CHAPTER 7 SURFACE STUDIES SEMICONDUCTORS
OF
PULSED LASER IRRADIATED
D. M. Zehner
. . . . .. .. .. .. .. .. .. .. .. .. .. . . . . . .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. ... ... ........
I. INTRODUCTION. 11. EXPERIMENTAL APPROACH 1. Sampl e P r e p a r a t i o n 2. C h a r a c t e r i z a t i o n Techniques. 111. PRODUCTION OF ATOMICALLY CLEAN SURFACES 3. S i l i c o n . 4. Germanium. 5. Group 111-V Compounds. GEOMETRIC SURFACE STRUCTURE IV. 6. Ordered Surfaces 7. Metastable Surfaces. 8. V i c i n a l Surfaces 9. Defects. SURFACE AND SUB-SURFACE STUDIES OF V. ION-IMPLANTED SILICON 10. S u b s t i t u t i o n a l Implants. 11. I n t e r s t it i a1 Imp1a n t s APPLICATIONS. VI. CONCLUSIONS VII. REFERENCES.
. . . .. .. .. .. .. .. .. .. . . .. .. .. .. .. .. .. .. ..
............... . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . ................ ................ I.
Introduction
The process of pulsed l a s e r annealing p r o v i d e s a way o f very r a p i d l y t r e a t i n g t h e near-surface
r e g i o n o f semiconductors.
t h i s a d i a b a t i c mode o f thermal processing, 1 iquid-phase
epitaxial
In
m e l t i n g f o l l o w e d by
regrowth from t h e s u b s t r a t e occurs w i t h
growth v e l o c i t i e s o f t h e o r d e r o f meters/s.
Thus t h e h e a t i n g and
c o o l i n g r a t e s achieved by t h i s form o f processing are o r d e r s o f
405
Capyright 01984 b i Academic Press, Inc. All rights of reproduction in any form reserved.
ISBN 0-12-752123.2
406
D. M. ZEHNER
magnitude f a s t e r t h a n t h o s e achieved by more c o n v e n t i o n a l t r e a t ments.
i t has been shown t h a t
With proper annealing conditions,
r e g i o n s f r e e o f extended d e f e c t s can be formed and s u b s t i t u t i o n a l i m p u r i t i e s can be i n c o r p o r a t e d i n t o t h e l a t t i c e f a r i n excess o f t h e e q u i l i b r i u m s o l u b i l i t y l i m i t s (see Chapters 1-4).
The f i n a l
a c t o f s o l i d i f i c a t i o n i s t h e f r e e z i n g o f t h e surface.
I n view o f
the
region,
i t may be
(impurities,
geometric
results
expected
that
structure, ductors
obtained f o r the
the
surface
near-surface
properties
e l e c t r o n i c energy l e v e l s ) o f l a s e r - a n n e a l e d semicon-
can
be
significantly
altered
with
respect
to
those
o b t a i n e d by c o n v e n t i o n a l h e a t i n g treatments. R e s u l t s o f experiments d i s c u s s e d i n t h i s c h a p t e r show t h a t p u l s e d l a s e r a n n e a l i n g can be used t o produce a t o m i c a l l y c l e a n s u r f a c e s , remove damage i n t h e outermost s u r f a c e l a y e r s , and a l t e r t h e e l e c t r o n i c p r o p e r t i e s i n t h e s u r f a c e region.
D e t a i l s con-
cerned w i t h p r o c e s s i n g o f t h e s u r f a c e i n o r d e r t o achieve these conditions
and t h e measurement
discussed i n Section
11.
of
the surface properties are
R e s u l t s which show t h a t
unwanted i m p u r i t i e s i n semiconductors (0, C, etc.) to
near
the
practical
detection
limits
of
levels of
can be reduced
surface
sensitive
I n Section I V the
s p e c t r o s c o p i e s a r e presented i n S e c t i o n 111.
s u b j e c t o f o r d e r i n t h e outermost l a y e r s f o r b o t h f l a t and v i c i n a l s u r f a c e s i s discussed, and
changes
in
along w i t h the production o f defects
stoichiometry
for
compound
semiconductors.
S e c t i o n V d e a l s w i t h t h e changes i n b o t h geometric and e l e c t r o n i c p r o p e r t i e s o f t h e s u r f a c e r e g i o n which occur when i o n i m p l a n t a t i o n
is
combined w i t h
laser
annealing.
Finally
in
Section
YI,
examples o f how t h e unique s u r f a c e p r o p e r t i e s achieved w i t h l a s e r a n n e a l i n g can discussed.
be a p p l i e d t o o t h e r s u r f a c e
investigations
are
7.
407
PULSED LASER IRRADIATED SEMICONDUCTORS
11.
Experimental Approach
For most i n v e s t i g a t i o n s concerned w i t h l a s e r p r o c e s s i n g o f semiconductors,
t h e i r r a d i a t i o n o f t h e sample has been performed
i n a standard atmospheric environment.
It i s g e n e r a l l y assumed
t h a t t h e m o d i f i c a t i o n o f t h e subsurface p r o p e r t i e s i s u n a f f e c t e d by i n t e r a c t i o n s a t t h e g a s - s o l i d i n t e r f a c e .
However, when one i s
concerned w i t h o b t a i n i n g i n f o r m a t i o n about t h e p r o p e r t i e s o f t h e s u r f a c e r e g i o n (1-20 A ) and t h e changes which occur due t o l a s e r annealing,
t h e i r r a d i a t i o n o f t h e sample and subsequent a n a l y s i s
must t a k e p l a c e i n an u l t r a h i g h vacuum (UHV) environment Torr).
I n t h i s s e c t i o n , t h e experimental d e t a i l s concerned w i t h
b o t h l a s e r annealing o f semiconductors i n UHV and t h e subsequent s u r f a c e c h a r a c t e r i z a t i o n a r e presented.
1.
SAMPLE PREPARATION
A v a r i e t y o f l a s e r s has been used i n i n v e s t i g a t i o n s concerned w i t h surface s t u d i e s o f laser-annealed semiconductors.
The most
f r e q u e n t l y used l a s e r s are e i t h e r p u l s e d ruby o r p u l s e d Nd:YAG, a l t h o u g h UV excimer and t u n a b l e dye l a s e r s have a l s o been employed. The procedures f o l l o w e d i n p e r f o r m i n g t h e l a s e r a n n e a l i n g i n a
UHV environment are very s i m i l a r i n a l l i n v e s t i g a t i o n s and w i l l be i l l u s t r a t e d by d i s c u s s i n g t h e approach used w i t h p u l s e d ruby l a s e r s (Zehner e t al.,
1980a,b).
A f t e r bakeout,
t h e background
p r e s s u r e i n t h e chamber which c o n t a i n e d t h e sample was t y p i c a l l y l e s s than 2 x 10-10 Torr.
The l i g h t from a Q-switched ruby l a s e r
( A = 694 nm,
FWHM), t r a n s m i t t e d i n t o t h e UHV system
T
= 15 nsec,
t h r o u g h a glass window, vacuum environment.
was used t o i r r a d i a t e t h e sample i n t h e
The samples were p o s i t i o n e d so t h a t any evap-
o r a t e d m a t e r i a l o r s c a t t e r e d l i g h t was c o n t a i n e d i n an enclosure which s h i e l d e d a1 1 s u r f a c e a n a l y s i s
instruments.
i r r a d i a t e d u s i n g t h e single-mode (TEMoo)
Samples were
o u t p u t o f t h e ruby l a s e r
a t energy d e n s i t i e s t h a t c o u l d be v a r i e d between -0.2 J/cm2.
The beam diameter was t y p i c a l l y between 3.0
and -4.0
and 6.0 mn.
Energy d e n s i t i e s , which have been c o r r e c t e d f o r t h e r e f l e c t i v i t y
408
D. M. ZEHNER
( - 10%) o f t h e g l a s s window,
were determined by measuring t h e
photon energy d e l i v e r e d through an a p e r t u r e o f known diameter positioned i n f r o n t o f a calorimeter. was
measured
with
an
in-1 i n e
against the calorimeter.
The energy o f each p u l s e
photodi ode
assembly
c a l ib r a t e d
Implanted samples were prepared i n a
separate i o n i m p l a n t a t i o n f a c i 1it y which was a1 so equipped f o r making R u t h e r f o r d b a c k s c a t t e r i n g (RBS) measurements.
T h i s tech-
n i q u e was used t o determine t h e i m p l a n t p r o f i l e and t o charact e r i z e t h e changes i n t h e subsurface r e g i o n t h a t occurred w i t h An e x t e n s i v e d i s c u s s i o n o f these r e s u l t s i s
l a s e r annealing.
c o n t a i n e d i n Chapter 2.
2.
CHARACTERIZATION TECHNIQUES Many o f t h e s u r f a c e s e n s i t i v e s p e c t r o s c o p i c techniques used t o
i n v e s t i g a t e t h e s u r f a c e r e g i o n o f laser-annealed semiconductors employ e i t h e r e l e c t r o n s o r photons as t h e i n c i d e n t probe. t h e s e cases t h e d e t e c t e d p a r t i c l e i s an e l e c t r o n .
In
As a con-
sequence o f t h e s h o r t mean f r e e path o f e l e c t r o n s w i t h energies between 20 and 1000 eV, o n l y t h e outermost s u r f a c e region, -20 A , i s probed. Auger
Several d i f f e r e n t techniques have been used. electron
spectroscopy
(AES)
was
used t o m o n i t o r t h e
l e v e l s of b o t h i m p u r i t i e s and implanted species i n t h e s u r f a c e r e g i o n of t h e sample. elements w i t h Z > 3. in
terms
of
the
T h i s technique i s capable o f d e t e c t i n g a l l L e v e l s o f i m p u r i t y c o n t a m i n a t i o n a r e quoted
ratios
of
the
peak-to-peak
signals
of
the
i m p u r i t y Auger t r a n s i t i o n s t o a p r i n c i p a l Auger t r a n s i t i o n o f t h e substrate. this
Although one must be c a r e f u l
technique
to
make
quantitative
i n a t t e m p t i n g t o use
measurements,
in
many
s i t u a t i o n s reasonable estimates o f t h e upper l i m i t o f t h e amount o f a p a r t i c u l a r species present
i n t h e s u r f a c e r e g i o n can be
made. Low-energy e l e c t r o n d i f f r a c t i o n (LEED) was employed t o d e t e r mine geometric o r d e r i n t h e s u r f a c e r e g i o n o f t h e sample.
By
examining t h e p o s i t i o n s o f t h e r e f 1e c t e d beams ( s p o t p a t t e r n s ) ,
7.
409
PULSED LASER IRRADIATED SEMICONDUCTORS
t h e symmetry and s i z e ( i n t r a - a t o m i c spacing) o f t h e s u r f a c e u n i t c e l l can be determined. with
Thus, any changes i n these spot p a t t e r n s are a
surface modification
r e f l e c t i o n o f changes
i n the
geometric arrangement o f atoms i n t h e outermost s u r f a c e l a y e r s . P h o t o e l e c t r o n spectroscopy
(PES)
was
used t o o b t a i n i n f o r -
m a t i o n about t h e e l e c t r o n i c p r o p e r t i e s o f t h e s u r f a c e r e g i o n o f t h e sample.
I n f o r m a t i o n about t h e valence and conduction bands o f
t h e s o l i d can be obtained
by employing photons w i t h energies
t y p i c a l l y l e s s than 50 eV.
With t h e use o f angle-resolved tech-
niques, i t i s p o s s i b l e t o map o u t bands and c h a r a c t e r i z e t h e symmetry o f s u r f a c e s t a t e s .
By employing photons o f h i g h e r energies
i t i s p o s s i b l e t o measure c o r e - l e v e l
b i n d i n g energies f o r b o t h
s u r f a c e and subsurface atoms.
111.
P r o d u c t i o n o f A t o m i c a l l y Clean Surfaces
The c r e a t i o n o f an a t o m i c a l l y c l e a n s u r f a c e i s one o f t h e obvious b u t f r e q u e n t l y d i f f i c u l t t a s k s t h a t must be performed p r i o r t o conducting experiments i n t h e f i e l d o f s u r f a c e science. I n v e s t i g a t i o n s concerned w i t h examining t h e p h y s i c a l and chemical properties
o f s u r f a c e s i n o r d e r t o understand s u r f a c e - r e l a t e d
phenomena r e q u i r e t h a t t h e l e v e l o f unwanted contaminants i n t h e f i r s t few monolayers be <1 at.%.
S i m i l a r requirements e x i s t i n
many areas o f device t e c h n o l o g i e s where t h e presence o f s u r f a c e contaminants e i t h e r d u r i n g f a b r i c a t i o n o r d u r i n g a p p l i c a t i o n can c o n t r i b u t e g r e a t l y t o t h e degradation o f device performance.
In
t h e s e areas, t h e near-surface r e g i o n w i l l become even more import a n t as d e v i c e dimensions become i n c r e a s i n g l y smaller. The t r a d i t i o n a l methods o f g e n e r a t i n g a t o m i c a l l y c l e a n s o l i d s u r f a c e s i n UHV i n c l u d e p h y s i c a l s p u t t e r i n g ,
reactive sputtering,
chemical r e a c t i o n s , e l e c t r o n scrubbing, thermal desorption, s i t i o n o r growth o f a f i l m i n s i t u , t u r e (Roberts,
1963).
depo-
and vacuum c l e a v i n g o r f r a c -
For a s i n g l e c r y s t a l
it i s
frequently
410
D. M. ZEHNER
necessary t o anneal t h e c r y s t a l a t h i g h temperatures i n o r d e r t o remove damage produced i n t h e s u r f a c e r e g i o n by c l e a n i n g t e c h niques such as s p u t t e r i n g .
However, i m p u r i t i e s may d i f f u s e from
t h e s u r f a c e i n t o t h e b u l k , o r indeed from t h e b u l k t o t h e surface; i n many cases, this
such as i n t h e study o f semiconductor
surfaces,
r e d i s t r i b u t i o n can be p a r t i c u l a r l y troublesome.
Another
disadvantage i s t h a t t h e t i m e r e q u i r e d t o c l e a n a s u r f a c e can be measured i n hours and sometimes days when c y c l i n g between sputt e r i n g and annealing i s required.
Furthermore,
f o r experiments
i n which t h e c r y s t a l i s h e l d below room temperature,
adsorption
o f background gases d u r i n g t h e t i m e t h e sample c o o l s anneal
at
an
tamination.
elevated
temperature
Therefore,
can produce
from an
unwanted
con-
improved ways o f p r e p a r i n g atomical l y
c l e a n and ordered surfaces are needed. I t i s w e l l known t h a t a focused l a s e r beam can remove macro-
scopic
quantities
(Ready,
1965),
o f material
from a s u r f a c e by v a p o r i z a t i o n
and i t has been shown t h a t l a s e r s are capable o f
r a i s i n g t h e temperature i n t h e near-surface conductor t o t h e m e l t i n g p o i n t (see, f o r e.g., Wang e t al.,
White e t al.,
1978;
1978, Chapter 4) i n a w e l l c o n t r o l l e d manner.
From
t h e s e observations,
i t was c l e a r t h a t l a s e r s might be u s e f u l i n
g e n e r a t i n g c l e a n surfaces. pose
in
r e g i o n o f a semi-
1969 (Bedair,
Although f i r s t u t i l i z e d f o r t h i s pur-
1969),
only
recently
has a
number
of
d e t a i l e d i n v e s t i g a t i o n s o f l a s e r c l e a n i n g been c a r r i e d out (see f o r e.g. al.,
Zehner e t al.,
1980;
Cowan e t al.,
1980a; McKinley e t al., 1980).
1980; Rodway e t
While most s t u d i e s have been
concerned w i t h S i , o t h e r elemental and compound semiconductors, as w e l l as metals, have a l s o been examined.
3.
SILICON
To i l l u s t r a t e t h e a p p l i c a t i o n o f l a s e r i r r a d i a t i o n i n t h e p r o d u c t i o n o f a t o m i c a l l y c l e a n surfaces, r e s u l t s obtained from S i
7.
411
PULSED LASER IRRADIATED SEMICONDUCTORS
surfaces are shown i n Fig.
1 (Zehner e t al.,
1980a).
The Auger
e l e c t r o n spectrum o b t a i n e d from t h e n a t i v e o x i d e o f an air-exposed S i sample, a f t e r i n s e r t i o n i n t o a UHV system and f o l l o w i n g bakeout,
i s shown a t t h e t o p o f Fig. 1. carbon (272 eV),
and S i
s i l i c o n dioxide,
Auger s i g n a l s from oxygen (510 eV),
(70-100
eV),
characteristic of S i
in
a r e r e a d i l y d e t e c t e d on t h e s u r f a c e o f t h e asMeasurements made by RBS i m p l y a
i n s e r t e d sample.
o x i d e t h i c k n e s s , t y p i c a l o f air-exposed S i .
M A native
A substantial reduction
i n t h e l e v e l s o f 0 and C present i n t h e s u r f a c e r e g i o n i s observed a f t e r i r r a d i a t i o n w i t h one l a s e r p u l s e (-2.0
1.
Fig.
J/cmz),
as shown i n
A f t e r exposing t h e same area t o f i v e l a s e r pulses, t h e
Auger e l e c t r o n spectrum shown i n Fig. same d e t e c t i o n c o n d i t i o n s , noise level.
1 indicates that f o r the
t h e 0 and C s i g n a l s a r e w i t h i n t h e
The Auger e l e c t r o n spectrum obtained from t h e same
area a f t e r i r r a d i a t i o n w i t h t e n l a s e r pulses i s shown a t t h e b o t 1.
Although t h e 0 and C s i g n a l s a r e n o t observable
i n t h i s trace,
by i n c r e a s i n g t h e e f f e c t i v e s e n s i t i v i t y o f t h e
tom o f Fig.
e l e c t r o n d e t e c t i o n system, these i m p u r i t i e s were determined t o be p r e s e n t i n s u r f a c e c o n c e n t r a t i o n s o f
o f a monolayer.
It
should a l s o be noted t h a t t h e l i n e shape o f t h e S i (70-100 eV) Auger
transition
is
that
expected
from
a clean S i
surface.
Although a hydrogen Auger t r a n s i t i o n cannot be d e t e c t e d w i t h AES, PES r e s u l t s (Zehner e t al.,
f r e e o f hydrogen.
1981c) show t h e s u r f a c e r e g i o n t o be
Consequently,
by i r r a d i a t i n g t h e c r y s t a l w i t h
s e v e r a l (t5) l a s e r pulses, t h e r e l a t i v e c o n c e n t r a t i o n s o f 0 and C i n t h e n e a r - s u r f a c e r e g i o n have been reduced by f a c t o r s of a t l e a s t 500 and 50,
respectively.
Thus,
contaminant l e v e l s com-
p a r a b l e t o those o b t a i n e d by repeated s p u t t e r i n g and c o n v e n t i o n a l thermal annealing over a p e r i o d o f several days can be o b t a i n e d i n a l a s e r processing t i m e o f <1 s. Because p h y s i c a l s p u t t e r i n g i s commonly employed as p a r t o f cleaning
procedures
i n s u r f a c e science,
the e f f e c t o f
pulsed
l a s e r i r r a d i a t i o n on samples t h a t had been s p u t t e r e d w i t h A r + i o n s (1000 eV,
5 PA,
30 min) was a l s o i n v e s t i g a t e d .
The Auger
412
D.M. ZEHNER I
I
I
I
c
AS INSERTED
-
f PULSE
9
5 PULSES
-
V
10 PULSES L A S E R ANNEALED
AES Si (100) PRIMARY BEAM: 2 keV, 5 p A MODULATION: 2 V p - p
I
0
Fig. 1 .
I00
I
I
200 300 400 ELECTRON ENERGY ( e V 1
I
500
600
Auger electron spectra obtained from an uncleaned Si ( 1 0 0 ) surface
and a f t e r pulsed laser annealing a t -2.0
J / c m 2 for 1 , 5 , and 10 pulses.
7.
413
PULSED LASER IRRADIATED SEMICONDUCTORS
e l e c t r o n spectrum a c q u i r e d f o l l o w i n g s p u t t e r i n g s t i l l showed t h e presence o f 0 and C, a l t h o u g h s u b s t a n t i a l l y reduced i n i n t e n s i t y , as w e l l
as t h e presence o f implanted Ar.
sample w i t h l a s e r pulses o f -2.0 tion
i n t h e contaminant-level
I r r a d i a t i o n o f the
J/cm2 produced a s i m i l a r reducAuger
signals
observed f o r t h e u n s p u t t e r e d surface.
for
0 and C as
Complete e l i m i n a t i o n o f
t h e A r Auger s i g n a l s occurred a f t e r two o r t h r e e pulses. Contamination m a i n l y CO, H,
of
the
Si
surface
background
These contaminants can be e a s i l y removed by I n addi-
i r r a d i a t i o n o f t h e sample w i t h one o r two l a s e r pulses. tion,
i f an a t o m i c a l l y
(1-1000 L),
gases,
i s i n e v i t a b l e even with a
H20, and hydrocarbons,
10-10 T o r r vacuum.
from
c l e a n s u r f a c e i s exposed t o 0,
o r CO
t h e s u r f a c e can be r e t u r n e d t o an a t o m i c a l l y c l e a n
s t a t e by i r r a d i a t i o n w i t h about f i v e l a s e r pulses. Increases
i n t h e UHV chamber,
i n t h e background pressure
measured by b o t h a nude i o n i z a t i o n gauge and a quadrupole mass spectrometer,
indicate
laser irradiation.
removal
of
s u r f a c e contaminants d u r i n g
Using l a s e r pulses o f -2.0
J/cmz and s t a r t i n g
w i t h a background pressure o f 2 x 10-1° T o r r , t h e f i r s t l a s e r p u l s e on an a s - i n s e r t e d o r f r e s h l y s p u t t e r e d sample caused a t r a n s i e n t p r e s s u r e r i s e i n t o t h e 5 x 10-8 t o 3 x
T o r r range.
Subsequent
p u l s e s on t h e same area were accompanied w i t h pressure r i s e s i n t o 10-9
the
Torr
range,
and these
c o n t i n u e d t o drop u n t i l
the
p r e s s u r e stayed i n t h e 10-10 T o r r range by about t h e f i f t h pulse. Because o f t h e p o s i t i o n o f t h e i o n i z a t i o n gauge r e l a t i v e t o t h e sample l o c a t i o n and t h e sampling r a t e o f t h e mass spectrometer, these
increases
did
not
provide
an
a c c u r a t e measure
of
the
p r e s s u r e i n c r e a s e i n f r o n t o f t h e sample, which was probably much h i g h e r than measured. The e f f e c t o f energy d e n s i t y on t h e e f f i c i e n c y o f removal o f i m p u r i t i e s was a1 so qua1 i t a t i v e l y i n v e s t i g a t e d . sity
range
i n v e s t i g a t e d was
one p u l s e a t -0.3
J/cm2,
from -0.3
to
3.2
The energy denJ/cm2.
After
t h e 0 and C s i g n a l s were reduced by a
f a c t o r o f o n l y 2 r e l a t i v e t o those observed on t h e a s - i n s e r t e d
414
D. M. ZEHNER
sample, and on a f r e s h l y s p u t t e r e d surface, embedded A r was s t i l l detected.
Two
general
energy d e n s i t y .
t r e n d s were
First,
observed
as
a function
of
t h e h i g h e r t h e energy d e n s i t y t h e more
e x t e n s i v e t h e removal o f i m p u r i t i e s by t h e f i r s t pulse.
Second,
a t any p u l s e energy d e n s i t y t h e l a r g e r t h e number o f pulses t h e more
complete
the
removal
of
impurities.
Energy d e n s i t i e s
g r e a t e r than 1.0 J/cm2 were r e q u i r e d t o produce a t o m i c a l l y c l e a n s u r f a c e s u s i n g ruby l a s e r i r r a d i a t i o n .
V i s i b l e s u r f a c e damage,
as observed o p t i c a l l y , occurred a t an energy d e n s i t y o f 3.2 J / c d b u t was n o t observed f o r energy d e n s i t i e s ~3.0 J/cm2. The process o f l a s e r annealing, which i n v o l v e s r a p i d m e l t i n g and r e s o l i d i f i c a t i o n (on a - 1 - u ~ t i m e s c a l e ) , suggests t h a t removal of
impurities
mechanisms,
from t h e s u r f a c e
r e g i o n can t a k e p l a c e by two
d e s o r p t i o n o f t h e v o l a t i l e contaminants and absorp-
t i o n and d i f f u s i o n o f o t h e r i m p u r i t i e s through t h e l i q u i d l a y e r . Both
mechanisms-desorption
and
diffusion-probably
influence
t h e r e d i s t r i b u t i o n o f a given i m p u r i t y , w i t h t h e r e l a t i v e import a n c e o f t h e two
processes depending on experimental c o n d i t i o n s .
F o r t h e c o n d i t i o n s discussed above,
t h e f a c t t h a t a pronounced
p r e s s u r e r i s e i s observed d u r i n g t h e f i r s t l a s e r p u l s e suggests that
t h e 0 and C contaminants a r e desorbed
during irradiation.
from t h e s u r f a c e
However, i t i s d i f f i c u l t t o q u a n t i f y these
o b s e r v a t i o n s and determine t h e amount o f m a t e r i a l desorbed from o n l y t h e c r y s t a l surface.
A b s o r p t i o n and d i f f u s i o n deeper i n t o
t h e sample occur predominantly f o r i m p u r i t i e s t h a t have a r e l a t i v e l y h i g h segregation c o e f f i c i e n t from t h e m e l t (White e t a l . , 1980a; Wood e t al., t i o n coefficient
1981a).
I m p u r i t i e s which have a low segrega-
from t h e m e l t have been shown t o segregate t o
t h e s u r f a c e d u r i n g annealing (White e t al., and 0 t h e e q u i l i b r i u m c o e f f i c i e n t s tively,
suggesting
that
these
1979,
a r e 0.07
1980a).
and 0.5,
For C respec-
i m p u r i t i e s may be r e d i s t r i b u t e d
over a depth i n t e r v a l e q u i v a l e n t t o t h e m e l t depth (-5000 A f o r l a s e r energy d e n s i t i e s o f -2.0
J/cm2).
Complete r e d i s t r i b u t i o n
o f t h e i m p u r i t i e s found on t h e surface, as i n s e r t e d i n t o t h e UHV
7. chamber,
415
PULSED LASER IRRADIATED SEMICONDUCTORS
over t h i s depth would g i v e r i s e t o a remaining s u r f a c e
c o n c e n t r a t i o n o f -0.3%
o f a monolayer f o r 0 and -0.1% of a mono-
b o t h of which a r e near t h e d e t e c t i o n l i m i t s f o r
l a y e r f o r C,
Auger e l e c t r o n spectroscopy.
These values are c o n s i s t e n t w i t h
t h e measured values discussed above.
Whether these i m p u r i t i e s
a r e desorbed from t h e s u r f a c e o r r e d i s t r i b u t e d i n depth can be a s c e r t a i n e d by experiments designed t o determine C and 0 depth p r o f i l e s o r t h e i r t o t a l c o n c e n t r a t i o n s i n t h e near-surface r e g i o n b e f o r e and a f t e r i r r a d i a t i o n . An i n v e s t i g a t i o n o f oxygen i n d i f f u s i o n d u r i n g l a s e r anneali n g o f s i l i c o n has been performed u s i n g RBS and t h e 160(a,ao)160 resonance s c a t t e r i n g a t 3.042 MeV (Westendorp e t a l . , e t al.,
1983).
T h i s technique,
1982; Wang
i n c o n j u n c t i o n w i t h AES, was used
t o determine t h e oxygen c o n c e n t r a t i o n on t h e s u r f a c e and i n t h e near-surface (3000 A ) region, both b e f o r e and a f t e r pulsed l a s e r annealing.
From t h e oxygen peak
area i n t h e b a c k s c a t t e r i n g
spectrum shown i n Fig. 2a, t h e i n i t i a l n a t i v e oxide l a y e r a t t h e s u r f a c e was determined t o have an a r e a l c o n c e n t r a t i o n o f 5.2 x 1015 atoms/cm2.
A f t e r i r r a d i a t i o n of t h e
Si(100) sample i n UHV w i t h
e i g h t pulses a t an energy d e n s i t y o f -1.5
J/cm2 (x=694 nm), Auger
measurements showed an oxygen c o n c e n t r a t i o n a t t h e s u r f a c e o f ~0.3% The oxygen c o n c e n t r a t i o n a t a depth o f 1200 A
o f a monolayer. (depth i n t e r v a l atoms/cm3,
500-1700 A ) was determined t o be 63.1
u s i n g t h e data shown i n Fig.
2b.
x lo1*
Assuming t h a t t h e
s i l i c o n s u r f a c e l a y e r i s m e l t e d completely d u r i n g t h e l a s e r p u l s e and t h a t t h e oxygen atoms i n t h e n a t i v e o x i d e l a y e r are homogeneously d i s t r i b u t e d over t h e depth o f t h e molten l a y e r (-3000 A ) , an oxygen Concentration o f 1.6 x 1020 atom/cm’ would be achieved i n t h a t molten l a y e r .
Thus, these r e s u l t s show no evidence f o r oxy-
gen i n d i f f u s i o n from t h e n a t i v e oxide l a y e r d u r i n g pulsed l a s e r annealing o f s i l i c o n .
I n fact,
t h e amount o f oxygen i s found t o
be equal t o o r l e s s than t h e s o l i d s o l u b i l i t y o f oxygen i n s i l i con,
which i s 5-8 x 1018 atomsjcm3 ( d e Kock,
1980).
This r e s u l t
can be made p l a u s i b l e by c o n s i d e r i n g t h e t i m e needed f o r l i q u i d
416
D. M. ZEHNER
CHANNEL N U M B E R
CHAW N iL NIJ M B E R
F i g . 2.
Resonance at ( a ) center o f native oxide l a y e r , ( b ) a t 1200
pulsed laser cleaned silicon.
BL = 164O.
in
7. SiO,
t o be d i s s o l v e d i n s i l i c o n .
i n t h e range o f 10-5-10-4
The d i s s o l u t i o n v e l o c i t y l i e s
cm/min f o r s i l i c o n s u b s t r a t e tempera-
t u r e s between 1700-1775 K (Chaney e t a1 a 30 A
Thus,
a thermal
., 1976; H i r a t a e t a1 ., 1980).
n a t i v e o x i d e l a y e r would d i s s o l v e a t about t h e
m e l t i n g p o i n t o f s i l i c o n i n 1.8-0.18 of
417
PULSED LASER IRRADIATED SEMICONDUCTORS
m e l t i n g model,
s.
Consequently,
a native
oxide
i n terms
l a y e r cannot be
d i s s o l v e d i n s i l i c o n s i n c e t h e m e l t d u r a t i o n a f t e r pulsed l a s e r annealing, f o r t h e c o n d i t i o n s used, i s measured t o be -100 ns. I f t h e n a t i v e o x i d e l a y e r on t o p o f s i l i c o n does n o t d i f f u s e
i n t o t h e bulk, it has t o evaporate d u r i n g t h e c l e a n i n g procedure. This
can
be
shown
to
be
reasonable
by
calculating
the
Si02 m o l e c u l a r e v a p o r a t i o n r a t e f o r d i f f e r e n t s i l i c o n s u b s t r a t e temperatures.
Using equi 1 ib r i u m thermodynamics, t h e r a t e a t 2000 K
i s c a l c u l a t e d t o be 3.4 x 1012 mol/cm2 ns (Westendorp e t al., Wang e t al.,
Since a t y p i c a l a r e a l d e n s i t y o f a n a t i v e
1983).
o x i d e on s i l i c o n i s 2-5 x
lo15
mol/cm2,
t h e complete removal by
e i g h t l a s e r pulses r e q u i r e s 5 x 1014 mol/cm2 d u r i n g each pulse.
1982;
t o be evaporated
T h i s e v a p o r a t i o n r a t e r e q u i r e s a m e l t dura-
t i o n o f t h e s u r f a c e o f -150 ns, which i s t h e same o r d e r o f magnit u d e as obtained from thermal m e l t i n g model c a l c u l a t i o n s . When
a
silicon
surface
is
covered w i t h
an o v e r l a y e r
of
i m p u r i t i e s much t h i c k e r t h a n t h e t y p i c a l n a t i v e o x i d e t h i c k n e s s (20 A ) ,
complete e l i m i n a t i o n o f t h e i m p u r i t i e s by l a s e r i r r a d i a -
tion i s difficult. (Bermudez,
Experiments on h e a v i l y o x i d i z e d S i surfaces
1982) have shown t h a t t h e minimum a t t a i n a b l e l e v e l o f
c o n t a m i n a t i o n i s dependent on t h e i n c i d e n t energy d e n s i t y and on t h e i n i t i a l i m p u r i t y coverage.
From these r e s u l t s i t i s con-
c l u d e d t h a t although d e s o r p t i o n may be t h e dominant mechanism f o r removal o f i m p u r i t i e s i n t h i n o v e r l a y e r s , d i f f u s i o n and r e d i s t r i b u t i o n o f i m p u r i t i e s i n t h e melted r e g i o n occur when t h i c k l a y e r s a r e i n i t i a l l y present. I n v e s t i g a t i o n s have a l s o been performed t o examine t h e i n c o r p o r a t i o n o f oxygen i n t o S i d u r i n g p u l s e d l a s e r annealing i n an atmospheric environment.
While some i n v e s t i g a t o r s c l a i m evidence
418
D. M. ZEHNER
f o r i n c o r p o r a t i o n ( G a r u l l i e t al.,
1980; Hoh e t al.,
a1
incorporation
.,
1981),
others
(Westendorp e t a1
argue
., 1982;
that
Wang e t a1
1980; L i u e t
does
., 1983).
not
occur
To minimize con-
c e r n about t h e p o s s i b l e r e d i s t r i b u t i o n o f i m p u r i t i e s i n a UHV t h e s a f e s t procedure t o f o l l o w i s t o s p u t t e r t h e
environment,
s u r f a c e m i l d l y t o reduce s u b s t a n t i a l l y t h e c o n c e n t r a t i o n o f these i m p u r i t i e s and then t o l a s e r anneal t h e c r y s t a l t o produce an a t o m i c a l l y clean surface region.
4.
GERMANIUM I n v e s t i g a t i o n s concerned w i t h t h e removal o f t h e n a t i v e o x i d e
l a y e r from Ge samples w i t h pulsed l a s e r i r r a d a t on have produced r e s u l t s s i m i l a r t o those o b t a i n e d w i t h S i samples (Zehner e t a1
.,
1 9 8 0 ~ ) . A t o m i c a l l y c l e a n surfaces can be o b t a i n e d by i r r a d i a t i o n w i t h about f i v e l a s e r pulses (-1.9
J/cm2).
As observed w i t h S i ,
s p u t t e r i n g can be used i n c o n j u n c t i o n w i t h l a s e r i r r a d i a t i o n t o produce a t o m i c a l l y c l e a n surfaces also.
The range o f energy den-
s i t y t h a t can be used t o remove i m p u r i t i e s from t h e s u r f a c e w i t h o u t p r o d u c i n g macroscopic damage was found t o be -0.5
t o -2.1
J/cm2.
Damage t o t h e s u r f a c e occurred above an energy d e n s i t y o f 2.2 J/cm*,
and complete removal o f s u r f a c e i m p u r i t i e s d i d n o t occur
below an energy
5.
d e n s i t y o f -0.5
J/cm2.
III-V COMPOUNDS
GROUP
The p r o d u c t i o n o f a t o m i c a l l y c l e a n surfaces on GaAs c r y s t a l s was i n v e s t i g a t e d
u s i n g procedures s i m i l a r t o those p r e v i o u s l y
d e s c r i b e d (Zehner e t a1
.,
1982).
The Auger e l e c t r o n spectrum
o b t a i n e d from an a s - i n s e r t e d sample and p l o t t e d a t t h e t o p o f F i g . 3 shows t h a t l a r g e amounts o f C (272 eV) and 0 (510 eV) are present,
as w e l l as a small t r a c e o f Ca (291 eV).
impurities
from t h e s u r f a c e r e y i o n
m u l t i p l e pulses,
irradiation with
and t h e e f f i c i e n c y o f c l e a n i n g i n c r e a s e d w i t h
i n c r e a s i n g eneryy d e n s i t y . following multiple-pulse F i g . 3.
required
Removal o f
An example o f a spectrum o b t a i n e d
i r r a d i a t i o n o f -0.6
J/cm2 i s shown i n
The carbon and oxygen s i g n a l s are w i t h i n t h e n o i s e l e v e l
7.
419
PULSED LASER IRRADIATED SEMICONDUCTORS
AES GaAs (100) PRIMARY BEAM: 2 keV, 5 p A
I
-
15 PULSES -0.6 J/cm2
4
AFTER Ar' SPUTTERING
-
15 PULSES -0.3 J/cm2 0
100
200 300 400 ELECTRON ENERGY (eV)
500
F i g . 3. Auger electron spectra obtained from an uncleaned GaAs ( 1 0 0 ) surf a c e , a f t e r sputtering and a f t e r pulsed laser annealing a t 4 . 6 and 4 . 3 J /cm2.
o f t h e Auger detected.
e l e c t r o n spectrum,
and no o t h e r i m p u r i t i e s were
However, t h e r e i s a d i f f e r e n c e i n t h e Ga (55 eV) t o As
( 3 1 eV) Auger t r a n s i t i o n i n t e n s i t y r a t i o and i n t h e Ga Auger t r a n s i t i o n l i n e shape when compared w i t h t h a t obtained a f t e r A r + i o n s p u t t e r i n g , a l s o shown i n t h i s f i g u r e ( A r Auger s i g n a l a t 215 eV). Complete removal o f t h e C and 0 i m p u r i t i e s from an a s - i n s e r t e d sample c o u l d n o t be o b t a i n e d when u s i n g energy d e n s i t i e s o f t0.5
420
D. M. ZEHNER
J/cm2.
However,
by f i r s t s p u t t e r i n g w i t h Ar+ i o n s , i t was found
t h a t a s u r f a c e w i t h no i m p u r i t i e s present c o u l d be produced by laser J/cm2,
i r r a d i a t i o n w i t h energy d e n s i t i e s between 0.15 as i l l u s t r a t e d a t t h e bottom of Fig.
f i f t e e n pulses a t -0.3 intensity
J/cm2.
and 0.4
3 f o r t h e case o f
Although t h e Ga/As Auger t r a n s i t i o n
r a t i o observed f o l l o w i n g
such
surface treatment
is
s i m i l a r t o t h a t observed a f t e r s p u t t e r i n g , t h e Ga Auger l i n e shape showed t h e same t y p e o f change as t h a t observed a t h i g h e r energy densities.
T h i s change, a r e d u c t i o n i n t h e degree o f s p l i t t i n g
w i t h i n t h e l i n e shape (due t o t h e s p i n - o r b i t s p l i t ,M,,
level),
observed a f t e r i r r a d i a t i o n a t a l l energy d e n s i t i e s i s due t o t h e presence o f Ga i n l o c a l regions which a r e n o n s t o i c h i o m e t r i c . I n o r d e r t o c o n f i r m t h i s e x p l a n a t i o n f u r t h e r , a f t e r pulsed l a s e r a n n e a l i n g i n UHV, t h e samples were t r a n s f e r r e d i n a i r t o a highvacuum (HV)
chamber, where t h e y were analyzed u s i n g 1.5-MeV
ion scattering.
Het
For purposes o f comparison, s i m i l a r measurements
were made on samples t h a t were n o t exposed t o l a s e r i r r a d i a t i o n (virgin).
A r e p r e s e n t a t i v e r e s u l t o f such a comparison i s shown
i n Fig. 4 f o r t h e (110) face o f GaAs.
The s p e c t r a obtained from
t h e v i r g i n sample can be i n t e r p r e t e d as s c a t t e r i n g from an ordered crystal
covered w i t h an a i r - f o r m e d
<111> c h a n n e l i n g spectra,
oxide.
shown i n Fig.
4,
Comparison o f t h e before ( s o l i d l i n e )
and a f t e r (dashed l i n e ) annealing w i t h f i v e l a s e r pulses a t an energy d e n s i t y o f -0.3 J/cm2 shows t h a t (1) t h e c o n c e n t r a t i o n o f As atoms a t t h e surface i s e s s e n t i a l l y t h e same i n t h e v i r g i n and laser-annealed
samples;
( 2 ) t h e y i e l d from Ga s u r f a c e atoms
i n c r e a s e s about a f a c t o r o f 2 a f t e r annealing; and ( 3 ) t h e scatt e r i n g y i e l d versus depth ( d e c r e a s i n g energy) increases s l i g h t l y a f t e r a n n e a l i n g w i t h no n o t i c e a b l e change i n t h e r a t e o f dechanneling.
The measured y i e l d s can be a t t r i b u t e d t o s c a t t e r i n g from
a s u r f a c e which c o n t a i n s r e g i o n s w i t h t h e c o r r e c t s t o i c h i o m e t r y i n c o n j u n c t i o n w i t h r e g i o n s which c o n t a i n excess Ga, c o n s i s t e n t w i t h t h e i n t e r p r e t a t i o n o f t h e measured Ga Auger l i n e shape. cleaning
results
are q u a l i t a t i v e l y
similar
t o those
The
obtained
7.
PULSED LASER IRRADIATED SEMICONDUCTORS
421
Backscattering-channeling spectra from a GaAs ( 1 1 0 ) surface. (---) a f t e r pulsed laser annealing at -0.3 J / c r n 2 .
(3
to4
103
v)
I-
$
8
402
10'
10° 1
Fig. 4 . As grown,
u s i n g glass-bonded [ 100) GaAs t r a n s m i s s i o n photocathodes (Rodway e t al.,
1980), and t h e d e t e r m i n a t i o n o f s t o i c h i o m e t r y i s c o n s i s t e n t
w i t h RBS t e s t s of GaAs decomposition due t o p u l s e d l a s e r i r r a d i a t i o n [de Jong e t al.,
1982a).
422
D. M. ZEHNER
S i m i 1a r
problems w i t h
respect
to
s t o i c h i ometry
have
been
encountered i n i n v e s t i g a t i o n s o f l a s e r - i r r a d i a t e d cleaved InP (110) s u r f a c e s exposed t o a i r (McKinley e t a1
., 1980).
Clean s u r f a c e s
were produced, and t h e AES s p e c t r a o b t a i n e d were q u i t e s i m i l a r t o t h o s e f o r c l e a n cleaved surfaces.
However, t h e s u r f a c e s were n o t
ordered, and d e t a i l e d s t u d i e s u s i n g scanning AES ( w i t h a 1-pin spatial
resolution)
indicated that,
although the overall
surface
showed a s t o i c h i o m e t r y c o n s i s t e n t w i t h t h a t o f t h e cleaved face, l o c a l r e g i o n s e x i s t e d where t h e d e v i a t i o n from s t o i c h i o r n e t r y was large.
The d e p a r t u r e from s t o i c h i o m e t r y subsequent
t o laser
i r r a d i a t i o n has been observed i n i n v e s t i g a t i o n s o f InP (100) s u r f a c e s a1 so (Moison e t a1 , 1982).
IV.
Geometric Surface Structures
The p r o c e s s i n g o f semiconductor m a t e r i a l s w i t h l a s e r i r r a d i a t i o n has been i n v e s t i g a t e d e x t e n s i v e l y .
O f m a j o r importance i s t h e f a c t
t h a t l a s e r a n n e a l i n g can be used t o anneal c o m p l e t e l y d i s p l a c e ment
damage
1978).
in
ion-imp1 anted
semiconductors
(Narayan
et
a1
.,
I n t h i s a p p l i c a t i o n t h e l a s e r r a d i a t i o n causes t h e s u r -
f a c e r e g i o n o f t h e c r y s t a l t o be m e l t e d t o a d e p t h o f several thousand
angstroms.
The m e l t e d
l a y e r then
regrows
from t h e
u n d e r l y i n g s u b s t r a t e by means o f l i q u i d - p h a s e e p i t a x i a l regrowth, and t h e regrown r e g i o n has t h e same c r y s t a l l i n e p e r f e c t i o n as t h e substrate.
I n s u r f a c e - r e l a t e d experiments, depending on t h e m e l t i n g
p o i n t , t y p e s and q u a n t i t i e s o f i m p u r i t i e s p r e s e n t i n t h e b u l k , reac-
t i v i t y t o background gases , and o t h e r f a c t o r s , c o n v e n t i o n a l thermal a n n e a l i n g o f c r y s t a l s i n UHV, e i t h e r t o c l e a n o r t o remove s p u t t e r damage,
i n v o l v e s h e a t i n g and subsequent c o o l i n g o f t h e sample f o r
p e r i o d s t h a t can range from minutes t o hours.
Calculations indicate
x=
694 nm, s e v e r a l t e n s o f
t h a t f o r p u l s e energies o f 1-2 J/cm2 a t
microseconds elapse between t h e i r r a d i a t i o n o f t h e sample a t room t e m p e r a t u r e w i t h t h e l a s e r beam and t h e r e t u r n o f t h e sample t o -600 K.
Thus, t h i s a n n e a l i n g t e c h n i q u e p r o v i d e s t h e c a p a b i l i t y f o r
7.
423
PULSED LASER IRRADIATED SEMICONDUCTORS
d o i n g experiments i n which t h e t i m e f o r thermal p r o c e s s i n g i s r e duced t o a minimum.
Since t h e p r e v i o u s s e c t i o n has shown t h a t
p u l s e d l a s e r i r r a d i a t i o n can be used t o produce a t o m i c a l l y c l e a n surfaces, i t i s then o f i n t e r e s t t o determine t h e annealing capab i l i t y o f t h i s technique w i t h respect t o o r d e r i n t h e s u r f a c e region o f a single crystal. 6.
ORDERED SURFACES I n o r d e r t o i n v e s t i g a t e t h i s q u e s t i o n , r e s u l t s o b t a i n e d from
samples o f s i l i c o n c r y s t a l s a r e presented (Zehner e t al.,
1980b).
These samples r e c e i v e d no c l e a n i n g t r e a t m e n t o t h e r t h a n a r i n s e i n a l c o h o l p r i o r t o i n s e r t i o n i n t o t h e UHV system.
Examination o f t h e
a s - i n s e r t e d samples w i t h LEED showed t h a t d i f f r a c t i o n p a t t e r n s c o u l d be observed o n l y a t r e l a t i v e l y h i g h energies (>250 eV) and t h a t t h e y c o n t a i n e d an i n t e n s e backround r e s u l t i n g from d i f f u s e s c a t t e r i n g . This
o b s e r v a t i o n i s c o n s i s t e n t w i t h t h e presence o f a n a t i v e
o x i d e l a y e r c o n t a i n i n g 0 and C as determined by AES and shown i n F i g . 1.
The LEED p a t t e r n s shown i n Fig. 5 i l l u s t r a t e t h e e f f e c t s
o f m u l t i p l e - p u l s e i r r a d i a t i o n on a S i ( 100) sample. d i a t i o n w i t h one l a s e r p u l s e o f -2.0
J/cm2,
A f t e r irra-
a (2x1) LEED p a t t e r n
w i t h moderate background i n t e n s i t y due t o d i f f u s e s c a t t e r i n g was obtained,
as shown a t t h e t o p o f Fig.
5.
Improvements i n t h e
q u a l i t y o f t h e d i f f r a c t i o n p a t t e r n occurred w i t h subsequent l a s e r pulses.
After
diffraction observed,
f i v e pulses,
reflections
a LEED p a t t e r n e x h i b i t i n g
and very
as shown i n F i g .
5.
sharp
low background i n t e n s i t y was
The f a c t t h a t w e l l - d e f i n e d LEED
p a t t e r n s can be obtained i n d i c a t e s t h a t c r y s t a l l i n e o r d e r extends to
t h e outermost monolayers
regrowth process.
after
the
1iquid-phase
epitaxial
No d e t e c t a b l e change i n t h e LEED p a t t e r n s was
observed w i t h a d d i t i o n a l pulses, as can be seen by comparing t h e patterns
for
five
and t e n pulses
shown i n Fig.
5.
Similar
r e s u l t s were o b t a i n e d from samples t h a t were i n i t i a l l y s p u t t e r cleaned by A r + bombardment.
Although t h e LEED p a t t e r n o b t a i n e d
subsequent t o one l a s e r p u l s e on a s p u t t e r e d s u r f a c e was
of
7.
PULSED LASER IRRADIATED SEMICONDUCTORS
h i g h e r q u a l i t y t h a n t h a t shown i n Fig.
5,
425
m u l t i p l e pulses were
a l s o r e q u i r e d t o o b t a i n t h e sharpest d i f f r a c t i o n p a t t e r n s . The LEED p a t t e r n s obtained from t h e t h r e e low-index o r i e n t a t i o n s o f S i subsequent t o l a s e r i r r a d i a t i o n w i t h f i v e pulses a r e shown i n F i g . 6.
A l l p a t t e r n s show sharp d i f f r a c t i o n r e f l e c t i o n s accompanied
by low background i n t e n s i t y , and i n a l l cases t h e q u a l i t y o f t h e p a t t e r n obtained improved w i t h m u l t i p l e - p u l s e f i v e shots.
i r r a d i a t i o n up t o
The (2x1) and ( 1 x 2 ) LEED p a t t e r n s o b t a i n e d from t h e
(100) and (110) surfaces,
respectively,
are s i m i l a r t o those ob-
t a i n e d u s i n g conventional thermal t r e a t m e n t s and show t h e presence o f r e c o n s t r u c t e d surfaces.
These o b s e r v a t i o n s i n d i c a t e t h a t t h e
atoms i n t h e outermost l a y e r s have enough t i m e a t a temperature, under t h e l a s e r annealing c o n d i t i o n s used, t o r e o r g a n i z e i n t o t h e r e c o n s t r u c t e d arrangements f r o m w h i c h t h e LEED p a t t e r n s a r e obtained. T h i s i s c o n s i s t e n t w i t h t h e proposed s u r f a c e s t r u c t u r e models f o r t h e (100) s u r f a c e t h a t i n v o l v e o n l y small l a t e r a l and v e r t i c a l d i s placements o f t h e atoms i n t h e f i l l e d outermost monolayers.
Laser
a n n e a l i n g o f e i t h e r (100) o r (110) S i samples cooled t o 100 K (Zehner e t a1
., 1980d)
produced surfaces from which LEED p a t t e r n s
i d e n t i c a l t o those shown i n Fig. 6 were obtained. The LEED p a t t e r n o b t a i n e d from t h e (111) s u r f a c e suggests t h a t as a r e s u l t o f l a s e r annealing t h e normal s u r f a c e s t r u c t u r e ( t r u n c a t i o n o f t h e b u l k ) i s obtained,
and t h e r e i s no evidence o f any
ordered l a t e r a l r e c o n s t r u c t i o n (Zehner e t a1
., 1 9 8 0 ~ ) . T h i s p o i n t
w i l l be discussed i n more d e t a i l l a t e r . Although a ( 2 x 1 ) LEED p a t t e r n can be obtained from a cleaved S i ( l l 1 ) surface, t h e (7x7) p a t t e r n shown i n Fig. 7 i s always observed on a clean, t h e r m a l l y annealed c r y s t a l surface.
A f t e r i r r a d i a t i o n w i t h t h e l a s e r and structure,
t h e S i sample was
t h e r m a l l y annealed a t e l e v a t e d temperatures.
The o b s e r v a t i o n o f
production o f the (1x1)
surface
1/7-order d i f f r a c t i o n spots, i n d i c a t i v e o f t h e r e c o n s t r u c t e d surface, occurred a f t e r annealing a t temperatures g r e a t e r t h a n -800 K. By h e a t i n g f o r a s u f f i c i e n t t i m e (>30 rnin) a t these temperatures,
a well-defined
( 7 x 7 ) p a t t e r n s i m i l a r t o t h a t shown i n Fig. 7 was
426
Fig. 6.
D. M. ZEHNER
LEED patterns from clean ( a )
(loo),
( b ) ( 1 1 0 ) , and ( c ) ( 1 1 1 ) Si
surfaces a t primary beam energies o f ( a ) 4 9 , ( b ) 9 2 , and ( c ) 47 eV. are shown subsequent to laser annealing at -2.0
Patterns
J / c m 2 for 5 pulses.
7.
Fig. 7.
PULSED LASER IRRADIATED SEMICONDUCTORS
427
LEED pattern from a clean thermally annealed ( 1 1 1 ) Si surface at a
primary beam energy o f 1 1 1 eV.
observed.
Subsequent i r r a d i a t i o n a t room temperature w i t h t h e
l a s e r resulted i n a (1x1) surface structure, possible t o cycle Moreover,
back and f o r t h between t h e two s t r u c t u r e s .
i t was determined t h a t t h e sample c o u l d be h e l d a t a
temperature between -100
and 700 K,
and a f t e r i r r a d i a t i o n w i t h a
l a s e r p u l s e t h e (1x1) s t r u c t u r e was observed.
LEED
defined
showing t h a t i t i s
patterns
single-crystal (Zehner e t a1
were
obtained
from
s u r f a c e s o f Ge subsequent
., 1 9 8 0 ~ ) .
As w i t h S i , w e l l low-index-oriented
t o laser irradiation
Mechanisms o f energy a b s o r p t i o n and r e d i s t r i b u t i o n i n t h e s u r f a c e r e g i o n , as w e l l as t h e development o f a comprehensive unders t a n d i n g o f t h e s t a t e o f t h e s u r f a c e under l a s e r annealing conditions,
have r e c e i v e d c o n s i d e r a b l e a t t e n t i o n i n r e c e n t years.
The
f a c t t h a t ordered surfaces can be produced w i t h l a s e r annealing, as j u s t discussed,
suggests t h a t a n a t u r a l probe o f t h e s u r f a c e
r e g i o n which would y i e l d s t r u c t u r a l i n f o r m a t i o n on t h e f i r s t few atomic l a y e r s i s t i m e - r e s o l v e d LEED.
By measuring t h e i n t e n s i t y
o f a d i f f r a c t e d beam d u r i n g t h e l a s e r a n n e a l i n g process, i n f o r m a t i o n about t h e s t a t e o f t h e s u r f a c e can be obtained.
Such measurements
in conj u n c t i on w i t h time- r e s o l ved opt ic a l r e f 1 e c t iv i t y measurements have r e c e n t l y been made u s i n g a 'Ge (111) sample (Becker e t al., 1984a,b).
The LEED i n t e n s i t y was measured i n a temporal window
428
D.M. ZEHNER
e x t e n d i n g from a few nanoseconds b e f o r e t h e l a s e r p u l s e t o 1000 ns a f t e r t h e l a s e r pulse.
These i n t e n s i t i e s were then compared
t o those o b t a i n e d from a sample r a i s e d t o successive s t e a d y - s t a t e temperatures by r a d i a t i v e h e a t i n g from a f i l a m e n t - t y p e Results
show an e x t i n c t i o n
o f the diffracted
sistent
with
increase
the
observed
in
heater.
intensity,
optical
con-
reflectivity,
c l e a r l y i n d i c a t i n g t h a t t h e Ge s u r f a c e i s n o n c r y s t a l l i n e d u r i n g t h e l a s e r a n n e a l i n g process.
These changes i n i n t e n s i t y can be
c o m p l e t e l y accounted f o r i n t h e m e l t i n g model. To i l l u s t r a t e t h e a p p l i c a t i o n o f l a s e r a n n e a l i n g i n producing o r d e r e d s u r f a c e s t r u c t u r e s on c r y s t a l faces o f compound semicond u c t o r s , e s p e c i a l l y those i n which one o f t h e components i s v o l a tile,
r e s u l t s o b t a i n e d from t h e low-index faces o f GaAs c r y s t a l s
w i l l be presented (Zehner e t a1
., 1982).
A l l r e s u l t s t o be d i s -
cussed were o b t a i n e d from surfaces t h a t were i n i t i a l l y s p u t t e r e d i n o r d e r t o remove t h e C and 0 i m p u r i t i e s ,
s i n c e t h i s procedure
p e r m i t t e d t h e use o f r e l a t i v e l y low l a s e r p u l s e energy d e n s i t i e s i n o r d e r t o o b t a i n c l e a n surfaces. the
(loo),
The LEED p a t t e r n s obtained f o r
(110), and (111) o r i e n t a t i o n s o f GaAs c r y s t a l s f o l l o w i n g
i r r a d i a t i o n a t an energy d e n s i t y o f -0.3
J/cm2 a r e shown i n Fig. 8.
The q u a l i t y o f t h e s u r f a c e s t r u c t u r e r e s u l t i n g from l a s e r annealing, as r e f l e c t e d i n these p a t t e r n s , d i f f e r e d s i g n i f i c a n t l y from t h a t o b t a i n e d from elemental semiconductors.
The h i g h e s t qua1 i t y p a t -
t e r n s were o b t a i n e d from t h e (110) o r i e n t a t i o n ,
and reasonable
q u a l i t y p a t t e r n s were o b t a i n e d from both A- and B-type (111) o r i e n t a tions.
Very poor q u a l i t y p a t t e r n s were o b t a i n e d from t h e (100)
orientations.
A l l LEED p a t t e r n s were b a s i c a l l y (1x1)
,
suggesting
no long-range ordered r e c o n s t r u c t i o n as n o r m a l l y observed a f t e r c o n v e n t i o n a l thermal annealing.
I n a l l cases t h e o b s e r v a t i o n o f
d i f f u s e background i n t e n s i t y and/or s t r e a k i n g i n d i c a t e d t h e presence
o f d i s o r d e r i n t h e s u r f a c e region.
These o b s e r v a t i o n s a r e consis-
t e n t w i t h b o t h AES and RBS r e s u l t s , which i n d i c a t e t h e e x i s t e n c e o f excess Ga i n l o c a l r e g i o n s which a r e n o n s t o i c h i o m e t r i c i n t h e n e a r - s u r f a c e region.
Although a range o f energy d e n s i t i e s and a
7.
Fig. 8.
PULSED LASER IRRADIATED SEMICONDUCTORS
LEED patterns from clean laser-annealed
429
( a ) ( l o o ) , ( b ) 1 1 0 ) , and
( c ) ( 1 1 1 ) GaAs surfaces a t primary beam energies o f ( a ) 1 1 3 eV, ( b ) 1 2 3 eV, and ( c ) 95 eV.
D. M. ZEHNER
v a r i a t i o n o f t h e number o f pulses were t r i e d , i t was n o t p o s s i b l e t o produce surfaces from which b e t t e r q u a l i t y LEED p a t t e r n s c o u l d be observed.
Similar
r e s u l t s have been o b t a i n e d from t h e InP
( 100) s u r f a c e (Moison e t a1 7.
., 1982).
METASTABLE SURFACES The o b s e r v a t i o n t h a t a (1x1) LEED p a t t e r n i s o b t a i n e d from t h e
( 1 1 1 ) s u r f a c e o f S i a f t e r l a s e r i r r a d i a t i o n i n a UHV environment and t h a t t h e s u r f a c e i s a t o m i c a l l y c l e a n a f t e r such t r e a t m e n t suggests t h a t t h i s s u r f a c e p r o v i d e s t h e o p p o r t u n i t y f o r i n v e s t i g a t i n g a c l e a n semiconductor s u r f a c e t h a t e x h i b i t s no ordered l a t e r a l reconstruction.
The understanding o f t h i s s t r u c t u r e i s o f v i t a l
importance i n view o f t h e o r e t i c a l d e s c r i p t i o n s o f t h e S i (111) surface.
I f t h e s u r f a c e i s t r u l y b u l k - l i k e except f o r s u r f a c e r e -
l a x a t i o n , i t should d i f f e r from t h e d i s o r d e r e d high-temperature (1x1)
., 1981) and i m p u r i t y - s t a b i l i z e d (1x1) (Eastman e t a1 ., F l o r i o e t a1 ., 1971) surfaces. Furthermore, o t h e r i n v e s t i -
( B e n n e t t e t a1 1980a,b;
g a t i o n s o f t h e (111) s u r f a c e subsequent t o i r r a d i a t i o n w i t h l a s e r p u l s e s have i n d i c a t e d t h a t some degree o f d i s o r d e r i s present. T h i s s u b j e c t w i l l be discussed i n d e t a i l l a t e r i n t h i s s e c t i o n . W h i l e i n f o r m a t i o n about t h e symmetry and s i z e o f t h e twodimensional
unit
cell
diffraction
patterns,
on
the
surface
information
about
can
be
obtained
surface
from
relaxations
r e q u i r e s t h e measurement o f t h e i n t e n s i t i e s o f t h e d i f f r a c t e d e l e c t r o n beams as a f u n c t i o n o f i n c i d e n t e l e c t r o n energy ( I - V profile).
The e x p e r i m e n t a l l y measured p r o f i l e s must t h e n be com-
pared w i t h r e s u l t s o b t a i n e d from f u l l y converged dynamical LEEU c a l c u l a t i o n s assuming v a r i o u s s t r u c t u r a l models f o r t h e geometric arrangement i n t h e outermost l a y e r s . between t h e experimental
A measure o f t h e agreement
r e s u l t s and t h e p r e d i c t i o n o f model
c a l c u l a t i o n s i s p r o v i d e d by t h e R f a c t o r ( t h e lower t h e R f a c t o r value, t h e
b e t t e r t h e agreement).
A d e t a i l e d LEED a n a l y s i s f o r
l a s e r - a n n e a l e d (111)-( 1x1) s u r f a c e s o f S i has been performed, and t h e r e s u l t s are discussed below (Zehner e t al.,
1981a).
7.
431
PULSED LASER IRRADIATED SEMICONDUCTORS
A S i (111) s u r f a c e t h a t had been i r r a d i a t e d w i t h t h e o u t p u t o f t h e l a s e r a t an energy d e n s i t y o f -2.0 investigations.
J/cmz was used i n these
The i n t e n s i t i e s o f t h e d i f f r a c t e d beams were
measured as a f u n c t i o n o f e l e c t r o n energy u s i n g a Faraday cup operated as a r e t a r d i n g f i e l d analyzer.
Data were obtained f o r
a l l o f t h e { l o } , {01}, {20}, and {02} beams and f o r t h r e e each o f t h e { l l } and {21} beams.
Based on o b s e r v a t i o n s and c o n c l u s i o n s
drawn from p r e v i o u s s t u d i e s , s y m m e t r i c a l l y e q u i v a l e n t beams were averaged t o p r o v i d e a data base c o n t a i n i n g s i x average p r o f i l e s . The experimental data base has been compared w i t h t h e r e s u l t s o b t a i n e d from f u l l y converged dynamical LEED c a l c u l a t i o n s .
Details
o f these c a l c u l a t i o n s can be found elsewhere, and o n l y t h e r e s u l t s
w i l l be summarized here. t h e dynamical
Comparison o f p r o f i l e s o b t a i n e d from
LEED c a l c u l a t i o n s t o t h e measured I - V
suggests t h a t t h e f i r s t i n t e r l a y e r spacing, d,
profiles
i s c o n t r a c t e d by
25.5 a 2.5% w i t h respect t o t h e b u l k value and t h a t t h e second i n t e r l a y e r spacing, d,, b u l k value.
i s expanded 3.2 r 1%w i t h respect t o t h e
P r o f i l e s c a l c u l a t e d u s i n g these values a r e shown i n
Fig. 9, which a l s o c o n t a i n s t h e corresponding experimental p r o f i l e s and single-beam r e l i a b i l i t y f a c t o r s ( R ) determined f o r each comparison.
The six-beam R f a c t o r corresponding t o Fig. 9 i s 0.115.
T h i s value i n d i c a t e s a very good agreement between c a l c u l a t e d and experimental p r o f i l e s i n a conventional LEED a n a l y s i s and suggests t h a t t h e proposed s t r u c t u r a l model i s h i g h l y probable.
Furthermore,
t h i s R value i s s i g n i f i c a n t l y lower than any r e p o r t e d value o b t a i n e d i n a LEED a n a l y s i s o f any semiconductor surface.
The changes i n
i n t e r l a y e r spacings determined from t h i s a n a l y s i s correspond t o n e a r e s t - n e i g h b o r bond l e n g t h changes o f -0.058 and t0.075 A.
These
r e s u l t s are c o n s i s t e n t w i t h a t o t a l energy c a l c u l a t i o n f o r such a s u r f a c e which g i v e s an inward r e l a x a t i o n o f t h e outermost l a y e r ( N o r t h r u p e t al.,
1981).
I n a separate
investigation
of
a Si
(111) s u r f a c e l a s e r
annealed w i t h pulses from a doubled Nd:YAG l a s e r ( A = 530 nm), a V i d i c o n camera was used t o scan t h e LEED p a t t e r n recorded on
432
D. M. ZEHNER
(40)BEAM R = 0.466
( 0 2 ) BEAM R = 0.095
I
I
(24) BEAM R = 0.088
-
CALCULATED AVERAGE EXPERIMENTAL
4 20
00
00
(60
420
460
200
ENERGY (eV)
Fig. 9 .
A comparison o f the averaged experimental I-V p r o f i l e s with calcu= -25.5%
lated results for Adl2
and Ad23 = 3.2%.
P o l a r o i d f i l m i n o r d e r t o o b t a i n t o o b t a i n angular i n t e n s i t y prof i l e s (Chabal e t al., weak peak [-0.02 ha1 f - o r d e r
1981a).
I n these measureriients, a broad and
t i m e s t h e (11) i n t e n s i t y ]
position,
characteristic
was p r e s e n t a t t h e
o f a (2x1)
reconstruction.
From these data i t was concluded t h a t no long-range o r d e r e x i s t s b u t t h a t d i s o r d e r e d domains w i t h a buckled ( 2 x 1 ) - l i k e r e c o n s t r u c t i o n are present.
The absence o f such o b s e r v a t i o n s i n t h e pre-
v i o u s l y discussed LEED a n a l y s i s suggests t h a t surfaces prepared w i t h d i f f e r e n t l a s e r a n n e a l i n g parameters may d i s p l a y d i f f e r e n c e s i n t h e d e t a i l s o f s u r f a c e order. To examine t h e q u e s t i o n o f s u r f a c e order, scattering
medium energy i o n
combined w i t h channel i n g and b l o c k i n g ,
a technique
which is a l s o s e n s i t i v e t o geometrical s t r u c t u r e i n t h e s u r f a c e r e g i o n , has been used t o i n v e s t i g a t e t h e S i ( l l 1 ) s u r f a c e (Tromp
433
7 . PULSED LASER IRRADIATED SEMICONDUCTORS e t a1
., 1982).
I n t h i s study,
data were obtained b o t h from a
s u r f a c e e x h i b i t i n y a sharp (7x7) LEED p a t t e r n ,
prepared by con-
v e n t i o n a l procedures, and from a s u r f a c e e x h i b i t i n g a sharp (1x1) LEED p a t t e r n , prepared by i r r a d i a t i n g t h e sample w i t h a s i n g l e p u l s e from a ruby l a s e r .
From an a n a l y s i s o f t h e data i t was concluded
t h a t t h e atomic displacements on both s u r f a c e s a r e r e s t r i c t e d t o two monolayers,
probably t h e f i r s t double l a y e r o f t h e c r y s t a l .
T h i s c o n c l u s i o n i s c o n s i s t e n t w i t h t h e r e s u l t s o f t h e LEE0 a n a l y s i s . However, i n t h i s model t h e atoms i n t h e f i r s t two monolayers occupy w e l l - d e f i n e d p o s i t i o n s and should g i v e r i s e t o a s t r o n g b l o c k i n g effect.
This blocking e f f e c t
i s n o t reproduced i n t h e data,
suggesting t h a t t h e atoms may occupy d i f f e r e n t l a t e r a l p o s i t i o n s and g i v e r i s e t o less e f f i c i e n t and smeared-out b l o c k i n g .
Thus, t h e
r e s u l t s are i n c o n s i s t e n t w i t h a simple r e l a x a t i o n model and i n d i c a t e some degree o f d i s o r d e r i n t h e s u r f a c e region.
A s i m i l a r LEED a n a l y s i s has been performed on a laser-annealed Ge (111) s u r f a c e (Zehner e t a1
., 1981b).
As w i t h S i , t h e b e s t agree-
ment i s o b t a i n e d f o r a s t r u c t u r a l model i n which atoms i n t h e o u t e r most l a y e r are d i s p l a c e d inward and t h o s e i n t h e second l a y e r a r e d i s p l a c e d outward r e l a t i v e t o t h e i r b u l k p o s i t i o n s , r e s p e c t i v e l y . The corresponding nearest-nei ghbor bond l e n g t h changes are -0.037 and +0.066 A . An examination o f t h e e l e c t r o n i c s t r u c t u r e i n t h e s u r f a c e r e g i o n o f t h e laser-annealed S i (111) and Ge (111) s u r f a c e s i s o f i n t e r e s t i n view o f t h e r e s u l t s o f both t h e LEED analyses and i o n s c a t t e r i n g r e s u l t s j u s t discussed.
P h o t o e l e c t r o n spectroscopy
d i r e c t l y y i e l d s i n f o r m a t i o n about t h e l o c a l bonding b u t i s l e s s s e n s i t i v e t o t h e long-range o r d e r than LEED.
Therefore,
resolved
studies
and
anyle-i ntegrated
photoemi s s i o n
valence band s u r f a c e s t a t e s and s u r f a c e c o r e - l e v e l been performed f o r t h e f o l l o w i n g s u r f a c e s :
of
angleboth
s h i f t s have
( 1 ) laser-annealed S i
and Ge (111)-(1x1)
surfaces prepared as f o r t h e LEED s t u d i e s and
(2) S i (lll)-(7x7)
and Ge ( l l l ) - ( 2 x 8 )
s u r f a c e s prepared by t h e r -
m a l l y annealing t h e (1x1) surfaces (Himpsel e t al.,
1981).
The
434
D. M. ZEHNER
measurements were made u s i n g t h e d i s p l a y - t y p e spectrometer a t t h e s y n c h r o t r o n r a d i a t i o n source, Tantalus I. I n Fig.
10, a n g l e - i n t e g r a t e d photoemission s p e c t r a a r e pre-
sented f o r laser-annealed
(1x1) surfaces ( f u l l
curves) and f o r
t h e t h e r m a l l y annealed surfaces (dashed curves) o f Ge (111) and Si
The d o t t e d l i n e s show t h e s p e c t r a o b t a i n e d a f t e r a
(111).
hydrogen exposure, which r e s u l t s i n about a s a t u r a t i o n monolayer coverage o f hydrogen.
Below -4 eV, hydrogen induces e x t r a s t a t e s
t h a t are w e l l understood b u t n o t i m p o r t a n t i n t h i s c o n t e x t . difference
between
the
solid
(dashed)
curves
The
and t h e d o t t e d
A l l four
curves above -3 eV r e p r e s e n t s s u r f a c e - s t a t e emission.
s u r f a c e s have a d o u b l e t o f s t a t e s near t h e t o p o f t h e
clean
valence band which i s quenched by hydrogen exposure.
Relative t o
t h e t o p o f t h e valence band, these s t a t e s l i e a t -0.4
and -1.3
f o r t h e annealed S i (111) s u r f a c e s and a t -0.7 annealed Ge (111) surfaces. dependent
photoelectron
and -1.3
By u s i n g a n g l e - r e s o l v e d p o l a r i z a t i o n -
spectroscopy,
the
surface
states
determined t o have d i s t r i b u t i o n s i n momentum (Ell)-space
i n Fig.
are
and sym-
m e t r i e s which are s i m i l a r f o r a l l f o u r annealed surfaces. results
eV
f o r the
These
a r e summarized r e l a t i v e t o t h e hexagonal B r i l l o u i n zone
11.
I t is remarkable t h a t t h e predominant s u r f a c e s t a t e s f o r t h e
t h e r m a l l y annealed Ge (111) and S i (111) surfaces match t h e (1x1) s u r f a c e B r i l l o u i n zone and show no i n d i c a t i o n o f t h e small r e c i p r o cal
(2x8)
that
or
(7x7)
photoemission
unit
cells.
(This
can indeed sense
by t h e l a r g e r (1x1) u n i t c e l l i n b,, space.) t i o n f o r the S i ( l l l ) - ( 7 x 7 ) appears near t h e Fermi l e v e l
surface:
, which
observation
confirms
t h e short-range o r d e r given There i s one excep-
a weak t h i r d s u r f a c e s t a t e
makes t h i s s u r f a c e m e t a l l i c , i n
c o n t r a s t t o t h e o t h e r t h r e e surfaces.
This exception i s consistent
w i t h a band p i c t u r e , wherein t h e S i ( l l l ) - ( 7 x 7 )
s u r f a c e has t o be
m e t a l l i c because t h e r e i s an odd number o f e l e c t r o n s i n t h e ( 7 x 7 ) unit cell. tially
Each band holds two e l e c t r o n s ,
filled
band.
The
extra
surface
which leaves a parstate
for
the
Si
7.
F i g . 10.
PULSED LASER IRRADIATED SEMICONDUCTORS
435
Angle-integrated photoelectron spectra f o r the annealed G e ( 11 1 )
and S i ( l l 1 ) surfaces showing emission from two surface states near the top o f the valence band which i s quenched by hydrogen exposure (dotted l i n e s ) . denotes the valence-band
maximum.
Ev
436
D. M. ZEHNER
LOWER STATE
UPPER STATE
n
EXTRA STATE
EF
AT
F OR
Si (111)- (7x7)
Fig. 1 1 . Characteristic locations (dashed areas) of different surface states in the ( 1 x 1 ) surface Briliouin zone (hexagon) for the annealed G e ( l l 1 ) and S i ( l l 1 ) surfaces. At the zone center, the lower surface state has A 3 ( P ~ , ~character ) and the upper state has A, ( s , p z ) character.
(lll)-(7x7)
i s c o n c e n t r a t e d near t h e m i d d l e o f t h e edges o f a
( 7 x 7 ) surface B r i l l o u i n zone as shown i n Fig.
11, and i t s i n t e n -
s i t y i s s e n s i t i v e t o t h e long-range (7x7) order. Additional
information
about
the
surface
geometry
can be
o b t a i n e d by measuring t h e s h i f t s i n energy and i n t e n s i t y of c o r e l e v e l s f o r s p e c i f i c surface
atoms.
The s u r f a c e - s e n s i t i v e angle-
i n t e g r a t e d photoemission s p e c t r a f o r Ge(3d) and S i ( 2p) core l e v e l s ( w i t h experimental mean-free paths o f 5.9 S i , r e s p e c t i v e l y ) a r e shown i n Fig.
12.
and 5.4
A f o r Ge and
By comparing s p e c t r a f o r
c l e a n ( f u l l l i n e s ) and hydrogen-covered ( d o t t e d l i n e s ) surfaces, i t i s c l e a r t h a t t h e r e are c o r e l e v e l s a t lower b i n d i n g energies which are c h a r a c t e r i s t i c o f t h e c l e a n s u r f a c e (marked by arrows
7.
PULSED LASER IRRADIATED SEMICONDUCTORS
Si(111) hv=120 eV
Ge(ll1) h v = 7 0 eV
7x7
2x8
-1.0
Fig.
12.
437
- j.0 0 1 .O 0 1.0 I N I T I A L STATE ENERGY RELATIVE TO BULK (eV)
Surface-sensitive
core-level
spectra f o r the, annealed Ge( 1 1 1 )
and S i ( l l 1 ) surfaces showing s h i f t e d c o r e levels f o r special surface atoms. The Ge data consits o f spin-orbit-split
3 d 3 / 2 and 3 d g / 2 levels, whereas in
t h e S i data the 2 p 1 / 2 levels have been removed by spin-orbit D o t t e d lines are f o r hydrogen-covered Si(ll1)
-
( 2 x 1 ) + H, r e s p e c t i v e l y ] ,
l o w e r binding energies are removed.
deconvolution. ( 1 x 1 ) + H and wherein the surface core levels at
surfaces [ G e ( l l l )
-
438
D. M. ZEHNER
i n Fig.
The r e s u l t s o f a l e a s t - s q u a r e s f i t t o t h e data a r e
12).
g i v e n i n Table 1 and can be summarized as f o l l o w s :
t h e annealed
Ge (111) and S i (111) s u r f a c e s have r o u g h l y 1/4 o f a monolayer o f s u r f a c e atoms,
w i t h l a r g e core-level
l o w e r b i n d i n g energy.
s h i f t s (0.6-0.8
L i t t l e difference
eV) t o w a r d
i s observed between
t h e r m a l l y annealed and l a s e r - a n n e a l e d surfaces. TABLE I S p e c i a l S u r f a c e Atoms f o r t h e Annealed Ge( 111) and S i ( 111) Surfaces Core-level s h i f t (towards lower binding energy, M.1 e v ) (ev)
Number o f atoms in v o l ved (20.05 l a y e r ) ( 1dyer)
Ge( 111)-( 2x8)
0.75 0.35
0.28 >O. 25
Ge( 111)-( 1x1)
0.60
0.37
S i ( 111)-(7 x 7 )
0.70
0.16
S i ( 111)-( 1x1)
0.80
0.23
The s t r o n g s i m i l a r i t y o f t h e valence band s u r f a c e s t a t e s and surface core-level s p e c t r a f o r b o t h t h e l a s e r - a n n e a l e d and t h e r m a l l y annealed S i and Ge s u r f a c e s i n d i c a t e s t h a t these s u r f a c e s have very s i m i l a r l o c a l bonding geometries and d i f f e r m a i n l y i n long-range o r d e r i n v o l v i n g g e o m e t r i c a l arrangements t h a t a r e o n l y a p e r t u r b a t i o n o f t h e average l o c a l bonding geometry.
An i n t e r -
e s t i n g q u e s t i o n t h e n i n v o l v e s t h e LEED analyses (Zehner e t al., 1981a; Zehner e t al.,
1 9 8 l b ) , which g i v e such good agreement w i t h
d a t a u s i n g a model ( 1 x 1 ) geometry t h a t appears t o be d i f f e r e n t f r o m t h a t needed t o d e s c r i b e t h e s u r f a c e e l e c t r o n i c s t r u c t u r e . One p o s s i b l e e x p l a n a t i o n i s t h a t LEED i s n o t p a r t i c u l a r l y s e n i t i v e t o long-range d i s o r d e r i f i t i s p r e s e n t on t h e ( 1 x 1 ) surface. Thus,
t h e i n t e r l a y e r displacements determined may be considered
439
7 . PULSED LASER IRRADIATED SEMICONDUCTORS
t o be averages over t h e coherence l e n g t h o f t h e e l e c t r o n beam. Another relaxed,
explanation
is
that
photoemission
can
rule
out
the
ordered ( 1 x 1 ) geometry o n l y i f t h e s u r f a c e s t a t e s a r e
band-1 ike as assumed i n one-el e c t r o n band c a l c u l a t i ons [ Pandy e t 1974; S c h l i i t e r e t a1
al.,
calculations
predict
., 1975;
that
such
C i r a c i e t al.,
1975).
These
a s u r f a c e would be m e t a l l i c ,
w i t h a h a l f - f i l l e d band o f d a n g l i n g bond s t a t e s a t t h e Fermi energy, EF, and t h i s i s i n c o n s i s t e n t w i t h t h e data, which show no emission near EF f o r t h e (1x1) surfaces.
However,
correlation
e f f e c t s might be very i m p o r t a n t f o r these narrow s u r f a c e l e v e l s .
A number o f researchers (Duke e t al., al.,
1981; Lannoo e t al.,
f o r t h theoretical
1981,
1982; L o u i s e t al.,
proposals
1982; Del Sole e t 1982, 1983) have p u t
t h a t would make t h e photoemission
d a t a from t h e laser-annealed S i (111) s u r f a c e c o n s i s t e n t w i t h t h e u n r e c o n s t r u c t e d r e l a x e d s u r f a c e p r e d i c t e d by t h e LEED a n a l y s i s . I n t h e s e models i t i s assumed t h a t s t r o n g c o r r e l a t i o n s dominate the
surface
state
band
structure,
and
they
predict
a
low-
temperature a n t i f e r r o m a g n e t i c ground s t a t e and downward d i s p e r s i o n o f t h e d a n g l i n g bond s t a t e s along r-J. have n o t been t e s t e d e x p e r i m e n t a l l y .
These p r e d i c t i o n s
Nevertheless,
e f f e c t s cannot e x p l a i n t h e s i m i l a r i t y i n c o r e - l e v e l
correlation shifts for
b o t h laser-annealed and t h e r m a l l y annealed surfaces. B o t h a n g l e - i n t e g r a t e d (McKinley e t a l . (Chabal e t al.,
, 1981) and angle-resolved
1981a) photoemission data have been obtained from
laser-annealed S i (111) s u r f a c e s u s i n g d i f f e r e n t annealing conditions.
I n agreement w i t h t h e r e s u l t s j u s t discussed and w i t h
r e s u l t s o b t a i n e d i n an independent i n v e s t i g a t i o n u s i n g a ruby l a s e r (Dernuth e t al.,
1984), no occupied s t a t e s a t EF are observed.
However, t h e energies of t h e s u r f a c e s t a t e s and t h e i r d i s p e r s i o n , o b t a i n e d a f t e r i r r a d i a t i o n w i t h e i t h e r a XeCl o r frequency-doubled Nd:YAG d i f f e r somewhat from t h e r e s u l t s presented u s i n g a ruby laser.
I n fact,
i t i s argued t h a t t h e laser-annealed
surface
examined i n these s t u d i e s i s buckled w i t h no long-range o r d e r b u t w i t h a short-range ( 2 x 1 ) r e c o n s t r u c t i o n .
From these r e s u l t s and
440
D. M. ZEHNER
t h o s e o b t a i n e d from t h e r m a l l y
quenched S i
(111)
surfaces,
it
appears t h a t d i f f e r e n t l a s e r a n n e a l i n g c o n d i t i o n s (depth o f m e l t , r e g r o w t h v e l o c i t y ) can r e s u l t i n d i f f e r e n t l o c a l bonding arrangements.
8.
VICINAL SURFACES The
chemical
influence o f
steps
reactivity of
on t h e e l e c t r o n i c
properties
semiconductor s u r f a c e s a r e well
and
known.
Stepped ( v i c i n a l ) s u r f a c e s can be prepared by i n s i t u c l e a n i n g o r i o n etching,
but t h e control o f step density,
step height,
and
ease o f r e p r o d u c i b i l i t y has proved d i f f i c u l t u s i n g t h e s e convent i o n a l procedures.
The r a p i d m e l t i n g and regrowth achieved w i t h
l a s e r a n n e a l i n g suggest t h a t t h i s procedure can be used w i t h vicinal
surfaces t o produce s u r f a c e s c o n t a i n i n g monatomic steps
and u n i f o r m t e r r a c e widths. To demonstrate t h a t such s u r f a c e s can be produced, o b t a i n e d from a S i ( l l 1 ) f r o m a (111) plane (Zehner e t a1
c r y s t a l whose s u r f a c e was c u t a t 4.3'
toward t h e
., 1980b).
results
[ i i 2 ] d i r e c t i o n w i l l be discussed
F o r t h i s d i r e c t i o n , t h e edge atoms have
o n l y two n e a r e s t neighbors.
The w e l l - d e f i n e d (1x1)
LEED p a t t e r n
o b t a i n e d from t h e c l e a n s u r f a c e and shown i n Fig. 13 ( a ) was observed after
i r r a d i a t i n g t h e s u r f a c e with f i v e p u l s e s a t -2.0
J/cm2.
The p a t t e r n i n d i c a t e s t h e e x i s t e n c e o f a stepped s u r f a c e which can be indexed [ 1 4 ( 1 1 1 ) x ( i i 2 ) ] . energy, and [ O l ]
By v a r y i n g t h e p r i m a r y e l e c t r o n
t h e t h r e e f o l d spot s p l i t t i n g a l t e r n a t e s between t h e r e f l e c t i o n s a t s p e c i f i c e l e c t r o n energies.
[lo]
The energies
a t which a g i v e n r e f l e c t i o n i s s p l i t or n o n s p l i t g i v e s p e c i f i c i n f o r m a t i o n on t h e s t e p h e i g h t , and t h e angular s e p a r a t i o n between s p l i t spots provides i n f o r m a t i o n on t h e t e r r a c e width.
An a n a l y s i s
o f t h e spot s p l i t t i n g s i n t h i s p a t t e r n u s i n g o n l y a k i n e m a t i c t r e a t m e n t o f s i n g l e s c a t t e r i n g from t h e t o p l a y e r (Henzler, 1970) i n d i c a t e s t h a t t h e s u r f a c e c o n s i s t s o f monatomic s t e p s w i t h an average s t e p h e i g h t o f one double l a y e r (3.14 w i d t h s -45 A as i l l u s t r a t e d i n Fig. 14.
A)
with terrace
The absence o f f r a c t i o n a l
7.
Fig.
13.
441
PULSED LASER IRRADIATED SEMICONDUCTORS
LEED
patterns from clean vicinal
beam energies o f ( a ) 40 and ( b ) 68 eV.
Si(ll1 )
surfaces a t primary
( a ) Laser annealed, (b) thermally
annealed.
LASER ANNEALED
-
( 4 x 4 ) WITH SPLIT SPOTS
4;3"
THERMALLY ANNEALED
-
(7 x 7 )
4.30
Fig.
14.
Schematic
the (710) plane.
illustration o f the vicinal
Top view i s for the laser-annealed
surface projected into surface.
Bottom view
illustrates a possible configuration obtained with thermal annealing.
442
D. M. ZEHNER
order r e f l e c t i o n s ,
i n d i c a t i v e of
reconstruction,
suggests t h a t
t h e l o c a l atomic arrangement produced by t h i s a n n e a l i n g procedure may be s i m i l a r t o t h a t produced on f l a t (111) surfaces. I n o r d e r t o achieve such a h i g h step d e n s i t y c o n f i g u r a t i o n , a l a r g e amount o f atom motion has t o t a k e place.
T h i s movement can
be accomplished e i t h e r by e v a p o r a t i o n o f s u r f a c e atoms o r by d i f f u s i o n i n t h e molten phase.
R e s u l t s o f r e c e n t experiments w i t h
stepped s u r f a c e s (Osakabe e t al., evaporation 1475
K.
1980, 1981) show t h a t some
t a k e s p l a c e a t step edges a t temperatures as low as
Assuming m e l t i n g occurs d u r i n g t h e l a s e r a n n e a l i n g con-
d i t i o n s used, about
lo9
atoms/cm2 evaporate i n a 10-ns p u l s e f o r
an e v a p o r a t i o n r a t e o f 1017 atoms/cmzs [vapor p r e s s u r e 5 x 10-3 T o r r (Chabel e t al., monolayer,
T h i s corresponds t o o n l y 10-6 o f a
1982)].
which i s n o t enough t o account f o r t h e l a r g e atomic
rearrangements over hundreds o f angstroms. mechanism must dominate, be e s t i m a t e d D
2
Thus,
the diffusion
and a s u r f a c e d i f f u s i o n c o e f f i c i e n t can’
(100 A ) 2 / ( 10 ns) -loe4 cm2/s.
This high d i f -
f u s i o n c o e f f i c i e n t would be q u i t e i n c o m p a t i b l e w i t h a nonthermal model
of
l a s e r a n n e a l i n g b u t i s c o n s i s t e n t w i t h experimental
measurements ( N i shizawa e t a1 the melting
point,
the
., 1972).
surface
A t temperatures c l o s e t o
arrangement
i s dominated
by
e n t r o p y , which i s r e s p o n s i b l e f o r a s t e p - s t e p r e p u l s i o n (Gruber et al., disorder
1967).
is
As t h e c r y s t a l c o o l s down and t h e e n t r o p y - d r i v e n
reduced,
the
surface d i f f u s i o n
decreases
t o the
e x t e n t t h a t t h e steps cannot recombine; t h e y remain f r o z e n i n t h e high-temperature c o n f i g u r a t i o n . The s t a b i l i t y o f t h e r e g u l a r a r r a y o f steps was i n v e s t i g a t e d by s u b j e c t i n g t h e laser-annealed s u r f a c e t o a s e r i e s o f thermala n n e a l i n g t r e a t m e n t s a t h i g h e r and h i g h e r temperatures. f o r f l a t (111) S i surfaces,
As observed
thermal annealing o f t h e c r y s t a l t o
temperatures g r e a t e r than -800 K r e s u l t e d i n a s u r f a c e from which t h e ( 7 x 7 ) d i f f r a c t i o n p a t t e r n shown i n Fig. 13 ( b ) was o b t a i n e d i n accord w i t h p r e v i o u s o b s e r v a t i o n s (Olshanetsky e t a l .
, 1979).
The
absence o f s p l i t t i n g of i n d i v i d u a l spots i n d i c a t e s t h e e l i m i n a t i o n
7.
443
PULSED LASER IRRADIATED SEMICONDUCTORS
o f t h e r e g u l a r a r r a y o f monatomic steps, and t h e sharpness o f t h e integral-order
reflections
i s c o n s i s t e n t w i t h a s u r f a c e having
t e r r a c e s wider than -200
A.
macroscopic
inclination,
multilayer
illustrated
i n Fig.
14.
I n o r d e r t o m a i n t a i n t h e average steps must be present
as
A s u r f a c e c o n t a i n i n g monatomic steps
c o u l d be regenerated by i r r a d i a t i n g t h e t h e r m a l l y annealed surface with the laser.
These o b s e r v a t i o n s i n d i c a t e t h a t i t i s
p o s s i b l e t o produce r e p e a t e d l y a p a r t i c u l a r s t e p arrangement by i n i t i a l l y c u t t i n g the crystal t o the desired orientation. I n v e s t i g a t i o n s o f v i c i n a l S i (111) s u r f a c e s c u t a l o n g t h e [ i i 2 ] d i r e c t i o n have produced r e s u l t s very s i m i l a r t o those discussed above (Chabal e t al.,
1981b).
Steps along t h i s d i r e c t i o n c o n t a i n
edge atoms t h a t have t h r e e nearest neighbors.
Although d e t a i l e d
s t u d i e s on t h e angular p r o f i l e s show t h e step h e i g h t t o be 3.06 A i n t h i s d i r e c t i o n , somewhat l e s s than t h e d o u b l e - l a y e r separation, t h e o v e r a l l behavior f o r laser-annealed v i c i n a l surfaces i s t h e same f o r b o t h types o f steps.
9.
DEFECTS As a consequece o f m e l t i n g d u r i n g t h e l a s e r annealing process,
atoms a r e evaporated from t h e s u r f a c e region.
I n f a c t , measure-
ment o f S i p a r t i c l e emission d u r i n g e v a p o r a t i o n u s i n g a c l a s s i c a l t i m e - o f - f l i g h t technique has been used t o determine t h e l a t t i c e temperature and t o demonstrate t h a t me1 t i n g occurs ( S t r i t z k e r e t al.,
1981).
I n a d d i t i o n t o n e u t r a l p a r t i c l e emission, b o t h i o n
and e l e c t r o n e j e c t i o n s have been d e t e c t e d (Moison, e t a1
., 1982).
The t h r e s h o l d f l u e n c e r e q u i r e d f o r d e t e c t i o n o f such p a r t i c l e emission bas been determined f o r a number o f m a t e r i a l s (Moison e t al.,
1983).
R e s u l t s o b t a i n e d f o r InP and GaAs s i n g l e c r y s t a l s
a r e c o n s i s t e n t w i t h AES and RBS observations, erential Si,
l o s s o f t h e more v o l a t i l e component.
indicating a prefI n t h e case o f
t h e amount o f m a t t e r removed was observed t o be orders o f
magnitude l e s s .
444
D. M. ZEHNER
The o b s e r v a t i o n t h a t e v a p o r a t i o n occurs d u r i n g l a s e r a n n e a l i n g i n d i c a t e s t h a t t h e c r e a t i o n o f d e f e c t s i s p o s s i b l e and t h a t d u r i n g t h e quenching p e r i o d a c o m p e t i t i o n t a k e s p l a c e between t h e e l i m i n a t i o n o f d e f e c t s c r e a t e d a t t h e m e l t i n g temperature and t h e growth o f an ordered s u r f a c e
region.
T h i s p o s s i b i l i t y may be par-
t i c u l a r l y i m p o r t a n t i n t h e case o f r e c o n s t r u c t e d s u r f a c e l a y e r s . I f t h e d e f e c t s a r e n o t e l i m i n a t e d f a s t enough,
t h e y may impede
growth o f t h e s u p e r s t r u c t u r e by v a r i o u s mechanisms.
Thus,
the
r e g r o w t h v e l o c i t y o f t h e m e l t f r o n t may p l a y an i m p o r t a n t r o l e i n the d e t a i l s o f the
f i n a l geometric o r d e r i n g .
been suggested (Chabel e t al.,
I n fact,
i t has
1982) t h a t t h e d i f f e r i n g photo-
emission r e s u l t s o b t a i n e d i n independent laser-anneal i n g s t u d i e s can be i n t e r p r e t e d as a consequence o f d i f f e r e n t f i n a l
state
geometric o r d e r i n g due t o d i f f e r e n t regrowth v e l o c i t i e s . I n order
t o e x p l o r e t h e dependence on regrowth v e l o c i t y ,
measurements have been made subsequent t o annealing w i t h a pulsed XeCl excimer l a s e r ( A = 308 nm) (Zehner e t a1
., 1984a).
Measurements
were made a f t e r l a s e r a n n e a l i n g t h e c r y s t a l w i t h an energy d e n s i t y i n t h e range 1.0-4.0 (Wood and G i l e s ,
J/cm2.
Standard heat f l o w
calculations
1981) have been used t o e s t a b l i s h t h a t a v a r i a -
t i o n i n regrowth v e l o c i t y from 1 m/s a t 4.0 J / c d t o 4.5 1.0
J/cm2
m/s a t
can be o b t a i n e d w i t h t h e excimer l a s e r used i n t h i s
experiment (see Chapter 4).
R e s u l t s o b t a i n e d from p h o t o e l e c t r o n
spectroscopy
determine
were
used
to
s t r u c t u r e o f v a r i o u s laser-annealed annealed S i ( l l 1 )
-
(7x7),
the
surface
-
S i ( 111)
and cleaved S i ( l l 1 )
-
electronic
(1x1)
,
thermally
( 2 x 1 ) surfaces.
The s u r f a c e s t a t e s near t h e t o p o f t h e band are i m p o r t a n t s i n c e t h e y have c h a r a c t e r i s t i c energies and angular d i s t r i b u t i o n s t h a t have been s t u d i e d p r e v i o u s l y (Zehner e t al.,
1 9 8 1 ~ ) . I n Fig.
15
t h e energy d i s t r f b u t i o n s o f s u r f a c e s t a t e s near t h e t o p o f t h e valence band a r e shown f o r v a r i o u s S i ( l l 1 ) surfaces.
As evidenced
by t h e s e n s i t i v i t y t o hydrogen exposure ( n o t shown), s u r f a c e s e x h i b i t t h r e e dominant Fig.
the (7x7)
s u r f a c e s t a t e s l a b e l e d 1-3 i n
15 and t h e ( 2 x 1 ) s u r f a c e i s dominated by two s u r f a c e s t a t e s
7.
445
PULSED LASER IRRADIATED SEMICONDUCTORS
-6
-5
-3
4
-2
-1
0
1
INITIAL ENERGY ( RELATIVE TO VALENCE BAND MAXIMUM )
Fig.
15.
Angle-integrated
spectra from freshly cleaved S i ( 1 1 1 )-( 2x1 )
,
UV (308 nm XeCI) laser-annealed Si( 1 1 1 )-( 1x1 ) produced with 1, 2, 3 , and 4 J / c m 2 pulses, ruby (694 n m ) laser-annealed Si( 1 1 1 )(lxl) produced with a 2 J /cm2 pulse, and
Si (1 1 1 )-(7x7 )
obtained by thermal annealing.
446
D. M. ZEHNER
l a b e l e d 4 and 5.
For t h e v a r i o u s laser-annealed surfaces,
two
s u r f a c e s t a t e s which c l o s e l y resemble s t a t e s 1 and 2 on t h e ( 7 x 7 ) s u r f a c e and a r e t o t a l l y d i f f e r e n t from those observed on t h e c l e a v e d (2x1) s u r f a c e were i d e n t i f i e d . change
of
variation
this of
surface
state
regrowth v e l o c i t y
Moreover, no s i g n i f i c a n t
structure from
was
1-4.5
observed over
m/s,
apart
a
from a
weakening o f t h e s u r f a c e s t a t e s f o r t h e f a s t e s t regrowth velocity.
T h i s weakening c o u l d be due t o t h e onset o f d i s o r d e r when
t h e energy d e n s i t y employed approaches t h e me1t t h r e s h o l d . I t i s known t h a t t h e S i ( l l 1 ) s u r f a c e undergoes a s t r u c t u r a l
change from (7x7) ( B e n n e t t e t al.,
t o (1x1) a t a c r y s t a l temperature o f 1150 K 1981).
For very low c o o l i n g r a t e s t h e s t r u c -
t u r a l t r a n s i t i o n i s reversible,
b u t i f quenching r a t e s exceed
approximately
lo2
irreversible.
Consequently, t h e quenching r a t e a t t h e t r a n s i t i o n
K / s (Hagstrum e t al.,
1973), t h e t r a n s i t i o n i s
temperature, subsequent t o l a s e r i r r a d i a t i o n , may be i m p o r t a n t i n When S i ( 111) i s quenched
d e t e r m i n i n g t h e s u r f a c e s t a t e spectra.
t h r o u g h t h e t r a n s i t i o n temperature a t 102 K/s, s u r f a c e s t a t e s p e c t r a s i m i l a r t o those f o r t h e laser-annealed surfaces shown i n Fig. 15 a r e observed (Eastman e t al.,
1980b).
Heat f l o w c a l c u l a t i o n s f o r
l a s e r a n n e a l i n g a t 1.0 J/cm2 p r e d i c t a quenching r a t e o f 1010 K / s a t 1150 K.
Thus,
s i m i l a r s u r f a c e s t a t e s p e c t r a are observed f o r
quenching r a t e s between 102 and 1010 K/s.
I f t h e quenching r a t e
a t t h e t r a n s i t i o n temperature i s o f importance i n d e t e r m i n i n g t h e surface
state
spectra,
rates
i n excess
of
1010 K / s
will
be
necessary t o produce s u r f a c e s t a t e f e a t u r e s s i m i l a r t o those o f t h e (2x1) surface.
Furthermore, f o r regrowth v e l o c i t i e s g r e a t e r
t h a n 15 m/s, where an amorphous l a y e r i s formed ( C u l l i s e t a l . , 1982),
one would expect t o see s u b s t a n t i a l
differences i n the
s u r f a c e s t a t e spectra. Additional
i n f o r m a t i o n about b o t h t h e s i m i l a r i t i e s and d i f -
ferences i n geometric s u r f a c e s t r u c t u r e f o r s u r f a c e s prepared by d i f f e r e n t t r e a t m e n t s can be obtained by i n v e s t i g a t i n g a d s o r p t i o n phenomena.
The technique o f h i g h - r e s o l u t i o n i n f r a r e d spectroscopy
7.
447
PULSED LASER IRRADIATED SEMICONDUCTORS
(Chabel , 1983) has been used t o study t h e v i b r a t i o n a l spectrum o f hydrogen chemisorbed on S i ( l l l ) - ( 7 x 7 ) prepared by thermal a n n e a l i n g and S i ( l l 1 ) - ( 1 x 1 )
prepared by l a s e r annealing.
T h i s technique
g i v e s d i r e c t i n f o r m a t i o n on t h e number, p o s i t i o n , and p o i a r i z a t i o n o f d a n g l i n g bonds, which a r e present a t t h e s u r f a c e o f a semiconductor.
For coverages as low as 1.5% o f a monolayer o f hydrogen
on t h e S i ( l l l ) - ( 7 x 7 ) observed.
surface,
two d i s i i n c t a d s o r p t i o n peaks are
Each peak corresponds t o a S i - H s t r e t c h i n g v i b r a t i o n
f o r hydrogen chemisorbed a t d i f f e r e n t s i t e s .
By i n v e s t i y a t i n g
t h e change i n i n t e n s i t y and energy o f these v i b r a t i o n s i t i s concluded t h a t a unique chemisorption s i t e e x i s t s on t h i s s u r f a c e and i s recessed from t h e outermost plane.
R e s u l t s o b t a i n e d from
t h e laser-annealed S i ( 1 1 1 ) - ( 1x1) s u r f a c e show o n l y one a d s o r p t i o n peak.
The peak a s s o c i a t e d w i t h t h e unique a d s o r p t i o n s i t e i s
absent.
This
observation
strongly
suggests
that
the
unique
a d s o r p t i o n s i t e on t h e (7x7) s u r f a c e i s a r e s u l t o f long-range rearrangement
which
i s absent
on t h e
1aser-anneal ed surface.
Since b o t h a (1x1) u n r e c o n s t r u c t e d b u t r e l a x e d s u r f a c e as d e t e r mined i n t h e LEED a n a l y s i s and a m o s t l y d i s o r d e r e d s u r f a c e as determined by PES would n o t c o n t a i n such a w e l l d e f i n e d hole, t h e s e r e s u l t s cannot be used t o d i s c r i m i n a t e between t h e proposed structures. Rare gas t i t r a t i o n i s another technique used t o i n v e s t i g a t e geometric s t r u c t u r e .
The approach employed i s based on t h e concept
t h a t d i f f e r e n t geometric a d s o r p t i o n s i t e s f o r r a r e gas atoms can have d i f f e r e n t l o c a l work f u n c t i o n s .
Such l o c a l work f u n c t i o n
d i f f e r e n c e s produce d i f f e r e n t e l e c t r o n b i n d i n g energies re1a t i v e t o EF f o r these adsorbed atoms,
which a l l o w t h e d e l i n e a t i o n o f
v a r i o u s s i t e s as w e l l as t h e d e t e r m i n a t i o n o f t h e i r r e l a t i v e conc e n t r a t i o n s when examined w i t h PES. Si(lll)-(7x7) show
Recent i n v e s t i g a t i o n s o f t h e
s u r f a c e f o r xenon a d s o r p t i o n (Demuth e t a1
coverage-dependent
changes
i n t h e measured
., 1984)
PES b i n d i n g
e n e r y i e s a t b o t h h i g h and low coverages i n e i t h e r a d s o r p t i o n (as l o n g as near e q u i l i b r i u m a d s o r p t i o n c o n d i t i o n s a r e maintained) or
448
D. M. ZEHNER
d e s o r p t i o n experiments.
The sequence and number o f a d s o r p t i o n
s i t e s found f o r t h i s s u r f a c e are c o n s i s t e n t w i t h ( 1 ) a s p e c i a l h i g h b i n d i n g energy s i t e a t low coverages,
(2) a majority o f
nearly
equivalent
sites
over
surface
higher
coverages
where
rare-gas
most o f
the
adatom
(including
interactions
become
and ( 3 ) another t y p e o f m i n o r i t y s i t e p r i o r t o f o r -
important),
m a t i o n o f condensed o r m u l t i l a y e r s .
These r e s u l t s are c o n s i s t e n t
w i t h proposed s t r u c t u r a l models f o r t h e (7x7) s u r f a c e which have adatoms. (ruby
S i m i l a r measurements have been made on a laser-annealed S i ( 111)-(1x1)
laser)
surface.
The s i m i l a r i t i e s
i n the
r e s u l t s o b t a i n e d from t h i s s u r f a c e and those from t h e (7x7) surf a c e suggest t h e e x i s t e n c e o f adatoms.
This conclusion i s i n
c o n t r a s t t o t h e LEED r e s u l t s s u p p o r t i n g a f l a t ,
compressed s u r -
face.
A s t e p can be t r e a t e d as a d e f e c t and ordered a r r a y s o f such d e f e c t s produced by l a s e r a n n e a l i n g have been considered i n t h e discussion o f v i c i n a l
It i s w e l l
surfaces.
known t h a t l a s e r -
annealed s u r f a c e s have a r i p p l e d topography when examined on a macroscopic s c a l e (Leamy e t al.,
1978).
T h i s i m p l i e s t h a t steps,
randomly d i s t r i b u t e d , must e x i s t on such surfaces.
The p o s s i b i l -
i t y t h a t t h e S i ( 111)-(1x1) s u r f a c e s t r u c t u r e observed a f t e r l a s e r
annealing
can
be
associated
(Haneman,
1982; Moisum e t al.,
m i n i m i z e i t s f r e e energy.
with
steps
1983).
has
been
A surface reconstructs t o
The l o w e r i n g i n f r e e energy achieved
by r e c o n s t r u c t i o n can be e s t i m a t e d t h e o r e t i c a l l y , g r e a t accuracy, entropy.
considered
but not w i t h
due t o d i f f i c u l t i e s w i t h c o r r e l a t i o n e f f e c t s and
The presence o f s t r a i n w i l l t e n d t o oppose t h i s e f f e c t .
Based on
results
suggested (Haneman,
from a v a r i e t y
o f experiments
it
has been
1982) t h a t a s t r a i n e d r e g i o n a t t h e base o f
s t e p s on laser-annealed ( 111) surfaces causes s u r f a c e r e c o n s t r u c t i o n t o be i n h i b i t e d ,
r e s u l t i n g i n a (1x1)
surface structure.
Furthermore, i t i s suggested t h a t t h e behavior o f (100) surfaces, where t h e laser-annealed s t r u c t u r e i s t h e same as t h a t produced by thermal
annealing,
i s then
not
unexpected s i n c e t h e s t e p
7.
449
PULSED LASER IRRADIATED SEMICONDUCTORS
s t r u c t u r e s are o f d i f f e r e n t c r y s t a l l o g r a p h y and t h e r e i s no s i m i l a r evidence f o r step-associated s t r a i n .
V.
Surface and Subsurface S t u d i e s o f Ion-Implanted S i l i c o n
P r e v i o u s i n v e s t i y a t i o n s (White e t al.,
1980b) have shown t h a t
group I11 o r V i m p l a n t s occupy s u b s t i t u t i o n a l s i t e s subsequent t o l a s e r annealing and t h a t , as a consequence o f b o t h t h e h i g h l i q u i d phase d i f f u s i v i t i e s and t h e h i g h values o f d i s t r i b u t i o n c o e f f i c i e n t s , t h e y are a b l e t o d i f f u s e i n t o t h e c r y s t a l d u r i n g t h e regrowth I n c o n t r a s t , i t has been shown (White
process a f t e r i r r a d i a t i o n . e t al.,
1980c) t h a t those i m p l a n t s which do n o t form c o v a l e n t
bonds e x h i b i t , dependiny on t h e i m p l a n t dose, s e g r e g a t i o n t o t h e s u r f a c e as w e l l as t h e f o r m a t i o n o f a c e l l s t r u c t u r e subsequent t o l a s e r annealing.
The RBS and secondary i o n mass spectroscopy
( S I M S ) techniques employed i n these i n v e s t i g a t i o n s p r o v i d e d e t a i l e d
i n f o r m a t i o n about t h e d i s t r i b u t i o n w i t h respect t o depth b u t prov i d e no i n f o r m a t i o n about t h e c o n c e n t r a t i o n i n t h e s u r f a c e r e g i o n (<20 A )
and t h e changes which occur w i t h m u l t i p l e - p u l s e
diation.
Thus,
irra-
it i s o f i n t e r e s t t o u t i l i z e surface s e n s i t i v e
techniques i n o r d e r t o p r o v i d e complementary i n f o r m a t i o n . By u s i n g m u l t i p l e - p u l s e
irradiation,
the levels o f the prin-
c i p a l contaminants on s u r f a c e s o f i o n - i m p l a n t e d S i c r y s t a l s , 0 and C, can be reduced t o t h e p o i n t where t h e y a r e n o t d e t e c t a b l e i n Auger
s p e c t r a o b t a i n e d from t h e - s u r f a c e region.
However,
s i n c e t h e e x t e n t o f d i f f u s i o n o r s e g r e g a t i o n o f t h e implanted species i s known t o be a f u n c t i o n o f t h e number o f l a s e r pulses, a more a p p r o p r i a t e procedure i s t o s p u t t e r t h e samples i n i t i a l l y . T h i s r e s u l t s i n removal o f most o f t h e 0 and C s u r f a c e contaminants, and t h e l e v e l o f c l e a n l i n e s s a f t e r one p u l s e i s h i g h e r than
that
obtained without
sputteriny.
material affected during sputteriny,
-50 A,
Since t h e depth o f i s much s m a l l e r than
t h e depth o f t h e i m p l a n t e d r e g i o n , t y p i c a l l y -1000-2000
A,
the
s p u t t e r i n g process has l i t t l e o r no e f f e c t on t h e subsequent chanyes
i n t h e i m p l a n t r e d i s t r i b u t i o n t h a t occur d u r i n g l a s e r
450
D. M. ZEHNER
irradiation.
This
has
been
verified
by
comparing
results
o b t a i n e d f o l 1owing l a s e r anneal ing o f imp1 anted c r y s t a l s t h a t had been s p u t t e r e d w i t h t h o s e t h a t had not. sputtering
species
laser irradiation,
i s removed
Moreover,
from t h e s u r f a c e
since t h e
reyion during
as discussed i n S e c t i o n 111, i t cannot have
any e f f e c t on t h e r e d i s t r i b u t i o n o f t h e implanted species i n t h e s u r f a c e region.
For most i m p l a n t c o n d i t i o n s , as a consequence o f
t h e Gaussian-like
distribution,
the concentration o f
implanted
species i n t h e s u r f a c e r e y i o n i s n o t d e t e c t a b l e w i t h AES e i t h e r a f t e r insertion
10.
or a f t e r s p u t t e r i n g .
SUBSTITUTIONAL IMPLANTS R e s u l t s obtained on a Si(100) sample i m p l a n t e d w i t h 75As(100 keV,
8.3 x 1.0’6/cm2)
u s i n g t h e RBS technique are shown i n Fig. 16 and
i l l u s t r a t e t h e r e d i s t r i b u t i o n o f implanted species t h a t occurs w i t h multiple-pulse
irradiation.
Auger data were a l s o obtained
from t h i s sample f o l l o w i n g s i m i l a r i r r a d i a t i o n c o n d i t i o n s .
With
t h e s e d a t a t h e r a t i o o f t h e i n t e n s i t y o f t h e As(31 eY) Auger t r a n s i t i o n t o t h a t o f t h e S i ( 9 l eV) t r a n s i t i o n i s shown i n F i g . 17, where i t i s p l o t t e d as a f u n c t i o n o f t h e number o f l a s e r pulses. The data show t h a t t h e r e l a t i v e amount o f As i n t h e s u r f a c e r e g i o n decreases w i t h an i n c r e a s i n g number o f pulses, s i m i l a r t o t h e RBS r e s u l t s obtained f o r t h e subsurface r e y i o n .
Although n o t shown i n
t h i s f i g u r e , l i t t l e change i s observed i n t h e s u r f a c e c o n c e n t r a t i o n a f t e r a l a r g e number (>15) o f pulses where RBS r e s u l t s i n d i c a t e uniform concentration liquid-solid
interface.
from t h e subsurface
r e y i o n down t o t h e
I t i s d i f f i c u l t t o q u a n t i f y t h e AES
r e s u l t s t o t h e same degree as can be done w i t h t h e RBS data. Thus, a l t h o u g h i t can be concluded t h a t a r e d u c t i o n i n concentrat i o n occurs w i t h m u l t i p l e - p u l s e i r r a d i a t i o n , t h e r e c o u l d s t i l l be a p o s s i b l e chanye i n c o n c e n t r a t i o n i n going from t h e s u r f a c e t o subsurface r e g i o n t h a t
i s a consequense o f t h e surface-vacuum
451
7 . PULSED LASER IRRADIATED SEMICONDUCTORS
5
2
5
Fig.
16.
in S i ( 1 0 0 )
E f f e c t o f laser annealing on dopant profiles for As implanted as determined by RBS.
Profile
results are
implanted condition and subsequent to laser annealing at -2.0
shown
for
J/cm2.
as-
452
D. M. ZEHNER
gJ O
2
I
I
I
I
I
I
I
4 6 0 10 12 NUMBER OF PULSES (E0-2.1 J/cm2)
14
Fig. 17. Plot of the ratio of the As M W ( 3 1 e V ) to Si L W ( 9 1 eV) 4,5 283 Auger transition intensities as a function of the number of laser pulses.
interface. v a r i e t y of
Similar
Auger
results
have
been
obtained
for
a
i m p l a n t e d doses o f s u b s t i t u t i o n a l dopants i n S i ( l 0 U )
and (111) c r y s t a l s .
To examine t h e e f f e c t o f t h e i m p l a n t e d s p e c i e s on s u r f a c e o r d e r , LEED p a t t e r n s have been o b t a i n e d from t h e same 7%-implanted S i ( 1 0 0 ) sample.
Only a very weak,
was observed a f t e r
one l a s e r pulse.
p o o r l y d e f i n e d LEED p a t t e r n F o l l o w i n g two p u l s e s o f
i r r a d i a t i o n , t h e p a t t e r n shown a t t h e t o p o f F i g . 18 was obtained. I n t e g r a l o r d e r beams a r e observed, as w e l l as weak s t r e a k s between them.
With a d d i t i o n a l l a s e r pulses t h e s t r e a k s b e g i n t o coalesce
7 . PULSED LASER IRRADIATED SEMICONDUCTORS
Fig. 18.
LEED patterns from an As-implated Si( 100) surface a t a primary
beam energy of 49 eV.
-2.0
453
Patterns are shown subsequent to laser annealing at
J / m 2for ( a ) 2 , ( b ) 5 , and ( c ) 10 pulses.
454
D. M.ZEHNER
i n t o half-order reflections, surface structure.
i n d i c a t i n g t h e f o r m a t i o n o f a (2x1)
They c o n t i n u e t o become sharper and more
i n t e n s e w i t h a d d i t i o n a l pulses, as shown i n t h e f i g u r e .
However,
t h e p a t t e r n observed a f t e r t e n l a s e r pulses i s n o t as good as t h a t o b t a i n e d from a v i r g i n Si(100) c r y s t a l as shown i n Fig. 5 and t h u s i n d i c a t e s t h e presence o f d i s o r d e r i n t h e s u r f a c e region. Nevertheless,
i t i s i n t e r e s t i n g t o note t h a t t h e (2x1) LEE0 pat-
t e r n shows t h e e x i s t e n c e o f t h e r e c o n s t r u c t e d surface, s i m i l a r t o that
obtained
results
have
from a been
virgin
obtained
Si(100) for
a
crystal.
variety
Similar
of
LEED
substitutional
dopants i n Si(100) w i t h t h e q u a l i t y o f t h e LEED p a t t e r n o b t a i n e d f o r a s p e c i f i c l a s e r annealing c o n d i t i o n decreasing w i t h i n c r e a s i n g i m p l a n t dose.
I n c o n t r a s t t o these o b s e r v a t i o n s , (1x1) LEED p a t t e r n s were o b t a i n e d from S i ( l l 1 ) c r y s t a l s i m p l a n t e d w i t h a group I11 o r V dopant and then l a s e r annealed.
The p a t t e r n s are o f much h i g h e r
q u a l i t y a f t e r a g i v e n number o f l a s e r pulses when compared w i t h t h o s e obtained from t h e (100) surfaces, and t h e y show no evidence o f ordered l a t e r a l r e c o n s t r u c t i o n . The o b s e r v a t i o n t h a t l a s e r anneal i n y can be combined w i t h i o n i m p l a n t a t i o n t o p r o v i d e semiconductor s u r f a c e r e g i o n s c o n t a i n i n g n o v e l doping c o n c e n t r a t i o n s ( s u p e r s a t u r a t e d a l l o y s ) suggests t h a t t h e s e t e c h n i q e s may be used t o a l t e r o r t a i l o r t h e e l e c t r o n i c s t r u c t u r e i n t h i s region.
To examine t h i s p o s s i b i l i t y , photoemis-
s i o n techniques have been used t o i n v e s t i y a t e h i g h l y degenerate n-type S i ( l l 1 )
-
(1x1) surfaces as a f u n c t i o n o f As c o n c e n t r a t i o n
up t o - 5 x lO21/cm3 (-10 a t . %) and degenerate p-type S i ( l l 1 )
-
( 1 x 1 ) surfaces as a f u n c t i o n o f B c o n c e n t r a t i o n up t o -1 x 1021/cm3
( - 2 at.
% ) (Eastman e t a1
centrations electrically
are
about
., 1981).
10 and
These maximum doping con-
3 times
the concentrations o f
a c t i v e As and B a c h i e v a b l e by c o n v e n t i o n a l t e c h -
niques, r e s p e c t i v e l y . Angl e - i n t e g r a t e d photoemi s s i on s p e c t r a f o r t h e valence bands a r e presented i n F i g . 19 f o r i n t r i n s i c S i ( l l 1 )
-
( l x l ) , degenerate
7.
455
PULSED LASER IRRADIATED SEMICONDUCTORS
I
I
I
I
h u = 21 eV s / p POL. ANGLE-INTEG.
I
I
I
1 I
A.R.
A
7% AS 1.1 eV
INTRINSIC^
X- POCKEl
I
-I!
‘\ \“‘z”
(EF-EvIs =0.5
1 -8
-6
-2
-4
ENERGY (eV) Fig. valence
19.
Photoemission spectra ( p a r t i a l density o f states PDOS) for the
bands
of
highly doped Si. states.
laser-annealed
( 1 11 )-( 1 x 1 )
The levels near -0.4
ES, ES, and E denote the v c F
band minimum, and Fermi-level
surfaces o f
and -1 .3
valence-band
intrinsic
and
eV are due to surface maximum,
positions at the surface.
conduction-
456
D. M.ZEHNER
n-type As-doped ( 4 and 7 a t . %) S i ( l l 1 ) ( 1 a t . %) S i ( l l 1 )
p-type B-doped are
normalized
to
constant
-
-
( l x l ) , and degenerate
(1x1) surfaces.
total
emission
The s p e c t r a
within
5
eV
of
EF, and e n e r y i e s are g i v e n r e l a t i v e t o t h e valence-band maximum a t the
surface
(E:).
EF i s seen t o eV above E:
from 0.25
(i.e.,
shift
for the
markedly w i t h
doping
B-doped sample t o t h e con-
d u c t i o n band minimum Ec = 1.1 eV f o r t h e 7% As-doped sample). Relative t o i n t r i n s i c Si, doping,
f o r h i g h l y degenerate ( 1 a t .
%) B
t h e two s u r f a c e s t a t e s are u n a l t e r e d , and t h e p r i n c i p a l
changes a r e t h a t EF moves down by 0.25 eV and t h e s u r f a c e becomes metallic. at.
More dramatic e f f e c t s are seen w i t h As doping.
At 4
% As doping,
t h e s u r f a c e s t a t e s have become s i g n i f i c a n t l y
EF
has i n c r e a s e d by 0.1 eV r e l a t i v e t o t h e i n t r i n -
altered, while sic Si.
That i s ,
t h e upper "sp,-like"
d a n g l i n g bond s t a t e has
become much weaker and s h i f t e d upward i n energy by -0.3 l o w e r -1.4
eV; t h e
eV s t a t e has i n c r e a s e d s i g n i f i c a n t l y i n i n t e n s i t y , b u t
i t i s u n s h i f t e d i n energy;
w i t h new s t a t e s near
EF.
and t h e s u r f a c e has become m e t a l l i c
As t h e dopiny i s f u r t h e r i n c r e a s e d from
4 t o 7 a t . %, EF r a p i d l y s h i f t s and becomes pinned a t t h e conduct i o n band minimum Ec.
Also,
t h e upper sp,-like
surface s t a t e
c o n t i n u e s t o d i m i n i s h i n i n t e n s i t y so as t o be n e a r l y impercept i b l e by 7 a t .
% doping,
extremely intense. become occupied,
and t h e lower s u r f a c e s t a t e becomes
The conduction-band minima
( A min)
near X
and emission from these minima i s observed as
i n t e n s e e l l i p t i c a l lobes i n angle-resolved photoemission s p e c t r a ( d o t t e d l i n e l a b e l e d "AR"
i n Fig. 19).
By d e p o s i t i n g a t h i n Au
f i l m on t h i s s u r f a c e i t was p o s s i b l e t o show v i a S i 2p c o r e - l e v e l
measurements t h a t EF remained unchanged ( w i t h i n -50 meV). a "zero-barrier-height" e l e c t r i c a l purposes,
Thus,
Schottky b a r r i e r was formed , a l t h o u g h f o r
t h e Au-Si
i n t e r f a c e i s undoubtedly shorted
because o f t h e extreme degenerate n-type doping.
457
7. PULSED LASER IRRADIATED SEMICONDUCTORS 11.
INTERSTITIAL IMPLANTS I n o r d e r t o determine t h e e f f e c t s o f i n t e r s t i t i a l i m p l a n t s on
surface properties,
i n v e s t i g a t i o n s o f t h e segregation and zone
r e f i n i n g o f i m p u r i t i e s t o t h e s u r f a c e r e g i o n f o l l o w i n g pulsed 1 aser anneal ing have been performed. a c q u i r e d i n these s t u d i e s , implanted w i t h lOl5/cm2,
To i11u s t r a t e t h e r e s u l t s
data o b t a i n e d u s i n g S i ( l l 1 ) samples
Fe t o doses o f 1.13
x 1015 atoms/cm2,
x
6.0
and 1.8 x 10’6 atoms/cm2 and w i t h Cu t o a dose o f 6.9 x
101s atoms/cm2 and l a s e r annealed a t -2.0
J/cm2 (Zehner e t a1
.,
1984b) w i 11 be discussed.
As mentioned p r e v i o u s l y , examination w i t h AES showed t h a t a l l samples were covered w i t h insertion
i n t h e UHV
large quantities
system,
as
shown f o r
i m p l a n t e d w i t h Fe a t t h e t o p o f Fig. 20.
o f 0 and C a f t e r a Si(ll1)
sample
(Compare w i t h s i m i l a r
o b s e r v a t i o n s f o r v i r g i n S i c r y s t a l s as shown i n Fig.
1.)
The
s u r f a c e s were then s p u t t e r e d with 1000 eV Ar+ ions, which r e s u l t e d i n t h e removal o f most o f t h e 0 and C s u r f a c e contaminants as shown i n Fig. 20.
Auger s i g n a l s from t h e implanted species c o u l d
n o t be detected a f t e r t h i s t r e a t m e n t .
Following i r r a d i a t i o n w i t h
one l a s e r pulse, AES s p e c t r a showed t h e i m p l a n t e d species t o be p r e s e n t i n t h e s u r f a c e region.
T h i s i s i l l u s t r a t e d i n Fig. 20,
where Fe Auger s i g n a l s a t 46 and 703 eV are r e a d i l y detected. F o r t h e low dose case, l i t t l e i n c r e a s e i s observed i n t h e i n t e n s i t y o f t h e Fe Auger s i g n a l o b t a i n e d from a s u r f a c e i r r a d i a t e d w i t h a d d i t i o n a l pulses.
A1 though a t i n t e r m e d i a t e doses several
p u l s e s (two o r t h r e e ) are s u f f i c i e n t t o produce t h e s u r f a c e conc e n t r a t i o n t h a t r e s u l t s i n t h e maximum Fe Auger s i g n a l i n t e n s i t y , i n t h e h i g h dose case a t l e a s t f i v e pulses are r e q u i r e d t o produce t h e same r e s u l t . w i t h multiple-pulse 20.
An example o f t h e i n c r e a s e t h a t occurs
i r r a d i a t i o n i s shown a t t h e bottom o f Fig.
These observations are c o n s i s t e n t w i t h p r e v i o u s KBS r e s u l t s ,
showing a dependence o f t h e s e g r e g a t i o n t o t h e s u r f a c e t h a t i s a f u n c t i o n o f t h e i m p l a n t dose and number o f l a s e r pulses used f o r a n n e a l i n g (White e t a1
., 1 9 8 0 ~ ) .
458
D. M.ZEHNER
-
Jt-
-
AFTER Ar" SPUTTERING
AES 56Fe (150 keV. 6 X 1015/cm 2) IN (111) Si PRIMARY BEAM: 2 keV, 5 p A MODULATION: 2 Vp-p
w
e z U
r/l
-
-
z
+
1 PULSE
5 PULSES
+ +
Fe Si
Fig.
+
a +
Ar
1
I
I
0
100
200
20.
Auger
+
0
C
1
I
I
500 ELECTRON ENERGY (eV)
300
electron spectra
400
Fe I
600
I 700
from an uncleaned S i ( l l 1 ) surface
implanted with 56Fe ( 1 5 0 KeV, 6 ~ 1 0 ~ ~ / c m af~ t e )r , sputtering and a f t e r pulsed laser annealing at -2.0 J / c m 2 .
7.
459
PULSED LASER IRRADIATED SEMICONDUCTORS
The e f f e c t o f segregation on s u r f a c e o r d e r was determined by LEE0 observations. Fe-implanted
The LEED p a t t e r n s o b t a i n e d from each o f t h e
samples
subsequent
l a s e r pulses are shown i n Fig. 21.
t o the
irradiation with
five
For purposes o f comparison, a
LEED p a t t e r n o b t a i n e d from a v i r g i n S i ( l l 1 ) c r y s t a l f o r t h e same i n c i d e n t e l e c t r o n energy i s a l s o shown i n t h i s f i g u r e .
Although
( 1 x 1 ) LEE0 p a t t e r n s were obtained a f t e r one p u l s e o f i r r a d i a t i o n on each sample, a h i g h e r backyround i n t e n s i t y was always observed r e l a t i v e t o t h a t obtained from t h e v i r g i n c r y s t a l . increased
segregation,
at
intermediate
and
The e f f e c t o f
h i g h doses,
with
m u l t i p l e l a s e r pulses was t o degrade t h e q u a l i t y o f t h e LEED patterns.
I n yeneral
i n Fig.
21,
, the
background i n t e n s i t y increased , as shown
although t h e symmetry o f t h e p a t t e r n observed was
s t i l l (1x1). I n c o n t r a s t t o t h e r e s u l t s o b t a i n e d from Fe-implanted samples, t h e LEED p a t t e r n o b t a i n e d from t h e Cu-implanted sample a f t e r one l a s e r p u l s e was a (1x1) w i t h h e x a g o n a l - l i k e
r i n g s around each
i n t e g r a l o r d e r r e f l e c t i o n as shown i n Fig. 22.
T h i s i s t o be com-
pared w i t h t h e
(5x5)
pattern,
shown a t t h e t o p o f F i g .
22,
o b t a i n e d from a t h e r m a l l y annealed (111) s u r f a c e which contained Cu e i t h e r due t o s e g r e g a t i o n from t h e b u l k o r as a r e s u l t o f beam deposition.
The r i n g s around t h e i n t e g r a l
became more i n t e n s e and sharp w i t h a d d i t i o n a l shown a t t h e bottom o f Fig.
22,
order
reflections
l a s e r pulses,
although a well-defined
as
(5x5)
LEED p a t t e r n was never obtained. T h i s sugyests t h a t t h e domains c o n t a i n i n g Cu on t h e laser-annealed s u r f a c e a r e n e i t h e r as w e l l o r d e r e d nor as l a r g e as those on t h e t h e r m a l l y annealed surface. Subsequent
examination o f t h e ion-imp1 anted laser-anneal ed
c r y s t a l s w i t h RBS (2.5-meV f o l l o w i n g features:
He+ i o n b a c k s c a t t e r i n g )
( 1 ) For t h e Cu-implanted c r y s t a l
showed t h e
, one
pulse
o f l a s e r r a d i a t i o n caused t h e t r a n s p o r t o f a l l Cu t o t h e near-
s u r f a c e region, and ( 2 ) f o r t h e low dose Fe-implanted c r y s t a l , one p u l s e i s s u f f i c i e n t t o cause t h e complete t r a n s p o r t o f Fe t o t h e near s u r f a c e region. A t i n t e r m e d i a t e doses, s u b s t a n t i a l segregation
460
Fig. 21. (a) Si(ll1 ) S6Feat ( b ) ( Patterns are j lcrn2.
D. M. ZEHNER
LEED patterns, at primary beam energy of 110 eV, from a surface and from ( 1 1 1 ) surfaces of crystals implanted with 1 . 3 ~ 1 0 ~ ~ / c, m ( c ~) () 6 . 0 ~ 1 O ~ ~ / c and m ~ ()d,) ( 1 . 8 x 1 0 1 6 / c m 2 ) . shown subsequent to five pulses o f laser annealing at -2.0
7.
Fig. 22.
PULSED LASER IRRADIATED SEMICONDUCTORS
461
LEED patterns, a t a primary beam energy o f 71 eV, from ( a ) a
thermally annealed S i ( l l 1 ) surface a f t e r -1
-
monolayer deposition o f Cu and
from a ( 1 1 1 ) surface o f a crystal implanted with 6 . 9 ~ 1 0 ~ ~ / and c m laser ~ annealed with ( b ) 1 and ( c ) 5 pulses at
2.0 J / c m 2 .
462
D. M. ZEHNER
t o t h e surface occurs d u r i n g t h e f i r s t pulse,
b u t two pulses
a r e r e q u i r e d t o c o m p l e t e l y segreyate t h e Fe t o t h e near-surface region.
F i n a l l y a t h i g h doses,
even a f t e r f i v e l a s e r pulses,
s u b s t a n t i a l q u a n t i t i e s o f Fe remain i n t h e f i r s t 1000 A o f t h e c r y s t a l a t an averaye c o n c e n t r a t i o n o f -2 x 1021/cm3.
Furthermore,
c h a n n e l i n g s t u d i e s showed t h a t Fe i n t h e b u l k o f t h e c r y s t a l i s not i n s o l i d solution. From t r a n s m i s s i o n e l e c t r o n microscopy s t u d i e s that,
i t i s known
i n t h e case o f a high-dose Fe-implanted c r y s t a l ,
a well-
d e f i n e d c e l l s t r u c t u r e (see Chapters 1 and 4) i s observed i n t h e n e a r - s u r f a c e r e y i on subsequent t o l a s e r anneal ing (White e t a1 1980~).
The i n t e r i o r o f each c e l l i s an e p i t a x i a l
.,
column of
s i l i c o n e x t e n d i n g t o t h e s u r f a c e (average c e l l diameter -250 A ) . Surrounding each column o f s i l i c o n i s a c e l l w a l l and e x t e n d i n g t o a depth o f -1000 A,
,
650 A t h i c k
c o n t a i n i n g massive quan-
t i t i e s o f segreyated Fey p o s s i b l y i n t h e form o f Fe s i l i c i d e s . These r e s u l t s show t h a t subsequent t o l a s e r a n n e a l i n g t h e Fe (and Cu) i s n o t u n i f o r m l y d i s t r i b u t e d i n t h e plane o f t h e near-surface reyion but instead i s h i g h l y concentrated i n the w a l l s o f t h e c e l l structure. Fe-implanted
Thus,
t h e (1x1) LEE0 p a t t e r n s observed f o r t h e
samples a r i s e from t h e b u l k t e r m i n a t i o n o f (111)
planes i n t h e columns o f s i l i c o n a t t h e surface.
The absence o f
any o t h e r w e l l - d e f i n e d d i f f r a c t i o n f e a t u r e s from t h e Fe-implanted r e g i o n shows t h a t no long-range o r d e r e x i s t s i n t h e t e r m i n a t i o n o f t h e c e l l w a l l s a t t h e surface. rings
i n t h e Cu-implanted
The presence o f h e x a g o n a l - l i k e
crystals
order e x i s t s i n those c e l l walls, scale.
The
high
background
o b t a i n e d from t h e v i r g i n c r y s t a l
shows t h a t ,
i t i s on an w+xxmel_y small
intensities,
,
i f long-range
relative
to
that
observed f o r a l l i m p l a n t con-
d i t i o n s f o r Fe and Cu i n d i c a t e t h e presence o f d i s o r d e r ( p o s s i b l y s t r a i n i n t h e r e y i o n o f t h e c e l l w a l l boundaries) i n t h e o u t e r most l a y e r s , which increases w i t h i n c r e a s i n g i m p l a n t dose. F o r t h e s e samples , s p u t t e r i n g f o l 1owi ng 1aser
ir r a d i a t i o n
r e s u l t e d i n t h e removal o f some o f t h e i m p l a n t from t h e s u r f a c e
7. region.
463
PULSED LASER IRRADIATED SEMICONDUCTORS
However,
subsequent i r r a d i a t i o n w i t h t h e l a s e r again
r e s u l t e d i n t h e segregation o f l a r g e q u a n t i t i e s o f t h e i m p l a n t t o t h e s u r f a c e region.
Furthermore, f o r samples i n which i n t e r s t i -
t i a l species such as Cu a r e present i n t h e b u l k as a r e s u l t o f t h e growth process, l a s e r i r r a d i a t i o n can be used t o zone r e f i n e t h e s e species t o t h e s u r f a c e r e g i o n from a depth e q u i v a l e n t t o t h e maximum m e l t
penetration.
These i m p u r i t i e s can t h e n be
removed from t h e s u r f a c e w i t h l i g h t i o n S p u t t e r i n g ,
l e a v i n g an
i m p u r i t y - f r e e subsurface r e g i o n ( t o a depth determined by t h e melt
front
penetration),
l a s e r annealing.
which
remains
such a f t e r
subsequent
I n many d e v i c e a p p l i c a t i o n s i n v o l v i n g s i l i c o n ,
Cu and Fe i m p u r i t i e s a c t as very e f f i c i e n t recombination c e n t e r s and adversely a f f e c t m i n o r i t y - c a r r i e r l i f e t i m e .
The above obser-
v a t i o n s show t h a t l a s e r annealing combined w i t h s p u t t e r i n g can be used as a r a p i d p u r i f i c a t i o n t r e a t m e n t i n o r d e r t o produce an i m p u r i t y - f r e e s u r f a c e region.
VI.
Applications
I n v e s t i g a t i o n s discussed i n S e c t i o n I11 and I V concentrated on examining s p e c i f i c s u r f a c e p r o p e r t i e s a s s o c i a t e d w i t h l a s e r annealing changes
while in
S e c t i o n V was p r i n c i p a l l y
these
properties
that
i m p l a n t a t i o n w i t h l a s e r annealing.
occurred
concerned w i t h t h e by
combining
ion
I n t h i s section the u t i l i z a -
t i o n o f laser-annealed surfaces i s discussed.
The most p r o m i s i n g
a p p l i c a t i o n o f t h e l a s e r annealing t e c h n i q u e f o r producing atomic a l l y c l e a n surfaces i n d e v i c e processing appears t o be i n preparing
surfaces
application,
for
molecular
beam e p i t a x y
(MBE).
In this
t h e high-temperature t r a n s i e n t induced by t h e l a s e r
o f f e r s a very a t t r a c t i v e and e f f i c i e n t a l t e r n a t i v e t o t h e present prolonged preheat t r e a t m e n t a t t h e moderate temperature r e q u i r e d t o c l e a n t h e semiconductor s u r f a c e t o t h e h i g h standard e s s e n t i a l f o r good q u a l i t y e p i t a x y . a p r o d u c t i o n technique.
T h i s b r i n g s MBE a s t e p nearer t o being
464
D. K.ZEHNER
I n a r e c e n t i n v e s t i g a t i o n (de J o n j e t al.,
1983) LEED was
used t o study t h e i n i t i a l stages o f e p i t a x i a l growth o f s i l i c o n on s i l i c o n .
Both thermal a n n e a l i n g and l a s e r i r r a d i a t i o n were
used f o r s u r f a c e p r e p a r a t i o n , 1-10 nm.
and S i d e p o s i t i o n s were t y p i c a l l y
Using LEEO p a t t e r n s , t h e e p i t a x i a l growth temperature
was d e f i n e d as t h a t p a r t i c u l a r s u b s t r a t e temperature a t which an e p i t a x i a l overlayer, same q u a l i t y
grown on t h e c l e a n s u b s t r a t e ,
of diffraction
p a t t e r n as t h e s u b s t r a t e
R e s u l t s o b t a i n e d from 1aser-anneal ed vicinal
exhibits the
(loo),
itself.
(110) , ( 111) , and
(111) S i o r i e n t a t i o n s showed t h a t e p i t a x i a l growth can
t a k e p l a c e on surfaces prepared by t h i s procedure.
The growth
temperature f o r t h e (100) s u r f a c e was i d e n t i c a l t o t h a t o b t a i n e d u s i n g t h e r m a l l y prepared surfaces.
For t h e (111)
surface the
growth temperature determined f o r t h e thermal l y annealed s u r f a c e was h i g h e r t h a t t h a t determined f o r t h e l a s e r - a n n e a l e d s u r f a c e and a l s o f o r generally
the
laser-annealed
vicinal
surface.
accepted growth mechanism i n Si:MBE
growth by s t e p f l o w ,
the
r e s u l t s obtained f o r
Since t h e
above 870 K i s (111)
surfaces
sugyest t h e presence o f steps on t h e laser-annealed surface. Using an approach s i m i l a r t o t h a t j u s t described, t h e growth o f epitaxial
m u l t i l a y e r f i l m s o f v a r y i n g t h i c k n e s s on s i l i c o n
s u r f a c e s has been i n v e s t i y a t e d (de Jong e t a l .
Laser-
(loo), ( l l o ) ,
(111) and v i c i n a l (111)
A f t e r preparation,
s i l i c o n f i l m s were de-
annealed and t h u s c l e a n S i s u r f a c e s were used.
, 1982b,c).
p o s i t e d and subsequently l a s e r annealed a t i n c r e a s i n y energy dens i t i e s i n o r d e r t o determine t h e t h r e s h o l d f o r growth. determined by LEEU t o be -0.9 these
experiments.
After
T h i s was
J/cm2 f o r t h e ruby l a s e r used i n
determining t h e threshold,
silicon
l a y e r s were s e q u e n t i a l l y d e p o s i t e d and l a s e r annealed on a l l s u r faces.
I n t h i s way e p i t a x i a l
l a y e r s up t o 800 nm were yrown,
b u i l t up out o f 1 t o 20 sublayers.
The reappearance o f a LEEU
p a t t e r n a l l over t h e annealed area a f t e r each i r r a d i a t i o n i n d i cated e p i t a x i a l
regrowth o f a l a y e r .
o r i e n t e d samples,
I n particular,
on S i ( l l 1 )
annealed d e p o s i t e d l a y e r s e x h i b i t e d a (1x1)
7.
465
PULSED LASER IRRADIATED SEMICONDUCTORS
p a t t e r n which
i n t h e case o f t h e v i c i n a l
s u r f a c e had charac-
t e r i s t i c spot s p l i t t i n y i n t h e same c r y s t a l l o g r a p h i c d i r e c t i o n and t o t h e same amount as a nondeposited sample.
T h i s means t h a t
t h e steps i n t h e s u r f a c e are preserved by d e p o s i t i o n and pulsed Spectra obtained w i t h RBS show t h e e p i t a x i a l l y
l a s e r annealing.
grown r e g i o n s t o be o f good q u a l i t y . e x t r a r o u t e t o three-dimensional
T h i s method may p r o v i d e an
s i l i c o n structures.
By combininy t h e i o n i m p l a n t a t i o n , l a s e r annealing techniques discussed i n S e c t i o n V with m o l e c u l a r beam e p i t a x y , i t i s p o s s i b l e t o produce b u r i e d doped l a y e r s .
T h i s approach has been f o l l o w e d
i n a recent i n v e s t i g a t i o n ( S m i t e t a1 was f i r s t implanted w i t h As.
., 1982).
A Si(100) wafer
A f t e r subsequent i n s e r t i o n i n t o a
UHV system,
t h e sample was i r r a d i a t e d w i t h f i v e pulses from a
ruby l a s e r .
I n a d d i t i o n t o producing a clean, ordered surface, as
determined by LEED, As was r e d i s t r i b u t e d i n depth, as p r e v i o u s l y i l l u s t r a t e d i n Fig.
16.
The sample was t h e n heated ( t y p i c a l l y
K), and s i l i c o n was deposited a t a r a t e on t h e o r d e r o f 0.1
-800 nm/s.
A t y p i c a l l a y e r t h i c k n e s s was 100 nm.
The samples were
R e s u l t s showed (1) good e p i t a x y w i t h i n
t h e n examined w i t h RBS.
t h e d e p o s i t e d r e g i o n and ( 2 ) t h e e x i s t e n c e o f a b u r i e d As l a y e r w i t h an abrupt doped-undoped substrate-epitaxy with
specific
interface.
dopant
i n t e r f a c e (<15 nm),
located a t the
D i f f e r e n t l y doped s i l i c o n l a y e r s
concentration
profiles
and w e l l - d e f i n e d
i n t e r f a c e s are an i n t e g r a l p a r t o f most semiconductor devices. The above r e s u l t s , a b u r i e d l a y e r o f As-doped s i l i c o n produced by low-temperature
silicon
a n n e a l i n y and cleaning,
MBE
in
combination
with
pulsed-laser
show t h a t such devices can be produced.
With respect t o devices, t h e r e s u l t s j u s t discussed may prove t o be i m p o r t a n t f o r very h i g h frequency devices,
because MBE i s
one o f t h e few techniques t h a t o f f e r s t h e p o s s i b i l i t y o f making t h e sequences o f very s h a l l o w l a y e r s (-2000 A) w i t h w e l l - c o n t r o l l e d dopiny l e v e l s and abrupt changes i n dopant c o n c e n t r a t i o n s (-200 A) required
by
some
of
the oscillator
and a m p l i f i e r
structures
designed t o operate a t frequencies i n excess o f 200 GHz.
A major
466
D.M.ZEHNER
problem w i t h
Schottky
diodes
i s that
t h e metal-semiconductor
i n t e r f a c e forms t h e p o t e n t i a l b a r r i e r , and so device o p e r a t i o n i s v e r y s u s c e p t i b l e t o t r a c e contamination o f t h e semiconductor surface.
Laser c l e a n i n g o f such s u r f a c e s p r i o r t o metal d e p o s i t i o n
may w e l l minimize r e p r o d u c i b i l i t y problems i n Schottky devices.
VII.
Conclusions
It has been shown t h a t l a s e r annealing p r o v i d e s a new method f o r c l eani ny semi conductor surfaces.
There are f o u r advantayes
(1) no f o r e i g n atoms are i n t r o d u c e d i n t o t h e
o f t h i s technique:
s u r f a c e o r subsurface region;
( 2 ) t h e c l e a n i n y procedure does n o t
s p o i l t h e vacuum c o n d i t i o n s s i n c e t h e l a s e r i s l o c a t e d o u t s i d e t h e system and t h e beam i s i n t r o d u c e d t h r o u g h an o p t i c a l l y t r a n s p a r e n t window; irradiation,
(3) s i n c e o n l y t h e s u r f a c e r e g i o n i s heated d u r i n g b u l k i m p u r i t i e s cannot m i g r a t e t o t h e surface;
and
( 4 ) w i t h t h e t o t a l p r o c e s s i n g t i m e being on t h e o r d e r o f tl s, investigation
can
begin
immediately
after
cleaning,
thereby
a v o i d i n y t h e p o s s i b i l i t y o f r e c o n t a m i n a t i o n by background gases d u r i n g t h e c o o l i n g phase.
The a b i l i t y t o remove t h e n a t i v e o x i d e
l a y e r from a semiconductor s u r f a c e opens up t h e p o s s i b i l i t y f o r u s i n g t h i s technique t o w r i t e on a wafer. d u c i n g a t o m i c a l l y c l e a n surfaces,
I n a d d i t i o n t o pro-
i t has been shown t h a t l a s e r
a n n e a l i n g r e s u l t s in r e s t o r a t i o n o f o r d e r t o t h e s u r f a c e r e g i o n o f a damaged c r y s t a l . faces
containing
The m e t a s t a b l e s u r f a c e s t r u c t u r e s and sur-
ordered
arrays
of
steps
produced
by
laser
a n n e a l i n y can be used i n i n v e s t i g a t i o n s aimed a t understanding r e c o n s t r u c t i o n and growth w i t h i n t h e outermost monolayers.
In
t h e area o f b a s i c research concerned w i t h t h e physics and chemi s t r y of
surfaces,
these o b s e r v a t i o n s i n d i c a t e t h a t i t may be
p o s s i b l e t o modulate s u r f a c e coverage ( c l e a n , adsorb-desorb) i n a d s o r p t i o n experiments and a l t e r ordered s u r f a c e s t r u c t u r e s f o r k i n e t i c s studies.
467
7 . PULSED LASER IRRADIATED SEMICONDUCTORS When combined w i t h i o n i m p l a n t a t i o n , laser
annealing
(interatomic region.
can be used t o t a i l o r
i t has been shown t h a t
t h e geometric
lattice
spacings) and e l e c t r o n i c s t r u c t u r e i n t h e s u r f a c e
T h i s combination p r o v i d e s a way o f i n v e s t i g a t i n g a l l o y s
t h a t cannot be obtained u s i n g conventional c r y s t a l growth techniques.
For t e c h n o l o g i c a l a p p l i c a t i o n s , t h e p r o d u c t i o n o f a l l o y s
(submicrometer r e g i o n s ) w i t h t a i l o r e d s u r f a c e p r o p e r t i e s ( b u r i e d 1 ayers) should prove t o be very u s e f u l . From t h e r e s u l t s presented i t i s obvious t h a t l a s e r annealing o f semiconductor surfaces i n UHV has a tremendous p o t e n t i a l as a tool
for
both s u r f a c e science and p r a c t i c a l
v a r y i n g t h e wavelength,
energy d e n s i t y ,
application.
and p u l s e d u r a t i o n ,
By it
should be p o s s i b l e t o c h a r a c t e r i z e and understand t h i s processing t e c h n i q u e move completely.
References Becker, K. S., H i g a s h i , G. S., and Golovchenko, J. A. (1984a). Phys. Rev. L e t t . 52, 307. Becker, R. S., Higashi, G. S., and Golovchenko, J. A. (1984b). Mat. Res. SOC. Symp. Proc. Vol 23 , 129. B e d i a r , S. M., and Smith, H. P., Jr. (1969). J. Appl. Phys. 40, 4776. Bennett, P. A., and Webb, M. B. (1981). Surf. Sci. 104, 74; (1981). J. Vac. Sci Technol 18, 847. V. M. (1982). J. Vac. Sci. Technol. 20, 51. Bermudez, Chabal, Y. J., Rowe, J. E., and Zwemer, D. A. (1981a). Phys. Rev. L e t t . 46, 600. Chabal, Y. J., Rowe, J. E., and Christman, S. B. (1981b). Phys. Rev, B 24, 3303. Chabal, Y. J., Rowe, J. E., and Christman, S . 6. (1982) J.Vac. S c i Technol 20, 763. Chabal, Y. J. (1983). Phys. Rev. Lett. 50, 1850. Chaney, R. W., and Varker, C. (1976). J. Cryst. Growth 3 3 , 188; ( 1970) J E l e c t r o c h i m SOC 123 , 896. C i r a c i , S., and Batra, I. P. (1975). S o l i d S t a t e Commun. 16, 375. Cowan, P. L., and Golovchenko, J. A. (1980). J. Vac. Sci. Technol. 17, 1197. Weber, H. C., Chen, N. G., Poate, J. M., and C u l l i s , A. G., B a e r i , P. (1982) Phys. Rev. L e t t . 49, 219.
.
.
.
.
.
.
. .
468
D. M. ZEHNER
de Jony, T., Wang, Z. L., and S a r i s , F. W. (1982a). Phys. L e t t . 90A, 147. Tromp, R. M., and S a r i s , de Jony, T., S m i t , L., Korablev, V. V., F. W. (1982b). Appl. Surf. Sci. 10, 10. de Jong, T., S m i t , L., Korablev, V. V., and S a r i s , F. W. ( 1 9 8 2 ~ ) . Laser and Electron-Beam I n t e r a c t i o n s w i t h S o l i d s , (B. R. Appleton and G. K. C e l l e r , eds.) p. 215, E l s e v i e r P u b l i s h i n g Co., I n c . de Jong, T., Donma, W. A. S., S m i t , L., Korablev, V. V., and S a r i s , F. W. (1983). J. Vac. Sci. Technol. B 1, 888. de Kock, A. J. R. (1980). I n Handbook on Semiconductors, Vol 3, M a t e r i a l s , P r o p e r t i e s and P r e p a r a t i o n , S e r i e s ed. by T. S. MOSS, N o r t h - H o l l and Pub1 is h i ng Company, p. 247. Del Sole, R., and Chadi, D. J. (1981). Phys. Rev. B 24, 7431. Demuth, J. E., and S c h e l l - S o r o k i n , A. J. (1984). J. Vac. Sci. Technol. A 2, 808. Duke, C. B., and Ford, W. K. (1981). Surf. Sci. 111, L685. Duke, C. B. , and Ford, W. K. (1982). J. Vac. SOC. Technol 21 , 337. Eastman, D. E. (1Y80a). J . Vac. Sci. Technol. 17, 492. Eastman, D. E., Himpsel, F. J., and vander Veen, J. F. (1980b). S o l i d S t a t e Commun. 35, 345. Eastman, D. E., Heimann, P., Himpsel, F. J., R e i h l , B., Zehner, D. M., and White, C. W. (1981). Phys. Rev. B 24, 3647. and Robertson, W. D. (1971). Surf. Sci. 24, 173. F l o r i o , J. V., G a r u l l i , A., S e r v i d o r i , M., and Vechi, I. (1980). J. Phys. D 13, 199. Gruber, E. E., and M u l l i n s , W. W. (1967). J. Phys. Chem. S o l i d s . 28, 875. Hagstrum, H. D., and Becker, G. E. (1973). Phys. Rev. B 8, 1580. Haneman, D. (1982). Phys. Kev. B 25, 1370. Henzler, M. (1970). Surf. Sci. 19, 159; 22, 12. Himpsel, F. J., Eastman, D. E., Heimann, P., R e i h l , B., White, C. W., and Zehner, D. M. (1981). Phys. Rev. B 24, 1120. H i r a t a , H., and Hoshikawa, K. (1980). Jap. J . Appl. Phys. 19, 1573. Hoh K., Koyama, H., and Uda, K . (1980). Japan. J . Appl. Phys. 19, L375. Lannoo, M., and A l l a n , G. (1982). Surf. Sci. 115, L137. and Sheng, T. T. (1978). Appl. Leamy, H. J., Rozyonyi , G. A., Phys. L e t t . 32, 539. Liu, Y. S., Chang, S. W. , and Bacon, E. (1981). Mat. Res. SOC. Symp. Proc. 1, 117. Louis, E., Flores, F., Guirea, F., and Tejedor, C. (1982). S o l i d S t a t e Commun. 44, 1633. Louis, E., F l o r e s , F., Guirea, F., and Tejedor, C. (1983). J. Phys. C 16, L3Y. McKinley, A., Parke, A. W., Hughes, G. J., F r y a r , J., and W i l l i a m s , R. H. (1980). J. Phys. D.: Appl. Phys. 13, 138. McKinley, A., W i l l i a m s , R. H., Parke, A., and S r i v a s t o v a , G. P. (1981). Vacuum 31, 549. Moison, J. M. , and Bensonssan, M. (1982). J. Vac. Sci Technol 21, 315.
.
.
.
.
7.
469
PULSED LASER IRRADIATED SEMICONDUCTORS
Moison, J . M., and Bensonssan, M. (1983). Surf. Sci. 126, 294. Narayan, J., Young, R. T., and White, C. W. (1978). J. Appl. Phys. 49, 3912. Nishizawa, J., Terasaki, T., and Shimbo, M. (1972). J . Cryst. Growth 13/14, 297. Ihm, J., and Cohen, M. L. (1981) Phys. Rev. Northrup, J . E., L e t t . 47, 1910. and Shklyaev, A. A. (1978). Surf. Sci 82, Olshanetsky, 6. Z., 445. Osakabe, N., Yagi, K., and Honjo, G. (1980). Japan. J. Appl. Phys. 19, L309. Yagui, K., and Honjo, G. (1981). Osakabe, N., T a u i s h i r o , Y., S u r f . Sci 102, 424. Pandey, K. C., and P h i l l i p s , J . C. (1974). Phys. Rev. L e t t . 32, 1433. Ready, 3. F. (1965). J. Appl. Phys. 36, 462. Roberts, R. W. (1963). B r i t . J. Appl. Phys. 14, 537. C u l l i s , A. G., and Webber, H. C. (1980). Appl. Rodway, D. C., Surf. Sci. 6 , 76. S c h l i i t e r , M., Chelikowsky, J . R., Lonie, S. G., and Cohen, M. L. (1975). Phys. Rev. L e t t . 34, 1385; Phys. Rev. B 12, 4200. S m i t , L., de Jony, T., Hoonhout, D., and S a r i s , F. W. (1982). Appl Phys. L e t t . 40, 64. S t r i t z k e r , B., Pospieszczyk, A., and Tagle, J. A. (1981) Phys. Rev. L e t t . 47, 356. van Loenen, E. J . , Iwami, M., and S a r i s , F. W. Tromp, R. M., (1982). Sol i d S t a t e Commun. 44, 971. Wang, J . C. , Wood, R. F., and Pronko, P. P. (1978). Appl Phys. L e t t . 33, 455. Wang, Z. L., Westendorp, J. F. M., and S a r i s , F. W. (1983). Nucl. Instrum. Methods 211, 193. Westendorp, J. F. M., Wang, Zhong-Lie, and S a r i s , F. W. (1982). Mat. Res. SOC. Symp. Proc. 4, 255. White, C. W., C h r i s t i e , W. H., Appleton, B. R., Wilson, S. K., Pronko, P. P., and Magee, C. W. (1978). Appl. Phys. L e t t . 33, 662. Narayan, J., Appleton, B. R., and Wilson, S. R. White, C. W., (1979). J . Appl. Phys. 50, 2967. White, C. W., Wilson, S. R., Appleton, B. R., and Young, F. W., Jr. (1980a). J. Appl Phys. 51, 738. White, C. W., Wilson, S. R., Appleton, 6. R., Young, F. W., Jr., and Narayan, J. (198Ub). I n Laser and E l e c t r o n Beam Processing o f M a t e r i a l s , (C. W. White and P. S. Peercy, eds.) p. 111, Academic Press, New York. Wilson, S. R., Appleton, 6. R., and Narayan, J . White, C. W., ( 1 9 8 0 ~ ) . I n Laser and E l e c t r o n Beam Processing of M a t e r i a l s , (C. W. White and P. S. Peercy, eds.), p. 124, Academic Press, New York. and G i l e s , G. E. (1981a). Phys. Wood, R. F., K i r k p a t r i c k , J . R., Rev. B 23, 5555. Wood, R. F., and G i l e s , G. E. (1981b). Phys. Rev. B 23, 2923.
.
.
.
.
.
470
D. M. ZEHNER
Zehner, D. M., White, C. W., and Ownby, G. W. (1980a). Appl. Phys. L e t t . 36, 56. Zehner, D. M., White, C. W., and Ownby, G. W. (198Ob). Surf. S c i L e t t . 92, L67. Zehner, D. M., White, C. W., and Ownby, ti. W. ( 1 9 8 0 ~ ) . Appl. Phys. L e t t . 37, 456. and Ownby, G. W. (1980d). I n Laser Zehner, D. M., White, C. W., and E l e c t r o n Beam Processiny o f M a t e r i a l s , (C. W. White and P. S. Peercy, eds.), p. 201, Academic Press, New York. Zehner, D. M., Noonan, J. R., Davis, H. L., and White, C. W. (1981a). J . Vac. Sci Techno1 18, 852. Zehner, D. M., Noonan, J. R., Davis, H. L., White, C. W., and Ownby, G. W. (1981b). Mat. Res. SOC. Symp. Proc. 1 , 111. Zehner, D. M., White, C. W., Heimann, P., R e i h l , B., Himpsel, F. J . , and Eastman, D. E. ( 1 9 8 1 ~ ) . Phys. Rev. B 24, 4875. Zehner, D. M., White, C. W., Appleton, B. R., and Ownby, G. W. (1982). Mat. Res. SOC. Symp. Proc. 4 , p. 683. Zehner, 0. M., White, C. W., Wood, R. F., P o l l a k , R. A., Himpsel, F. J., H o l l i n g e r , G., Marks, P. F., and R e i h l , B. (1984a) t o be pub1 ished. Zehner, D. M., White, C. W., and Ownby, G. W. (1984b). To be published.
.
.
.