/75 ( v / v ) and hexane was t hen e l u t e d f r o m t h e column w i t h methanol. The method developed i n o u r l a b o r a t o r y
(refs.
149,150,151,
Fig.
4)
uses 3 m l g l a s e x t r a c t i o n columns f i l l e d w i t h 25-40 p RP 8 m a t e r i a l R (L iC hro pre p , Merck, Darmstadt, FRG). The i n t e r n a l st andard C y c l o s p o r i n e D was d i s s o l v e d
in
a c e t o n i t r i l e / w a t e r (pH 3.0) 50/50 ( v / v ) a t a concen-
108
tration of 10 @/ml. 25 pl of the internal standard solution were pipetted into a 10 ml centrifuge tube. Subsequently 1 ml blood and 2.1 ml acetonitrile/water (pH 3.0) (30/70 v/v) were added. Each sample was vortexed for 20 s and centrifuged for 5 min at 2 500 rpm. The supernatant was pulled by vacuum through the extraction columns. The extraction columns were previously primed with 3 ml acetonitrile and 3 ml water. The samples were washed with 3.2 ml acetonitrile /water (pH 3.0) (20/80 V/V) and with 0.5 ml hexane. The column was dried by sucking air through it for 1 min. To elute cyclosporine and its metabolites the extraction column was set into a diethyl ether cleaned 10 ml centrifuge tube and 2 ml dichloromethane was centrifuged through the extraction columns (700 rpm, 5 min). Dichloromethane was evaporated and the remaining materials were taken up in 300 pl acetonitrile/ water (pH 3.0) (50/50 v/v). 500 d hexane were added and the sample was vortexed for 10 s. Phases were separated and 100 ml of the aqueous phase were injected into the HPLC system. This extraction procedure is a modification of the method pub1 ished by Lensmeyer and Fields (ref. 110). The first step of the extraction procedure consists of adding a mixture of acidified water (pH 3.0) /acetonitrile (30/70 v/v) resulting in a final acetonitrile concentration of 20% in the sample. According to ref. 110 gross protein precipitation occurs at a final acetonitrile concentration of more than 21%. At the acetonitrile concentrations reached in the sample blood cells are hemolysed and some protein blood components precipitate. The recovery is considerably lower at a higher pH of the dilution mixture. The recovery drops to about 20% when gross protein precipitation occurs due to plugged extraction columns. Critical conditions for gross protein precipitation are high temperatures over 25OC as reached when centrifuging the sample in a warm centrifuge. Another reason for a decreased recovery is the extraction of deep frozen or samples stored at +4OC for more than 1 week. The first step also adjusts the sample to the conditions required for column extraction. After centrifugation the supernatant which has a clear red color is given onto the extraction columns. We chose no commercially available disposable prepacked columns but refillable glas columns with removable teflon frits for the following reasons: 1. To reduce costs of external column extraction procedures the ex-
traction columns are reused. The more often they are reused the more reproducibility and recovery decrease and the chance of loosing a
109 sample because o f a plugged column increases. A f t e r a n a l y s i s t h e s o l i d phase o f t h e g l a s s columns i s removed and t h e f r i t s reusable f o r a t l e a s t t h r e e times a r e cleaned by u l t r a - s o u n d i n a c e t o n i t r i l e . 2. One o f t h e main problems o f c y c l o s p o r i n e a n a l y s i s a r e i n t e r f e r i n g m a t e r i a l s l i k e p l a s t i c s o f t e n e r s which have s i m i l a r chromatographic and s p e c t r a l p r o p e r t i e s l i k e c y c l o s p o r i n e i t s e l f . I t has been r e p o r t e d t h a t i n t e r f e r i n g m a t e r i a l can be leached from t h e e x t r a c t i o n columns. Glass i s an i n e r t m a t e r i a l . A ' d i g i t a l chromatography' o f c y c l o s p o r i n e on t h e e x t r a c t i o n columns i s
n o t p o s s i b l e r e s u l t i n g i n v a r i a b l e r e c o v e r i e s o f 7 0 4 5 % i n o u r system. I n our method t h i s v a r i a b i l i t y can be compensated by u s i n g an i n t e r n a l standard (Table I V ) . The columns a r e f i l l e d w i t h 100 mg RP 8 s o l i d phase m a t e r i a l . V a r i a t i o n o f t h e packing volume up t o 50% does n o t i n f l u e n c e recovery. pH adjustment o f t h e sample t o an a c i d pH increases r e t e n t i o n on t h e columns e s p e c i a l l y o f t h e c a r b o x y l a t e d m e t a b o l i t e 203-218.
After
l o a d i n g c y c l o s p o r i n e and i t s m e t a b o l i t e s o n t o t h e e x t r a c t i o n columns, t h e
(80/20 v / v ) m i x t u r e , decreasing t h e amount o f p o t e n t i a l l y i n t e r f e r i n g m a t e r i a l . During t h i s s t e p t h e recovery i s n o t reduced when t h e water i s a c i d i f i e d . The n e x t sample i s washed w i t h an a c e t o n i t r i l e / w a t e r (pH 3.0)
step, washing t h e column w i t h hexane i s t o remove l i p o h i l i c i m p u r i t i e s . c y c l o s p o r i n e and i t s m e t a b o l i t e s a r e almost i n s o l u b l e i n hexane. Up t o t h i s s t e p t h e s o l v e n t s are sucked through t h e column by vacuum. To e l u t e t h e compounds o f i n t e r e s t from t h e e x t r a c t i o n column t h e columns a r e s e t i n c e n t r i f u g e tubes.
The e l u e n t dichloromethane i s c e n t r i f u g e d t h r o u g h
t h e e x t r a c t i o n columns and t h e e l u a t e c o n t a i n i n g c y c l o s p o r i n e and i t s metabolites
i s collected a t
the
bottom o f t h e c e n t r i f u g e
tube.
In
c o n t r a s t t o o t h e r e l u e n t s l i k e methanol o r a c e t o n i t r i l e dichloromethane can f a s t e r be evaporated, The amount o f c o e l u t e d i n t e r f e r i n g m a t e r i a l i s equal t o an e l u t i o n by o t h e r s o l v e n t s . For evaporation o f dichloromethane an apparatus equipped w i t h g l a s s tubes f o r n i t r o g e n i n s u f f l a t i o n should be used, s i n c e p l a s t i c tubes a r e a p o t e n t i a l source o f p o l l u t i o n of t h e sample w i t h p l a s t i z i s e r s (Fig.
10). The f i n a l hexane wash used i n o u r
method removed i n t e r f e r i n g m a t e r i a l , stemming from t h e l a b o r a t o r y equipment. This step was n o t e s s e n t i a l b u t i t made e x t r a c t i o n more re1 i a b l e . With s l i g h t m o d i f i c a t i o n s t h e method c o u l d be adapted t o analyse u r i n e and b i l e samples. 1 m l u r i n e was p i p e t t e d i n t o a 10 m l c e n t r i f u g e t u b e and 300 pl a c e t o n i t r i l e were added. A f t e r c e n t r i f u g a t i o n t h e supernatant
110 was passed through t h e e x t r a c t i o n columns. 1 m l o f a b i l e sample and 2 m l a c e t o n i t r i l e / w a t e r (pH 3.0) acetonitrile/water
(pH 3.0)
discarded.
loading
After
(30/70 v/v) were washed w i t h 3 m l hexane. The phase was separated and t h e hexane l a y e r cyclosporine
and
its
metabolites
on
the
e x t r a c t i o n columns the e x t r a c t i o n procedure was continued as described f o r blood samples.
1 m l blood + 25 pl i n t e r n a l standard (containing 250 ng cyclosporine D) + 2.1 m l a c e t o n i t r i l e / w a t e r (pH 3.0) 30/70 (v/v)
e x t r a c t i o n column
+ 3.2 m l a c e t o n i t r i l e + 3.2 m l water (pH 3.0)
I I
shake 20 s (vortex-mixer) c e n t r i f u g e 5 min, 2500 rpm
I I
I
-
draw supernatant through t h e e x t r a c t i o n column
I
+ 3.2 m l a c e t o n i t r i l e / w a t e r (pH 3.0) (20/80 v/v) + 0.5 m l hexane d r y column by a i r stream
I
c e n t r i f u g e 2.0 m l dichloromethane through t h e column
I
remove column m a t e r i a l teflon f r i t s
I clean
I
evaporate e l u a t e a t 50°C under a stream o f n i t r o g e n
I
+ 0.3 m l a c e t o n i t r i l e / w a t e r (pH 3.0)
(50/50 v/v)
+ 0.5 m l hexane
I
shake 20 s (vortex-mixer) c e n t r i f u g e 2 min, 2500 rpm
I
i n j e c t 75 pl i n t o HPLC-system Fig. 4
Extraction o f cyclosporine and i t s metabolites from blood by s o l i d l i q u i d e x t r a c t i o n ( r e f s . 149, 150, 151)
111
Modifications for the extraction of urine samples 1 ml urine + 25 pl internal standard
+ 300
pl
acetonitrile
I
vortex mix (40s) centrifuge 2 min 2500 x g
I (extraction continued like blood) Modifications for the extraction o f bile samples 1 ml bile + 25 pl internal standard + 2.1 ml acetonitrile/water (pH 3.0) + 2 ml hexane
(30/70 v/v)
I
vortex mix (1 min) centrifuge 2 min 2500 x g
I discard hexane layer
suck acetonitrile/water phase through extraction columns
I (extraction continued like blood) Reproducibility, linearity and detection limit of the method used in our laboratory are listed in Table I V . TABLE I V
Calibration curve, detection limit and CV of the method described above Calibration curve range checked
blood bile urine
0-3
mg/l 0-6 mg/l 0-30 mg/l
r 1.o
0.989
0.996
detection limit 25 c9/1 50 @/1 50 d l
cv 6.3% 7.2% 12.3%
112
The CV includes the variation of the cyclosporine metabolites. The recovery in blood ranged from 72-85% with an average of 79.2%. The recoveries of the metabolites 8 , 26, 17 and the internal standard Cyclosporine D are shown i n table V. The cyclosporine metabolites, the parent compound and the internal standard differ i n their lipophilic properties. Thus, the possibility must be taken into account that the recoveries of these compounds are not identical during the extraction procedure. In the table it is shown that the recovery of the internal standard i s signi fi cantly (p
Recoveries of the cyclosporine metabolites and the internal standard Cyclosporine D from bile and urine samples urine
Metabolite Cyclosporine D Metabolite 8 Metabolite 26 Metabolite 17 AV (metabolites)
bile
Recovery % 2 SD 78
-+
18
n
Recovery
8
15.2
+
4.2
7
3 2
78.7 71.8 69.4 73.3
t 8.2
3 3
73.4 78.1
8.9
85.1 79.5
2 4.2
3
6.9
8
%
5 SD
-t 5.2 + 16.6 + 10.7
n
3 9
AV: average. Kabra et al. (ref. 76) described an automated external column extraction by using an advanced automated sample processing unit (AASP, Varian, Walnut Creek, CA, USA) online with the LC. Blood samples were preextracted with acetonitrile/dimethyl sulfoxide (94/4 v/v) and hexane. C8 extraction columns were found to give a good recovery and
precision (refs. 76 and 77). The columns were primed w i t h and t h e aqueous phase + 1 m l water f o l l o w e d a c e t o n i t r i l e / w a t e r (2/3 v / v )
(2/3 v/v)
by a c e t o n i t r i l e / w a t e r columns were
were passed through t h e columns.
loaded on t h e AASP
and purged w i t h
The
acetonitrile/water
(12/13 v / v ) . Wallemacq e t a l .
(ref.
77) a l s o described a c y c l o s p o r i n e e x t r a c t i o n
procedure u s i n g t h e AASP, combines
the
standard
a p p l i c a t e d t o serum samples.
reversed
phase
extraction
with
This method normal
phase
chromatography. With a m o d i f i c a t i o n i t i s p o s s i b l e t o e x t r a c t and analyse already
structurally
metabolites.
elucidated
and
u n t i 1 now unknown
The authors t e s t e d C18, C8, C2, 2-OH,
cyclosporine
CN and S i e x t r a c t i o n
column f o r t h e i r e x t r a c t i o n procedure summarized below and found C8 m a t e r i a l t o g i v e t h e b e s t r e s u l t s . The r e c o v e r i e s f o r these columns were
73% (C18), 70% (C2), 64% (CN), 64% (2-OH),
20% (SI) and 87% f o r C8. F o r
p r o t e i n p r e c i p i t a t i o n a c e t o n i t r i l e and t h e i n t e r n a l standard were added to
a
serum
sample.
The
sample
was
washed
with
hexane
and
the
a c e t o n i t r i l e / w a t e r phase was separated and d i l u t e d w i t h water i n t o t h e AASP
cartridges.
acetonitrile/water
Using
the
(33/67
v/v)
AASP
the
sample
are
purified
with
and hexane and d r i e d by sucking a i r
through t h e e x t r a c t i o n columns p r i o r t o i n j e c t i o n i n t o t h e HPLC system. To move i n t e r f e r i n g components of t h e b l o o d samples Moyer e t a l . ( r e f s . 140 and 141) developed a double c a r t r i d g e s o l i d phase e x t r a c t i o n procedure u s i n g two subsequent e x t r a c t i o n columns f i l l e d w i t h C18 bonded phase
and
silica
gel.
After
protein
precipitation
with
a c e t o n i t r i le/methanol ( 9 : l ) t h e supernatant i s r i n s e d through t h e C18 e x t r a c t i o n column by vacuum and i s washed w i t h waterhnethanol (70/30 v/v) and acetone/hexane
(1/99 v / v ) .
The c y c l o s p o r i n s were e l u t e d w i t h i s o -
propanol and e t h y l a c e t a t e ( 1 / 3 V / V ) and t h e e l u a t e was passed through a s i l i c a g e l e x t r a c t i o n column, which d i d n o t r e t a i n t h e c y c l o s p o r i n s b u t i n t e r f e r i n g m a t e r i a l s . A f t e r evaporation and r e c o n s t i t u t i o n i n t h e m o b i l e phase t h e sample was i n j e c t e d i n t o t h e HPLC. Another approach was t h e e x t r a c t i o n o f c y c l o s p o r i n e by charcoal r e s i n s ( r e f . 133). A f t e r hemolysis by f r e e z i n g and thawing and e x t r a c t i o n w i t h a c e t o n i t r i l e 5 m l aqueous s l u r r y c o n t a i n i n g 10 mg charcoal were p i p e t t e d t h e supernatant. A f t e r c e n t r i f u g a t i o n t h e aqueous to
a g i t a t i n g t h e m i x t u r e on p o r t i o n was decanted and
a shaker and t h e remaining
charcoal e x t r a c t e d w i t h e t h y l a c e t a t e . The e t h y l a c e t a t e was evaporated and t h e r e s i d u e r e c o n s t i t u t e d i n t h e mobile phase.
114
EXTRACTION AND ANALYSIS BY COLUMN-SWITCHING On-line column-switching techniques have been applied in most cases in the analysis of drugs in plasma or serum and urine (refs. 153 and 154). Blood sample clean-up with this technique has been developed to determine cyclosporine. On-1 i ne col umn-switchi ng techniques have the fol 1 owing advantages compared with liquid-liquid and solid-liquid extraction procedures (ref. 155) : 3.2.3
minimal loss of the material to be analysed, 2. short total analysis time, 3. highly selective and reproducible analysis because of fully automated sample preparation, 4. facilitated concentration in trace analysis. 1.
Column-switching techniques for purification and analysis of blood samples consist of the following four steps: 1. hemolysis, deproteinization and pH-adjustment, 2. sample purification on a precolumn,
3. separation on the analytical column, 4. column wash procedures and reequilibration of the system.
In contrast to plasma or serum blood contains more lipids and proteins, which cause column overloading and an increase in column back-pressure if the sample is injected directly requiring a short sample preparation prior to injection. Hemolysis and deproteinization is achieved by adding equal amounts of acetonitrile to the blood samples. This mixture is shaken and centrifuged and the supernatant containing the material to be analysed i s loaded on the extraction column inside the HPLC-system (refs. 121, 135, 138). On the pre-column the sample is purified by washing with non-eluting organic solvents or organic solvent/water mixtures. By combining front-cut and end-cut procedures (ref. 155) early and late eluted components are eliminated and only the relevant part of the chromatogram is switched to the analytical column (heart-cut) (ref. 155). Most column-switching blood sample clean-up techniques for cyclosporine use a heart-cut procedure (ref. 121, 135, 138). Most column-switching techniques described f o r cyclosporine analysis use no internal standard but an actual calibration curve for cyclosporine quantification. They show excel lent reproducibi 1 i ty , recovery and detection limit (Table 111).
115 The column-switching technique described by Nussbaumer e t a l .
(ref.
121) was a m o d i f i c a t i o n o f t h e column-switching technique proposed by E r n i e t a l . ( r e f . 155). A f t e r p r o t e i n p r e c i p i t a t i o n w i t h a c e t o n i t r i l e t h e sample was i n j e c t e d onto a 40 x 4.6 mm 30-40 p RP 8 column kept a t room temperature where i t was washed. P u r i f i c a t i o n and a n a l y s i s o f t h e sample was performed by a step g r a d i e n t u s i n g subsequently m e t h a n o l l w a t e r l acetonitri le, water/acetonitrile, tetrahydrofuran and methanol as eluents. A f t e r clean-up t h e c y c l o s p o r i n e c o n t a i n i n g f r a c t i o n was switched by forward f l u s h i n g t h e pre-column ( r e f , 156) t o t h e 150 x 4.6 mm 5 f l RP
18 a n a l y t i c a l column by h e a r t - c u t .
The a n a l y t i c a l
column was kept a t
70°C. The method described by Schran e t a l .
(ref.
127) and Smith e t a l .
( r e f . 126) i n c l u d e d an automated o n - l i n e l i q u i d - l i q u i d p u r i f i c a t i o n step. P r o t e i n p r e c i p i t a t i o n was achieved by adding acetoni t r i l e / w a t e r (97.5/2.5 v/v)
t o t h e blood sample. The supernatant was i n j e c t e d i n t o t h e m i c r o -
processor c o n t r o l l e d Technicon system (Technicon Instruments, Tarrytown, NY, USA), wherein t h e sample was washed a u t o m a t i c a l l y w i t h hexane and was i n j e c t e d o n t o a C8 column, which was kept a t 75°C. The h i g h temperature
of t h e e x t r a c t i o n column improves s e p a r a t i o n r e s u l t i n g i n s m a l l e r c u t times and l e s s i n t e r f e r i n g m a t e r i a l on t h e a n a l y t i c a l column. Cyclosporine was e l u t e d w i t h a c e t o n i t r i l e / w a t e r o n t o a C18 column u s i n g a h e a r t - c u t
55/45
procedure.
(v/v)
and was loaded
From t h e C18 column
c y c l o s p o r i n e was e l u t e d i s o c r a t i c a l l y by a c e t o n i t r i l e / w a t e r 75/25 ( v / v ) . The b a s i c s t r a t e g i e s of two l a t e r p u b l i s h e d methods ( r e f s . were s i m i l a r t o t h a t of
Nussbaumer e t a l .
(ref.
121).
135,138)
After protein
p r e c i p i t a t i o n w i t h a c e t o n i t r i l e samples were loaded on t h e e x t r a c t i o n columns and p u r i f i e d by a c e t o n i t r i l e / w a t e r .
During e l u t i o n from t h e
e x t r a c t i o n column t h e c y c l o s p o r i n e c o n t a i n i n g f r a c t i o n was switched t o t h e a n a l y t i c a l column by h e a r t - c u t .
The main d i f f e r e n c e t o t h e e a r l i e r
method was t h e use of a p r o t e i n s e p a r a t i o n column, 5 p , 75 x 4.6 mm and a subsequent 75 x 4.6 mm,
3 p octadecyl column as a n a l y t i c a l column ( r e f . 135) and 30 x 4 mm cyano-propyl 5 p precolumn combined w i t h a CLC-TMS, 5 p column (Shimadzu, Kyoto, Japan) which a l l o w lower oven temperatures (60
OC)
f o r b o t h a n a l y t i c a l and e x t r a c t i o n column and low
f l o w r a t e s t o o b t a i n a s u f f i c i e n t separation. The pre-columns were k e p t a t t h e same temperature as t h e a n a l y t i c a l columns. 3.3
CHROMATOGRAPHIC ANALYSIS
OF SANDIMMUN~ (CYCLOSPORINE) AND ITS
METABOLITES Chromatography o f c y c l o s p o r i n e and i t s m e t a b o l i t e s i s discussed i n d e t a i 1 i n t h i s chapter s i n c e chromatography of c y c l o s p o r i n e i s acquainted
116
with some interesting analytical problems that must also be considered in chromatographic analysis of other drugs. However, the measurement of cyclosporine metabolites is currently under discussion and will be of great impact when one or more of the metabolites will prove to be biologically active, which seems to be very likely. One of the chromatographic difficulties in HPLC analysis of cyclosporine is the characteristic peak broadening. It is the result of an interconversion of several cyclosporine conformers exhibiting different chromatographic characteristics. Chromatography at 4OC results in a splitting into single conformer peaks. High temperatures accelerate interconversion of the conformers resulting in sharper peaks, representing an average conformer composition (ref. 157). Further analytical conditions to overcome separation of cyclosporine conformers resulting in peak broadening are: 1. low pH at 3.0 - 5.0 of the mobile phase, composition o f the mobile phase, e.g. gradient elution, 3. using a more polar stationary phase for example C1, C2, or CN. 2.
Further positive effects of HPLC at elevated temperatures are (ref. 158) : 1. High temperatures decrease viscosity of the eluents allowing the use of sorbents with a smaller particle size and/ or pellicular sorbents, resulting in a greater column efficiency. 2. Increasing temperature accelerates sorption by increasing mass transfer and kinetic rates. This effect is of special benefit for chromatography of large or very lipophilic molecules, as which cyclosporine must be regarded.
Adverse effect of increased temperatures are: 1. Faster degradation of the stationary phase. 2. Acceleration of not desirable on-column reactions, as expressed by the dimensionless Damkohler number (ref. 159).
Both effects are of practical value for HPLC analysis of cyclosporine as discussed below. Assessment of cyclosporine analysis by supercritical fluid chromatography (SFC) will be the subject of further investigations. Some authors (ref. 119, 123) observed a fast degradation of their
117 a n a l y t i c a l columns w i t h i n 100-150 h. Other authors r e p o r t e d c o n s i d e r a b l y l o n g e r column l i f e times up t o 3000 i n j e c t e d samples ( r e f s . 137, 157). Reversed phase columns can be operated by temperatures up t o 100°C w i t h o u t degradation (personal communication, Merck, Darmstadt, FRG) the
beginning
of
a n a l y t i c a l columns
cyclosporine
measurement
in
our
laboratory
(C8) had a l s o a very reduced l i f e span.
.
At
our
The main
reasons turned o u t t o be t o o f a s t and f r e q u e n t h e a t i n g and c o o l i n g o f t h e column and t h e i n j e c t i o n o f p o o r l y p u r i f i e d samples. Thus o u r a n a l y t i c a l column was kept a t 75 "C w i t h a small f l o w o f 0.1 ml/min d u r i n g p e r i o d s w i t h o u t analysis.
The a n a l y t i c a l column was guarded by a
precolumn and
a f t e r each a n a l y s i s t h e column was f l u s h e d w i t h a c e t o n i t r i l e / w a t e r
3.0)
(pH
(90/10 v/v) t o remove peaks n o t b e i n g e l u t e d d u r i n g a n a l y s i s t i m e .
We found 2 peaks e l u t i n g a f t e r i n j e c t i n g b l o o d sample e x t r a c t s t h a t c o u l d n o t be detected a f t e r i n j e c t i o n o f c y c l o s p o r i n e standard s o l u t i o n s which were e l i m i n a t e d by t h e a c e t o n i t r i l e f l u s h .
Without t h e column f l u s h i n g
s t e p degradation o f t h e a n a l y t i c a l column occurred a f t e r a few hundred analyses r e s u l t i n g i n a proceeding decrease o f t h e t h e o r e t i c a l p l a t e s of t h e column and an i n c r e a s i n g back pressure o f t h e a n a l y t i c a l system. I n our system t h e r i s e i n pressure was caused by plugged i n l e t f r i t s of t h e precolumn and t h e a n a l y t i c a l column. I t disappeared a f t e r exchanging t h e metal f r i t s by t e f l o n f r i t s ( r e f s . 149 and 150). Lensmeyer e t a l . ( r e f s . 110,148) s e t a s i l i c a s a t u r a t i n g column between t h e pumps and t h e i n j e c t o r v a l v e t o minimize d i s s o l u t i o n o f t h e s i l i c a based sorbent i n t h e a n a l y t i c a l columns. Another approach t o extend column l i f e t i m e was t h e use o f a cyanopropyl
analytical
column which a l l o w s r e d u c t i o n of
the
column temperature t o 60°C as described above. U l t r a v i o l e t absorption from compounds n o t d e r i v e d from c y c l o s p o r i n e can produce peaks i n t h e chromatograms.
E s p e c i a l l y p l a s t i c s o f t e n e r s from
l a b o r a t o r y equipment and from r o t o r seals, valves and f r i t s i n s i d e t h e HPLC-system can d i s t u r b c y c l o s p o r i n e a n a l y s i s . I n our e x t r a c t i o n procedure o n l y d i e t h y l e t h e r cleaned c e n t r i f u g e tubes and i n j e c t o r v i a l s were used a f t e r t h e e l u t i o n step from t h e e x t r a c t i o n column and t h e f i n a l hexane wash removed remaining contaminations (2.2). I n our l a b o r a t o r y t h e f o l l o w i n g chromatographic system was developed and i s c u r r e n t l y i n use ( r e f . 150): R The column used a r e two s e q u e n t i a l 250 x 4.0 mm C8, 7 f l LiChrosorb f i l l e d manu-fix R c a r t r i d g e s guarded by a 50 x 4 mm pre-column f i l l e d w i t h t h e same m a t e r i a l ( a l l Merck, Darmstadt, FRG). Analysis were performed on an HP 1090 HPLC system (Hewlett Packard, Karlsruhe, FRG). Solvent A was water adjusted t o pH 3 w i t h phosphoric acid; s o l v e n t B a c e t o n i t r i l e . The
118
eluents were degassed by ultra-sound and vacuum prior to use and during run by helium insufflation. The flow rate was set at 1.4 ml/min, the detector wavelength at 205 nm and the oven temperature at 75OC. For elution three superimposed sequential linear gradients with increasing steepness resulting in an almost concave gradient were used. The gradient began at 43/57 (v/v) acetonitrile/water (pH 3.0) and increasing to acetonitrile/water (PH 3.0) 49/51 (v/v) until 20 min after injection, to acetonitrile/water (PH 3.0) 59/41 (v/v) until 35 min after injection and to acetonitrile/water (PH 3.0) 80/20 (v/v) until 45 min after injection to stay at this level for 5 min. The gradient was followed by a column clean-up step to remove late eluting lipophilic material otherwise occupying the binding sites of the column material resulting in decreasing efficiency of the column. The column was flushed with acetonitrile/water (pH 3.0) for 5 min and then reequilibrated to the start conditions with an eluent composition of acetonitrile/water (pH 3.0) 43/57 (v/v). Cycle time between two injections was 60 min. The stationary phase used for HPLC analysis ranged from silica gel to RP18 material. For our system C8 sorbent gave the best results. With more polar sorbents like C4, C 1 or CN a reasonable resolution especially of the metabolites 1 and 17 was not possible in our system. Wang et al. compared different columns of the same length and diameter filled with CN, phenyl and four different C18 packings under the same conditions analysing bile samples (ref. 160). In the study C18 columns gave the best results in resolving cyclosporine metabolites, especially 1 and 17. C8 columns were not included i n the study. Rocher et al. (ref. 161) found C8 columns superior to C18 columns in cyclosporine measurement. The two columns were tested under the same conditions and the concentrations measured with the C18 column were higher than those measured with the C8 column due to an interfering peak that was present in high concentration in patients with renal insufficiency and could be separated from the cyclosporine peak using a C8 column. Moyer et al. (refs. 140 and 141) proposed the use of a more polar phase to minimize cyclosporine band broadening. Unfortunately more polar columns are less effective in separating cyclosporine metabolites (ref. 160). One of the major problems in HPLC analysis of cyclosporine and its metabolites is the great number of metabolites. Until now more than 30 could be isolated in our laboratory (Fig. 5 ) . To increase the resolving power of our chromatographic system gradient elution and an elongated analytical column were used. The gradient consists of three linear gradients, since the cyclosporine metabolites detectable with our system
119
are eluted in three main groups (Metabolite 8, 9, 26; 13, 25; 203-218, 17, 1, 18, 21). Each of the linear gradients was designed to get the best resolution possible o f each metabolite group. Superposition o f the three linear gradient resulted in the concave gradient described (Fig. 6 ) . Mass spectrometric data of cyclosporine metabolites corresponding to Fig. 5, isolated from human bile or generated by human liver microsomes.
TABLE V I
metabol i te
molecular weight
f ormu 1 a Cs+20 cs + 0
1
H355
1234.4
2
17
1218.4
3 4
8
1234.6 1232.4
5
H410/420
6 7 8
203-218
9 10 11
H230
1216.4 1220.4 1217.4
c s + 2 0 CS + 2 0 - 2 H CS+ 0 - 2 H c s + 2 0 CS + 2 0
1232.4
CS + 2 0
1250.4
c s + 3 0
1264.4
CS + 4 0
1248.4
CS + 3 0 cs + 0 c s + 2 0
-
-
2 H
-
CH3
CH3
2 H 2 H 2 H
12
18
1218.4
13 14 15
H310 26
1234.6 1234.6 1394.2
c s + 2 0 Cs + 0 + glucoronic
1219.4
c s + 2 0
1250.4
c s + 3 0
H235
acid 16 17
-
18
1
1218.4
cs +
19
10
1234.4
20
1251.4
21
1248.4
CS + 3 0
1234.6 1188.4
c s + 2 0 cs
1203.4
cs +
0
1203.4
cs +
0
1219.4
c s + 2 0
1219.4
c s + 2 0
1235.4
c s + 3 0
1204.4
+
23 24 25 26 27
16 21 13
9
28 29
25
cs
CH3
-
CH3
0
c s + 2 0 c s + 4 0
22
-
0
-
2 H
-
-
CH3 CH3
CH3
CH3 CH3 CH3 CH3
120
26 -81 -
7
4 24 5 23 --
2---12 18
10 20 -
-
9 17 1115
28
27
3---14
I
0 Fig. 5
1
10
I
20
I
30
I
40
1
50
time (min)
Shows a chromatogram of a sample containing human microsomes at a concentration o f 3 mg protein/ml and cyclosporine. Cyclosporine and the microsomes were incubated for 2 h prior to extraction and analysis as described in the text (2.2, 3.3) and refs. 149151. Cyclosporine D was used as internal standard. The corresponding fractions were isolated by HPLC and further analysed by FABMS. The mass spectrometric data are listed in Table V I . The numbers of the metabolites in the Table correspond to the fraction numbers in the chromatogram. The nomenclature as proposed by refs. 94, 95 and 151 is used in the metabolite column o f Table V I . HPLC parameters Figure 5: Detector wavqlength: 205 nm, oven temperature: 75OC, plot attenuation: 2 , flow: 1.4 ml/min. Abbreviation Cs: cyclosporine
121
I
0
0
10
10
I
20
30
40
50 0
20
30
40
50 0
10
20
30
4 0 0 time (min)
fi, 10
20
30
40
50
time (min)
0
-.-Q
.
10
20
30
40
I
50
122
With the HPLC procedure described, 11 structurally elucidated as well as 7 not yet structurally known cyclosporine metabolites could be quantified and isolated from urine and bile of grafted patients (Fig. 7 ) . For peak identification the chromatogram was fractionated and the corresponding materi a1 was isolated by semi -preparative HPLC. Constituents of an isolated fraction were regarded to be identical with authentic cyclosporine metabolites if: 1. no peak with an equal retention time was found in blank samples of not cyclosporine treated patients, 2. the unspecific cyclosporine radioimmunoassay cross-reacted with the fraction in question, 3. the material in the fraction showed mass spectrometric properties implying the structure of a cyclosporine derivative, 4 . the isolated fraction and the authentic metabolite have the same retention time under the chromatographic conditions described above (Fig. 8)
J I
0
I
10
I
20
I
30
I
40
I
50 tima (min)
Fig. 7
Chromatogram of a urine extract of a liver grafted patient. The sample was extracted and analysed according to 2.2, 3.3, refs. 149-151. The HPLC system and parameters were the same as described in Fig. 6. The numbers indicate cyclosporine metabolites not yet structurally identfied using the nomenclature developed in our laboratory (ref. 151). These metabolites could be i s o lated by semi-preparative HPLC and their biological activity was evaluated. They can be quantitatively determined from the chromatograms using the internal standard cyclosporine D (Cs D). The corresponding FAB-MS data are listed in Table 6. Cs: cyclosporine. Arrow indicates injection.
123 1
fraction 21
L A . 1 10 20
I
30
0
(0
timo (min)
I 0
I
I
1
1
10
20
30
40
time (min)
Fig. 8
Chromatograms o f f r a c t i o n 21 ( t o p ) i s o l a t e d from a u r i n e e x t r a c t of a l i v e r g r a f t e d and c y c l o s p o r i n e t r e a t e d p a t i e n t and t h e a u t h e n t i c m e t a b o l i t e 16 (bottom), i s o l a t e d and i d e n t i f i e d as described i n r e f s . 94 and 95. The chromatographic c o n d i t i o n s and HPLC parameters were t h e same as described i n 3.3 and r e f . 150. The a n a l y s i s were s t o ped a f t e r 40 min. Arrow i n d i c a t e s i n j e c t i o n . Both peaks a r e e l u t e d from t h e column w i t h a r e t e n t i o n t i m e o f 33.7 min.
(i)
I n HPLC a n a l y s i s considered:
o f cyclosporine
the following
problems must
be
1. The l a r g e number o f c y c l o s p o r i n e m e t a b o l i t e s and t h e i r o n l y small s t r u c t u r a l d i fferences make a reasonable r e s o l u t i o n almost impossible. Figure 5 shows t h e m e t a b o l i t e s
that
c o u l d be i s o l a t e d by
semi-
p r e p a r a t i v e HPLC from a suspension o f human l i v e r microsomes (3 mg/ml p r o t e i n ) a f t e r i n c u b a t i o n w i t h 10 19 c y c l o s p o r i n e f o r 2 h. The numbers i n d i c a t e t h e peaks o r r e g i o n s i n t h e chromatogram where t h e c o r r e s ponding
metabolite
structural
data
as
could
be
isolated
elucidated
by
and
fast
are atom
assigned
to
bombardment
the mass
spectrometry (FAB-MS). These d a t a i n d i c a t e t h a t several peaks i n t h e chromatogram represent a conglomerate o f several m e t a b o l i t e s . AS
124 example t h e i s o l a t e d f r a c t i o n c o n t a i n i n g m e t a b o l i t e 9 i s shown i n F i g . 9. Although t h e peaks seem symmetric and pure a f t e r i n j e c t i n g t h e i s o l a t e d f r a c t i o n i n t o t h e HPLC, FAB-MS d e t e c t s t h r e e peaks r e p r e s e n t i n g d i f f e r e n t cyclosporine derivatives.
Fraction 8
HPLC
1 /
r
’“1 -
0
10
20
30
40
12181 11230
Qh
1
0 1000
.
1200
50 time (min)
- FAB - ms 0
1400 molacular weight
Fig. 9
The chromatogram (top) shows f r a c t i o n 8 c o n t a i n i n g m e t a b o l i t e 9 (nomenclature r e f . 94) , i s o l a t e d by semi -preparat ive HPLC from u r i n e o f a l i v e r g r a f t e d p a t i e n t and r e i n j e c t e d i n t o t h e HPLC system. The chromatographic c o n d i t i o n s and HPLC parameters a r e t h e same as described i n 3.3, Fig. 6, r e f s . 150 and 151. Although t h e peak i s symmetric and seems t o be caused by a monosubstance, t h e corresponding FAB-MS (negative mode) (bottom) a n a l y s i s showed a t l e a s t 3 d i f f e r e n t c y c l o s p o r i n e d e r i v a t i v e s ( r e f . 151). Arrow i n d i c a t e s i n j e c t i o n .
2. I t i s very l i k e l y t h a t t h e chromatographic c o n d i t i o n s (pH 3.0,
75OC)
change t h e c y c l o s p o r i n e m e t a b o l i t e p a t t e r n detected. Henricsson e t a l . ( r e f . 162) r e p o r t e d t h e i d e n t i f i c a t i o n o f a s u l f a t e d c y c l o s p o r i n e d e r i v a t i v e , i s o l a t e d by ion-exchange chromatography. Unter HPLC c o n d i t i o n s described above t h e b i n d i n g of s u l f a t e d o r glucuronated d e r i v a t i v e s can be hydrolyzed.
3. P l a s t i c m a t e r i a l leached from l a b o r a t o r y t o o l s have s i m i l a r s p e c t r a l properties
as
the cyclosporins
and s i m i l a r r e t e n t i o n times. F i g . 10
125 shows a chromatogram o f a b l o o d sample o f a l i v e r g r a f t e d p a t i e n t w i t h o u t c y c l o s p o r i n e therapy. The sample had c o n t a c t w i t h a p o l y p r o p y l e n t u b e o f t h e evaporation apparatus. Several peaks i n t h e range o f t h e c y c l o s p o r i n e m e t a b o l i t e s were detected. The chromatogram below i n t h e same Fig. shows a chromatogram o f p l a s t i c material.
t h e same r e - e x t r a c t e d
sample w i t h o u t
interfering
I n t e r f e r e n c e o f o t h e r drugs w i t h t h e HPLC assay has
been reported f o r sulfamethoxazole ( r e f . 163). 4. The q u a n t i f i c a t i o n o f c y c l o s p o r i n e m e t a b o l i t e s i s i n f l u e n c e d by t h e chromatograpic system used. A peak s e p a r a t i o n down t o t h e b a s e l i n e i s n o t p o s s i b l e f o r most o f t h e c y c l o s p o r i n e m e t a b o l i t e s . The peak area t h e r e f o r e depends on t h e i n t e g r a t i o n s o f t w a r e and i n t e g r a t i o n method used. As o u t l i n e d above most peaks do n o t represent a monosubstance. Using an HPLC system w i t h a g r e a t e r r e s o l v i n g power may r e s u l t i n two o r more s m a l l e r peaks ( r e f . 161). Therefore t h e r e p r o d u c i b i l i t y i s good f o r one HPLC system b u t comparison o f t h e m e t a b o l i t e concent r a t i o n s measured w i t h o t h e r l a b o r a t o r i e s i s d i f f i c u l t . Lensmeyer e t a l .
(ref.
148) compared t h r e e chromatographic systems
u s i n g a 80 x 4 mm 5 p o c t y l column, a 160x4 mm 5 p s i l i c a g e l column and a 250 x 4.6
mm cyano-propyl
column.
p r e f e r r e d and r u n w i t h water/ acidln-butylamine (600/390/20/0.16/ r e s u l t s i n t h e systems t e s t e d .
The cyano propyl-column
was
a c e t o n i t r i leltetrahydrofuranelacetic 0.1 v/v/v/v/v/) gave t h e b e s t
The chromatograms
show an incomplete
separation o f t h e m e t a b o l i t e s 1 and 18. Bowers e t a l .
( r e f . 145) simultaneously analysed c y c l o s p o r i n e and i t s
m e t a b o l i t e s on a 50x4.6 mm 3 p octadecyl column u s i n g an i s o c r a t i c g r a d i e n t w i t h waterlmethanollacetonitrile temperature o f 70°C.
(34120146
v/v/v/)
a t an oven
Incomplete s e p a r a t i o n o f t h e h y d r o p h i l i c group of
cyclosporine metabolites
was
achieved and t h e m e t a b o l i t e s
were
not
q u a n t i t i v e l y determined i n b i l e . Burckart e t a l . ( r e f . 164) e x t r a c t e d c y c l o s p o r i n e and i t s m e t a b o l i t e s from pooled b i l e u s i n g a m o d i f i e d e x t r a c t i o n procedure according t o Sawchuk e t a l . ( r e f . 111). c y c l o s p o r i n e and i t s m e t a b o l i t e s were e l u t e d from t h e a n a l y t i c a l column by an a c e t o n i t r i l e l w a t e r g r a d i e n t . Rosano e t a l .
(ref.
109) e x t r a c t e d c y c l o s p o r i n e and i t s m e t a b o l i t e s
from blood u s i n g a l i q u i d - l i q u i d e x t r a c t i o n procedure w i t h d i e t h y l e t h e r . Cyclosporine and i t s m e t a b o l i t e s 1, 17 and 21 were seperated i s o c r a t i c l y . Wallemacq e t a l .
( r e f s . 77 and 165) used a normal phase HPLC system
f o r a n a l y s i s o f c y c l o s p o r i n e and i t s m e t a b o l i t e s . A 3 p p a r t i c l e s i z e CN column
and
hexane:
isopropanol
(85115 v/v)
as m o b i l e phase were used
126 ( r e f s . 77 and 165). Column temperature was 50
OC.
separated by semi-preparative p r o p e r t i e s were evaluated.
their
I
0
I
0
HPLC
and
28 m e t a b o l i t e s c o u l d be
mass
spectrometric
,
10
20
30
40 50 time (min)
10
20
30
40
50 time(min)
Fig. 10 The chromatograms show t h e HPLC a n a l y s i s o f t h e same blood sample received from a l i v e r g r a f t e d p a t i e n t w i t h o u t c y c l o s p o r i n e therapy f o r 10 days. The e x t r a c t i o n procedure, t h e chromat o g r a p h i c c o n d i t i o n s and HPLC parameters were t h e same as described b e f o r e (2.2, 3.3, F i g . 6, r e f s . 149-151). During e x t r a c t i o n , t h e sample showed i n t h e chromatogram above had come i n t o c o n t a c t w i t h a p o l y p r o p y l e n t u b e o f t h e evaporation apparatus r e s u l t i n g i n contamination w i t h p l a s t i c m a t e r i a l . The arrows w i t h t h e numbers according t o Maurer's nomenclature ( r e f s . 94 and 95) i n d i c a t e t h e r e t e n t i o n times o f t h e c y c l o s p o r i n e metabolites. The chromatogram shows t h e a n a l y s i s o f t h e same blood sample w i t h o u t contaminating m a t e r i a l s . Both samples c o n t a i n t h e i n t e r n a l standard c y c l o s p o r i n e D (CsD). Arrow i n d i c a t e s i n j e c t ion. 4.
TROUBLE SHOOTING I N DEVELOPMENT OF BLOOD SAMPLE CLEAN-UP PROCEDURES Unexpected losses o f t h e compounds o f i n t e r e s t d u r i n g blood sample
clean-up can be caused by t h e f o l l o w i n g f a c t o r s ( r e f . 2 ) : 1. Chemical breakdown o r a d s o r p t i o n o f t h e compounds o f i n t e r e s t because of a t o o l o n g s t o r i n g p e r i o d o r inadequate s t o r i n g c o n d i t i o n s , 2. adsorption o f t h e drugs on m e t a l , g l a s s o r p l a s t i c surfaces of
1 aboratory equipment,
127 3. c o - p r e c i p i t a t i o n d u r i n g d e p r o t e i n i z a t i o n , 4. inadequate pH o f t h e b u f f e r s and s o l v e n t s used, 5 . low p a r t i t i o n c o e f f i c i e n t i n t h e o r g a n i c e x t r a c t i o n s o l v e n t , 6. i n s u f f i c i e n t adsorption on t h e s o l i d phase m a t e r i a l used, 7. chemical breakdown because o f chemical, b i o l o g i c a l , photochemical and/or thermal i n s t a b i l i t y , 8. c h e l a t i o n e.g. w i t h heavy metals o r i n t e r c a l a t i o n ,
9. l o s s d u r i n g t h e evaporation s t e p because o f v o l a t i l i t y o f t h e drug, 10. i n s o l u b l e r e s i d u e a f t e r evaporation, 11. i n s u f f i c i e n t d e r i v a t i z a t i o n because o f an incomplete r e a c t i o n , by-products and removal o f excess reagents Contamination o f t h e sample d u r i n g e x t r a c t i o n and a n a l y s i s can be caused by: 1. c o e x t r a c t i o n o f i n t e r f e r i n g m a t e r i a l such as 1 i p o p r o t e i n s and 1 ip i d s / l ip o i ds , 2. use o f contaminated s o l v e n t s o r s o l v e n t s o f a minor p u r i t y , 3. i n t e r f e r i n g residues i n glass-ware and l a b o r a t o r y t o o l s , 4. leached p l a s t i c s o f t e n e r s from l a b o r a t o r y t o o l s and e x t r a c t i o n columns, 5. unadequately primed s o l i d phase column m a t e r i a l , 6. contaminated i n j e c t o r needle o f t h e i n j e c t i o n system, 7. s o l u b i l i s e d p l a s t i c m a t e r i a l from t h e v i a l s and t h e v i a l caps o f t h e i n j e c t i o n system, 8. s o l u b i l i s e d p l a s t i c s o f t e n e r s from t h e valves, r o t o r s e a l s and c a p i l l a r i e s o f t h e HPLC-system. REFERENCES 1.
2. 3. 4. 5. 6. 7. 8.
9. 10. 11.
O.L. Garver, H. Dekirmenjian, J.M. Davis, R. Casper, and S.
Ericksen, Am. J . P s y c h i a t r y , 134 (1977) 304-307. J.A.F de S i l v a , i n : Trace o r g a n i c sample handling, E. Reid (ed.), E l l i s Horwood, Chichester, 1981, pp 192-204. M. Zakaria and P.R. Brown, Anal. Biochem., 25 (1982) 120. R. Prasad, M.S. Maddux, M.F. Mozes, N.S. Bishop and A. Maturen, T r a n s p l a n t a t i o n , 39 (1985) 667-669. P.R. Brown, Chromatogr. Sci., 28 (1984) 31-48. J.A.F. de S i l v a J . Chromatogr., 273 (1983) 19-42. W.O. Pierce, T.C. Lamoreaux, F.M. Urry, .L. Kopjak and B.S. F i n k l e , J. Anal. Toxicol., 2 (1978) 26-31. 0. Sohn, J. Simon, M.A. Hanna and G. G h a l i , J. Chromatogr. S c i . , 10 (1972) 294-296. J.A.F. de S i l v a , J. Chromatogr., 340 (1985) 3-30. J.A.F. de S i l v a , Anorexigenics, a n t i p s y c h o t i c s , and a n t i a n x i e t y drugs, i n K. T s u j i (ed.), GLC and HPLC d e t e r m i n a t i o n o f t h e r a p e u t i c agents, v o l . 2, Chromatogr. S c i . , Marcel Dekker, 1978, pp. 581-636. E.H. F o e r s t e r , J. Dempsey and J.C. G a r r i o t t , J . Anal. T o x i c o l . , 3 (1979) 87-91.
12. T.W. Guentert, G.M. Wientjes, R.A. U ton, D.L. Combs and S. Riegelman, J. Chromatogr. , 163 (1979p 373-382. 13. T.A. Jennison, B.S. F i n k l e , D.M. Chinn and D.J. Crouch, J. Chromatogr. Sci., 17 (1979) 64-74. 14. S.H. Wallace, V.P. Shah and S . Riegelman, J. Pharm. Sci., 66 (1977) 527-530. 15. S. Loche, A.B. Rifkind, E. Stoner, A. Faedda, M.C. Garabedian and M.I. New, Ther. Drug Monit., 8 (1986) 214-218. 16. B. Scales and P.B. Copsey, J. Pharm. Pharmacol., 27 (1975) 430-433. 17. D. Westerlund, B. Petterson and J. C a r l q v i s t , J. Pharm. Sci., 71 (1982) 1148-1151. 18. R.D. Budd and D.F. Mathis, J. Anal. Toxicol., 6 (1982) 317-320. 19. W. Duenges, E. Bergheim-Irps, H. Straubs and R.E. Kaiser, J. Chromatogr., 145 (1978) 265-274. 20. C.V. P u g l i s i and J.A.F. de S i l v a , J. Chromatogr., 226 (1981) 135-146. 21. H.M. Stevens, J. Forensic Sci. Sot., 25 (1985) 67-80. 22. K. Worm, 2 . Rechtsmed., 77 (1975) 41-45. 23. J.K. Stoltenborg, C.V. P u g l i s i , F. Rubio and F.M. Vane, J. Pharm. Sci., 70 (1981) 1207-1212. 24. J.E. O'Brien, V. Abbey, G. Hinsvark, J. Perel and M. F i n s t e r , J. Pharm. Sci., 68 (1979) 75-78. 25. A. Viala, J.P. Can0 and A. Durand, J. Chromatogr., 111 (1975) 299-303. 26. Y. Bergqvist and S . Eckerbom, J. Chromatogr., 306 (1984) 147-153. 27. E. Pussard, F. Verdier and M.C. Blayo, J. Chromatogr., 374 (1986) 111-118. 28. F.C. C h u r c h i l l , D.L. Mount and I.K. Schwartz, J. Chromatogr., 274 (1983) 111-120. 29. W.C. Randolph, V.L. Osborne, S.S. Wal kenstein and A.P. I n t o c c i a , J. Pharm. Sci., 66 (1977) 1148-1150. 30. D. Shapcott and B. Lemieux, C l i n . Biochem., 8 (1975) 283-287. 31. M.S. Lennard, J.H. S i l a s , A.J. Smith and G.T. Tucker, J. Chromatogr., 133 (1977) 165-166. 32. P.M. Kabra, G.L. Steven and L.J. Marton, J. Chromatogr., 150 (1978) 355-360. 33. N. Scagliola, R. J u l i e n and C. Dreux, Ann. B i o l . C l i n . (Paris), 34 (1976) 27-32. 34. K.M. Wolfram and T.D. Bjornsson, J. Chromatogr., 183 (1980) 57-64. 35. M.S. M i l l e r and A.J. Gandolfi, Anaesthesiology, 51 (1979) 542-544. 36. P. Moore, K. Mai and C.M. Lai , J. Pharm. Sci., 75 (1986) 424-426. 37. J. A. Vinson, D.D. Patel and A.H. P a t e l , Anal. Chem., 49 (1977) 163-175. 38. J.N. P i r l , V.M. Pappa and J.J. Spikes, 3. Anal. Toxicol., 3 (1979) 129-132. 39. S.E. T e t t , D.J. C u t l e r and K.F. Brown, J. Chromatogr., 344 (1983) 241-248. 40. S.A. Stout and C.L. De Vane, Psychopharmacology ( B e r l i n ) , 84 (1984) 39-41. 41. M.M. Kochar, L.T. Bavda and R.S. Bushan, Res. Commun. Chem. Pathol. Pharmacol , 14 (1976) 367-376. 42. D.E. Schwartz and U.B. Ranalder, Biomed. Mass Spectrom., 8 (1981) 589-592. ... 43. J.M. Grindel, P.F. T i l t o n and R.D. Shaffer, J. Pharm. Sci., 68 (1979) 718-721. 44. T. Nakagawa, T. Higuchi, J.L. Haslam and R.D. Shaffer, J. Pharm. Sci., 68 (1979) 718-721. 45. R.K. Lynn, R.H. Leger, W.P. Gordon, G.D. Olsen and N. Gerber, J. Chromatogr., 131 (1977) 329-340. 46. S. Felby, Forensic Sci. I n t . , 13 (1979) 145-150. 47. M.W. White, J. Chromatogr., 178 (1979) 229-240.
.
129 48. 49. 50.
51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83.
84. 85.
L.A. A s a l i , R.L. N a t i o n and K.F. Brown, J. Chromatogr., 278 (1983) 326-335. M. S t ef e k , L. Benes and V. Kovac k, Biomed. Mass Spectrom., 12 (1985) 388-392. P.M. Kabra, G. G o t e l l i , R. S t a n f 11 and L.J. Marton, C l i n . Chem., 22 (1976) 824-827. F. de Bros and E.M. Wolshin, Anal. Chem., 50 (1978) 521-525. C.J. Reddrop, W. Riess and T.F. S l a t e r , J. Chromatogr. 192 (1980) 3 7 5 -386. A.J. Wood, K. C a r r , R.E V e s t a l , S. B e l c h er, G.R. W i l k i n s o n and D.G. Shand, B r . J. C l i n . Pharmacol., 6 (1978) 345-350. C.V. P u g l i s i , F.J. F e r r a r a Jr., J.A.F. de S i l v a , J. Chromatogr., 275 (1983) 319-333. H. Sheehan and P. Haythorn, J. Chromatogr., 117 (1976) 392-398. 6. Levine, R. Blanke and J. V a l e n t o u r , J. Anal. T o x i c o l . , 7 (1983) 207-208. E.M. Wolshin, M.H. Cavanough, C.V. Manion, M.B. Meyer, E. Milano, C.R. Reardon and S.M. Wolshin, J. Pharm. Sci. , 67 (1978) 1962-1695. D.E. Mundy, M.P. Q u i c k and A.F. Machin, J. Chromatogr., 121 (1976) 335-342. H.S. Chun Hong, R.J. Steltenkamp and N.L. Smith, 3. Pharm. Sci., 64 (1975) 2007-2008. P.O. Edlund, J. Chromatogr., 206 (1981) 109-116. J. B r e i t e r , R. H e l g e r and H. Lang, F o r e n s i c Sci. , 7 (1976) 131-140. J. B r e i t e r , Arzneim. Forsch., 28 (1978) 1941-1944. A.W. Missen, C l i n . Chem., 22 (1976) 927-928. H.H. McCurdy, J. Anal. T o x i c o l . , 4 (1980) 82-85. H.H. McCurdy, L.J. Lewellen , J.C. Cagle and E.T. Solomons, J. Anal. T o x ic ol , 5 (1981) 253-257. H.J. S c h l i c h t and H.P. Gelbke, Z. Rechtsmed, 81 (1978) 25-30. 6. Ford, J. Vine and T.R. Watson, J. Anal. T oxicol. , 7 (1983) 116-118. J.A. A p f f e l , U.A.T. Brinkman and R.W. F r e i , J. L i q . Chromatogr., 5 (1982) 2413-2422. T.R. Mac Gregor, P.R. Fa r i n a , M. Hagopian, N . Hay, H.J. Esber and J.J. K e i r n s , Ther. Drug M o n i t . , 6 (1984) 83-90. S . N . Rao, A.K. Dhar, K. Kutt and M. Okamoto, J. Chromatogr., 231 (1982) 341-348. K.D.G. Edwards and M. McCredie, Med. J. A u s t r a l i a , 54 (1967) 534-539. N. E l a h i , 3 . Anal. To x i c o l . , 3 (1979) 35-38. J.M.F. Douse, J. Chromatogr., 301 (1984) 137-154. G. Cimbura and E. Koves, J. Anal. T o x i c o l . , 5 (1981) 296-299. A.W. Missen and J.F. Lewin, C l i n . Chim. Acta, 53 (1974) 389-390. P.M. Kabra and J.H. Wa l l , J. Chromatogr., 385 (1987) 305-310. P.E. Wallemacq and M. Lesne, J. Chromatogr., 413 (1987) 131-140. M. Bogusz, J. G i e r z and J. B i a l k a , F o r e n s i c Sci. , 12 (1978) 73-82. G. I b ra him, S. Andryauskas and M.L. Bastos, J. Chromatogr., 108 (1975) 107-116. G. Machata and W. V y c u d i l i k , Arch. T o x i c o l . , 33 (1975) 115-122. N.E. Hoffman, A.M. Rustum, E.J. Quebbeman, A.A.R. Hamid and R.K. Ausman, J. L i q . Chromatogr., 8 (1985) 2511-2520. J. F u jimo t o and R. Wang, T o x i c o l . Appl. Pharmacol., 16 (1970) 186-193. H. KO and E.N. P e t z o l d , I s o l a t i o n o f samples p r i o r t o chromatography, i n K. T s u j i and W. Morozowich (ed.), GLC and HPLC d e t e r m i n a t i o n o f t h e r a p e u t i c agents, v o l . 1, Chromatogr. S c i . , Marcel Dekker, (1978), pp 278-299. Canadian M u l t i c e n t r e T r i a l Group, N. Eng. J. Med., 309 (1983) 809. European M u l t i c e n t r e T r i a l Group, L a n c e t , ii (1983) 986.
.
130 86.
K. Uchida, T. Morimoto, N. Nakanisi, N. Yamada, Y. Tominaga, A. Orihara, T. Kondo, T. Morimoto, K. Morozumi, T. Kano and H. Takagi, Dev. Toxicol. Envir. Sci., 14 (1986) 163-166. 87. P. Donatsch, E. Abisch, M. Homberger, R. Traber, M. Trapp and R. Voges, J. Immunoassay, 2 (1981) 19-32. 88. A. Ruegger, M. Kuhn, H. R. L i c h t i , R. Hu uenin, C. Quiquerez and A . von Wartburg, Helv. Chim. Acta, 59 (19767 1075-1092. 89. H.R. L o o s l i , H. Kessler, H. Oschkinat, H.P. Weber, T.J. Petcher and A. Widmer, Helv. Chim. Acta, 68 (1985) 682-703. 90. T.J. Petcher, H.P. Weber and A. Ruegger, Helv. Chim. Acta, 59 (1976) 1480 1488. 91. R.M. Wenger, Helv. Chim. Acta, 67 (1984) 502-525. 92. T. Kronbach, V. Fischer and U.A. Meyer, C l i n . Pharmacol. Ther., 43 (1988) 630-635. 93. R.J. Ptachcinski, R. Ventkataramanan and G. J. Burckart, C l i n . Pharmacokinet., 11 (1986) 107-132. 94. G. Maurer, H.R. L o o s l i , E. Schreier and B. K e l l e r , Drug. Metab. Dispos. , 12 (1984) 120-126. 95. G. Maurer and M. Lemaire, Transplant. Proc., 18 (1986) 25-34. 96. N.R. Hartman, L.A. Trimble, J.C. Vederas and I . Jardine, Biochem. Biophys. Res. Commun. , 133 (1985) 964-971. 97 * H. Hashem. R. Ventkataramanan, G.J. Burckart, L. Makowka, T.E. S t a r z l , E. Fu and L.K. Wong, Transplant. Proc., 20 (1988) 176-178. 98. Members o f t h e National Academy o f C1 i n i c a l BiochemistrylAmerican Association f o r C l i n i c a l Chemistry Task Force on Cyclosporine, C l i n . Chem., 33 (1987) 1269-1288. 99. M. Lemaire and J.T. Tillement, J. Pharm. Pharmacol., 34 (1982) 715-718. 100. W. Mraz, R.A. Zink and A. Graf, Transplant. Proc., 15 (1983) 2426-2429. 101. B.S. Zaghloul, R.J. Ptachcinski, G.J. Burckart and R. Ventkataramanan , J. C1 i n . Pharmacol , 27 (1987) 240-2. 102. J. Gurecke, V. Warty and A. Sanghvi, Transplant. Proc., 17 (1985) 1997-2002. 103. W.M. Awni and R. J. Sawchuck, Drug. Metab. Disp., 13 (1985) 127-132. 104. S. Henricsson, J. Pharm. Pharmacol., 39 (1987) 384-385. 105. S. Robson, J. Neuberger, G. Alexander and R. Williams, B r . med. J., 288 (1984) 1317-1318. 106. H. Dieperink, Lancet, i (1983) 416. 107. M. Wenk, F. F o l l a t h and E. Abisch, C l i n . Chem., 29 (1983) 1865. 108. P. S u i t , F. van Lente and C. E. Pippenger, C l i n . Chem., 34 (1988) 597. 109. T.G. Rosano, B.M. Freed, 3. C e r i l l i and Lempert N., Transplantation, 42 (1986) 262-266. 110. G.L. Lensmeyer and B.L. F i e l d s , C l i n . Chem., 31 (1985) 196-201. 111. D.J. Freeman, A. Laupacis, P.A. Keown, C.R. S t i l l e r and S.G. Carruthers, B r i t . J. C l i n . Pharmacol., 18 (1984) 887-893. 112. T.G. Rosano, C l i n . Chem., 31 (1985) 410-412. 113. R.W. Yatscoff, D.N. Rush and J.R. J e f f r e y , C l i n . Chem., 30 (1984) 1812-1814. 114. R.P. Agarwal, R.A. McPherson and G.A. Threatle, Ther. Drug Monit., 7 (1985) 61-65. 115. J.M. P o t t e r and H. S e l f , Ther. Drug Monit., 8 (1986) 122-123. 116. A. Johnston, J.T. Marsden and D.W. H o l t , Ther. Drug. Monit., 8 (1986) 200-204. 117. W. Niederberger, P. Schaub and T. Beveridge, J. Chromatogr., 182 (1989) 454-457. 118. J. C. G f e l l e r , A.K. Beck and D. Seebach, Helv. Chim. Acta, 63 (1980) 728-732. 119. R.J. Sawchuk and L.L. C a r t i e r , C l i n . Chem., 27 (1981) 1368-1371. 120. R. Lawrence and M.C. Allwood, J. Pharm. Pharmacol., 32 (1980) 100.
-
.
131 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151.
K. Nussbaumer, W. N i e d e r b e r g e r and H.P. K e l l e r , J. H i g h Resol. Chromatogr., Commun., 5 (1982) 424-427. G.C. Yee, D.J. Gmur and M.S. Kennedy, C l i n . Chem. 2 8 (1982) 2269-2271. B. Leyland-Jones, A. C l a r k , W. K r e i s , R. Dinsmore, R. O ' R e i l l y and C.W. Young, Res. Commun. Chem. P a t h o l . Pharmacol., 37 (1982) 431-444. S.G. C a r r u t h e r s , D.J. Freeman, J.C. K o o g l e r , W. Howson, P.A. Keown, A. Laupacis and C. R. S t i l l e r , C l i n . Chem. 29 (1983) 180-183. R.L. Kates and P. L a t i n i , J. Chromatogr., 309 (1984) 441-447. H.P. Smith and W.T. Robinson, J . Chromatogr., 305 (1984) 353-362. H.F. Schran, W.T. Robinson and E. Abisch, B i o a n a l y t i c a l c o n s i d e r a t i o n s , i n J.F. Bore1 (ed.), C i c l o s p o r i n , Progress i n A l l e r g y , Karger, Basle, v o l . 38, (1986) pp 73-92. R. G a r a f f o and P. Lapalus, J. Chromatogr., 337 (1985) 416-422. D.J. Gmur, G.C. Yee and M.S. Kennedy, J. Chromatogr., 344 (1985) 422-427. M.K. A r a v i n d , J.N. M i c e l i and R.E. Kauffman, J. Chromatogr., 344 (1985) 428-432. K. Takada, N. Shibata, H. Yoshimura, H. Yoshikawa and S . M u r a n i s k i , Res. Commun. Chem. Pathol Pharmacol., 48 (1985) 369-380. A.K. S h i b a b i , J. Scaro and R.M. David, J. L i q . Chromatogr., 8 (1985) 2641-2648. P.M. Kabra, J.H. Wall and N. B l a n c k e a r t , C l i n . Chem., 3 1 (1985) 1717-1720. A . Sanghvi, H. Seltman and W. Diven, Arch. P a t h o l . Lab. Med., 109 (1985) 1072-1075. G. Hamilton, E. Roth, E. W a l l i s c h and F. T i c h y , J . Chromatogr., 341 (1985) 411-419. V. T o u l e t , M.C. Saux, C. Rouquette, F. P e n o u i l and A. B r a c h e t L i e r m a i n , Ann. B i o l . Chem. ( P a r i s ) , 44 (1986) 517-521. G.C. Kahn, L.M. Shaw and M.D. Kane, J. Anal. T o x i c o l . , 10 (1986) 28-34. H. Hosotsubo, J. Takezawa, N. Taenaka, K. Hosotsubo, and I. Yoshiya, J. Chromatogr., 383 (1986) 349-355. G. Schumann, M. O e l l e r i c h , K. W o n i g e i t and M. Wrenger, F r e s e n i u s Z. Anal. Chem., 324 (1986) 328-329. T.P. Moyer, J.R. Charlson and L.E. Ebnet, Ther. Drug M o n i t . , 8 (1986) 466-468. T.P. Moyer, P. Johnson, S.M. Faynor and S. S t e r i o f f , C l i n . Biochem. (Ottawa), 19 (1986) 83-89. T. Annesley, K. Matz, T. Balogh, L. C l a y t o n and D. G i a c h e r i o , C l i n . Chem., 32 (1986) 1407-1409. J. Klima, R. Petrasek and V. Kocandrle, J. Chromatogr., 385 (1987) 357-361. R.G. Buice, F.B. S t e n t z and B.J. G u r l e y , J . L i q . Chromatogr., 10 (1987) 421-438. L.D. Bowers and J. Singh, J. L i q . Chromatogr., 10 (1987) 411-420. S. Maguire, F. Kyne and U.O. C o n a i l l , Ann. C l i n . Biochem. (Warwick), 24 (1987) 161-166. L. S a n g a l l i and M. B o n a t i , Ther. Drug. M o n i t . , 9 (1987) 353-357. G.L. Lensmeyer, D.A. Wiebe and I.M. C a r l s o n , C l i n . Chem., 33 (1987) 1841-1850. U. C h r i s t i a n s , K.O. Zimmer, K. W o n i g e i t and K.F. Sewing, J. Chromat o g r . , 413 (1987) 121-129. U. C h r i s t i a n s , K.O. Zimmer, G. Maurer, K. W o n i g e i t , and K.F. Sewing, C l i n . Chem., 34 (1988) 34-39. U. C h r i s t i a n s , H.J. S c h l i t t , J.S. B l e c k , H.M. S c h i e b e l , R. Kownatzki , G. Maurer, S.S. Strohmeyer, R. Schottmann, K. W o n i g e i t , R. P i c h l m a y r and K.F. Sewing, T r a n s p l a n t . Proc., 20 (1988) 609-613.
.
132 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164.
165.
G.J. B u r c k a r t , C.P. Wang, R. Venkataramanan and R.J. P t a c h c i n s k i , T r a n s p l a n t a t i o n , 43 (1987) 932. J.A. A p f f e l , T.V. Alfredson and R.E. Majors, J. Chromatogr., 206 (1981) 43-57. P. Schauwecker, R.W. F r e i and F. E r n i , J. Chromatogr., 136 (1977) 63-72. F. Erni, H.P. K e l l e r , C. M o r i n and M. Schmitt, J. Chromatogr., 204 (1981) 65-76. J.C. G f e l l e r and M. Stockmeyer, J. Chromatogr., 198 (1980) 162-168. L.D. Bowers and S.E. Mathews, J. Chromatogr. , 333 (1985) 231-238. F.D. A n t i a and C. Horvath, J. Chromatogr., 435 (1988) 1-15. W.R. Melander, H.J. L i n , J. Jacobson and C. Horvath, J . Phys. Chem., 88 (1984) 4527-4536. C.P. Wang, G.J. B u r c k a r t and R. Ventkataramanan, Ther. Drug Monit., 10 (1988) 1988. L.L. Rocher, D. Giacherio and T. Annesley, Transplant. Proc., 18 (1986) 652-654. S . Henricsson and A. Lindholm, Transplant. Proc., i n press. P.L. Kimmel, T.M. P h i l i p s , N.C. Kramer and A. M. Thompson, Kidney I n t . , 27 (1985) 343. G.J. Burckart, T.E. S t a r z l , R. Venkataramanan, H . Hashim, L. Wong, P. Wang, L. Makowka, A. Zeevi, R.J. P t a c h c i n s k i , J.E. Knapp, S . I w a t s u k i , C. Esquivel , A. Sanghvi and D.H. van T h i e l , Transplant. Proc., 6 (1986) 46-49. P.E. Wallemacq, G. Lhoest, D. L a t i n n e and M. Bruyere, Transplant. Proc., i n press.