Chapter Surface Studies of Pulsed Laser Irradiated Semiconductors

Chapter Surface Studies of Pulsed Laser Irradiated Semiconductors

CHAPTER 7 SURFACE STUDIES SEMICONDUCTORS OF PULSED LASER IRRADIATED D. M. Zehner . . . . .. .. .. .. .. .. .. .. .. .. .. . . . . . .. .. .. .. ...

2MB Sizes 2 Downloads 61 Views

CHAPTER 7 SURFACE STUDIES SEMICONDUCTORS

OF

PULSED LASER IRRADIATED

D. M. Zehner

. . . . .. .. .. .. .. .. .. .. .. .. .. . . . . . .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. ... ... ........

I. INTRODUCTION. 11. EXPERIMENTAL APPROACH 1. Sampl e P r e p a r a t i o n 2. C h a r a c t e r i z a t i o n Techniques. 111. PRODUCTION OF ATOMICALLY CLEAN SURFACES 3. S i l i c o n . 4. Germanium. 5. Group 111-V Compounds. GEOMETRIC SURFACE STRUCTURE IV. 6. Ordered Surfaces 7. Metastable Surfaces. 8. V i c i n a l Surfaces 9. Defects. SURFACE AND SUB-SURFACE STUDIES OF V. ION-IMPLANTED SILICON 10. S u b s t i t u t i o n a l Implants. 11. I n t e r s t it i a1 Imp1a n t s APPLICATIONS. VI. CONCLUSIONS VII. REFERENCES.

. . . .. .. .. .. .. .. .. .. . . .. .. .. .. .. .. .. .. ..

............... . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . ................ ................ I.

Introduction

The process of pulsed l a s e r annealing p r o v i d e s a way o f very r a p i d l y t r e a t i n g t h e near-surface

r e g i o n o f semiconductors.

t h i s a d i a b a t i c mode o f thermal processing, 1 iquid-phase

epitaxial

In

m e l t i n g f o l l o w e d by

regrowth from t h e s u b s t r a t e occurs w i t h

growth v e l o c i t i e s o f t h e o r d e r o f meters/s.

Thus t h e h e a t i n g and

c o o l i n g r a t e s achieved by t h i s form o f processing are o r d e r s o f

405

Capyright 01984 b i Academic Press, Inc. All rights of reproduction in any form reserved.

ISBN 0-12-752123.2

406

D. M. ZEHNER

magnitude f a s t e r t h a n t h o s e achieved by more c o n v e n t i o n a l t r e a t ments.

i t has been shown t h a t

With proper annealing conditions,

r e g i o n s f r e e o f extended d e f e c t s can be formed and s u b s t i t u t i o n a l i m p u r i t i e s can be i n c o r p o r a t e d i n t o t h e l a t t i c e f a r i n excess o f t h e e q u i l i b r i u m s o l u b i l i t y l i m i t s (see Chapters 1-4).

The f i n a l

a c t o f s o l i d i f i c a t i o n i s t h e f r e e z i n g o f t h e surface.

I n view o f

the

region,

i t may be

(impurities,

geometric

results

expected

that

structure, ductors

obtained f o r the

the

surface

near-surface

properties

e l e c t r o n i c energy l e v e l s ) o f l a s e r - a n n e a l e d semicon-

can

be

significantly

altered

with

respect

to

those

o b t a i n e d by c o n v e n t i o n a l h e a t i n g treatments. R e s u l t s o f experiments d i s c u s s e d i n t h i s c h a p t e r show t h a t p u l s e d l a s e r a n n e a l i n g can be used t o produce a t o m i c a l l y c l e a n s u r f a c e s , remove damage i n t h e outermost s u r f a c e l a y e r s , and a l t e r t h e e l e c t r o n i c p r o p e r t i e s i n t h e s u r f a c e region.

D e t a i l s con-

cerned w i t h p r o c e s s i n g o f t h e s u r f a c e i n o r d e r t o achieve these conditions

and t h e measurement

discussed i n Section

11.

of

the surface properties are

R e s u l t s which show t h a t

unwanted i m p u r i t i e s i n semiconductors (0, C, etc.) to

near

the

practical

detection

limits

of

levels of

can be reduced

surface

sensitive

I n Section I V the

s p e c t r o s c o p i e s a r e presented i n S e c t i o n 111.

s u b j e c t o f o r d e r i n t h e outermost l a y e r s f o r b o t h f l a t and v i c i n a l s u r f a c e s i s discussed, and

changes

in

along w i t h the production o f defects

stoichiometry

for

compound

semiconductors.

S e c t i o n V d e a l s w i t h t h e changes i n b o t h geometric and e l e c t r o n i c p r o p e r t i e s o f t h e s u r f a c e r e g i o n which occur when i o n i m p l a n t a t i o n

is

combined w i t h

laser

annealing.

Finally

in

Section

YI,

examples o f how t h e unique s u r f a c e p r o p e r t i e s achieved w i t h l a s e r a n n e a l i n g can discussed.

be a p p l i e d t o o t h e r s u r f a c e

investigations

are

7.

407

PULSED LASER IRRADIATED SEMICONDUCTORS

11.

Experimental Approach

For most i n v e s t i g a t i o n s concerned w i t h l a s e r p r o c e s s i n g o f semiconductors,

t h e i r r a d i a t i o n o f t h e sample has been performed

i n a standard atmospheric environment.

It i s g e n e r a l l y assumed

t h a t t h e m o d i f i c a t i o n o f t h e subsurface p r o p e r t i e s i s u n a f f e c t e d by i n t e r a c t i o n s a t t h e g a s - s o l i d i n t e r f a c e .

However, when one i s

concerned w i t h o b t a i n i n g i n f o r m a t i o n about t h e p r o p e r t i e s o f t h e s u r f a c e r e g i o n (1-20 A ) and t h e changes which occur due t o l a s e r annealing,

t h e i r r a d i a t i o n o f t h e sample and subsequent a n a l y s i s

must t a k e p l a c e i n an u l t r a h i g h vacuum (UHV) environment Torr).

I n t h i s s e c t i o n , t h e experimental d e t a i l s concerned w i t h

b o t h l a s e r annealing o f semiconductors i n UHV and t h e subsequent s u r f a c e c h a r a c t e r i z a t i o n a r e presented.

1.

SAMPLE PREPARATION

A v a r i e t y o f l a s e r s has been used i n i n v e s t i g a t i o n s concerned w i t h surface s t u d i e s o f laser-annealed semiconductors.

The most

f r e q u e n t l y used l a s e r s are e i t h e r p u l s e d ruby o r p u l s e d Nd:YAG, a l t h o u g h UV excimer and t u n a b l e dye l a s e r s have a l s o been employed. The procedures f o l l o w e d i n p e r f o r m i n g t h e l a s e r a n n e a l i n g i n a

UHV environment are very s i m i l a r i n a l l i n v e s t i g a t i o n s and w i l l be i l l u s t r a t e d by d i s c u s s i n g t h e approach used w i t h p u l s e d ruby l a s e r s (Zehner e t al.,

1980a,b).

A f t e r bakeout,

t h e background

p r e s s u r e i n t h e chamber which c o n t a i n e d t h e sample was t y p i c a l l y l e s s than 2 x 10-10 Torr.

The l i g h t from a Q-switched ruby l a s e r

( A = 694 nm,

FWHM), t r a n s m i t t e d i n t o t h e UHV system

T

= 15 nsec,

t h r o u g h a glass window, vacuum environment.

was used t o i r r a d i a t e t h e sample i n t h e

The samples were p o s i t i o n e d so t h a t any evap-

o r a t e d m a t e r i a l o r s c a t t e r e d l i g h t was c o n t a i n e d i n an enclosure which s h i e l d e d a1 1 s u r f a c e a n a l y s i s

instruments.

i r r a d i a t e d u s i n g t h e single-mode (TEMoo)

Samples were

o u t p u t o f t h e ruby l a s e r

a t energy d e n s i t i e s t h a t c o u l d be v a r i e d between -0.2 J/cm2.

The beam diameter was t y p i c a l l y between 3.0

and -4.0

and 6.0 mn.

Energy d e n s i t i e s , which have been c o r r e c t e d f o r t h e r e f l e c t i v i t y

408

D. M. ZEHNER

( - 10%) o f t h e g l a s s window,

were determined by measuring t h e

photon energy d e l i v e r e d through an a p e r t u r e o f known diameter positioned i n f r o n t o f a calorimeter. was

measured

with

an

in-1 i n e

against the calorimeter.

The energy o f each p u l s e

photodi ode

assembly

c a l ib r a t e d

Implanted samples were prepared i n a

separate i o n i m p l a n t a t i o n f a c i 1it y which was a1 so equipped f o r making R u t h e r f o r d b a c k s c a t t e r i n g (RBS) measurements.

T h i s tech-

n i q u e was used t o determine t h e i m p l a n t p r o f i l e and t o charact e r i z e t h e changes i n t h e subsurface r e g i o n t h a t occurred w i t h An e x t e n s i v e d i s c u s s i o n o f these r e s u l t s i s

l a s e r annealing.

c o n t a i n e d i n Chapter 2.

2.

CHARACTERIZATION TECHNIQUES Many o f t h e s u r f a c e s e n s i t i v e s p e c t r o s c o p i c techniques used t o

i n v e s t i g a t e t h e s u r f a c e r e g i o n o f laser-annealed semiconductors employ e i t h e r e l e c t r o n s o r photons as t h e i n c i d e n t probe. t h e s e cases t h e d e t e c t e d p a r t i c l e i s an e l e c t r o n .

In

As a con-

sequence o f t h e s h o r t mean f r e e path o f e l e c t r o n s w i t h energies between 20 and 1000 eV, o n l y t h e outermost s u r f a c e region, -20 A , i s probed. Auger

Several d i f f e r e n t techniques have been used. electron

spectroscopy

(AES)

was

used t o m o n i t o r t h e

l e v e l s of b o t h i m p u r i t i e s and implanted species i n t h e s u r f a c e r e g i o n of t h e sample. elements w i t h Z > 3. in

terms

of

the

T h i s technique i s capable o f d e t e c t i n g a l l L e v e l s o f i m p u r i t y c o n t a m i n a t i o n a r e quoted

ratios

of

the

peak-to-peak

signals

of

the

i m p u r i t y Auger t r a n s i t i o n s t o a p r i n c i p a l Auger t r a n s i t i o n o f t h e substrate. this

Although one must be c a r e f u l

technique

to

make

quantitative

i n a t t e m p t i n g t o use

measurements,

in

many

s i t u a t i o n s reasonable estimates o f t h e upper l i m i t o f t h e amount o f a p a r t i c u l a r species present

i n t h e s u r f a c e r e g i o n can be

made. Low-energy e l e c t r o n d i f f r a c t i o n (LEED) was employed t o d e t e r mine geometric o r d e r i n t h e s u r f a c e r e g i o n o f t h e sample.

By

examining t h e p o s i t i o n s o f t h e r e f 1e c t e d beams ( s p o t p a t t e r n s ) ,

7.

409

PULSED LASER IRRADIATED SEMICONDUCTORS

t h e symmetry and s i z e ( i n t r a - a t o m i c spacing) o f t h e s u r f a c e u n i t c e l l can be determined. with

Thus, any changes i n these spot p a t t e r n s are a

surface modification

r e f l e c t i o n o f changes

i n the

geometric arrangement o f atoms i n t h e outermost s u r f a c e l a y e r s . P h o t o e l e c t r o n spectroscopy

(PES)

was

used t o o b t a i n i n f o r -

m a t i o n about t h e e l e c t r o n i c p r o p e r t i e s o f t h e s u r f a c e r e g i o n o f t h e sample.

I n f o r m a t i o n about t h e valence and conduction bands o f

t h e s o l i d can be obtained

by employing photons w i t h energies

t y p i c a l l y l e s s than 50 eV.

With t h e use o f angle-resolved tech-

niques, i t i s p o s s i b l e t o map o u t bands and c h a r a c t e r i z e t h e symmetry o f s u r f a c e s t a t e s .

By employing photons o f h i g h e r energies

i t i s p o s s i b l e t o measure c o r e - l e v e l

b i n d i n g energies f o r b o t h

s u r f a c e and subsurface atoms.

111.

P r o d u c t i o n o f A t o m i c a l l y Clean Surfaces

The c r e a t i o n o f an a t o m i c a l l y c l e a n s u r f a c e i s one o f t h e obvious b u t f r e q u e n t l y d i f f i c u l t t a s k s t h a t must be performed p r i o r t o conducting experiments i n t h e f i e l d o f s u r f a c e science. I n v e s t i g a t i o n s concerned w i t h examining t h e p h y s i c a l and chemical properties

o f s u r f a c e s i n o r d e r t o understand s u r f a c e - r e l a t e d

phenomena r e q u i r e t h a t t h e l e v e l o f unwanted contaminants i n t h e f i r s t few monolayers be <1 at.%.

S i m i l a r requirements e x i s t i n

many areas o f device t e c h n o l o g i e s where t h e presence o f s u r f a c e contaminants e i t h e r d u r i n g f a b r i c a t i o n o r d u r i n g a p p l i c a t i o n can c o n t r i b u t e g r e a t l y t o t h e degradation o f device performance.

In

t h e s e areas, t h e near-surface r e g i o n w i l l become even more import a n t as d e v i c e dimensions become i n c r e a s i n g l y smaller. The t r a d i t i o n a l methods o f g e n e r a t i n g a t o m i c a l l y c l e a n s o l i d s u r f a c e s i n UHV i n c l u d e p h y s i c a l s p u t t e r i n g ,

reactive sputtering,

chemical r e a c t i o n s , e l e c t r o n scrubbing, thermal desorption, s i t i o n o r growth o f a f i l m i n s i t u , t u r e (Roberts,

1963).

depo-

and vacuum c l e a v i n g o r f r a c -

For a s i n g l e c r y s t a l

it i s

frequently

410

D. M. ZEHNER

necessary t o anneal t h e c r y s t a l a t h i g h temperatures i n o r d e r t o remove damage produced i n t h e s u r f a c e r e g i o n by c l e a n i n g t e c h niques such as s p u t t e r i n g .

However, i m p u r i t i e s may d i f f u s e from

t h e s u r f a c e i n t o t h e b u l k , o r indeed from t h e b u l k t o t h e surface; i n many cases, this

such as i n t h e study o f semiconductor

surfaces,

r e d i s t r i b u t i o n can be p a r t i c u l a r l y troublesome.

Another

disadvantage i s t h a t t h e t i m e r e q u i r e d t o c l e a n a s u r f a c e can be measured i n hours and sometimes days when c y c l i n g between sputt e r i n g and annealing i s required.

Furthermore,

f o r experiments

i n which t h e c r y s t a l i s h e l d below room temperature,

adsorption

o f background gases d u r i n g t h e t i m e t h e sample c o o l s anneal

at

an

tamination.

elevated

temperature

Therefore,

can produce

from an

unwanted

con-

improved ways o f p r e p a r i n g atomical l y

c l e a n and ordered surfaces are needed. I t i s w e l l known t h a t a focused l a s e r beam can remove macro-

scopic

quantities

(Ready,

1965),

o f material

from a s u r f a c e by v a p o r i z a t i o n

and i t has been shown t h a t l a s e r s are capable o f

r a i s i n g t h e temperature i n t h e near-surface conductor t o t h e m e l t i n g p o i n t (see, f o r e.g., Wang e t al.,

White e t al.,

1978;

1978, Chapter 4) i n a w e l l c o n t r o l l e d manner.

From

t h e s e observations,

i t was c l e a r t h a t l a s e r s might be u s e f u l i n

g e n e r a t i n g c l e a n surfaces. pose

in

r e g i o n o f a semi-

1969 (Bedair,

Although f i r s t u t i l i z e d f o r t h i s pur-

1969),

only

recently

has a

number

of

d e t a i l e d i n v e s t i g a t i o n s o f l a s e r c l e a n i n g been c a r r i e d out (see f o r e.g. al.,

Zehner e t al.,

1980;

Cowan e t al.,

1980a; McKinley e t al., 1980).

1980; Rodway e t

While most s t u d i e s have been

concerned w i t h S i , o t h e r elemental and compound semiconductors, as w e l l as metals, have a l s o been examined.

3.

SILICON

To i l l u s t r a t e t h e a p p l i c a t i o n o f l a s e r i r r a d i a t i o n i n t h e p r o d u c t i o n o f a t o m i c a l l y c l e a n surfaces, r e s u l t s obtained from S i

7.

411

PULSED LASER IRRADIATED SEMICONDUCTORS

surfaces are shown i n Fig.

1 (Zehner e t al.,

1980a).

The Auger

e l e c t r o n spectrum o b t a i n e d from t h e n a t i v e o x i d e o f an air-exposed S i sample, a f t e r i n s e r t i o n i n t o a UHV system and f o l l o w i n g bakeout,

i s shown a t t h e t o p o f Fig. 1. carbon (272 eV),

and S i

s i l i c o n dioxide,

Auger s i g n a l s from oxygen (510 eV),

(70-100

eV),

characteristic of S i

in

a r e r e a d i l y d e t e c t e d on t h e s u r f a c e o f t h e asMeasurements made by RBS i m p l y a

i n s e r t e d sample.

o x i d e t h i c k n e s s , t y p i c a l o f air-exposed S i .

M A native

A substantial reduction

i n t h e l e v e l s o f 0 and C present i n t h e s u r f a c e r e g i o n i s observed a f t e r i r r a d i a t i o n w i t h one l a s e r p u l s e (-2.0

1.

Fig.

J/cmz),

as shown i n

A f t e r exposing t h e same area t o f i v e l a s e r pulses, t h e

Auger e l e c t r o n spectrum shown i n Fig. same d e t e c t i o n c o n d i t i o n s , noise level.

1 indicates that f o r the

t h e 0 and C s i g n a l s a r e w i t h i n t h e

The Auger e l e c t r o n spectrum obtained from t h e same

area a f t e r i r r a d i a t i o n w i t h t e n l a s e r pulses i s shown a t t h e b o t 1.

Although t h e 0 and C s i g n a l s a r e n o t observable

i n t h i s trace,

by i n c r e a s i n g t h e e f f e c t i v e s e n s i t i v i t y o f t h e

tom o f Fig.

e l e c t r o n d e t e c t i o n system, these i m p u r i t i e s were determined t o be p r e s e n t i n s u r f a c e c o n c e n t r a t i o n s o f
o f a monolayer.

It

should a l s o be noted t h a t t h e l i n e shape o f t h e S i (70-100 eV) Auger

transition

is

that

expected

from

a clean S i

surface.

Although a hydrogen Auger t r a n s i t i o n cannot be d e t e c t e d w i t h AES, PES r e s u l t s (Zehner e t al.,

f r e e o f hydrogen.

1981c) show t h e s u r f a c e r e g i o n t o be

Consequently,

by i r r a d i a t i n g t h e c r y s t a l w i t h

s e v e r a l (t5) l a s e r pulses, t h e r e l a t i v e c o n c e n t r a t i o n s o f 0 and C i n t h e n e a r - s u r f a c e r e g i o n have been reduced by f a c t o r s of a t l e a s t 500 and 50,

respectively.

Thus,

contaminant l e v e l s com-

p a r a b l e t o those o b t a i n e d by repeated s p u t t e r i n g and c o n v e n t i o n a l thermal annealing over a p e r i o d o f several days can be o b t a i n e d i n a l a s e r processing t i m e o f <1 s. Because p h y s i c a l s p u t t e r i n g i s commonly employed as p a r t o f cleaning

procedures

i n s u r f a c e science,

the e f f e c t o f

pulsed

l a s e r i r r a d i a t i o n on samples t h a t had been s p u t t e r e d w i t h A r + i o n s (1000 eV,

5 PA,

30 min) was a l s o i n v e s t i g a t e d .

The Auger

412

D.M. ZEHNER I

I

I

I

c

AS INSERTED

-

f PULSE

9

5 PULSES

-

V

10 PULSES L A S E R ANNEALED

AES Si (100) PRIMARY BEAM: 2 keV, 5 p A MODULATION: 2 V p - p

I

0

Fig. 1 .

I00

I

I

200 300 400 ELECTRON ENERGY ( e V 1

I

500

600

Auger electron spectra obtained from an uncleaned Si ( 1 0 0 ) surface

and a f t e r pulsed laser annealing a t -2.0

J / c m 2 for 1 , 5 , and 10 pulses.

7.

413

PULSED LASER IRRADIATED SEMICONDUCTORS

e l e c t r o n spectrum a c q u i r e d f o l l o w i n g s p u t t e r i n g s t i l l showed t h e presence o f 0 and C, a l t h o u g h s u b s t a n t i a l l y reduced i n i n t e n s i t y , as w e l l

as t h e presence o f implanted Ar.

sample w i t h l a s e r pulses o f -2.0 tion

i n t h e contaminant-level

I r r a d i a t i o n o f the

J/cm2 produced a s i m i l a r reducAuger

signals

observed f o r t h e u n s p u t t e r e d surface.

for

0 and C as

Complete e l i m i n a t i o n o f

t h e A r Auger s i g n a l s occurred a f t e r two o r t h r e e pulses. Contamination m a i n l y CO, H,

of

the

Si

surface

background

These contaminants can be e a s i l y removed by I n addi-

i r r a d i a t i o n o f t h e sample w i t h one o r two l a s e r pulses. tion,

i f an a t o m i c a l l y

(1-1000 L),

gases,

i s i n e v i t a b l e even with a

H20, and hydrocarbons,

10-10 T o r r vacuum.

from

c l e a n s u r f a c e i s exposed t o 0,

o r CO

t h e s u r f a c e can be r e t u r n e d t o an a t o m i c a l l y c l e a n

s t a t e by i r r a d i a t i o n w i t h about f i v e l a s e r pulses. Increases

i n t h e UHV chamber,

i n t h e background pressure

measured by b o t h a nude i o n i z a t i o n gauge and a quadrupole mass spectrometer,

indicate

laser irradiation.

removal

of

s u r f a c e contaminants d u r i n g

Using l a s e r pulses o f -2.0

J/cmz and s t a r t i n g

w i t h a background pressure o f 2 x 10-1° T o r r , t h e f i r s t l a s e r p u l s e on an a s - i n s e r t e d o r f r e s h l y s p u t t e r e d sample caused a t r a n s i e n t p r e s s u r e r i s e i n t o t h e 5 x 10-8 t o 3 x

T o r r range.

Subsequent

p u l s e s on t h e same area were accompanied w i t h pressure r i s e s i n t o 10-9

the

Torr

range,

and these

c o n t i n u e d t o drop u n t i l

the

p r e s s u r e stayed i n t h e 10-10 T o r r range by about t h e f i f t h pulse. Because o f t h e p o s i t i o n o f t h e i o n i z a t i o n gauge r e l a t i v e t o t h e sample l o c a t i o n and t h e sampling r a t e o f t h e mass spectrometer, these

increases

did

not

provide

an

a c c u r a t e measure

of

the

p r e s s u r e i n c r e a s e i n f r o n t o f t h e sample, which was probably much h i g h e r than measured. The e f f e c t o f energy d e n s i t y on t h e e f f i c i e n c y o f removal o f i m p u r i t i e s was a1 so qua1 i t a t i v e l y i n v e s t i g a t e d . sity

range

i n v e s t i g a t e d was

one p u l s e a t -0.3

J/cm2,

from -0.3

to

3.2

The energy denJ/cm2.

After

t h e 0 and C s i g n a l s were reduced by a

f a c t o r o f o n l y 2 r e l a t i v e t o those observed on t h e a s - i n s e r t e d

414

D. M. ZEHNER

sample, and on a f r e s h l y s p u t t e r e d surface, embedded A r was s t i l l detected.

Two

general

energy d e n s i t y .

t r e n d s were

First,

observed

as

a function

of

t h e h i g h e r t h e energy d e n s i t y t h e more

e x t e n s i v e t h e removal o f i m p u r i t i e s by t h e f i r s t pulse.

Second,

a t any p u l s e energy d e n s i t y t h e l a r g e r t h e number o f pulses t h e more

complete

the

removal

of

impurities.

Energy d e n s i t i e s

g r e a t e r than 1.0 J/cm2 were r e q u i r e d t o produce a t o m i c a l l y c l e a n s u r f a c e s u s i n g ruby l a s e r i r r a d i a t i o n .

V i s i b l e s u r f a c e damage,

as observed o p t i c a l l y , occurred a t an energy d e n s i t y o f 3.2 J / c d b u t was n o t observed f o r energy d e n s i t i e s ~3.0 J/cm2. The process o f l a s e r annealing, which i n v o l v e s r a p i d m e l t i n g and r e s o l i d i f i c a t i o n (on a - 1 - u ~ t i m e s c a l e ) , suggests t h a t removal of

impurities

mechanisms,

from t h e s u r f a c e

r e g i o n can t a k e p l a c e by two

d e s o r p t i o n o f t h e v o l a t i l e contaminants and absorp-

t i o n and d i f f u s i o n o f o t h e r i m p u r i t i e s through t h e l i q u i d l a y e r . Both

mechanisms-desorption

and

diffusion-probably

influence

t h e r e d i s t r i b u t i o n o f a given i m p u r i t y , w i t h t h e r e l a t i v e import a n c e o f t h e two

processes depending on experimental c o n d i t i o n s .

F o r t h e c o n d i t i o n s discussed above,

t h e f a c t t h a t a pronounced

p r e s s u r e r i s e i s observed d u r i n g t h e f i r s t l a s e r p u l s e suggests that

t h e 0 and C contaminants a r e desorbed

during irradiation.

from t h e s u r f a c e

However, i t i s d i f f i c u l t t o q u a n t i f y these

o b s e r v a t i o n s and determine t h e amount o f m a t e r i a l desorbed from o n l y t h e c r y s t a l surface.

A b s o r p t i o n and d i f f u s i o n deeper i n t o

t h e sample occur predominantly f o r i m p u r i t i e s t h a t have a r e l a t i v e l y h i g h segregation c o e f f i c i e n t from t h e m e l t (White e t a l . , 1980a; Wood e t al., t i o n coefficient

1981a).

I m p u r i t i e s which have a low segrega-

from t h e m e l t have been shown t o segregate t o

t h e s u r f a c e d u r i n g annealing (White e t al., and 0 t h e e q u i l i b r i u m c o e f f i c i e n t s tively,

suggesting

that

these

1979,

a r e 0.07

1980a).

and 0.5,

For C respec-

i m p u r i t i e s may be r e d i s t r i b u t e d

over a depth i n t e r v a l e q u i v a l e n t t o t h e m e l t depth (-5000 A f o r l a s e r energy d e n s i t i e s o f -2.0

J/cm2).

Complete r e d i s t r i b u t i o n

o f t h e i m p u r i t i e s found on t h e surface, as i n s e r t e d i n t o t h e UHV

7. chamber,

415

PULSED LASER IRRADIATED SEMICONDUCTORS

over t h i s depth would g i v e r i s e t o a remaining s u r f a c e

c o n c e n t r a t i o n o f -0.3%

o f a monolayer f o r 0 and -0.1% of a mono-

b o t h of which a r e near t h e d e t e c t i o n l i m i t s f o r

l a y e r f o r C,

Auger e l e c t r o n spectroscopy.

These values are c o n s i s t e n t w i t h

t h e measured values discussed above.

Whether these i m p u r i t i e s

a r e desorbed from t h e s u r f a c e o r r e d i s t r i b u t e d i n depth can be a s c e r t a i n e d by experiments designed t o determine C and 0 depth p r o f i l e s o r t h e i r t o t a l c o n c e n t r a t i o n s i n t h e near-surface r e g i o n b e f o r e and a f t e r i r r a d i a t i o n . An i n v e s t i g a t i o n o f oxygen i n d i f f u s i o n d u r i n g l a s e r anneali n g o f s i l i c o n has been performed u s i n g RBS and t h e 160(a,ao)160 resonance s c a t t e r i n g a t 3.042 MeV (Westendorp e t a l . , e t al.,

1983).

T h i s technique,

1982; Wang

i n c o n j u n c t i o n w i t h AES, was used

t o determine t h e oxygen c o n c e n t r a t i o n on t h e s u r f a c e and i n t h e near-surface (3000 A ) region, both b e f o r e and a f t e r pulsed l a s e r annealing.

From t h e oxygen peak

area i n t h e b a c k s c a t t e r i n g

spectrum shown i n Fig. 2a, t h e i n i t i a l n a t i v e oxide l a y e r a t t h e s u r f a c e was determined t o have an a r e a l c o n c e n t r a t i o n o f 5.2 x 1015 atoms/cm2.

A f t e r i r r a d i a t i o n of t h e

Si(100) sample i n UHV w i t h

e i g h t pulses a t an energy d e n s i t y o f -1.5

J/cm2 (x=694 nm), Auger

measurements showed an oxygen c o n c e n t r a t i o n a t t h e s u r f a c e o f ~0.3% The oxygen c o n c e n t r a t i o n a t a depth o f 1200 A

o f a monolayer. (depth i n t e r v a l atoms/cm3,

500-1700 A ) was determined t o be 63.1

u s i n g t h e data shown i n Fig.

2b.

x lo1*

Assuming t h a t t h e

s i l i c o n s u r f a c e l a y e r i s m e l t e d completely d u r i n g t h e l a s e r p u l s e and t h a t t h e oxygen atoms i n t h e n a t i v e o x i d e l a y e r are homogeneously d i s t r i b u t e d over t h e depth o f t h e molten l a y e r (-3000 A ) , an oxygen Concentration o f 1.6 x 1020 atom/cm’ would be achieved i n t h a t molten l a y e r .

Thus, these r e s u l t s show no evidence f o r oxy-

gen i n d i f f u s i o n from t h e n a t i v e oxide l a y e r d u r i n g pulsed l a s e r annealing o f s i l i c o n .

I n fact,

t h e amount o f oxygen i s found t o

be equal t o o r l e s s than t h e s o l i d s o l u b i l i t y o f oxygen i n s i l i con,

which i s 5-8 x 1018 atomsjcm3 ( d e Kock,

1980).

This r e s u l t

can be made p l a u s i b l e by c o n s i d e r i n g t h e t i m e needed f o r l i q u i d

416

D. M. ZEHNER

CHANNEL N U M B E R

CHAW N iL NIJ M B E R

F i g . 2.

Resonance at ( a ) center o f native oxide l a y e r , ( b ) a t 1200

pulsed laser cleaned silicon.

BL = 164O.

in

7. SiO,

t o be d i s s o l v e d i n s i l i c o n .

i n t h e range o f 10-5-10-4

The d i s s o l u t i o n v e l o c i t y l i e s

cm/min f o r s i l i c o n s u b s t r a t e tempera-

t u r e s between 1700-1775 K (Chaney e t a1 a 30 A

Thus,

a thermal

., 1976; H i r a t a e t a1 ., 1980).

n a t i v e o x i d e l a y e r would d i s s o l v e a t about t h e

m e l t i n g p o i n t o f s i l i c o n i n 1.8-0.18 of

417

PULSED LASER IRRADIATED SEMICONDUCTORS

m e l t i n g model,

s.

Consequently,

a native

oxide

i n terms

l a y e r cannot be

d i s s o l v e d i n s i l i c o n s i n c e t h e m e l t d u r a t i o n a f t e r pulsed l a s e r annealing, f o r t h e c o n d i t i o n s used, i s measured t o be -100 ns. I f t h e n a t i v e o x i d e l a y e r on t o p o f s i l i c o n does n o t d i f f u s e

i n t o t h e bulk, it has t o evaporate d u r i n g t h e c l e a n i n g procedure. This

can

be

shown

to

be

reasonable

by

calculating

the

Si02 m o l e c u l a r e v a p o r a t i o n r a t e f o r d i f f e r e n t s i l i c o n s u b s t r a t e temperatures.

Using equi 1 ib r i u m thermodynamics, t h e r a t e a t 2000 K

i s c a l c u l a t e d t o be 3.4 x 1012 mol/cm2 ns (Westendorp e t al., Wang e t al.,

Since a t y p i c a l a r e a l d e n s i t y o f a n a t i v e

1983).

o x i d e on s i l i c o n i s 2-5 x

lo15

mol/cm2,

t h e complete removal by

e i g h t l a s e r pulses r e q u i r e s 5 x 1014 mol/cm2 d u r i n g each pulse.

1982;

t o be evaporated

T h i s e v a p o r a t i o n r a t e r e q u i r e s a m e l t dura-

t i o n o f t h e s u r f a c e o f -150 ns, which i s t h e same o r d e r o f magnit u d e as obtained from thermal m e l t i n g model c a l c u l a t i o n s . When

a

silicon

surface

is

covered w i t h

an o v e r l a y e r

of

i m p u r i t i e s much t h i c k e r t h a n t h e t y p i c a l n a t i v e o x i d e t h i c k n e s s (20 A ) ,

complete e l i m i n a t i o n o f t h e i m p u r i t i e s by l a s e r i r r a d i a -

tion i s difficult. (Bermudez,

Experiments on h e a v i l y o x i d i z e d S i surfaces

1982) have shown t h a t t h e minimum a t t a i n a b l e l e v e l o f

c o n t a m i n a t i o n i s dependent on t h e i n c i d e n t energy d e n s i t y and on t h e i n i t i a l i m p u r i t y coverage.

From these r e s u l t s i t i s con-

c l u d e d t h a t although d e s o r p t i o n may be t h e dominant mechanism f o r removal o f i m p u r i t i e s i n t h i n o v e r l a y e r s , d i f f u s i o n and r e d i s t r i b u t i o n o f i m p u r i t i e s i n t h e melted r e g i o n occur when t h i c k l a y e r s a r e i n i t i a l l y present. I n v e s t i g a t i o n s have a l s o been performed t o examine t h e i n c o r p o r a t i o n o f oxygen i n t o S i d u r i n g p u l s e d l a s e r annealing i n an atmospheric environment.

While some i n v e s t i g a t o r s c l a i m evidence

418

D. M. ZEHNER

f o r i n c o r p o r a t i o n ( G a r u l l i e t al.,

1980; Hoh e t al.,

a1

incorporation

.,

1981),

others

(Westendorp e t a1

argue

., 1982;

that

Wang e t a1

1980; L i u e t

does

., 1983).

not

occur

To minimize con-

c e r n about t h e p o s s i b l e r e d i s t r i b u t i o n o f i m p u r i t i e s i n a UHV t h e s a f e s t procedure t o f o l l o w i s t o s p u t t e r t h e

environment,

s u r f a c e m i l d l y t o reduce s u b s t a n t i a l l y t h e c o n c e n t r a t i o n o f these i m p u r i t i e s and then t o l a s e r anneal t h e c r y s t a l t o produce an a t o m i c a l l y clean surface region.

4.

GERMANIUM I n v e s t i g a t i o n s concerned w i t h t h e removal o f t h e n a t i v e o x i d e

l a y e r from Ge samples w i t h pulsed l a s e r i r r a d a t on have produced r e s u l t s s i m i l a r t o those o b t a i n e d w i t h S i samples (Zehner e t a1

.,

1 9 8 0 ~ ) . A t o m i c a l l y c l e a n surfaces can be o b t a i n e d by i r r a d i a t i o n w i t h about f i v e l a s e r pulses (-1.9

J/cm2).

As observed w i t h S i ,

s p u t t e r i n g can be used i n c o n j u n c t i o n w i t h l a s e r i r r a d i a t i o n t o produce a t o m i c a l l y c l e a n surfaces also.

The range o f energy den-

s i t y t h a t can be used t o remove i m p u r i t i e s from t h e s u r f a c e w i t h o u t p r o d u c i n g macroscopic damage was found t o be -0.5

t o -2.1

J/cm2.

Damage t o t h e s u r f a c e occurred above an energy d e n s i t y o f 2.2 J/cm*,

and complete removal o f s u r f a c e i m p u r i t i e s d i d n o t occur

below an energy

5.

d e n s i t y o f -0.5

J/cm2.

III-V COMPOUNDS

GROUP

The p r o d u c t i o n o f a t o m i c a l l y c l e a n surfaces on GaAs c r y s t a l s was i n v e s t i g a t e d

u s i n g procedures s i m i l a r t o those p r e v i o u s l y

d e s c r i b e d (Zehner e t a1

.,

1982).

The Auger e l e c t r o n spectrum

o b t a i n e d from an a s - i n s e r t e d sample and p l o t t e d a t t h e t o p o f F i g . 3 shows t h a t l a r g e amounts o f C (272 eV) and 0 (510 eV) are present,

as w e l l as a small t r a c e o f Ca (291 eV).

impurities

from t h e s u r f a c e r e y i o n

m u l t i p l e pulses,

irradiation with

and t h e e f f i c i e n c y o f c l e a n i n g i n c r e a s e d w i t h

i n c r e a s i n g eneryy d e n s i t y . following multiple-pulse F i g . 3.

required

Removal o f

An example o f a spectrum o b t a i n e d

i r r a d i a t i o n o f -0.6

J/cm2 i s shown i n

The carbon and oxygen s i g n a l s are w i t h i n t h e n o i s e l e v e l

7.

419

PULSED LASER IRRADIATED SEMICONDUCTORS

AES GaAs (100) PRIMARY BEAM: 2 keV, 5 p A

I

-

15 PULSES -0.6 J/cm2

4

AFTER Ar' SPUTTERING

-

15 PULSES -0.3 J/cm2 0

100

200 300 400 ELECTRON ENERGY (eV)

500

F i g . 3. Auger electron spectra obtained from an uncleaned GaAs ( 1 0 0 ) surf a c e , a f t e r sputtering and a f t e r pulsed laser annealing a t 4 . 6 and 4 . 3 J /cm2.

o f t h e Auger detected.

e l e c t r o n spectrum,

and no o t h e r i m p u r i t i e s were

However, t h e r e i s a d i f f e r e n c e i n t h e Ga (55 eV) t o As

( 3 1 eV) Auger t r a n s i t i o n i n t e n s i t y r a t i o and i n t h e Ga Auger t r a n s i t i o n l i n e shape when compared w i t h t h a t obtained a f t e r A r + i o n s p u t t e r i n g , a l s o shown i n t h i s f i g u r e ( A r Auger s i g n a l a t 215 eV). Complete removal o f t h e C and 0 i m p u r i t i e s from an a s - i n s e r t e d sample c o u l d n o t be o b t a i n e d when u s i n g energy d e n s i t i e s o f t0.5

420

D. M. ZEHNER

J/cm2.

However,

by f i r s t s p u t t e r i n g w i t h Ar+ i o n s , i t was found

t h a t a s u r f a c e w i t h no i m p u r i t i e s present c o u l d be produced by laser J/cm2,

i r r a d i a t i o n w i t h energy d e n s i t i e s between 0.15 as i l l u s t r a t e d a t t h e bottom of Fig.

f i f t e e n pulses a t -0.3 intensity

J/cm2.

and 0.4

3 f o r t h e case o f

Although t h e Ga/As Auger t r a n s i t i o n

r a t i o observed f o l l o w i n g

such

surface treatment

is

s i m i l a r t o t h a t observed a f t e r s p u t t e r i n g , t h e Ga Auger l i n e shape showed t h e same t y p e o f change as t h a t observed a t h i g h e r energy densities.

T h i s change, a r e d u c t i o n i n t h e degree o f s p l i t t i n g

w i t h i n t h e l i n e shape (due t o t h e s p i n - o r b i t s p l i t ,M,,

level),

observed a f t e r i r r a d i a t i o n a t a l l energy d e n s i t i e s i s due t o t h e presence o f Ga i n l o c a l regions which a r e n o n s t o i c h i o m e t r i c . I n o r d e r t o c o n f i r m t h i s e x p l a n a t i o n f u r t h e r , a f t e r pulsed l a s e r a n n e a l i n g i n UHV, t h e samples were t r a n s f e r r e d i n a i r t o a highvacuum (HV)

chamber, where t h e y were analyzed u s i n g 1.5-MeV

ion scattering.

Het

For purposes o f comparison, s i m i l a r measurements

were made on samples t h a t were n o t exposed t o l a s e r i r r a d i a t i o n (virgin).

A r e p r e s e n t a t i v e r e s u l t o f such a comparison i s shown

i n Fig. 4 f o r t h e (110) face o f GaAs.

The s p e c t r a obtained from

t h e v i r g i n sample can be i n t e r p r e t e d as s c a t t e r i n g from an ordered crystal

covered w i t h an a i r - f o r m e d

<111> c h a n n e l i n g spectra,

oxide.

shown i n Fig.

4,

Comparison o f t h e before ( s o l i d l i n e )

and a f t e r (dashed l i n e ) annealing w i t h f i v e l a s e r pulses a t an energy d e n s i t y o f -0.3 J/cm2 shows t h a t (1) t h e c o n c e n t r a t i o n o f As atoms a t t h e surface i s e s s e n t i a l l y t h e same i n t h e v i r g i n and laser-annealed

samples;

( 2 ) t h e y i e l d from Ga s u r f a c e atoms

i n c r e a s e s about a f a c t o r o f 2 a f t e r annealing; and ( 3 ) t h e scatt e r i n g y i e l d versus depth ( d e c r e a s i n g energy) increases s l i g h t l y a f t e r a n n e a l i n g w i t h no n o t i c e a b l e change i n t h e r a t e o f dechanneling.

The measured y i e l d s can be a t t r i b u t e d t o s c a t t e r i n g from

a s u r f a c e which c o n t a i n s r e g i o n s w i t h t h e c o r r e c t s t o i c h i o m e t r y i n c o n j u n c t i o n w i t h r e g i o n s which c o n t a i n excess Ga, c o n s i s t e n t w i t h t h e i n t e r p r e t a t i o n o f t h e measured Ga Auger l i n e shape. cleaning

results

are q u a l i t a t i v e l y

similar

t o those

The

obtained

7.

PULSED LASER IRRADIATED SEMICONDUCTORS

421

Backscattering-channeling spectra from a GaAs ( 1 1 0 ) surface. (---) a f t e r pulsed laser annealing at -0.3 J / c r n 2 .

(3

to4

103

v)

I-

$

8

402

10'

10° 1

Fig. 4 . As grown,

u s i n g glass-bonded [ 100) GaAs t r a n s m i s s i o n photocathodes (Rodway e t al.,

1980), and t h e d e t e r m i n a t i o n o f s t o i c h i o m e t r y i s c o n s i s t e n t

w i t h RBS t e s t s of GaAs decomposition due t o p u l s e d l a s e r i r r a d i a t i o n [de Jong e t al.,

1982a).

422

D. M. ZEHNER

S i m i 1a r

problems w i t h

respect

to

s t o i c h i ometry

have

been

encountered i n i n v e s t i g a t i o n s o f l a s e r - i r r a d i a t e d cleaved InP (110) s u r f a c e s exposed t o a i r (McKinley e t a1

., 1980).

Clean s u r f a c e s

were produced, and t h e AES s p e c t r a o b t a i n e d were q u i t e s i m i l a r t o t h o s e f o r c l e a n cleaved surfaces.

However, t h e s u r f a c e s were n o t

ordered, and d e t a i l e d s t u d i e s u s i n g scanning AES ( w i t h a 1-pin spatial

resolution)

indicated that,

although the overall

surface

showed a s t o i c h i o m e t r y c o n s i s t e n t w i t h t h a t o f t h e cleaved face, l o c a l r e g i o n s e x i s t e d where t h e d e v i a t i o n from s t o i c h i o r n e t r y was large.

The d e p a r t u r e from s t o i c h i o m e t r y subsequent

t o laser

i r r a d i a t i o n has been observed i n i n v e s t i g a t i o n s o f InP (100) s u r f a c e s a1 so (Moison e t a1 , 1982).

IV.

Geometric Surface Structures

The p r o c e s s i n g o f semiconductor m a t e r i a l s w i t h l a s e r i r r a d i a t i o n has been i n v e s t i g a t e d e x t e n s i v e l y .

O f m a j o r importance i s t h e f a c t

t h a t l a s e r a n n e a l i n g can be used t o anneal c o m p l e t e l y d i s p l a c e ment

damage

1978).

in

ion-imp1 anted

semiconductors

(Narayan

et

a1

.,

I n t h i s a p p l i c a t i o n t h e l a s e r r a d i a t i o n causes t h e s u r -

f a c e r e g i o n o f t h e c r y s t a l t o be m e l t e d t o a d e p t h o f several thousand

angstroms.

The m e l t e d

l a y e r then

regrows

from t h e

u n d e r l y i n g s u b s t r a t e by means o f l i q u i d - p h a s e e p i t a x i a l regrowth, and t h e regrown r e g i o n has t h e same c r y s t a l l i n e p e r f e c t i o n as t h e substrate.

I n s u r f a c e - r e l a t e d experiments, depending on t h e m e l t i n g

p o i n t , t y p e s and q u a n t i t i e s o f i m p u r i t i e s p r e s e n t i n t h e b u l k , reac-

t i v i t y t o background gases , and o t h e r f a c t o r s , c o n v e n t i o n a l thermal a n n e a l i n g o f c r y s t a l s i n UHV, e i t h e r t o c l e a n o r t o remove s p u t t e r damage,

i n v o l v e s h e a t i n g and subsequent c o o l i n g o f t h e sample f o r

p e r i o d s t h a t can range from minutes t o hours.

Calculations indicate

x=

694 nm, s e v e r a l t e n s o f

t h a t f o r p u l s e energies o f 1-2 J/cm2 a t

microseconds elapse between t h e i r r a d i a t i o n o f t h e sample a t room t e m p e r a t u r e w i t h t h e l a s e r beam and t h e r e t u r n o f t h e sample t o -600 K.

Thus, t h i s a n n e a l i n g t e c h n i q u e p r o v i d e s t h e c a p a b i l i t y f o r

7.

423

PULSED LASER IRRADIATED SEMICONDUCTORS

d o i n g experiments i n which t h e t i m e f o r thermal p r o c e s s i n g i s r e duced t o a minimum.

Since t h e p r e v i o u s s e c t i o n has shown t h a t

p u l s e d l a s e r i r r a d i a t i o n can be used t o produce a t o m i c a l l y c l e a n surfaces, i t i s then o f i n t e r e s t t o determine t h e annealing capab i l i t y o f t h i s technique w i t h respect t o o r d e r i n t h e s u r f a c e region o f a single crystal. 6.

ORDERED SURFACES I n o r d e r t o i n v e s t i g a t e t h i s q u e s t i o n , r e s u l t s o b t a i n e d from

samples o f s i l i c o n c r y s t a l s a r e presented (Zehner e t al.,

1980b).

These samples r e c e i v e d no c l e a n i n g t r e a t m e n t o t h e r t h a n a r i n s e i n a l c o h o l p r i o r t o i n s e r t i o n i n t o t h e UHV system.

Examination o f t h e

a s - i n s e r t e d samples w i t h LEED showed t h a t d i f f r a c t i o n p a t t e r n s c o u l d be observed o n l y a t r e l a t i v e l y h i g h energies (>250 eV) and t h a t t h e y c o n t a i n e d an i n t e n s e backround r e s u l t i n g from d i f f u s e s c a t t e r i n g . This

o b s e r v a t i o n i s c o n s i s t e n t w i t h t h e presence o f a n a t i v e

o x i d e l a y e r c o n t a i n i n g 0 and C as determined by AES and shown i n F i g . 1.

The LEED p a t t e r n s shown i n Fig. 5 i l l u s t r a t e t h e e f f e c t s

o f m u l t i p l e - p u l s e i r r a d i a t i o n on a S i ( 100) sample. d i a t i o n w i t h one l a s e r p u l s e o f -2.0

J/cm2,

A f t e r irra-

a (2x1) LEED p a t t e r n

w i t h moderate background i n t e n s i t y due t o d i f f u s e s c a t t e r i n g was obtained,

as shown a t t h e t o p o f Fig.

5.

Improvements i n t h e

q u a l i t y o f t h e d i f f r a c t i o n p a t t e r n occurred w i t h subsequent l a s e r pulses.

After

diffraction observed,

f i v e pulses,

reflections

a LEED p a t t e r n e x h i b i t i n g

and very

as shown i n F i g .

5.

sharp

low background i n t e n s i t y was

The f a c t t h a t w e l l - d e f i n e d LEED

p a t t e r n s can be obtained i n d i c a t e s t h a t c r y s t a l l i n e o r d e r extends to

t h e outermost monolayers

regrowth process.

after

the

1iquid-phase

epitaxial

No d e t e c t a b l e change i n t h e LEED p a t t e r n s was

observed w i t h a d d i t i o n a l pulses, as can be seen by comparing t h e patterns

for

five

and t e n pulses

shown i n Fig.

5.

Similar

r e s u l t s were o b t a i n e d from samples t h a t were i n i t i a l l y s p u t t e r cleaned by A r + bombardment.

Although t h e LEED p a t t e r n o b t a i n e d

subsequent t o one l a s e r p u l s e on a s p u t t e r e d s u r f a c e was

of

7.

PULSED LASER IRRADIATED SEMICONDUCTORS

h i g h e r q u a l i t y t h a n t h a t shown i n Fig.

5,

425

m u l t i p l e pulses were

a l s o r e q u i r e d t o o b t a i n t h e sharpest d i f f r a c t i o n p a t t e r n s . The LEED p a t t e r n s obtained from t h e t h r e e low-index o r i e n t a t i o n s o f S i subsequent t o l a s e r i r r a d i a t i o n w i t h f i v e pulses a r e shown i n F i g . 6.

A l l p a t t e r n s show sharp d i f f r a c t i o n r e f l e c t i o n s accompanied

by low background i n t e n s i t y , and i n a l l cases t h e q u a l i t y o f t h e p a t t e r n obtained improved w i t h m u l t i p l e - p u l s e f i v e shots.

i r r a d i a t i o n up t o

The (2x1) and ( 1 x 2 ) LEED p a t t e r n s o b t a i n e d from t h e

(100) and (110) surfaces,

respectively,

are s i m i l a r t o those ob-

t a i n e d u s i n g conventional thermal t r e a t m e n t s and show t h e presence o f r e c o n s t r u c t e d surfaces.

These o b s e r v a t i o n s i n d i c a t e t h a t t h e

atoms i n t h e outermost l a y e r s have enough t i m e a t a temperature, under t h e l a s e r annealing c o n d i t i o n s used, t o r e o r g a n i z e i n t o t h e r e c o n s t r u c t e d arrangements f r o m w h i c h t h e LEED p a t t e r n s a r e obtained. T h i s i s c o n s i s t e n t w i t h t h e proposed s u r f a c e s t r u c t u r e models f o r t h e (100) s u r f a c e t h a t i n v o l v e o n l y small l a t e r a l and v e r t i c a l d i s placements o f t h e atoms i n t h e f i l l e d outermost monolayers.

Laser

a n n e a l i n g o f e i t h e r (100) o r (110) S i samples cooled t o 100 K (Zehner e t a1

., 1980d)

produced surfaces from which LEED p a t t e r n s

i d e n t i c a l t o those shown i n Fig. 6 were obtained. The LEED p a t t e r n o b t a i n e d from t h e (111) s u r f a c e suggests t h a t as a r e s u l t o f l a s e r annealing t h e normal s u r f a c e s t r u c t u r e ( t r u n c a t i o n o f t h e b u l k ) i s obtained,

and t h e r e i s no evidence o f any

ordered l a t e r a l r e c o n s t r u c t i o n (Zehner e t a1

., 1 9 8 0 ~ ) . T h i s p o i n t

w i l l be discussed i n more d e t a i l l a t e r . Although a ( 2 x 1 ) LEED p a t t e r n can be obtained from a cleaved S i ( l l 1 ) surface, t h e (7x7) p a t t e r n shown i n Fig. 7 i s always observed on a clean, t h e r m a l l y annealed c r y s t a l surface.

A f t e r i r r a d i a t i o n w i t h t h e l a s e r and structure,

t h e S i sample was

t h e r m a l l y annealed a t e l e v a t e d temperatures.

The o b s e r v a t i o n o f

production o f the (1x1)

surface

1/7-order d i f f r a c t i o n spots, i n d i c a t i v e o f t h e r e c o n s t r u c t e d surface, occurred a f t e r annealing a t temperatures g r e a t e r t h a n -800 K. By h e a t i n g f o r a s u f f i c i e n t t i m e (>30 rnin) a t these temperatures,

a well-defined

( 7 x 7 ) p a t t e r n s i m i l a r t o t h a t shown i n Fig. 7 was

426

Fig. 6.

D. M. ZEHNER

LEED patterns from clean ( a )

(loo),

( b ) ( 1 1 0 ) , and ( c ) ( 1 1 1 ) Si

surfaces a t primary beam energies o f ( a ) 4 9 , ( b ) 9 2 , and ( c ) 47 eV. are shown subsequent to laser annealing at -2.0

Patterns

J / c m 2 for 5 pulses.

7.

Fig. 7.

PULSED LASER IRRADIATED SEMICONDUCTORS

427

LEED pattern from a clean thermally annealed ( 1 1 1 ) Si surface at a

primary beam energy o f 1 1 1 eV.

observed.

Subsequent i r r a d i a t i o n a t room temperature w i t h t h e

l a s e r resulted i n a (1x1) surface structure, possible t o cycle Moreover,

back and f o r t h between t h e two s t r u c t u r e s .

i t was determined t h a t t h e sample c o u l d be h e l d a t a

temperature between -100

and 700 K,

and a f t e r i r r a d i a t i o n w i t h a

l a s e r p u l s e t h e (1x1) s t r u c t u r e was observed.

LEED

defined

showing t h a t i t i s

patterns

single-crystal (Zehner e t a1

were

obtained

from

s u r f a c e s o f Ge subsequent

., 1 9 8 0 ~ ) .

As w i t h S i , w e l l low-index-oriented

t o laser irradiation

Mechanisms o f energy a b s o r p t i o n and r e d i s t r i b u t i o n i n t h e s u r f a c e r e g i o n , as w e l l as t h e development o f a comprehensive unders t a n d i n g o f t h e s t a t e o f t h e s u r f a c e under l a s e r annealing conditions,

have r e c e i v e d c o n s i d e r a b l e a t t e n t i o n i n r e c e n t years.

The

f a c t t h a t ordered surfaces can be produced w i t h l a s e r annealing, as j u s t discussed,

suggests t h a t a n a t u r a l probe o f t h e s u r f a c e

r e g i o n which would y i e l d s t r u c t u r a l i n f o r m a t i o n on t h e f i r s t few atomic l a y e r s i s t i m e - r e s o l v e d LEED.

By measuring t h e i n t e n s i t y

o f a d i f f r a c t e d beam d u r i n g t h e l a s e r a n n e a l i n g process, i n f o r m a t i o n about t h e s t a t e o f t h e s u r f a c e can be obtained.

Such measurements

in conj u n c t i on w i t h time- r e s o l ved opt ic a l r e f 1 e c t iv i t y measurements have r e c e n t l y been made u s i n g a 'Ge (111) sample (Becker e t al., 1984a,b).

The LEED i n t e n s i t y was measured i n a temporal window

428

D.M. ZEHNER

e x t e n d i n g from a few nanoseconds b e f o r e t h e l a s e r p u l s e t o 1000 ns a f t e r t h e l a s e r pulse.

These i n t e n s i t i e s were then compared

t o those o b t a i n e d from a sample r a i s e d t o successive s t e a d y - s t a t e temperatures by r a d i a t i v e h e a t i n g from a f i l a m e n t - t y p e Results

show an e x t i n c t i o n

o f the diffracted

sistent

with

increase

the

observed

in

heater.

intensity,

optical

con-

reflectivity,

c l e a r l y i n d i c a t i n g t h a t t h e Ge s u r f a c e i s n o n c r y s t a l l i n e d u r i n g t h e l a s e r a n n e a l i n g process.

These changes i n i n t e n s i t y can be

c o m p l e t e l y accounted f o r i n t h e m e l t i n g model. To i l l u s t r a t e t h e a p p l i c a t i o n o f l a s e r a n n e a l i n g i n producing o r d e r e d s u r f a c e s t r u c t u r e s on c r y s t a l faces o f compound semicond u c t o r s , e s p e c i a l l y those i n which one o f t h e components i s v o l a tile,

r e s u l t s o b t a i n e d from t h e low-index faces o f GaAs c r y s t a l s

w i l l be presented (Zehner e t a1

., 1982).

A l l r e s u l t s t o be d i s -

cussed were o b t a i n e d from surfaces t h a t were i n i t i a l l y s p u t t e r e d i n o r d e r t o remove t h e C and 0 i m p u r i t i e s ,

s i n c e t h i s procedure

p e r m i t t e d t h e use o f r e l a t i v e l y low l a s e r p u l s e energy d e n s i t i e s i n o r d e r t o o b t a i n c l e a n surfaces. the

(loo),

The LEED p a t t e r n s obtained f o r

(110), and (111) o r i e n t a t i o n s o f GaAs c r y s t a l s f o l l o w i n g

i r r a d i a t i o n a t an energy d e n s i t y o f -0.3

J/cm2 a r e shown i n Fig. 8.

The q u a l i t y o f t h e s u r f a c e s t r u c t u r e r e s u l t i n g from l a s e r annealing, as r e f l e c t e d i n these p a t t e r n s , d i f f e r e d s i g n i f i c a n t l y from t h a t o b t a i n e d from elemental semiconductors.

The h i g h e s t qua1 i t y p a t -

t e r n s were o b t a i n e d from t h e (110) o r i e n t a t i o n ,

and reasonable

q u a l i t y p a t t e r n s were o b t a i n e d from both A- and B-type (111) o r i e n t a tions.

Very poor q u a l i t y p a t t e r n s were o b t a i n e d from t h e (100)

orientations.

A l l LEED p a t t e r n s were b a s i c a l l y (1x1)

,

suggesting

no long-range ordered r e c o n s t r u c t i o n as n o r m a l l y observed a f t e r c o n v e n t i o n a l thermal annealing.

I n a l l cases t h e o b s e r v a t i o n o f

d i f f u s e background i n t e n s i t y and/or s t r e a k i n g i n d i c a t e d t h e presence

o f d i s o r d e r i n t h e s u r f a c e region.

These o b s e r v a t i o n s a r e consis-

t e n t w i t h b o t h AES and RBS r e s u l t s , which i n d i c a t e t h e e x i s t e n c e o f excess Ga i n l o c a l r e g i o n s which a r e n o n s t o i c h i o m e t r i c i n t h e n e a r - s u r f a c e region.

Although a range o f energy d e n s i t i e s and a

7.

Fig. 8.

PULSED LASER IRRADIATED SEMICONDUCTORS

LEED patterns from clean laser-annealed

429

( a ) ( l o o ) , ( b ) 1 1 0 ) , and

( c ) ( 1 1 1 ) GaAs surfaces a t primary beam energies o f ( a ) 1 1 3 eV, ( b ) 1 2 3 eV, and ( c ) 95 eV.

D. M. ZEHNER

v a r i a t i o n o f t h e number o f pulses were t r i e d , i t was n o t p o s s i b l e t o produce surfaces from which b e t t e r q u a l i t y LEED p a t t e r n s c o u l d be observed.

Similar

r e s u l t s have been o b t a i n e d from t h e InP

( 100) s u r f a c e (Moison e t a1 7.

., 1982).

METASTABLE SURFACES The o b s e r v a t i o n t h a t a (1x1) LEED p a t t e r n i s o b t a i n e d from t h e

( 1 1 1 ) s u r f a c e o f S i a f t e r l a s e r i r r a d i a t i o n i n a UHV environment and t h a t t h e s u r f a c e i s a t o m i c a l l y c l e a n a f t e r such t r e a t m e n t suggests t h a t t h i s s u r f a c e p r o v i d e s t h e o p p o r t u n i t y f o r i n v e s t i g a t i n g a c l e a n semiconductor s u r f a c e t h a t e x h i b i t s no ordered l a t e r a l reconstruction.

The understanding o f t h i s s t r u c t u r e i s o f v i t a l

importance i n view o f t h e o r e t i c a l d e s c r i p t i o n s o f t h e S i (111) surface.

I f t h e s u r f a c e i s t r u l y b u l k - l i k e except f o r s u r f a c e r e -

l a x a t i o n , i t should d i f f e r from t h e d i s o r d e r e d high-temperature (1x1)

., 1981) and i m p u r i t y - s t a b i l i z e d (1x1) (Eastman e t a1 ., F l o r i o e t a1 ., 1971) surfaces. Furthermore, o t h e r i n v e s t i -

( B e n n e t t e t a1 1980a,b;

g a t i o n s o f t h e (111) s u r f a c e subsequent t o i r r a d i a t i o n w i t h l a s e r p u l s e s have i n d i c a t e d t h a t some degree o f d i s o r d e r i s present. T h i s s u b j e c t w i l l be discussed i n d e t a i l l a t e r i n t h i s s e c t i o n . W h i l e i n f o r m a t i o n about t h e symmetry and s i z e o f t h e twodimensional

unit

cell

diffraction

patterns,

on

the

surface

information

about

can

be

obtained

surface

from

relaxations

r e q u i r e s t h e measurement o f t h e i n t e n s i t i e s o f t h e d i f f r a c t e d e l e c t r o n beams as a f u n c t i o n o f i n c i d e n t e l e c t r o n energy ( I - V profile).

The e x p e r i m e n t a l l y measured p r o f i l e s must t h e n be com-

pared w i t h r e s u l t s o b t a i n e d from f u l l y converged dynamical LEEU c a l c u l a t i o n s assuming v a r i o u s s t r u c t u r a l models f o r t h e geometric arrangement i n t h e outermost l a y e r s . between t h e experimental

A measure o f t h e agreement

r e s u l t s and t h e p r e d i c t i o n o f model

c a l c u l a t i o n s i s p r o v i d e d by t h e R f a c t o r ( t h e lower t h e R f a c t o r value, t h e

b e t t e r t h e agreement).

A d e t a i l e d LEED a n a l y s i s f o r

l a s e r - a n n e a l e d (111)-( 1x1) s u r f a c e s o f S i has been performed, and t h e r e s u l t s are discussed below (Zehner e t al.,

1981a).

7.

431

PULSED LASER IRRADIATED SEMICONDUCTORS

A S i (111) s u r f a c e t h a t had been i r r a d i a t e d w i t h t h e o u t p u t o f t h e l a s e r a t an energy d e n s i t y o f -2.0 investigations.

J/cmz was used i n these

The i n t e n s i t i e s o f t h e d i f f r a c t e d beams were

measured as a f u n c t i o n o f e l e c t r o n energy u s i n g a Faraday cup operated as a r e t a r d i n g f i e l d analyzer.

Data were obtained f o r

a l l o f t h e { l o } , {01}, {20}, and {02} beams and f o r t h r e e each o f t h e { l l } and {21} beams.

Based on o b s e r v a t i o n s and c o n c l u s i o n s

drawn from p r e v i o u s s t u d i e s , s y m m e t r i c a l l y e q u i v a l e n t beams were averaged t o p r o v i d e a data base c o n t a i n i n g s i x average p r o f i l e s . The experimental data base has been compared w i t h t h e r e s u l t s o b t a i n e d from f u l l y converged dynamical LEED c a l c u l a t i o n s .

Details

o f these c a l c u l a t i o n s can be found elsewhere, and o n l y t h e r e s u l t s

w i l l be summarized here. t h e dynamical

Comparison o f p r o f i l e s o b t a i n e d from

LEED c a l c u l a t i o n s t o t h e measured I - V

suggests t h a t t h e f i r s t i n t e r l a y e r spacing, d,

profiles

i s c o n t r a c t e d by

25.5 a 2.5% w i t h respect t o t h e b u l k value and t h a t t h e second i n t e r l a y e r spacing, d,, b u l k value.

i s expanded 3.2 r 1%w i t h respect t o t h e

P r o f i l e s c a l c u l a t e d u s i n g these values a r e shown i n

Fig. 9, which a l s o c o n t a i n s t h e corresponding experimental p r o f i l e s and single-beam r e l i a b i l i t y f a c t o r s ( R ) determined f o r each comparison.

The six-beam R f a c t o r corresponding t o Fig. 9 i s 0.115.

T h i s value i n d i c a t e s a very good agreement between c a l c u l a t e d and experimental p r o f i l e s i n a conventional LEED a n a l y s i s and suggests t h a t t h e proposed s t r u c t u r a l model i s h i g h l y probable.

Furthermore,

t h i s R value i s s i g n i f i c a n t l y lower than any r e p o r t e d value o b t a i n e d i n a LEED a n a l y s i s o f any semiconductor surface.

The changes i n

i n t e r l a y e r spacings determined from t h i s a n a l y s i s correspond t o n e a r e s t - n e i g h b o r bond l e n g t h changes o f -0.058 and t0.075 A.

These

r e s u l t s are c o n s i s t e n t w i t h a t o t a l energy c a l c u l a t i o n f o r such a s u r f a c e which g i v e s an inward r e l a x a t i o n o f t h e outermost l a y e r ( N o r t h r u p e t al.,

1981).

I n a separate

investigation

of

a Si

(111) s u r f a c e l a s e r

annealed w i t h pulses from a doubled Nd:YAG l a s e r ( A = 530 nm), a V i d i c o n camera was used t o scan t h e LEED p a t t e r n recorded on

432

D. M. ZEHNER

(40)BEAM R = 0.466

( 0 2 ) BEAM R = 0.095

I

I

(24) BEAM R = 0.088

-

CALCULATED AVERAGE EXPERIMENTAL

4 20

00

00

(60

420

460

200

ENERGY (eV)

Fig. 9 .

A comparison o f the averaged experimental I-V p r o f i l e s with calcu= -25.5%

lated results for Adl2

and Ad23 = 3.2%.

P o l a r o i d f i l m i n o r d e r t o o b t a i n t o o b t a i n angular i n t e n s i t y prof i l e s (Chabal e t al., weak peak [-0.02 ha1 f - o r d e r

1981a).

I n these measureriients, a broad and

t i m e s t h e (11) i n t e n s i t y ]

position,

characteristic

was p r e s e n t a t t h e

o f a (2x1)

reconstruction.

From these data i t was concluded t h a t no long-range o r d e r e x i s t s b u t t h a t d i s o r d e r e d domains w i t h a buckled ( 2 x 1 ) - l i k e r e c o n s t r u c t i o n are present.

The absence o f such o b s e r v a t i o n s i n t h e pre-

v i o u s l y discussed LEED a n a l y s i s suggests t h a t surfaces prepared w i t h d i f f e r e n t l a s e r a n n e a l i n g parameters may d i s p l a y d i f f e r e n c e s i n t h e d e t a i l s o f s u r f a c e order. To examine t h e q u e s t i o n o f s u r f a c e order, scattering

medium energy i o n

combined w i t h channel i n g and b l o c k i n g ,

a technique

which is a l s o s e n s i t i v e t o geometrical s t r u c t u r e i n t h e s u r f a c e r e g i o n , has been used t o i n v e s t i g a t e t h e S i ( l l 1 ) s u r f a c e (Tromp

433

7 . PULSED LASER IRRADIATED SEMICONDUCTORS e t a1

., 1982).

I n t h i s study,

data were obtained b o t h from a

s u r f a c e e x h i b i t i n y a sharp (7x7) LEED p a t t e r n ,

prepared by con-

v e n t i o n a l procedures, and from a s u r f a c e e x h i b i t i n g a sharp (1x1) LEED p a t t e r n , prepared by i r r a d i a t i n g t h e sample w i t h a s i n g l e p u l s e from a ruby l a s e r .

From an a n a l y s i s o f t h e data i t was concluded

t h a t t h e atomic displacements on both s u r f a c e s a r e r e s t r i c t e d t o two monolayers,

probably t h e f i r s t double l a y e r o f t h e c r y s t a l .

T h i s c o n c l u s i o n i s c o n s i s t e n t w i t h t h e r e s u l t s o f t h e LEE0 a n a l y s i s . However, i n t h i s model t h e atoms i n t h e f i r s t two monolayers occupy w e l l - d e f i n e d p o s i t i o n s and should g i v e r i s e t o a s t r o n g b l o c k i n g effect.

This blocking e f f e c t

i s n o t reproduced i n t h e data,

suggesting t h a t t h e atoms may occupy d i f f e r e n t l a t e r a l p o s i t i o n s and g i v e r i s e t o less e f f i c i e n t and smeared-out b l o c k i n g .

Thus, t h e

r e s u l t s are i n c o n s i s t e n t w i t h a simple r e l a x a t i o n model and i n d i c a t e some degree o f d i s o r d e r i n t h e s u r f a c e region.

A s i m i l a r LEED a n a l y s i s has been performed on a laser-annealed Ge (111) s u r f a c e (Zehner e t a1

., 1981b).

As w i t h S i , t h e b e s t agree-

ment i s o b t a i n e d f o r a s t r u c t u r a l model i n which atoms i n t h e o u t e r most l a y e r are d i s p l a c e d inward and t h o s e i n t h e second l a y e r a r e d i s p l a c e d outward r e l a t i v e t o t h e i r b u l k p o s i t i o n s , r e s p e c t i v e l y . The corresponding nearest-nei ghbor bond l e n g t h changes are -0.037 and +0.066 A . An examination o f t h e e l e c t r o n i c s t r u c t u r e i n t h e s u r f a c e r e g i o n o f t h e laser-annealed S i (111) and Ge (111) s u r f a c e s i s o f i n t e r e s t i n view o f t h e r e s u l t s o f both t h e LEED analyses and i o n s c a t t e r i n g r e s u l t s j u s t discussed.

P h o t o e l e c t r o n spectroscopy

d i r e c t l y y i e l d s i n f o r m a t i o n about t h e l o c a l bonding b u t i s l e s s s e n s i t i v e t o t h e long-range o r d e r than LEED.

Therefore,

resolved

studies

and

anyle-i ntegrated

photoemi s s i o n

valence band s u r f a c e s t a t e s and s u r f a c e c o r e - l e v e l been performed f o r t h e f o l l o w i n g s u r f a c e s :

of

angleboth

s h i f t s have

( 1 ) laser-annealed S i

and Ge (111)-(1x1)

surfaces prepared as f o r t h e LEED s t u d i e s and

(2) S i (lll)-(7x7)

and Ge ( l l l ) - ( 2 x 8 )

s u r f a c e s prepared by t h e r -

m a l l y annealing t h e (1x1) surfaces (Himpsel e t al.,

1981).

The

434

D. M. ZEHNER

measurements were made u s i n g t h e d i s p l a y - t y p e spectrometer a t t h e s y n c h r o t r o n r a d i a t i o n source, Tantalus I. I n Fig.

10, a n g l e - i n t e g r a t e d photoemission s p e c t r a a r e pre-

sented f o r laser-annealed

(1x1) surfaces ( f u l l

curves) and f o r

t h e t h e r m a l l y annealed surfaces (dashed curves) o f Ge (111) and Si

The d o t t e d l i n e s show t h e s p e c t r a o b t a i n e d a f t e r a

(111).

hydrogen exposure, which r e s u l t s i n about a s a t u r a t i o n monolayer coverage o f hydrogen.

Below -4 eV, hydrogen induces e x t r a s t a t e s

t h a t are w e l l understood b u t n o t i m p o r t a n t i n t h i s c o n t e x t . difference

between

the

solid

(dashed)

curves

The

and t h e d o t t e d

A l l four

curves above -3 eV r e p r e s e n t s s u r f a c e - s t a t e emission.

s u r f a c e s have a d o u b l e t o f s t a t e s near t h e t o p o f t h e

clean

valence band which i s quenched by hydrogen exposure.

Relative t o

t h e t o p o f t h e valence band, these s t a t e s l i e a t -0.4

and -1.3

f o r t h e annealed S i (111) s u r f a c e s and a t -0.7 annealed Ge (111) surfaces. dependent

photoelectron

and -1.3

By u s i n g a n g l e - r e s o l v e d p o l a r i z a t i o n -

spectroscopy,

the

surface

states

determined t o have d i s t r i b u t i o n s i n momentum (Ell)-space

i n Fig.

are

and sym-

m e t r i e s which are s i m i l a r f o r a l l f o u r annealed surfaces. results

eV

f o r the

These

a r e summarized r e l a t i v e t o t h e hexagonal B r i l l o u i n zone

11.

I t is remarkable t h a t t h e predominant s u r f a c e s t a t e s f o r t h e

t h e r m a l l y annealed Ge (111) and S i (111) surfaces match t h e (1x1) s u r f a c e B r i l l o u i n zone and show no i n d i c a t i o n o f t h e small r e c i p r o cal

(2x8)

that

or

(7x7)

photoemission

unit

cells.

(This

can indeed sense

by t h e l a r g e r (1x1) u n i t c e l l i n b,, space.) t i o n f o r the S i ( l l l ) - ( 7 x 7 ) appears near t h e Fermi l e v e l

surface:

, which

observation

confirms

t h e short-range o r d e r given There i s one excep-

a weak t h i r d s u r f a c e s t a t e

makes t h i s s u r f a c e m e t a l l i c , i n

c o n t r a s t t o t h e o t h e r t h r e e surfaces.

This exception i s consistent

w i t h a band p i c t u r e , wherein t h e S i ( l l l ) - ( 7 x 7 )

s u r f a c e has t o be

m e t a l l i c because t h e r e i s an odd number o f e l e c t r o n s i n t h e ( 7 x 7 ) unit cell. tially

Each band holds two e l e c t r o n s ,

filled

band.

The

extra

surface

which leaves a parstate

for

the

Si

7.

F i g . 10.

PULSED LASER IRRADIATED SEMICONDUCTORS

435

Angle-integrated photoelectron spectra f o r the annealed G e ( 11 1 )

and S i ( l l 1 ) surfaces showing emission from two surface states near the top o f the valence band which i s quenched by hydrogen exposure (dotted l i n e s ) . denotes the valence-band

maximum.

Ev

436

D. M. ZEHNER

LOWER STATE

UPPER STATE

n

EXTRA STATE

EF

AT

F OR

Si (111)- (7x7)

Fig. 1 1 . Characteristic locations (dashed areas) of different surface states in the ( 1 x 1 ) surface Briliouin zone (hexagon) for the annealed G e ( l l 1 ) and S i ( l l 1 ) surfaces. At the zone center, the lower surface state has A 3 ( P ~ , ~character ) and the upper state has A, ( s , p z ) character.

(lll)-(7x7)

i s c o n c e n t r a t e d near t h e m i d d l e o f t h e edges o f a

( 7 x 7 ) surface B r i l l o u i n zone as shown i n Fig.

11, and i t s i n t e n -

s i t y i s s e n s i t i v e t o t h e long-range (7x7) order. Additional

information

about

the

surface

geometry

can be

o b t a i n e d by measuring t h e s h i f t s i n energy and i n t e n s i t y of c o r e l e v e l s f o r s p e c i f i c surface

atoms.

The s u r f a c e - s e n s i t i v e angle-

i n t e g r a t e d photoemission s p e c t r a f o r Ge(3d) and S i ( 2p) core l e v e l s ( w i t h experimental mean-free paths o f 5.9 S i , r e s p e c t i v e l y ) a r e shown i n Fig.

12.

and 5.4

A f o r Ge and

By comparing s p e c t r a f o r

c l e a n ( f u l l l i n e s ) and hydrogen-covered ( d o t t e d l i n e s ) surfaces, i t i s c l e a r t h a t t h e r e are c o r e l e v e l s a t lower b i n d i n g energies which are c h a r a c t e r i s t i c o f t h e c l e a n s u r f a c e (marked by arrows

7.

PULSED LASER IRRADIATED SEMICONDUCTORS

Si(111) hv=120 eV

Ge(ll1) h v = 7 0 eV

7x7

2x8

-1.0

Fig.

12.

437

- j.0 0 1 .O 0 1.0 I N I T I A L STATE ENERGY RELATIVE TO BULK (eV)

Surface-sensitive

core-level

spectra f o r the, annealed Ge( 1 1 1 )

and S i ( l l 1 ) surfaces showing s h i f t e d c o r e levels f o r special surface atoms. The Ge data consits o f spin-orbit-split

3 d 3 / 2 and 3 d g / 2 levels, whereas in

t h e S i data the 2 p 1 / 2 levels have been removed by spin-orbit D o t t e d lines are f o r hydrogen-covered Si(ll1)

-

( 2 x 1 ) + H, r e s p e c t i v e l y ] ,

l o w e r binding energies are removed.

deconvolution. ( 1 x 1 ) + H and wherein the surface core levels at

surfaces [ G e ( l l l )

-

438

D. M. ZEHNER

i n Fig.

The r e s u l t s o f a l e a s t - s q u a r e s f i t t o t h e data a r e

12).

g i v e n i n Table 1 and can be summarized as f o l l o w s :

t h e annealed

Ge (111) and S i (111) s u r f a c e s have r o u g h l y 1/4 o f a monolayer o f s u r f a c e atoms,

w i t h l a r g e core-level

l o w e r b i n d i n g energy.

s h i f t s (0.6-0.8

L i t t l e difference

eV) t o w a r d

i s observed between

t h e r m a l l y annealed and l a s e r - a n n e a l e d surfaces. TABLE I S p e c i a l S u r f a c e Atoms f o r t h e Annealed Ge( 111) and S i ( 111) Surfaces Core-level s h i f t (towards lower binding energy, M.1 e v ) (ev)

Number o f atoms in v o l ved (20.05 l a y e r ) ( 1dyer)

Ge( 111)-( 2x8)

0.75 0.35

0.28 >O. 25

Ge( 111)-( 1x1)

0.60

0.37

S i ( 111)-(7 x 7 )

0.70

0.16

S i ( 111)-( 1x1)

0.80

0.23

The s t r o n g s i m i l a r i t y o f t h e valence band s u r f a c e s t a t e s and surface core-level s p e c t r a f o r b o t h t h e l a s e r - a n n e a l e d and t h e r m a l l y annealed S i and Ge s u r f a c e s i n d i c a t e s t h a t these s u r f a c e s have very s i m i l a r l o c a l bonding geometries and d i f f e r m a i n l y i n long-range o r d e r i n v o l v i n g g e o m e t r i c a l arrangements t h a t a r e o n l y a p e r t u r b a t i o n o f t h e average l o c a l bonding geometry.

An i n t e r -

e s t i n g q u e s t i o n t h e n i n v o l v e s t h e LEED analyses (Zehner e t al., 1981a; Zehner e t al.,

1 9 8 l b ) , which g i v e such good agreement w i t h

d a t a u s i n g a model ( 1 x 1 ) geometry t h a t appears t o be d i f f e r e n t f r o m t h a t needed t o d e s c r i b e t h e s u r f a c e e l e c t r o n i c s t r u c t u r e . One p o s s i b l e e x p l a n a t i o n i s t h a t LEED i s n o t p a r t i c u l a r l y s e n i t i v e t o long-range d i s o r d e r i f i t i s p r e s e n t on t h e ( 1 x 1 ) surface. Thus,

t h e i n t e r l a y e r displacements determined may be considered

439

7 . PULSED LASER IRRADIATED SEMICONDUCTORS

t o be averages over t h e coherence l e n g t h o f t h e e l e c t r o n beam. Another relaxed,

explanation

is

that

photoemission

can

rule

out

the

ordered ( 1 x 1 ) geometry o n l y i f t h e s u r f a c e s t a t e s a r e

band-1 ike as assumed i n one-el e c t r o n band c a l c u l a t i ons [ Pandy e t 1974; S c h l i i t e r e t a1

al.,

calculations

predict

., 1975;

that

such

C i r a c i e t al.,

1975).

These

a s u r f a c e would be m e t a l l i c ,

w i t h a h a l f - f i l l e d band o f d a n g l i n g bond s t a t e s a t t h e Fermi energy, EF, and t h i s i s i n c o n s i s t e n t w i t h t h e data, which show no emission near EF f o r t h e (1x1) surfaces.

However,

correlation

e f f e c t s might be very i m p o r t a n t f o r these narrow s u r f a c e l e v e l s .

A number o f researchers (Duke e t al., al.,

1981; Lannoo e t al.,

f o r t h theoretical

1981,

1982; L o u i s e t al.,

proposals

1982; Del Sole e t 1982, 1983) have p u t

t h a t would make t h e photoemission

d a t a from t h e laser-annealed S i (111) s u r f a c e c o n s i s t e n t w i t h t h e u n r e c o n s t r u c t e d r e l a x e d s u r f a c e p r e d i c t e d by t h e LEED a n a l y s i s . I n t h e s e models i t i s assumed t h a t s t r o n g c o r r e l a t i o n s dominate the

surface

state

band

structure,

and

they

predict

a

low-

temperature a n t i f e r r o m a g n e t i c ground s t a t e and downward d i s p e r s i o n o f t h e d a n g l i n g bond s t a t e s along r-J. have n o t been t e s t e d e x p e r i m e n t a l l y .

These p r e d i c t i o n s

Nevertheless,

e f f e c t s cannot e x p l a i n t h e s i m i l a r i t y i n c o r e - l e v e l

correlation shifts for

b o t h laser-annealed and t h e r m a l l y annealed surfaces. B o t h a n g l e - i n t e g r a t e d (McKinley e t a l . (Chabal e t al.,

, 1981) and angle-resolved

1981a) photoemission data have been obtained from

laser-annealed S i (111) s u r f a c e s u s i n g d i f f e r e n t annealing conditions.

I n agreement w i t h t h e r e s u l t s j u s t discussed and w i t h

r e s u l t s o b t a i n e d i n an independent i n v e s t i g a t i o n u s i n g a ruby l a s e r (Dernuth e t al.,

1984), no occupied s t a t e s a t EF are observed.

However, t h e energies of t h e s u r f a c e s t a t e s and t h e i r d i s p e r s i o n , o b t a i n e d a f t e r i r r a d i a t i o n w i t h e i t h e r a XeCl o r frequency-doubled Nd:YAG d i f f e r somewhat from t h e r e s u l t s presented u s i n g a ruby laser.

I n fact,

i t i s argued t h a t t h e laser-annealed

surface

examined i n these s t u d i e s i s buckled w i t h no long-range o r d e r b u t w i t h a short-range ( 2 x 1 ) r e c o n s t r u c t i o n .

From these r e s u l t s and

440

D. M. ZEHNER

t h o s e o b t a i n e d from t h e r m a l l y

quenched S i

(111)

surfaces,

it

appears t h a t d i f f e r e n t l a s e r a n n e a l i n g c o n d i t i o n s (depth o f m e l t , r e g r o w t h v e l o c i t y ) can r e s u l t i n d i f f e r e n t l o c a l bonding arrangements.

8.

VICINAL SURFACES The

chemical

influence o f

steps

reactivity of

on t h e e l e c t r o n i c

properties

semiconductor s u r f a c e s a r e well

and

known.

Stepped ( v i c i n a l ) s u r f a c e s can be prepared by i n s i t u c l e a n i n g o r i o n etching,

but t h e control o f step density,

step height,

and

ease o f r e p r o d u c i b i l i t y has proved d i f f i c u l t u s i n g t h e s e convent i o n a l procedures.

The r a p i d m e l t i n g and regrowth achieved w i t h

l a s e r a n n e a l i n g suggest t h a t t h i s procedure can be used w i t h vicinal

surfaces t o produce s u r f a c e s c o n t a i n i n g monatomic steps

and u n i f o r m t e r r a c e widths. To demonstrate t h a t such s u r f a c e s can be produced, o b t a i n e d from a S i ( l l 1 ) f r o m a (111) plane (Zehner e t a1

c r y s t a l whose s u r f a c e was c u t a t 4.3'

toward t h e

., 1980b).

results

[ i i 2 ] d i r e c t i o n w i l l be discussed

F o r t h i s d i r e c t i o n , t h e edge atoms have

o n l y two n e a r e s t neighbors.

The w e l l - d e f i n e d (1x1)

LEED p a t t e r n

o b t a i n e d from t h e c l e a n s u r f a c e and shown i n Fig. 13 ( a ) was observed after

i r r a d i a t i n g t h e s u r f a c e with f i v e p u l s e s a t -2.0

J/cm2.

The p a t t e r n i n d i c a t e s t h e e x i s t e n c e o f a stepped s u r f a c e which can be indexed [ 1 4 ( 1 1 1 ) x ( i i 2 ) ] . energy, and [ O l ]

By v a r y i n g t h e p r i m a r y e l e c t r o n

t h e t h r e e f o l d spot s p l i t t i n g a l t e r n a t e s between t h e r e f l e c t i o n s a t s p e c i f i c e l e c t r o n energies.

[lo]

The energies

a t which a g i v e n r e f l e c t i o n i s s p l i t or n o n s p l i t g i v e s p e c i f i c i n f o r m a t i o n on t h e s t e p h e i g h t , and t h e angular s e p a r a t i o n between s p l i t spots provides i n f o r m a t i o n on t h e t e r r a c e width.

An a n a l y s i s

o f t h e spot s p l i t t i n g s i n t h i s p a t t e r n u s i n g o n l y a k i n e m a t i c t r e a t m e n t o f s i n g l e s c a t t e r i n g from t h e t o p l a y e r (Henzler, 1970) i n d i c a t e s t h a t t h e s u r f a c e c o n s i s t s o f monatomic s t e p s w i t h an average s t e p h e i g h t o f one double l a y e r (3.14 w i d t h s -45 A as i l l u s t r a t e d i n Fig. 14.

A)

with terrace

The absence o f f r a c t i o n a l

7.

Fig.

13.

441

PULSED LASER IRRADIATED SEMICONDUCTORS

LEED

patterns from clean vicinal

beam energies o f ( a ) 40 and ( b ) 68 eV.

Si(ll1 )

surfaces a t primary

( a ) Laser annealed, (b) thermally

annealed.

LASER ANNEALED

-

( 4 x 4 ) WITH SPLIT SPOTS

4;3"

THERMALLY ANNEALED

-

(7 x 7 )

4.30

Fig.

14.

Schematic

the (710) plane.

illustration o f the vicinal

Top view i s for the laser-annealed

surface projected into surface.

Bottom view

illustrates a possible configuration obtained with thermal annealing.

442

D. M. ZEHNER

order r e f l e c t i o n s ,

i n d i c a t i v e of

reconstruction,

suggests t h a t

t h e l o c a l atomic arrangement produced by t h i s a n n e a l i n g procedure may be s i m i l a r t o t h a t produced on f l a t (111) surfaces. I n o r d e r t o achieve such a h i g h step d e n s i t y c o n f i g u r a t i o n , a l a r g e amount o f atom motion has t o t a k e place.

T h i s movement can

be accomplished e i t h e r by e v a p o r a t i o n o f s u r f a c e atoms o r by d i f f u s i o n i n t h e molten phase.

R e s u l t s o f r e c e n t experiments w i t h

stepped s u r f a c e s (Osakabe e t al., evaporation 1475

K.

1980, 1981) show t h a t some

t a k e s p l a c e a t step edges a t temperatures as low as

Assuming m e l t i n g occurs d u r i n g t h e l a s e r a n n e a l i n g con-

d i t i o n s used, about

lo9

atoms/cm2 evaporate i n a 10-ns p u l s e f o r

an e v a p o r a t i o n r a t e o f 1017 atoms/cmzs [vapor p r e s s u r e 5 x 10-3 T o r r (Chabel e t al., monolayer,

T h i s corresponds t o o n l y 10-6 o f a

1982)].

which i s n o t enough t o account f o r t h e l a r g e atomic

rearrangements over hundreds o f angstroms. mechanism must dominate, be e s t i m a t e d D

2

Thus,

the diffusion

and a s u r f a c e d i f f u s i o n c o e f f i c i e n t can’

(100 A ) 2 / ( 10 ns) -loe4 cm2/s.

This high d i f -

f u s i o n c o e f f i c i e n t would be q u i t e i n c o m p a t i b l e w i t h a nonthermal model

of

l a s e r a n n e a l i n g b u t i s c o n s i s t e n t w i t h experimental

measurements ( N i shizawa e t a1 the melting

point,

the

., 1972).

surface

A t temperatures c l o s e t o

arrangement

i s dominated

by

e n t r o p y , which i s r e s p o n s i b l e f o r a s t e p - s t e p r e p u l s i o n (Gruber et al., disorder

1967).

is

As t h e c r y s t a l c o o l s down and t h e e n t r o p y - d r i v e n

reduced,

the

surface d i f f u s i o n

decreases

t o the

e x t e n t t h a t t h e steps cannot recombine; t h e y remain f r o z e n i n t h e high-temperature c o n f i g u r a t i o n . The s t a b i l i t y o f t h e r e g u l a r a r r a y o f steps was i n v e s t i g a t e d by s u b j e c t i n g t h e laser-annealed s u r f a c e t o a s e r i e s o f thermala n n e a l i n g t r e a t m e n t s a t h i g h e r and h i g h e r temperatures. f o r f l a t (111) S i surfaces,

As observed

thermal annealing o f t h e c r y s t a l t o

temperatures g r e a t e r than -800 K r e s u l t e d i n a s u r f a c e from which t h e ( 7 x 7 ) d i f f r a c t i o n p a t t e r n shown i n Fig. 13 ( b ) was o b t a i n e d i n accord w i t h p r e v i o u s o b s e r v a t i o n s (Olshanetsky e t a l .

, 1979).

The

absence o f s p l i t t i n g of i n d i v i d u a l spots i n d i c a t e s t h e e l i m i n a t i o n

7.

443

PULSED LASER IRRADIATED SEMICONDUCTORS

o f t h e r e g u l a r a r r a y o f monatomic steps, and t h e sharpness o f t h e integral-order

reflections

i s c o n s i s t e n t w i t h a s u r f a c e having

t e r r a c e s wider than -200

A.

macroscopic

inclination,

multilayer

illustrated

i n Fig.

14.

I n o r d e r t o m a i n t a i n t h e average steps must be present

as

A s u r f a c e c o n t a i n i n g monatomic steps

c o u l d be regenerated by i r r a d i a t i n g t h e t h e r m a l l y annealed surface with the laser.

These o b s e r v a t i o n s i n d i c a t e t h a t i t i s

p o s s i b l e t o produce r e p e a t e d l y a p a r t i c u l a r s t e p arrangement by i n i t i a l l y c u t t i n g the crystal t o the desired orientation. I n v e s t i g a t i o n s o f v i c i n a l S i (111) s u r f a c e s c u t a l o n g t h e [ i i 2 ] d i r e c t i o n have produced r e s u l t s very s i m i l a r t o those discussed above (Chabal e t al.,

1981b).

Steps along t h i s d i r e c t i o n c o n t a i n

edge atoms t h a t have t h r e e nearest neighbors.

Although d e t a i l e d

s t u d i e s on t h e angular p r o f i l e s show t h e step h e i g h t t o be 3.06 A i n t h i s d i r e c t i o n , somewhat l e s s than t h e d o u b l e - l a y e r separation, t h e o v e r a l l behavior f o r laser-annealed v i c i n a l surfaces i s t h e same f o r b o t h types o f steps.

9.

DEFECTS As a consequece o f m e l t i n g d u r i n g t h e l a s e r annealing process,

atoms a r e evaporated from t h e s u r f a c e region.

I n f a c t , measure-

ment o f S i p a r t i c l e emission d u r i n g e v a p o r a t i o n u s i n g a c l a s s i c a l t i m e - o f - f l i g h t technique has been used t o determine t h e l a t t i c e temperature and t o demonstrate t h a t me1 t i n g occurs ( S t r i t z k e r e t al.,

1981).

I n a d d i t i o n t o n e u t r a l p a r t i c l e emission, b o t h i o n

and e l e c t r o n e j e c t i o n s have been d e t e c t e d (Moison, e t a1

., 1982).

The t h r e s h o l d f l u e n c e r e q u i r e d f o r d e t e c t i o n o f such p a r t i c l e emission bas been determined f o r a number o f m a t e r i a l s (Moison e t al.,

1983).

R e s u l t s o b t a i n e d f o r InP and GaAs s i n g l e c r y s t a l s

a r e c o n s i s t e n t w i t h AES and RBS observations, erential Si,

l o s s o f t h e more v o l a t i l e component.

indicating a prefI n t h e case o f

t h e amount o f m a t t e r removed was observed t o be orders o f

magnitude l e s s .

444

D. M. ZEHNER

The o b s e r v a t i o n t h a t e v a p o r a t i o n occurs d u r i n g l a s e r a n n e a l i n g i n d i c a t e s t h a t t h e c r e a t i o n o f d e f e c t s i s p o s s i b l e and t h a t d u r i n g t h e quenching p e r i o d a c o m p e t i t i o n t a k e s p l a c e between t h e e l i m i n a t i o n o f d e f e c t s c r e a t e d a t t h e m e l t i n g temperature and t h e growth o f an ordered s u r f a c e

region.

T h i s p o s s i b i l i t y may be par-

t i c u l a r l y i m p o r t a n t i n t h e case o f r e c o n s t r u c t e d s u r f a c e l a y e r s . I f t h e d e f e c t s a r e n o t e l i m i n a t e d f a s t enough,

t h e y may impede

growth o f t h e s u p e r s t r u c t u r e by v a r i o u s mechanisms.

Thus,

the

r e g r o w t h v e l o c i t y o f t h e m e l t f r o n t may p l a y an i m p o r t a n t r o l e i n the d e t a i l s o f the

f i n a l geometric o r d e r i n g .

been suggested (Chabel e t al.,

I n fact,

i t has

1982) t h a t t h e d i f f e r i n g photo-

emission r e s u l t s o b t a i n e d i n independent laser-anneal i n g s t u d i e s can be i n t e r p r e t e d as a consequence o f d i f f e r e n t f i n a l

state

geometric o r d e r i n g due t o d i f f e r e n t regrowth v e l o c i t i e s . I n order

t o e x p l o r e t h e dependence on regrowth v e l o c i t y ,

measurements have been made subsequent t o annealing w i t h a pulsed XeCl excimer l a s e r ( A = 308 nm) (Zehner e t a1

., 1984a).

Measurements

were made a f t e r l a s e r a n n e a l i n g t h e c r y s t a l w i t h an energy d e n s i t y i n t h e range 1.0-4.0 (Wood and G i l e s ,

J/cm2.

Standard heat f l o w

calculations

1981) have been used t o e s t a b l i s h t h a t a v a r i a -

t i o n i n regrowth v e l o c i t y from 1 m/s a t 4.0 J / c d t o 4.5 1.0

J/cm2

m/s a t

can be o b t a i n e d w i t h t h e excimer l a s e r used i n t h i s

experiment (see Chapter 4).

R e s u l t s o b t a i n e d from p h o t o e l e c t r o n

spectroscopy

determine

were

used

to

s t r u c t u r e o f v a r i o u s laser-annealed annealed S i ( l l 1 )

-

(7x7),

the

surface

-

S i ( 111)

and cleaved S i ( l l 1 )

-

electronic

(1x1)

,

thermally

( 2 x 1 ) surfaces.

The s u r f a c e s t a t e s near t h e t o p o f t h e band are i m p o r t a n t s i n c e t h e y have c h a r a c t e r i s t i c energies and angular d i s t r i b u t i o n s t h a t have been s t u d i e d p r e v i o u s l y (Zehner e t al.,

1 9 8 1 ~ ) . I n Fig.

15

t h e energy d i s t r f b u t i o n s o f s u r f a c e s t a t e s near t h e t o p o f t h e valence band a r e shown f o r v a r i o u s S i ( l l 1 ) surfaces.

As evidenced

by t h e s e n s i t i v i t y t o hydrogen exposure ( n o t shown), s u r f a c e s e x h i b i t t h r e e dominant Fig.

the (7x7)

s u r f a c e s t a t e s l a b e l e d 1-3 i n

15 and t h e ( 2 x 1 ) s u r f a c e i s dominated by two s u r f a c e s t a t e s

7.

445

PULSED LASER IRRADIATED SEMICONDUCTORS

-6

-5

-3

4

-2

-1

0

1

INITIAL ENERGY ( RELATIVE TO VALENCE BAND MAXIMUM )

Fig.

15.

Angle-integrated

spectra from freshly cleaved S i ( 1 1 1 )-( 2x1 )

,

UV (308 nm XeCI) laser-annealed Si( 1 1 1 )-( 1x1 ) produced with 1, 2, 3 , and 4 J / c m 2 pulses, ruby (694 n m ) laser-annealed Si( 1 1 1 )(lxl) produced with a 2 J /cm2 pulse, and

Si (1 1 1 )-(7x7 )

obtained by thermal annealing.

446

D. M. ZEHNER

l a b e l e d 4 and 5.

For t h e v a r i o u s laser-annealed surfaces,

two

s u r f a c e s t a t e s which c l o s e l y resemble s t a t e s 1 and 2 on t h e ( 7 x 7 ) s u r f a c e and a r e t o t a l l y d i f f e r e n t from those observed on t h e c l e a v e d (2x1) s u r f a c e were i d e n t i f i e d . change

of

variation

this of

surface

state

regrowth v e l o c i t y

Moreover, no s i g n i f i c a n t

structure from

was

1-4.5

observed over

m/s,

apart

a

from a

weakening o f t h e s u r f a c e s t a t e s f o r t h e f a s t e s t regrowth velocity.

T h i s weakening c o u l d be due t o t h e onset o f d i s o r d e r when

t h e energy d e n s i t y employed approaches t h e me1t t h r e s h o l d . I t i s known t h a t t h e S i ( l l 1 ) s u r f a c e undergoes a s t r u c t u r a l

change from (7x7) ( B e n n e t t e t al.,

t o (1x1) a t a c r y s t a l temperature o f 1150 K 1981).

For very low c o o l i n g r a t e s t h e s t r u c -

t u r a l t r a n s i t i o n i s reversible,

b u t i f quenching r a t e s exceed

approximately

lo2

irreversible.

Consequently, t h e quenching r a t e a t t h e t r a n s i t i o n

K / s (Hagstrum e t al.,

1973), t h e t r a n s i t i o n i s

temperature, subsequent t o l a s e r i r r a d i a t i o n , may be i m p o r t a n t i n When S i ( 111) i s quenched

d e t e r m i n i n g t h e s u r f a c e s t a t e spectra.

t h r o u g h t h e t r a n s i t i o n temperature a t 102 K/s, s u r f a c e s t a t e s p e c t r a s i m i l a r t o those f o r t h e laser-annealed surfaces shown i n Fig. 15 a r e observed (Eastman e t al.,

1980b).

Heat f l o w c a l c u l a t i o n s f o r

l a s e r a n n e a l i n g a t 1.0 J/cm2 p r e d i c t a quenching r a t e o f 1010 K / s a t 1150 K.

Thus,

s i m i l a r s u r f a c e s t a t e s p e c t r a are observed f o r

quenching r a t e s between 102 and 1010 K/s.

I f t h e quenching r a t e

a t t h e t r a n s i t i o n temperature i s o f importance i n d e t e r m i n i n g t h e surface

state

spectra,

rates

i n excess

of

1010 K / s

will

be

necessary t o produce s u r f a c e s t a t e f e a t u r e s s i m i l a r t o those o f t h e (2x1) surface.

Furthermore, f o r regrowth v e l o c i t i e s g r e a t e r

t h a n 15 m/s, where an amorphous l a y e r i s formed ( C u l l i s e t a l . , 1982),

one would expect t o see s u b s t a n t i a l

differences i n the

s u r f a c e s t a t e spectra. Additional

i n f o r m a t i o n about b o t h t h e s i m i l a r i t i e s and d i f -

ferences i n geometric s u r f a c e s t r u c t u r e f o r s u r f a c e s prepared by d i f f e r e n t t r e a t m e n t s can be obtained by i n v e s t i g a t i n g a d s o r p t i o n phenomena.

The technique o f h i g h - r e s o l u t i o n i n f r a r e d spectroscopy

7.

447

PULSED LASER IRRADIATED SEMICONDUCTORS

(Chabel , 1983) has been used t o study t h e v i b r a t i o n a l spectrum o f hydrogen chemisorbed on S i ( l l l ) - ( 7 x 7 ) prepared by thermal a n n e a l i n g and S i ( l l 1 ) - ( 1 x 1 )

prepared by l a s e r annealing.

T h i s technique

g i v e s d i r e c t i n f o r m a t i o n on t h e number, p o s i t i o n , and p o i a r i z a t i o n o f d a n g l i n g bonds, which a r e present a t t h e s u r f a c e o f a semiconductor.

For coverages as low as 1.5% o f a monolayer o f hydrogen

on t h e S i ( l l l ) - ( 7 x 7 ) observed.

surface,

two d i s i i n c t a d s o r p t i o n peaks are

Each peak corresponds t o a S i - H s t r e t c h i n g v i b r a t i o n

f o r hydrogen chemisorbed a t d i f f e r e n t s i t e s .

By i n v e s t i y a t i n g

t h e change i n i n t e n s i t y and energy o f these v i b r a t i o n s i t i s concluded t h a t a unique chemisorption s i t e e x i s t s on t h i s s u r f a c e and i s recessed from t h e outermost plane.

R e s u l t s o b t a i n e d from

t h e laser-annealed S i ( 1 1 1 ) - ( 1x1) s u r f a c e show o n l y one a d s o r p t i o n peak.

The peak a s s o c i a t e d w i t h t h e unique a d s o r p t i o n s i t e i s

absent.

This

observation

strongly

suggests

that

the

unique

a d s o r p t i o n s i t e on t h e (7x7) s u r f a c e i s a r e s u l t o f long-range rearrangement

which

i s absent

on t h e

1aser-anneal ed surface.

Since b o t h a (1x1) u n r e c o n s t r u c t e d b u t r e l a x e d s u r f a c e as d e t e r mined i n t h e LEED a n a l y s i s and a m o s t l y d i s o r d e r e d s u r f a c e as determined by PES would n o t c o n t a i n such a w e l l d e f i n e d hole, t h e s e r e s u l t s cannot be used t o d i s c r i m i n a t e between t h e proposed structures. Rare gas t i t r a t i o n i s another technique used t o i n v e s t i g a t e geometric s t r u c t u r e .

The approach employed i s based on t h e concept

t h a t d i f f e r e n t geometric a d s o r p t i o n s i t e s f o r r a r e gas atoms can have d i f f e r e n t l o c a l work f u n c t i o n s .

Such l o c a l work f u n c t i o n

d i f f e r e n c e s produce d i f f e r e n t e l e c t r o n b i n d i n g energies re1a t i v e t o EF f o r these adsorbed atoms,

which a l l o w t h e d e l i n e a t i o n o f

v a r i o u s s i t e s as w e l l as t h e d e t e r m i n a t i o n o f t h e i r r e l a t i v e conc e n t r a t i o n s when examined w i t h PES. Si(lll)-(7x7) show

Recent i n v e s t i g a t i o n s o f t h e

s u r f a c e f o r xenon a d s o r p t i o n (Demuth e t a1

coverage-dependent

changes

i n t h e measured

., 1984)

PES b i n d i n g

e n e r y i e s a t b o t h h i g h and low coverages i n e i t h e r a d s o r p t i o n (as l o n g as near e q u i l i b r i u m a d s o r p t i o n c o n d i t i o n s a r e maintained) or

448

D. M. ZEHNER

d e s o r p t i o n experiments.

The sequence and number o f a d s o r p t i o n

s i t e s found f o r t h i s s u r f a c e are c o n s i s t e n t w i t h ( 1 ) a s p e c i a l h i g h b i n d i n g energy s i t e a t low coverages,

(2) a majority o f

nearly

equivalent

sites

over

surface

higher

coverages

where

rare-gas

most o f

the

adatom

(including

interactions

become

and ( 3 ) another t y p e o f m i n o r i t y s i t e p r i o r t o f o r -

important),

m a t i o n o f condensed o r m u l t i l a y e r s .

These r e s u l t s are c o n s i s t e n t

w i t h proposed s t r u c t u r a l models f o r t h e (7x7) s u r f a c e which have adatoms. (ruby

S i m i l a r measurements have been made on a laser-annealed S i ( 111)-(1x1)

laser)

surface.

The s i m i l a r i t i e s

i n the

r e s u l t s o b t a i n e d from t h i s s u r f a c e and those from t h e (7x7) surf a c e suggest t h e e x i s t e n c e o f adatoms.

This conclusion i s i n

c o n t r a s t t o t h e LEED r e s u l t s s u p p o r t i n g a f l a t ,

compressed s u r -

face.

A s t e p can be t r e a t e d as a d e f e c t and ordered a r r a y s o f such d e f e c t s produced by l a s e r a n n e a l i n g have been considered i n t h e discussion o f v i c i n a l

It i s w e l l

surfaces.

known t h a t l a s e r -

annealed s u r f a c e s have a r i p p l e d topography when examined on a macroscopic s c a l e (Leamy e t al.,

1978).

T h i s i m p l i e s t h a t steps,

randomly d i s t r i b u t e d , must e x i s t on such surfaces.

The p o s s i b i l -

i t y t h a t t h e S i ( 111)-(1x1) s u r f a c e s t r u c t u r e observed a f t e r l a s e r

annealing

can

be

associated

(Haneman,

1982; Moisum e t al.,

m i n i m i z e i t s f r e e energy.

with

steps

1983).

has

been

A surface reconstructs t o

The l o w e r i n g i n f r e e energy achieved

by r e c o n s t r u c t i o n can be e s t i m a t e d t h e o r e t i c a l l y , g r e a t accuracy, entropy.

considered

but not w i t h

due t o d i f f i c u l t i e s w i t h c o r r e l a t i o n e f f e c t s and

The presence o f s t r a i n w i l l t e n d t o oppose t h i s e f f e c t .

Based on

results

suggested (Haneman,

from a v a r i e t y

o f experiments

it

has been

1982) t h a t a s t r a i n e d r e g i o n a t t h e base o f

s t e p s on laser-annealed ( 111) surfaces causes s u r f a c e r e c o n s t r u c t i o n t o be i n h i b i t e d ,

r e s u l t i n g i n a (1x1)

surface structure.

Furthermore, i t i s suggested t h a t t h e behavior o f (100) surfaces, where t h e laser-annealed s t r u c t u r e i s t h e same as t h a t produced by thermal

annealing,

i s then

not

unexpected s i n c e t h e s t e p

7.

449

PULSED LASER IRRADIATED SEMICONDUCTORS

s t r u c t u r e s are o f d i f f e r e n t c r y s t a l l o g r a p h y and t h e r e i s no s i m i l a r evidence f o r step-associated s t r a i n .

V.

Surface and Subsurface S t u d i e s o f Ion-Implanted S i l i c o n

P r e v i o u s i n v e s t i y a t i o n s (White e t al.,

1980b) have shown t h a t

group I11 o r V i m p l a n t s occupy s u b s t i t u t i o n a l s i t e s subsequent t o l a s e r annealing and t h a t , as a consequence o f b o t h t h e h i g h l i q u i d phase d i f f u s i v i t i e s and t h e h i g h values o f d i s t r i b u t i o n c o e f f i c i e n t s , t h e y are a b l e t o d i f f u s e i n t o t h e c r y s t a l d u r i n g t h e regrowth I n c o n t r a s t , i t has been shown (White

process a f t e r i r r a d i a t i o n . e t al.,

1980c) t h a t those i m p l a n t s which do n o t form c o v a l e n t

bonds e x h i b i t , dependiny on t h e i m p l a n t dose, s e g r e g a t i o n t o t h e s u r f a c e as w e l l as t h e f o r m a t i o n o f a c e l l s t r u c t u r e subsequent t o l a s e r annealing.

The RBS and secondary i o n mass spectroscopy

( S I M S ) techniques employed i n these i n v e s t i g a t i o n s p r o v i d e d e t a i l e d

i n f o r m a t i o n about t h e d i s t r i b u t i o n w i t h respect t o depth b u t prov i d e no i n f o r m a t i o n about t h e c o n c e n t r a t i o n i n t h e s u r f a c e r e g i o n (<20 A )

and t h e changes which occur w i t h m u l t i p l e - p u l s e

diation.

Thus,

irra-

it i s o f i n t e r e s t t o u t i l i z e surface s e n s i t i v e

techniques i n o r d e r t o p r o v i d e complementary i n f o r m a t i o n . By u s i n g m u l t i p l e - p u l s e

irradiation,

the levels o f the prin-

c i p a l contaminants on s u r f a c e s o f i o n - i m p l a n t e d S i c r y s t a l s , 0 and C, can be reduced t o t h e p o i n t where t h e y a r e n o t d e t e c t a b l e i n Auger

s p e c t r a o b t a i n e d from t h e - s u r f a c e region.

However,

s i n c e t h e e x t e n t o f d i f f u s i o n o r s e g r e g a t i o n o f t h e implanted species i s known t o be a f u n c t i o n o f t h e number o f l a s e r pulses, a more a p p r o p r i a t e procedure i s t o s p u t t e r t h e samples i n i t i a l l y . T h i s r e s u l t s i n removal o f most o f t h e 0 and C s u r f a c e contaminants, and t h e l e v e l o f c l e a n l i n e s s a f t e r one p u l s e i s h i g h e r than

that

obtained without

sputteriny.

material affected during sputteriny,

-50 A,

Since t h e depth o f i s much s m a l l e r than

t h e depth o f t h e i m p l a n t e d r e g i o n , t y p i c a l l y -1000-2000

A,

the

s p u t t e r i n g process has l i t t l e o r no e f f e c t on t h e subsequent chanyes

i n t h e i m p l a n t r e d i s t r i b u t i o n t h a t occur d u r i n g l a s e r

450

D. M. ZEHNER

irradiation.

This

has

been

verified

by

comparing

results

o b t a i n e d f o l 1owing l a s e r anneal ing o f imp1 anted c r y s t a l s t h a t had been s p u t t e r e d w i t h t h o s e t h a t had not. sputtering

species

laser irradiation,

i s removed

Moreover,

from t h e s u r f a c e

since t h e

reyion during

as discussed i n S e c t i o n 111, i t cannot have

any e f f e c t on t h e r e d i s t r i b u t i o n o f t h e implanted species i n t h e s u r f a c e region.

For most i m p l a n t c o n d i t i o n s , as a consequence o f

t h e Gaussian-like

distribution,

the concentration o f

implanted

species i n t h e s u r f a c e r e y i o n i s n o t d e t e c t a b l e w i t h AES e i t h e r a f t e r insertion

10.

or a f t e r s p u t t e r i n g .

SUBSTITUTIONAL IMPLANTS R e s u l t s obtained on a Si(100) sample i m p l a n t e d w i t h 75As(100 keV,

8.3 x 1.0’6/cm2)

u s i n g t h e RBS technique are shown i n Fig. 16 and

i l l u s t r a t e t h e r e d i s t r i b u t i o n o f implanted species t h a t occurs w i t h multiple-pulse

irradiation.

Auger data were a l s o obtained

from t h i s sample f o l l o w i n g s i m i l a r i r r a d i a t i o n c o n d i t i o n s .

With

t h e s e d a t a t h e r a t i o o f t h e i n t e n s i t y o f t h e As(31 eY) Auger t r a n s i t i o n t o t h a t o f t h e S i ( 9 l eV) t r a n s i t i o n i s shown i n F i g . 17, where i t i s p l o t t e d as a f u n c t i o n o f t h e number o f l a s e r pulses. The data show t h a t t h e r e l a t i v e amount o f As i n t h e s u r f a c e r e g i o n decreases w i t h an i n c r e a s i n g number o f pulses, s i m i l a r t o t h e RBS r e s u l t s obtained f o r t h e subsurface r e y i o n .

Although n o t shown i n

t h i s f i g u r e , l i t t l e change i s observed i n t h e s u r f a c e c o n c e n t r a t i o n a f t e r a l a r g e number (>15) o f pulses where RBS r e s u l t s i n d i c a t e uniform concentration liquid-solid

interface.

from t h e subsurface

r e y i o n down t o t h e

I t i s d i f f i c u l t t o q u a n t i f y t h e AES

r e s u l t s t o t h e same degree as can be done w i t h t h e RBS data. Thus, a l t h o u g h i t can be concluded t h a t a r e d u c t i o n i n concentrat i o n occurs w i t h m u l t i p l e - p u l s e i r r a d i a t i o n , t h e r e c o u l d s t i l l be a p o s s i b l e chanye i n c o n c e n t r a t i o n i n going from t h e s u r f a c e t o subsurface r e g i o n t h a t

i s a consequense o f t h e surface-vacuum

451

7 . PULSED LASER IRRADIATED SEMICONDUCTORS

5

2

5

Fig.

16.

in S i ( 1 0 0 )

E f f e c t o f laser annealing on dopant profiles for As implanted as determined by RBS.

Profile

results are

implanted condition and subsequent to laser annealing at -2.0

shown

for

J/cm2.

as-

452

D. M. ZEHNER

gJ O

2

I

I

I

I

I

I

I

4 6 0 10 12 NUMBER OF PULSES (E0-2.1 J/cm2)

14

Fig. 17. Plot of the ratio of the As M W ( 3 1 e V ) to Si L W ( 9 1 eV) 4,5 283 Auger transition intensities as a function of the number of laser pulses.

interface. v a r i e t y of

Similar

Auger

results

have

been

obtained

for

a

i m p l a n t e d doses o f s u b s t i t u t i o n a l dopants i n S i ( l 0 U )

and (111) c r y s t a l s .

To examine t h e e f f e c t o f t h e i m p l a n t e d s p e c i e s on s u r f a c e o r d e r , LEED p a t t e r n s have been o b t a i n e d from t h e same 7%-implanted S i ( 1 0 0 ) sample.

Only a very weak,

was observed a f t e r

one l a s e r pulse.

p o o r l y d e f i n e d LEED p a t t e r n F o l l o w i n g two p u l s e s o f

i r r a d i a t i o n , t h e p a t t e r n shown a t t h e t o p o f F i g . 18 was obtained. I n t e g r a l o r d e r beams a r e observed, as w e l l as weak s t r e a k s between them.

With a d d i t i o n a l l a s e r pulses t h e s t r e a k s b e g i n t o coalesce

7 . PULSED LASER IRRADIATED SEMICONDUCTORS

Fig. 18.

LEED patterns from an As-implated Si( 100) surface a t a primary

beam energy of 49 eV.

-2.0

453

Patterns are shown subsequent to laser annealing at

J / m 2for ( a ) 2 , ( b ) 5 , and ( c ) 10 pulses.

454

D. M.ZEHNER

i n t o half-order reflections, surface structure.

i n d i c a t i n g t h e f o r m a t i o n o f a (2x1)

They c o n t i n u e t o become sharper and more

i n t e n s e w i t h a d d i t i o n a l pulses, as shown i n t h e f i g u r e .

However,

t h e p a t t e r n observed a f t e r t e n l a s e r pulses i s n o t as good as t h a t o b t a i n e d from a v i r g i n Si(100) c r y s t a l as shown i n Fig. 5 and t h u s i n d i c a t e s t h e presence o f d i s o r d e r i n t h e s u r f a c e region. Nevertheless,

i t i s i n t e r e s t i n g t o note t h a t t h e (2x1) LEE0 pat-

t e r n shows t h e e x i s t e n c e o f t h e r e c o n s t r u c t e d surface, s i m i l a r t o that

obtained

results

have

from a been

virgin

obtained

Si(100) for

a

crystal.

variety

Similar

of

LEED

substitutional

dopants i n Si(100) w i t h t h e q u a l i t y o f t h e LEED p a t t e r n o b t a i n e d f o r a s p e c i f i c l a s e r annealing c o n d i t i o n decreasing w i t h i n c r e a s i n g i m p l a n t dose.

I n c o n t r a s t t o these o b s e r v a t i o n s , (1x1) LEED p a t t e r n s were o b t a i n e d from S i ( l l 1 ) c r y s t a l s i m p l a n t e d w i t h a group I11 o r V dopant and then l a s e r annealed.

The p a t t e r n s are o f much h i g h e r

q u a l i t y a f t e r a g i v e n number o f l a s e r pulses when compared w i t h t h o s e obtained from t h e (100) surfaces, and t h e y show no evidence o f ordered l a t e r a l r e c o n s t r u c t i o n . The o b s e r v a t i o n t h a t l a s e r anneal i n y can be combined w i t h i o n i m p l a n t a t i o n t o p r o v i d e semiconductor s u r f a c e r e g i o n s c o n t a i n i n g n o v e l doping c o n c e n t r a t i o n s ( s u p e r s a t u r a t e d a l l o y s ) suggests t h a t t h e s e t e c h n i q e s may be used t o a l t e r o r t a i l o r t h e e l e c t r o n i c s t r u c t u r e i n t h i s region.

To examine t h i s p o s s i b i l i t y , photoemis-

s i o n techniques have been used t o i n v e s t i y a t e h i g h l y degenerate n-type S i ( l l 1 )

-

(1x1) surfaces as a f u n c t i o n o f As c o n c e n t r a t i o n

up t o - 5 x lO21/cm3 (-10 a t . %) and degenerate p-type S i ( l l 1 )

-

( 1 x 1 ) surfaces as a f u n c t i o n o f B c o n c e n t r a t i o n up t o -1 x 1021/cm3

( - 2 at.

% ) (Eastman e t a1

centrations electrically

are

about

., 1981).

10 and

These maximum doping con-

3 times

the concentrations o f

a c t i v e As and B a c h i e v a b l e by c o n v e n t i o n a l t e c h -

niques, r e s p e c t i v e l y . Angl e - i n t e g r a t e d photoemi s s i on s p e c t r a f o r t h e valence bands a r e presented i n F i g . 19 f o r i n t r i n s i c S i ( l l 1 )

-

( l x l ) , degenerate

7.

455

PULSED LASER IRRADIATED SEMICONDUCTORS

I

I

I

I

h u = 21 eV s / p POL. ANGLE-INTEG.

I

I

I

1 I

A.R.

A

7% AS 1.1 eV

INTRINSIC^

X- POCKEl

I

-I!

‘\ \“‘z”

(EF-EvIs =0.5

1 -8

-6

-2

-4

ENERGY (eV) Fig. valence

19.

Photoemission spectra ( p a r t i a l density o f states PDOS) for the

bands

of

highly doped Si. states.

laser-annealed

( 1 11 )-( 1 x 1 )

The levels near -0.4

ES, ES, and E denote the v c F

band minimum, and Fermi-level

surfaces o f

and -1 .3

valence-band

intrinsic

and

eV are due to surface maximum,

positions at the surface.

conduction-

456

D. M.ZEHNER

n-type As-doped ( 4 and 7 a t . %) S i ( l l 1 ) ( 1 a t . %) S i ( l l 1 )

p-type B-doped are

normalized

to

constant

-

-

( l x l ) , and degenerate

(1x1) surfaces.

total

emission

The s p e c t r a

within

5

eV

of

EF, and e n e r y i e s are g i v e n r e l a t i v e t o t h e valence-band maximum a t the

surface

(E:).

EF i s seen t o eV above E:

from 0.25

(i.e.,

shift

for the

markedly w i t h

doping

B-doped sample t o t h e con-

d u c t i o n band minimum Ec = 1.1 eV f o r t h e 7% As-doped sample). Relative t o i n t r i n s i c Si, doping,

f o r h i g h l y degenerate ( 1 a t .

%) B

t h e two s u r f a c e s t a t e s are u n a l t e r e d , and t h e p r i n c i p a l

changes a r e t h a t EF moves down by 0.25 eV and t h e s u r f a c e becomes metallic. at.

More dramatic e f f e c t s are seen w i t h As doping.

At 4

% As doping,

t h e s u r f a c e s t a t e s have become s i g n i f i c a n t l y

EF

has i n c r e a s e d by 0.1 eV r e l a t i v e t o t h e i n t r i n -

altered, while sic Si.

That i s ,

t h e upper "sp,-like"

d a n g l i n g bond s t a t e has

become much weaker and s h i f t e d upward i n energy by -0.3 l o w e r -1.4

eV; t h e

eV s t a t e has i n c r e a s e d s i g n i f i c a n t l y i n i n t e n s i t y , b u t

i t i s u n s h i f t e d i n energy;

w i t h new s t a t e s near

EF.

and t h e s u r f a c e has become m e t a l l i c

As t h e dopiny i s f u r t h e r i n c r e a s e d from

4 t o 7 a t . %, EF r a p i d l y s h i f t s and becomes pinned a t t h e conduct i o n band minimum Ec.

Also,

t h e upper sp,-like

surface s t a t e

c o n t i n u e s t o d i m i n i s h i n i n t e n s i t y so as t o be n e a r l y impercept i b l e by 7 a t .

% doping,

extremely intense. become occupied,

and t h e lower s u r f a c e s t a t e becomes

The conduction-band minima

( A min)

near X

and emission from these minima i s observed as

i n t e n s e e l l i p t i c a l lobes i n angle-resolved photoemission s p e c t r a ( d o t t e d l i n e l a b e l e d "AR"

i n Fig. 19).

By d e p o s i t i n g a t h i n Au

f i l m on t h i s s u r f a c e i t was p o s s i b l e t o show v i a S i 2p c o r e - l e v e l

measurements t h a t EF remained unchanged ( w i t h i n -50 meV). a "zero-barrier-height" e l e c t r i c a l purposes,

Thus,

Schottky b a r r i e r was formed , a l t h o u g h f o r

t h e Au-Si

i n t e r f a c e i s undoubtedly shorted

because o f t h e extreme degenerate n-type doping.

457

7. PULSED LASER IRRADIATED SEMICONDUCTORS 11.

INTERSTITIAL IMPLANTS I n o r d e r t o determine t h e e f f e c t s o f i n t e r s t i t i a l i m p l a n t s on

surface properties,

i n v e s t i g a t i o n s o f t h e segregation and zone

r e f i n i n g o f i m p u r i t i e s t o t h e s u r f a c e r e g i o n f o l l o w i n g pulsed 1 aser anneal ing have been performed. a c q u i r e d i n these s t u d i e s , implanted w i t h lOl5/cm2,

To i11u s t r a t e t h e r e s u l t s

data o b t a i n e d u s i n g S i ( l l 1 ) samples

Fe t o doses o f 1.13

x 1015 atoms/cm2,

x

6.0

and 1.8 x 10’6 atoms/cm2 and w i t h Cu t o a dose o f 6.9 x

101s atoms/cm2 and l a s e r annealed a t -2.0

J/cm2 (Zehner e t a1

.,

1984b) w i 11 be discussed.

As mentioned p r e v i o u s l y , examination w i t h AES showed t h a t a l l samples were covered w i t h insertion

i n t h e UHV

large quantities

system,

as

shown f o r

i m p l a n t e d w i t h Fe a t t h e t o p o f Fig. 20.

o f 0 and C a f t e r a Si(ll1)

sample

(Compare w i t h s i m i l a r

o b s e r v a t i o n s f o r v i r g i n S i c r y s t a l s as shown i n Fig.

1.)

The

s u r f a c e s were then s p u t t e r e d with 1000 eV Ar+ ions, which r e s u l t e d i n t h e removal o f most o f t h e 0 and C s u r f a c e contaminants as shown i n Fig. 20.

Auger s i g n a l s from t h e implanted species c o u l d

n o t be detected a f t e r t h i s t r e a t m e n t .

Following i r r a d i a t i o n w i t h

one l a s e r pulse, AES s p e c t r a showed t h e i m p l a n t e d species t o be p r e s e n t i n t h e s u r f a c e region.

T h i s i s i l l u s t r a t e d i n Fig. 20,

where Fe Auger s i g n a l s a t 46 and 703 eV are r e a d i l y detected. F o r t h e low dose case, l i t t l e i n c r e a s e i s observed i n t h e i n t e n s i t y o f t h e Fe Auger s i g n a l o b t a i n e d from a s u r f a c e i r r a d i a t e d w i t h a d d i t i o n a l pulses.

A1 though a t i n t e r m e d i a t e doses several

p u l s e s (two o r t h r e e ) are s u f f i c i e n t t o produce t h e s u r f a c e conc e n t r a t i o n t h a t r e s u l t s i n t h e maximum Fe Auger s i g n a l i n t e n s i t y , i n t h e h i g h dose case a t l e a s t f i v e pulses are r e q u i r e d t o produce t h e same r e s u l t . w i t h multiple-pulse 20.

An example o f t h e i n c r e a s e t h a t occurs

i r r a d i a t i o n i s shown a t t h e bottom o f Fig.

These observations are c o n s i s t e n t w i t h p r e v i o u s KBS r e s u l t s ,

showing a dependence o f t h e s e g r e g a t i o n t o t h e s u r f a c e t h a t i s a f u n c t i o n o f t h e i m p l a n t dose and number o f l a s e r pulses used f o r a n n e a l i n g (White e t a1

., 1 9 8 0 ~ ) .

458

D. M.ZEHNER

-

Jt-

-

AFTER Ar" SPUTTERING

AES 56Fe (150 keV. 6 X 1015/cm 2) IN (111) Si PRIMARY BEAM: 2 keV, 5 p A MODULATION: 2 Vp-p

w

e z U

r/l

-

-

z

+

1 PULSE

5 PULSES

+ +

Fe Si

Fig.

+

a +

Ar

1

I

I

0

100

200

20.

Auger

+

0

C

1

I

I

500 ELECTRON ENERGY (eV)

300

electron spectra

400

Fe I

600

I 700

from an uncleaned S i ( l l 1 ) surface

implanted with 56Fe ( 1 5 0 KeV, 6 ~ 1 0 ~ ~ / c m af~ t e )r , sputtering and a f t e r pulsed laser annealing at -2.0 J / c m 2 .

7.

459

PULSED LASER IRRADIATED SEMICONDUCTORS

The e f f e c t o f segregation on s u r f a c e o r d e r was determined by LEE0 observations. Fe-implanted

The LEED p a t t e r n s o b t a i n e d from each o f t h e

samples

subsequent

l a s e r pulses are shown i n Fig. 21.

t o the

irradiation with

five

For purposes o f comparison, a

LEED p a t t e r n o b t a i n e d from a v i r g i n S i ( l l 1 ) c r y s t a l f o r t h e same i n c i d e n t e l e c t r o n energy i s a l s o shown i n t h i s f i g u r e .

Although

( 1 x 1 ) LEE0 p a t t e r n s were obtained a f t e r one p u l s e o f i r r a d i a t i o n on each sample, a h i g h e r backyround i n t e n s i t y was always observed r e l a t i v e t o t h a t obtained from t h e v i r g i n c r y s t a l . increased

segregation,

at

intermediate

and

The e f f e c t o f

h i g h doses,

with

m u l t i p l e l a s e r pulses was t o degrade t h e q u a l i t y o f t h e LEED patterns.

I n yeneral

i n Fig.

21,

, the

background i n t e n s i t y increased , as shown

although t h e symmetry o f t h e p a t t e r n observed was

s t i l l (1x1). I n c o n t r a s t t o t h e r e s u l t s o b t a i n e d from Fe-implanted samples, t h e LEED p a t t e r n o b t a i n e d from t h e Cu-implanted sample a f t e r one l a s e r p u l s e was a (1x1) w i t h h e x a g o n a l - l i k e

r i n g s around each

i n t e g r a l o r d e r r e f l e c t i o n as shown i n Fig. 22.

T h i s i s t o be com-

pared w i t h t h e

(5x5)

pattern,

shown a t t h e t o p o f F i g .

22,

o b t a i n e d from a t h e r m a l l y annealed (111) s u r f a c e which contained Cu e i t h e r due t o s e g r e g a t i o n from t h e b u l k o r as a r e s u l t o f beam deposition.

The r i n g s around t h e i n t e g r a l

became more i n t e n s e and sharp w i t h a d d i t i o n a l shown a t t h e bottom o f Fig.

22,

order

reflections

l a s e r pulses,

although a well-defined

as

(5x5)

LEED p a t t e r n was never obtained. T h i s sugyests t h a t t h e domains c o n t a i n i n g Cu on t h e laser-annealed s u r f a c e a r e n e i t h e r as w e l l o r d e r e d nor as l a r g e as those on t h e t h e r m a l l y annealed surface. Subsequent

examination o f t h e ion-imp1 anted laser-anneal ed

c r y s t a l s w i t h RBS (2.5-meV f o l l o w i n g features:

He+ i o n b a c k s c a t t e r i n g )

( 1 ) For t h e Cu-implanted c r y s t a l

showed t h e

, one

pulse

o f l a s e r r a d i a t i o n caused t h e t r a n s p o r t o f a l l Cu t o t h e near-

s u r f a c e region, and ( 2 ) f o r t h e low dose Fe-implanted c r y s t a l , one p u l s e i s s u f f i c i e n t t o cause t h e complete t r a n s p o r t o f Fe t o t h e near s u r f a c e region. A t i n t e r m e d i a t e doses, s u b s t a n t i a l segregation

460

Fig. 21. (a) Si(ll1 ) S6Feat ( b ) ( Patterns are j lcrn2.

D. M. ZEHNER

LEED patterns, at primary beam energy of 110 eV, from a surface and from ( 1 1 1 ) surfaces of crystals implanted with 1 . 3 ~ 1 0 ~ ~ / c, m ( c ~) () 6 . 0 ~ 1 O ~ ~ / c and m ~ ()d,) ( 1 . 8 x 1 0 1 6 / c m 2 ) . shown subsequent to five pulses o f laser annealing at -2.0

7.

Fig. 22.

PULSED LASER IRRADIATED SEMICONDUCTORS

461

LEED patterns, a t a primary beam energy o f 71 eV, from ( a ) a

thermally annealed S i ( l l 1 ) surface a f t e r -1

-

monolayer deposition o f Cu and

from a ( 1 1 1 ) surface o f a crystal implanted with 6 . 9 ~ 1 0 ~ ~ / and c m laser ~ annealed with ( b ) 1 and ( c ) 5 pulses at

2.0 J / c m 2 .

462

D. M. ZEHNER

t o t h e surface occurs d u r i n g t h e f i r s t pulse,

b u t two pulses

a r e r e q u i r e d t o c o m p l e t e l y segreyate t h e Fe t o t h e near-surface region.

F i n a l l y a t h i g h doses,

even a f t e r f i v e l a s e r pulses,

s u b s t a n t i a l q u a n t i t i e s o f Fe remain i n t h e f i r s t 1000 A o f t h e c r y s t a l a t an averaye c o n c e n t r a t i o n o f -2 x 1021/cm3.

Furthermore,

c h a n n e l i n g s t u d i e s showed t h a t Fe i n t h e b u l k o f t h e c r y s t a l i s not i n s o l i d solution. From t r a n s m i s s i o n e l e c t r o n microscopy s t u d i e s that,

i t i s known

i n t h e case o f a high-dose Fe-implanted c r y s t a l ,

a well-

d e f i n e d c e l l s t r u c t u r e (see Chapters 1 and 4) i s observed i n t h e n e a r - s u r f a c e r e y i on subsequent t o l a s e r anneal ing (White e t a1 1980~).

The i n t e r i o r o f each c e l l i s an e p i t a x i a l

.,

column of

s i l i c o n e x t e n d i n g t o t h e s u r f a c e (average c e l l diameter -250 A ) . Surrounding each column o f s i l i c o n i s a c e l l w a l l and e x t e n d i n g t o a depth o f -1000 A,

,

650 A t h i c k

c o n t a i n i n g massive quan-

t i t i e s o f segreyated Fey p o s s i b l y i n t h e form o f Fe s i l i c i d e s . These r e s u l t s show t h a t subsequent t o l a s e r a n n e a l i n g t h e Fe (and Cu) i s n o t u n i f o r m l y d i s t r i b u t e d i n t h e plane o f t h e near-surface reyion but instead i s h i g h l y concentrated i n the w a l l s o f t h e c e l l structure. Fe-implanted

Thus,

t h e (1x1) LEE0 p a t t e r n s observed f o r t h e

samples a r i s e from t h e b u l k t e r m i n a t i o n o f (111)

planes i n t h e columns o f s i l i c o n a t t h e surface.

The absence o f

any o t h e r w e l l - d e f i n e d d i f f r a c t i o n f e a t u r e s from t h e Fe-implanted r e g i o n shows t h a t no long-range o r d e r e x i s t s i n t h e t e r m i n a t i o n o f t h e c e l l w a l l s a t t h e surface. rings

i n t h e Cu-implanted

The presence o f h e x a g o n a l - l i k e

crystals

order e x i s t s i n those c e l l walls, scale.

The

high

background

o b t a i n e d from t h e v i r g i n c r y s t a l

shows t h a t ,

i t i s on an w+xxmel_y small

intensities,

,

i f long-range

relative

to

that

observed f o r a l l i m p l a n t con-

d i t i o n s f o r Fe and Cu i n d i c a t e t h e presence o f d i s o r d e r ( p o s s i b l y s t r a i n i n t h e r e y i o n o f t h e c e l l w a l l boundaries) i n t h e o u t e r most l a y e r s , which increases w i t h i n c r e a s i n g i m p l a n t dose. F o r t h e s e samples , s p u t t e r i n g f o l 1owi ng 1aser

ir r a d i a t i o n

r e s u l t e d i n t h e removal o f some o f t h e i m p l a n t from t h e s u r f a c e

7. region.

463

PULSED LASER IRRADIATED SEMICONDUCTORS

However,

subsequent i r r a d i a t i o n w i t h t h e l a s e r again

r e s u l t e d i n t h e segregation o f l a r g e q u a n t i t i e s o f t h e i m p l a n t t o t h e s u r f a c e region.

Furthermore, f o r samples i n which i n t e r s t i -

t i a l species such as Cu a r e present i n t h e b u l k as a r e s u l t o f t h e growth process, l a s e r i r r a d i a t i o n can be used t o zone r e f i n e t h e s e species t o t h e s u r f a c e r e g i o n from a depth e q u i v a l e n t t o t h e maximum m e l t

penetration.

These i m p u r i t i e s can t h e n be

removed from t h e s u r f a c e w i t h l i g h t i o n S p u t t e r i n g ,

l e a v i n g an

i m p u r i t y - f r e e subsurface r e g i o n ( t o a depth determined by t h e melt

front

penetration),

l a s e r annealing.

which

remains

such a f t e r

subsequent

I n many d e v i c e a p p l i c a t i o n s i n v o l v i n g s i l i c o n ,

Cu and Fe i m p u r i t i e s a c t as very e f f i c i e n t recombination c e n t e r s and adversely a f f e c t m i n o r i t y - c a r r i e r l i f e t i m e .

The above obser-

v a t i o n s show t h a t l a s e r annealing combined w i t h s p u t t e r i n g can be used as a r a p i d p u r i f i c a t i o n t r e a t m e n t i n o r d e r t o produce an i m p u r i t y - f r e e s u r f a c e region.

VI.

Applications

I n v e s t i g a t i o n s discussed i n S e c t i o n I11 and I V concentrated on examining s p e c i f i c s u r f a c e p r o p e r t i e s a s s o c i a t e d w i t h l a s e r annealing changes

while in

S e c t i o n V was p r i n c i p a l l y

these

properties

that

i m p l a n t a t i o n w i t h l a s e r annealing.

occurred

concerned w i t h t h e by

combining

ion

I n t h i s section the u t i l i z a -

t i o n o f laser-annealed surfaces i s discussed.

The most p r o m i s i n g

a p p l i c a t i o n o f t h e l a s e r annealing t e c h n i q u e f o r producing atomic a l l y c l e a n surfaces i n d e v i c e processing appears t o be i n preparing

surfaces

application,

for

molecular

beam e p i t a x y

(MBE).

In this

t h e high-temperature t r a n s i e n t induced by t h e l a s e r

o f f e r s a very a t t r a c t i v e and e f f i c i e n t a l t e r n a t i v e t o t h e present prolonged preheat t r e a t m e n t a t t h e moderate temperature r e q u i r e d t o c l e a n t h e semiconductor s u r f a c e t o t h e h i g h standard e s s e n t i a l f o r good q u a l i t y e p i t a x y . a p r o d u c t i o n technique.

T h i s b r i n g s MBE a s t e p nearer t o being

464

D. K.ZEHNER

I n a r e c e n t i n v e s t i g a t i o n (de J o n j e t al.,

1983) LEED was

used t o study t h e i n i t i a l stages o f e p i t a x i a l growth o f s i l i c o n on s i l i c o n .

Both thermal a n n e a l i n g and l a s e r i r r a d i a t i o n were

used f o r s u r f a c e p r e p a r a t i o n , 1-10 nm.

and S i d e p o s i t i o n s were t y p i c a l l y

Using LEEO p a t t e r n s , t h e e p i t a x i a l growth temperature

was d e f i n e d as t h a t p a r t i c u l a r s u b s t r a t e temperature a t which an e p i t a x i a l overlayer, same q u a l i t y

grown on t h e c l e a n s u b s t r a t e ,

of diffraction

p a t t e r n as t h e s u b s t r a t e

R e s u l t s o b t a i n e d from 1aser-anneal ed vicinal

exhibits the

(loo),

itself.

(110) , ( 111) , and

(111) S i o r i e n t a t i o n s showed t h a t e p i t a x i a l growth can

t a k e p l a c e on surfaces prepared by t h i s procedure.

The growth

temperature f o r t h e (100) s u r f a c e was i d e n t i c a l t o t h a t o b t a i n e d u s i n g t h e r m a l l y prepared surfaces.

For t h e (111)

surface the

growth temperature determined f o r t h e thermal l y annealed s u r f a c e was h i g h e r t h a t t h a t determined f o r t h e l a s e r - a n n e a l e d s u r f a c e and a l s o f o r generally

the

laser-annealed

vicinal

surface.

accepted growth mechanism i n Si:MBE

growth by s t e p f l o w ,

the

r e s u l t s obtained f o r

Since t h e

above 870 K i s (111)

surfaces

sugyest t h e presence o f steps on t h e laser-annealed surface. Using an approach s i m i l a r t o t h a t j u s t described, t h e growth o f epitaxial

m u l t i l a y e r f i l m s o f v a r y i n g t h i c k n e s s on s i l i c o n

s u r f a c e s has been i n v e s t i y a t e d (de Jong e t a l .

Laser-

(loo), ( l l o ) ,

(111) and v i c i n a l (111)

A f t e r preparation,

s i l i c o n f i l m s were de-

annealed and t h u s c l e a n S i s u r f a c e s were used.

, 1982b,c).

p o s i t e d and subsequently l a s e r annealed a t i n c r e a s i n y energy dens i t i e s i n o r d e r t o determine t h e t h r e s h o l d f o r growth. determined by LEEU t o be -0.9 these

experiments.

After

T h i s was

J/cm2 f o r t h e ruby l a s e r used i n

determining t h e threshold,

silicon

l a y e r s were s e q u e n t i a l l y d e p o s i t e d and l a s e r annealed on a l l s u r faces.

I n t h i s way e p i t a x i a l

l a y e r s up t o 800 nm were yrown,

b u i l t up out o f 1 t o 20 sublayers.

The reappearance o f a LEEU

p a t t e r n a l l over t h e annealed area a f t e r each i r r a d i a t i o n i n d i cated e p i t a x i a l

regrowth o f a l a y e r .

o r i e n t e d samples,

I n particular,

on S i ( l l 1 )

annealed d e p o s i t e d l a y e r s e x h i b i t e d a (1x1)

7.

465

PULSED LASER IRRADIATED SEMICONDUCTORS

p a t t e r n which

i n t h e case o f t h e v i c i n a l

s u r f a c e had charac-

t e r i s t i c spot s p l i t t i n y i n t h e same c r y s t a l l o g r a p h i c d i r e c t i o n and t o t h e same amount as a nondeposited sample.

T h i s means t h a t

t h e steps i n t h e s u r f a c e are preserved by d e p o s i t i o n and pulsed Spectra obtained w i t h RBS show t h e e p i t a x i a l l y

l a s e r annealing.

grown r e g i o n s t o be o f good q u a l i t y . e x t r a r o u t e t o three-dimensional

T h i s method may p r o v i d e an

s i l i c o n structures.

By combininy t h e i o n i m p l a n t a t i o n , l a s e r annealing techniques discussed i n S e c t i o n V with m o l e c u l a r beam e p i t a x y , i t i s p o s s i b l e t o produce b u r i e d doped l a y e r s .

T h i s approach has been f o l l o w e d

i n a recent i n v e s t i g a t i o n ( S m i t e t a1 was f i r s t implanted w i t h As.

., 1982).

A Si(100) wafer

A f t e r subsequent i n s e r t i o n i n t o a

UHV system,

t h e sample was i r r a d i a t e d w i t h f i v e pulses from a

ruby l a s e r .

I n a d d i t i o n t o producing a clean, ordered surface, as

determined by LEED, As was r e d i s t r i b u t e d i n depth, as p r e v i o u s l y i l l u s t r a t e d i n Fig.

16.

The sample was t h e n heated ( t y p i c a l l y

K), and s i l i c o n was deposited a t a r a t e on t h e o r d e r o f 0.1

-800 nm/s.

A t y p i c a l l a y e r t h i c k n e s s was 100 nm.

The samples were

R e s u l t s showed (1) good e p i t a x y w i t h i n

t h e n examined w i t h RBS.

t h e d e p o s i t e d r e g i o n and ( 2 ) t h e e x i s t e n c e o f a b u r i e d As l a y e r w i t h an abrupt doped-undoped substrate-epitaxy with

specific

interface.

dopant

i n t e r f a c e (<15 nm),

located a t the

D i f f e r e n t l y doped s i l i c o n l a y e r s

concentration

profiles

and w e l l - d e f i n e d

i n t e r f a c e s are an i n t e g r a l p a r t o f most semiconductor devices. The above r e s u l t s , a b u r i e d l a y e r o f As-doped s i l i c o n produced by low-temperature

silicon

a n n e a l i n y and cleaning,

MBE

in

combination

with

pulsed-laser

show t h a t such devices can be produced.

With respect t o devices, t h e r e s u l t s j u s t discussed may prove t o be i m p o r t a n t f o r very h i g h frequency devices,

because MBE i s

one o f t h e few techniques t h a t o f f e r s t h e p o s s i b i l i t y o f making t h e sequences o f very s h a l l o w l a y e r s (-2000 A) w i t h w e l l - c o n t r o l l e d dopiny l e v e l s and abrupt changes i n dopant c o n c e n t r a t i o n s (-200 A) required

by

some

of

the oscillator

and a m p l i f i e r

structures

designed t o operate a t frequencies i n excess o f 200 GHz.

A major

466

D.M.ZEHNER

problem w i t h

Schottky

diodes

i s that

t h e metal-semiconductor

i n t e r f a c e forms t h e p o t e n t i a l b a r r i e r , and so device o p e r a t i o n i s v e r y s u s c e p t i b l e t o t r a c e contamination o f t h e semiconductor surface.

Laser c l e a n i n g o f such s u r f a c e s p r i o r t o metal d e p o s i t i o n

may w e l l minimize r e p r o d u c i b i l i t y problems i n Schottky devices.

VII.

Conclusions

It has been shown t h a t l a s e r annealing p r o v i d e s a new method f o r c l eani ny semi conductor surfaces.

There are f o u r advantayes

(1) no f o r e i g n atoms are i n t r o d u c e d i n t o t h e

o f t h i s technique:

s u r f a c e o r subsurface region;

( 2 ) t h e c l e a n i n y procedure does n o t

s p o i l t h e vacuum c o n d i t i o n s s i n c e t h e l a s e r i s l o c a t e d o u t s i d e t h e system and t h e beam i s i n t r o d u c e d t h r o u g h an o p t i c a l l y t r a n s p a r e n t window; irradiation,

(3) s i n c e o n l y t h e s u r f a c e r e g i o n i s heated d u r i n g b u l k i m p u r i t i e s cannot m i g r a t e t o t h e surface;

and

( 4 ) w i t h t h e t o t a l p r o c e s s i n g t i m e being on t h e o r d e r o f tl s, investigation

can

begin

immediately

after

cleaning,

thereby

a v o i d i n y t h e p o s s i b i l i t y o f r e c o n t a m i n a t i o n by background gases d u r i n g t h e c o o l i n g phase.

The a b i l i t y t o remove t h e n a t i v e o x i d e

l a y e r from a semiconductor s u r f a c e opens up t h e p o s s i b i l i t y f o r u s i n g t h i s technique t o w r i t e on a wafer. d u c i n g a t o m i c a l l y c l e a n surfaces,

I n a d d i t i o n t o pro-

i t has been shown t h a t l a s e r

a n n e a l i n g r e s u l t s in r e s t o r a t i o n o f o r d e r t o t h e s u r f a c e r e g i o n o f a damaged c r y s t a l . faces

containing

The m e t a s t a b l e s u r f a c e s t r u c t u r e s and sur-

ordered

arrays

of

steps

produced

by

laser

a n n e a l i n y can be used i n i n v e s t i g a t i o n s aimed a t understanding r e c o n s t r u c t i o n and growth w i t h i n t h e outermost monolayers.

In

t h e area o f b a s i c research concerned w i t h t h e physics and chemi s t r y of

surfaces,

these o b s e r v a t i o n s i n d i c a t e t h a t i t may be

p o s s i b l e t o modulate s u r f a c e coverage ( c l e a n , adsorb-desorb) i n a d s o r p t i o n experiments and a l t e r ordered s u r f a c e s t r u c t u r e s f o r k i n e t i c s studies.

467

7 . PULSED LASER IRRADIATED SEMICONDUCTORS When combined w i t h i o n i m p l a n t a t i o n , laser

annealing

(interatomic region.

can be used t o t a i l o r

i t has been shown t h a t

t h e geometric

lattice

spacings) and e l e c t r o n i c s t r u c t u r e i n t h e s u r f a c e

T h i s combination p r o v i d e s a way o f i n v e s t i g a t i n g a l l o y s

t h a t cannot be obtained u s i n g conventional c r y s t a l growth techniques.

For t e c h n o l o g i c a l a p p l i c a t i o n s , t h e p r o d u c t i o n o f a l l o y s

(submicrometer r e g i o n s ) w i t h t a i l o r e d s u r f a c e p r o p e r t i e s ( b u r i e d 1 ayers) should prove t o be very u s e f u l . From t h e r e s u l t s presented i t i s obvious t h a t l a s e r annealing o f semiconductor surfaces i n UHV has a tremendous p o t e n t i a l as a tool

for

both s u r f a c e science and p r a c t i c a l

v a r y i n g t h e wavelength,

energy d e n s i t y ,

application.

and p u l s e d u r a t i o n ,

By it

should be p o s s i b l e t o c h a r a c t e r i z e and understand t h i s processing t e c h n i q u e move completely.

References Becker, K. S., H i g a s h i , G. S., and Golovchenko, J. A. (1984a). Phys. Rev. L e t t . 52, 307. Becker, R. S., Higashi, G. S., and Golovchenko, J. A. (1984b). Mat. Res. SOC. Symp. Proc. Vol 23 , 129. B e d i a r , S. M., and Smith, H. P., Jr. (1969). J. Appl. Phys. 40, 4776. Bennett, P. A., and Webb, M. B. (1981). Surf. Sci. 104, 74; (1981). J. Vac. Sci Technol 18, 847. V. M. (1982). J. Vac. Sci. Technol. 20, 51. Bermudez, Chabal, Y. J., Rowe, J. E., and Zwemer, D. A. (1981a). Phys. Rev. L e t t . 46, 600. Chabal, Y. J., Rowe, J. E., and Christman, S. B. (1981b). Phys. Rev, B 24, 3303. Chabal, Y. J., Rowe, J. E., and Christman, S . 6. (1982) J.Vac. S c i Technol 20, 763. Chabal, Y. J. (1983). Phys. Rev. Lett. 50, 1850. Chaney, R. W., and Varker, C. (1976). J. Cryst. Growth 3 3 , 188; ( 1970) J E l e c t r o c h i m SOC 123 , 896. C i r a c i , S., and Batra, I. P. (1975). S o l i d S t a t e Commun. 16, 375. Cowan, P. L., and Golovchenko, J. A. (1980). J. Vac. Sci. Technol. 17, 1197. Weber, H. C., Chen, N. G., Poate, J. M., and C u l l i s , A. G., B a e r i , P. (1982) Phys. Rev. L e t t . 49, 219.

.

.

.

.

.

.

. .

468

D. M. ZEHNER

de Jony, T., Wang, Z. L., and S a r i s , F. W. (1982a). Phys. L e t t . 90A, 147. Tromp, R. M., and S a r i s , de Jony, T., S m i t , L., Korablev, V. V., F. W. (1982b). Appl. Surf. Sci. 10, 10. de Jong, T., S m i t , L., Korablev, V. V., and S a r i s , F. W. ( 1 9 8 2 ~ ) . Laser and Electron-Beam I n t e r a c t i o n s w i t h S o l i d s , (B. R. Appleton and G. K. C e l l e r , eds.) p. 215, E l s e v i e r P u b l i s h i n g Co., I n c . de Jong, T., Donma, W. A. S., S m i t , L., Korablev, V. V., and S a r i s , F. W. (1983). J. Vac. Sci. Technol. B 1, 888. de Kock, A. J. R. (1980). I n Handbook on Semiconductors, Vol 3, M a t e r i a l s , P r o p e r t i e s and P r e p a r a t i o n , S e r i e s ed. by T. S. MOSS, N o r t h - H o l l and Pub1 is h i ng Company, p. 247. Del Sole, R., and Chadi, D. J. (1981). Phys. Rev. B 24, 7431. Demuth, J. E., and S c h e l l - S o r o k i n , A. J. (1984). J. Vac. Sci. Technol. A 2, 808. Duke, C. B., and Ford, W. K. (1981). Surf. Sci. 111, L685. Duke, C. B. , and Ford, W. K. (1982). J. Vac. SOC. Technol 21 , 337. Eastman, D. E. (1Y80a). J . Vac. Sci. Technol. 17, 492. Eastman, D. E., Himpsel, F. J., and vander Veen, J. F. (1980b). S o l i d S t a t e Commun. 35, 345. Eastman, D. E., Heimann, P., Himpsel, F. J., R e i h l , B., Zehner, D. M., and White, C. W. (1981). Phys. Rev. B 24, 3647. and Robertson, W. D. (1971). Surf. Sci. 24, 173. F l o r i o , J. V., G a r u l l i , A., S e r v i d o r i , M., and Vechi, I. (1980). J. Phys. D 13, 199. Gruber, E. E., and M u l l i n s , W. W. (1967). J. Phys. Chem. S o l i d s . 28, 875. Hagstrum, H. D., and Becker, G. E. (1973). Phys. Rev. B 8, 1580. Haneman, D. (1982). Phys. Kev. B 25, 1370. Henzler, M. (1970). Surf. Sci. 19, 159; 22, 12. Himpsel, F. J., Eastman, D. E., Heimann, P., R e i h l , B., White, C. W., and Zehner, D. M. (1981). Phys. Rev. B 24, 1120. H i r a t a , H., and Hoshikawa, K. (1980). Jap. J . Appl. Phys. 19, 1573. Hoh K., Koyama, H., and Uda, K . (1980). Japan. J . Appl. Phys. 19, L375. Lannoo, M., and A l l a n , G. (1982). Surf. Sci. 115, L137. and Sheng, T. T. (1978). Appl. Leamy, H. J., Rozyonyi , G. A., Phys. L e t t . 32, 539. Liu, Y. S., Chang, S. W. , and Bacon, E. (1981). Mat. Res. SOC. Symp. Proc. 1, 117. Louis, E., Flores, F., Guirea, F., and Tejedor, C. (1982). S o l i d S t a t e Commun. 44, 1633. Louis, E., F l o r e s , F., Guirea, F., and Tejedor, C. (1983). J. Phys. C 16, L3Y. McKinley, A., Parke, A. W., Hughes, G. J., F r y a r , J., and W i l l i a m s , R. H. (1980). J. Phys. D.: Appl. Phys. 13, 138. McKinley, A., W i l l i a m s , R. H., Parke, A., and S r i v a s t o v a , G. P. (1981). Vacuum 31, 549. Moison, J. M. , and Bensonssan, M. (1982). J. Vac. Sci Technol 21, 315.

.

.

.

.

7.

469

PULSED LASER IRRADIATED SEMICONDUCTORS

Moison, J . M., and Bensonssan, M. (1983). Surf. Sci. 126, 294. Narayan, J., Young, R. T., and White, C. W. (1978). J. Appl. Phys. 49, 3912. Nishizawa, J., Terasaki, T., and Shimbo, M. (1972). J . Cryst. Growth 13/14, 297. Ihm, J., and Cohen, M. L. (1981) Phys. Rev. Northrup, J . E., L e t t . 47, 1910. and Shklyaev, A. A. (1978). Surf. Sci 82, Olshanetsky, 6. Z., 445. Osakabe, N., Yagi, K., and Honjo, G. (1980). Japan. J. Appl. Phys. 19, L309. Yagui, K., and Honjo, G. (1981). Osakabe, N., T a u i s h i r o , Y., S u r f . Sci 102, 424. Pandey, K. C., and P h i l l i p s , J . C. (1974). Phys. Rev. L e t t . 32, 1433. Ready, 3. F. (1965). J. Appl. Phys. 36, 462. Roberts, R. W. (1963). B r i t . J. Appl. Phys. 14, 537. C u l l i s , A. G., and Webber, H. C. (1980). Appl. Rodway, D. C., Surf. Sci. 6 , 76. S c h l i i t e r , M., Chelikowsky, J . R., Lonie, S. G., and Cohen, M. L. (1975). Phys. Rev. L e t t . 34, 1385; Phys. Rev. B 12, 4200. S m i t , L., de Jony, T., Hoonhout, D., and S a r i s , F. W. (1982). Appl Phys. L e t t . 40, 64. S t r i t z k e r , B., Pospieszczyk, A., and Tagle, J. A. (1981) Phys. Rev. L e t t . 47, 356. van Loenen, E. J . , Iwami, M., and S a r i s , F. W. Tromp, R. M., (1982). Sol i d S t a t e Commun. 44, 971. Wang, J . C. , Wood, R. F., and Pronko, P. P. (1978). Appl Phys. L e t t . 33, 455. Wang, Z. L., Westendorp, J. F. M., and S a r i s , F. W. (1983). Nucl. Instrum. Methods 211, 193. Westendorp, J. F. M., Wang, Zhong-Lie, and S a r i s , F. W. (1982). Mat. Res. SOC. Symp. Proc. 4, 255. White, C. W., C h r i s t i e , W. H., Appleton, B. R., Wilson, S. K., Pronko, P. P., and Magee, C. W. (1978). Appl. Phys. L e t t . 33, 662. Narayan, J., Appleton, B. R., and Wilson, S. R. White, C. W., (1979). J . Appl. Phys. 50, 2967. White, C. W., Wilson, S. R., Appleton, B. R., and Young, F. W., Jr. (1980a). J. Appl Phys. 51, 738. White, C. W., Wilson, S. R., Appleton, 6. R., Young, F. W., Jr., and Narayan, J. (198Ub). I n Laser and E l e c t r o n Beam Processing o f M a t e r i a l s , (C. W. White and P. S. Peercy, eds.) p. 111, Academic Press, New York. Wilson, S. R., Appleton, 6. R., and Narayan, J . White, C. W., ( 1 9 8 0 ~ ) . I n Laser and E l e c t r o n Beam Processing of M a t e r i a l s , (C. W. White and P. S. Peercy, eds.), p. 124, Academic Press, New York. and G i l e s , G. E. (1981a). Phys. Wood, R. F., K i r k p a t r i c k , J . R., Rev. B 23, 5555. Wood, R. F., and G i l e s , G. E. (1981b). Phys. Rev. B 23, 2923.

.

.

.

.

.

470

D. M. ZEHNER

Zehner, D. M., White, C. W., and Ownby, G. W. (1980a). Appl. Phys. L e t t . 36, 56. Zehner, D. M., White, C. W., and Ownby, G. W. (198Ob). Surf. S c i L e t t . 92, L67. Zehner, D. M., White, C. W., and Ownby, ti. W. ( 1 9 8 0 ~ ) . Appl. Phys. L e t t . 37, 456. and Ownby, G. W. (1980d). I n Laser Zehner, D. M., White, C. W., and E l e c t r o n Beam Processiny o f M a t e r i a l s , (C. W. White and P. S. Peercy, eds.), p. 201, Academic Press, New York. Zehner, D. M., Noonan, J. R., Davis, H. L., and White, C. W. (1981a). J . Vac. Sci Techno1 18, 852. Zehner, D. M., Noonan, J. R., Davis, H. L., White, C. W., and Ownby, G. W. (1981b). Mat. Res. SOC. Symp. Proc. 1 , 111. Zehner, D. M., White, C. W., Heimann, P., R e i h l , B., Himpsel, F. J . , and Eastman, D. E. ( 1 9 8 1 ~ ) . Phys. Rev. B 24, 4875. Zehner, D. M., White, C. W., Appleton, B. R., and Ownby, G. W. (1982). Mat. Res. SOC. Symp. Proc. 4 , p. 683. Zehner, 0. M., White, C. W., Wood, R. F., P o l l a k , R. A., Himpsel, F. J., H o l l i n g e r , G., Marks, P. F., and R e i h l , B. (1984a) t o be pub1 ished. Zehner, D. M., White, C. W., and Ownby, G. W. (1984b). To be published.

.

.

.