21 5
Spectra o f Certain P a r t i c u l a r Topological Algebras
CHAPTER
VII
W e c o n s i d e r i n t h i s c h a p t e r t h e s p e c t r a of c e r t a i n p a r t i c u l a r
t o p o l o g i c a l a l g e b r a s , which a r e i m p o r t a n t i n t h e a p p l i c a t i o n s . Thus, a l l t h e a l g e b r a s examined a r e , i n e f f e c t , a l g e b r a s of complex-valued f u n c t i o n s h a v i n g e x t r a supplementary p r o p e r t i e s , w h i l e t h e i r s p e c t r a a r e i n most c a s e s c a n o n i c a l l y i d e n t i f i e d w i t h t h e p a r t i c u l a r domain of d e f i n i t i o n of t h e f u n c t i o n s i n v o l v e d ( c f . , however, t h e a l g e b r a 1 L (G) i n t h e s e q u e l ) .
1 . Spectrum o f t h e algebra
c(X) i s a compact space. I n t h i s re-
W e consider f i r s t t h e case t h a t X
s p e c t , w e r e c a l l t h a t a l l t o p o l o g i c a l s p a c e s c o n s i d e r e d a r e assumed t o be Hausdorff
u n l e s s it i s i n d i c a t e d o t h e r w i s e .
Now, t h e a l g e b r a
C i X ) , f o r any t o p o l o g i c a l s p a c e X , h a s been
c o n s i d e r e d a s a t o p o l o g i c a l a l g e b r a a l r e a d y i n Example I ; 3 . 1 . So i n t h e p a r t i c u l a r case c o n s i d e r e d h e r e i n , t h e "compact-open t o p o l o g y " i n
CIXl c o i n c i d e s w i t h t h e "sup-norm
(i.e.
,
u n i f o r m ) t o p o l o g y " on
X ,
g i v e n by t h e r e l a t i o n
/IfII
(1.1)
f o r every
f
f
c ( X 1 . The a l g e b r a
:=
SuPlf(Z)I T.
e
x
CiX)
I
t h u s t o p o l o g i z e d becomes
a
(complex) commutative Banach algebra w i t h an i d e n t i t y element; we d e n o t e t h i s a l g e b r a by
Cutxi, a s
well.
Now a s a f i r s t s t e p towards t h e c o n c r e t e d e s c r i p t i o n of
mtCzl(X)),
one r e a l i z e s t h a t X i s c a n o n i c a l l y imbedded i n t h e l a t t e r s p a c e , a f a c t t h a t i s a c t u a l l y v a l i d f o r e v e r y c o m p l e t e l y r e g u l a r s p a c e X. So one h a s t h e f o l l o w i n g g e n e r a l r e s u l t .
Lemma 1 . 1 . Let X be a completely regular space and c c ( X ) t h e l o c a l l y mconvex algebra of complex-valued continuous f u n c t i o n s on X, endowed w i t h the compact-open topology ( c f
.
Example I ; 3 . 1 )
.
Thee, by considering t h e weak topolo-
g i c a l dual ic c ( X i I ' o f t h e previous l o c a l l y convex space, t h e following map
216
(1.2)
6 :x
-
-
SPECTRA OF PARTICULAR ALGEBRAS
VII
(ectx)I;
:
6 ( x ) = 6,
d e f i n e s a homeomorphism of X i n t o t h e range of
:f
-
&,if)
:= f ( x )
6 ; i n p a r t i c u l a r , the l a t t e r space i s e s s e n t i a l l y contained i n t h e spectrum of q X l . That i s , 6x = 61x) y i e l d s ( b y ( 1.2) )
a (continuous) character o f q X i , f o r every x E X . Proof.
I t i s c l e a r by
6x :
(1.3)
-
( 1 . 2 ) t h a t , f o r e v e r y x E X , t h e map
c(X)--+
c :f
6x(f) = fix)
d e f i n e s a l i n e a r form on C l X i , which i s c o n t i n u o u s f o r t h e t o p o l o g y o f s i m p l e c o n v e r g e n c e i n X I h e n c e a f o r t i o r i f o r t h e s t r o n g e r compactopen t o p o l o g y ; so t h e r a n g e of 6 i s , i n d e e d , g i v e n b y ( 1 . 2 ) . Furthermore,
t h e map (1.2) i s o n e - t 2 - o n e :
T h i s i s , of c o u r s e , a
c o n s e q u e n c e o f t h e same d e f i n i t i o n of a c o m p l e t e l y r e g u l a r s p a c e , a c c o r d i n g t o which " t h e ( r e a l - v a l u e d ) c o n t i n u o u s f u n c t i o n s on X s e p a r a t e p o i n t s and c l o s e d s u b s e t s o f X " ( c f . , f o r i n s t a n c e , J . R . MUNKRES [l: p. 236, D e f i n i t i o n ] ) . I t i s s t i l l a n e a s y c o n s e q u e n c e o f t h e d e f i n i t i o n o f t h e t o p o l o g y i n ( c c l X ) l L t h a t 6 i s a continuous map a s w e l l . On t h e o t h e r h a n d , i f i n g t o an e l e m e n t 6,eIm(6/
xi-x
i n X:Otherwise,
(6,
i
i i s a n e t i n I m ( 6 I C - i e c l X l ) ; converg-
i n t h e r e l a t i v e t o p o l o g y , w e s h a l l show t h a t
t h e r e would e x i s t an open n e i g h b o r h o o d U o f x
i n X s u c h t h a t t h e n e t ( z i J i e I t o b e e v e n t u a l l y i n C U (i.e., f o r e v e r y i E I , t h e r e would e x i s t j S i , w i t h z E C U ) . B e s i d e s by h y p o t h e s i s f o r X j ( U r y s o n ' s L e m m a ) , t h e r e would e x i s t a n e l e m e n t f E C t X ! , w i t h f i x ) = 1 and f ( y ) = 0, for e v e r y y e U. Hence, b y h y p o t h e s i s for (6, ), one g e t s i l=flx)=6,(fl=l~6 (f)=l+f(xi), so t h a t \ f ( x i ) \ > l ,f o r e v e r y i ? i o, .b xi 7, f o r some i , E I ; so a c o n t r a d i c t i o n t o t h e f a c t t h a t (xi) i s e v e n t u a l l y i n cii and t h e d e f i n i t i o n of f. T h e r e f o r e , t h e inverse map of 6 i s continuous ( o n t h e r a n g e of 6). I n t h i s r e s p e c t , w e s t i l l n o t e t h a t t h e c o n t i n u i t y of 6 - l i n ( 1 . 2 ) i s a c o n s e q u e n c e o f t h e f a c t t h a t t h e topology of X i s e x a c t l y t h e "weak topology" of i t s continuous f u n c t i o n s : C f . "Embedding L e m a Ir ; J . L . KELLBY [ l : p. 1161. (We h a v e an a n a l o g o u s s i t u a t i o n i n case of a S t e i n s p a c e , where now t h e h o l o m o r p h i c f u n c t i o n s p l a y t h e r61e t h a t do h e r e t h e c o n t i n u o u s f u n c t i o n s ; see S e c t i o n 3 b e l o w ) . F i n a l l y , it i s c l e a r by ( 1 . 3 ) t h a t 6 x , x E X , d e f i n e s a complex a l g e b r a morphism o f C i X ) w h i c h , a s n o t e d b e f o r e , i s a l s o c o n t i n u o u s f o r t h e t o p o l o g i c a l a l g e b r a cc(XI; c e r t a i n l y i t i s non-zero, since t h e algebra
c ( X /
by ( 1 . 3 ) ,
c o n t a i n s t h e c o n s t a n t f u n c t i o n s . Hence, we
c o n c l u d e t h a t 6,~722( CclXl) , f o r e v e r y x E E , a n d t h i s c o m p l e t e s t h e p r o o f o f t h e lemma. I T h e map ( 1 . 2 )
i s a l s o c a l l e d t h e Dirac ( o r e l s e e v a l u a t i o n ) map on
217
X; i t s v a l u e a t a p o i n t x e X i s t h u s t h e Dirac ( o r p o i n t (Radon))measur'e a t x ( s e e , f o r i n s t a n c e , N . BOURBAKI [8: Chap. 3 ; p . 481 ) . Thus, a s a consequence of t h e p r e c e d i n g lemma, one o b t a i n s t h e relation
I~(U= UX)=
(1.4)
rnr c c ( x l ) ,
w i t h i n a homeomorphism ( i n t o ) ; i t i s a c t u a l l y an onto homeomorphism s h a l l see, f i r s t f o r X compact ( C o r o l l a r y 1 . 2 )
, as
we
and t h e n f o r e v e r y com-
p l e t e l y r e g u l a r s p a c e , i n g e n e r a l (Theorem 1 . 1 ) . T h a t i s , one r e a l i z e s t h a t t h e p o i n t s of X are t h e only characters of t h e Banach a l g e b r a q
X
)
, with
X compact , o r y e t
cc(X) i n the
rn-convex a l g e b r a
t h e only continuous ones
of t h e l o c a l l y
g e n e r a l c a s e of a c o m p l e t e l y r e g u l a r
s p a c e X. W e f i r s t comment a l i t t l e b i t more on t h e t e r m i n o l o g y a p p l i e d
i n t h e s e q u e l . Thus g i v e n a t o p o l o g i c a l s p a c e X and t h e r e s p e c t i v e algebra
c ( X ) a s above, w e s e t f o r any A
I ~ c=f
(1.5)
E
c ( X ) : f
cX
!A
=
oI
;
y e t by a p p l y i n g t h e n o t a t i o n of I I ; ( 7 . 2 8 ) one h a s =
(1.6)
tf e
m ) z:( f ) =
A1
,
where one d e f i n e s
Zif) = I x e x : f (x) = 0 1
(1.7) t h a t is, the zero-set
I
of f e CiX).
Now, it i s c l e a r t h a t IA i s a (%sided) i d e a l of t h e (commutative)
algebra c ( X ) , f o r every A c a l l y rn-convex a l g e t r a
c X . F u r t h e r m o r e , I A i s a closed subset of t h e loc c i X ) ( s e e Example I ; 3.1 ) ; t h i s i s o b v i o u s l y
t r u e , by ( 1 . 5 ) , f o r t h e t o p o l o g y s of s i m p l e convergence i n X and s o a f o r t i o r i f o r t h e s t r o n g e r t o p o l o g y c of compact convergence i n X . Thus, IA i s a c l o s e d
( 2 - s i d e d ) of
cciX).
Moreover, i f X i s a complete2y regular space
and A a non-empty closed
IA i s a n o n - t r i v i a l closed proper i d e a l of q X 1 . B e of c o u r s e , t h a t I@ = CIX) and I = {O} C C t X ) . However, X
proper s u b s e t of X , t h e n s i d e s , one h a s ,
t h e i m p o r t a n t t h i n g h e r e i s c e r t a i n l y t h e f a c t t h a t , i n case of a comp l e t e l y r e g u l a r s p a c e , t h e c o n v e r s e of t h e l a s t s t a t e m e n t i s a c t u a l l y t r u e ( c f . Lemma 1 . 5 ) . W e f i r s t prove i t f o r compact s p a c e s ( C o r o l l a r y 1.1).
Thus, w e s t a r t w i t h t h e f o l l o w i n g a u x i l i a r y lemmas. Lemma 1.2.
Let X be a compact space and I an idea2 of t h e algebra e(X). Be-
s i d e s , assume t h a t I "separates p o i n t s of X " ( i . e . , we assume that, f o r every p o i n t x E X , t h e r e e x i s t s an element f E I such t h a t f (xi # 0). Then, I =
c(Xl .
218
VII
SPECTRA OF
PARTICULAR ALGEBRAS
Proof. By t h e c o n t i n u i t y o f t h e f u n c t i o n f E I and t h e h y p o t h e s i s
f o r t h e e l e m e n t x f X , one g e t s a n open n e i g h b o r h o o d U, of x s u c h t h a t f n e v e r v a n i s h e s on L i . Hence, t h e r e e x i s t s b y h y p o t h e s i s f i n i t e many s u c h f u n c t i o n s , s a y fl,... f n , Of I , c o r r e s p o n d i n g t o t h e f i n i t e o p e n c o v e r i n g of X d e f i n e d by t h e open c o v e r i n g U-, x e X . So t h e f u n c t i o n (1.a)
which c e r t a i n l y b e l o n g s t o I , h a s t h e p r o p e r t y t h a t gtx)
(1.9)
and h e n c e i f
h=-
1
0, f o r e v e r y x E X ,
e e ( X i , one g e t s h . g = l e I , i.e., I = C t X ) . I
9
Remark 1.1.A s f o l l o w s from t h e p r e c e d i n g p r o o f , u n d e r t h e h y p o t h e s i s of t h e above Lemma 1 . 2 , t h e r e e x i s t s a function g i n I E ( X i , g i v e n by ( 1 . 8 ) , which never v a n i s h e s on X . ( S o t h e r e e x i s t s t h e i n v e r s e f u n c t i o n of g and 1 = g . L E I). I t i s t h i s a u x i l i a r y re9 s u l t , d e r i v e d from t h e p r e c e d i n g p r o o f , which w i l l c o n s t a n t l y b e a p p l i e d i n t h e s e q u e l . I n t h i s re s p e c t , i t i s o f c o u r s e e q u i v a l e n t w i t h Lemma 1 . 2 t o say t h a t :
e
I i s a proper i d e a l of C t X ) i f , and o n l y if, t h e r e e x i s t s a p o i n t x f X , w i t h f ( x i = 0 , f o r every f E I.
Y e t a p p l y i n g t h e n o t a t i o n of ( 1 . 1 5 ) below, t h e previous statement is equivalent with t h e r e l a t i o n
I GI, f o r some x e X . ( I n t h i s c o n c e r n , see a l s o t h e n e x t Remark 1 . 2 )
.
Lemma 1.3. Let X be a compact space and I an i d e a l of t h e algebra e t X ) . Bes i d e s , consider the s e t (1.10)
and an element @ of C (x), w i t h t h e p r o p e r t y t h a t t h e r e e x i s t s an open neighborhood U of A in X on which @ v a n i s h e s ; t h a t i s , assume t h a t
(1.11)
A G U G Z(@).
Then, @ E I .
Proof. By ( 1 . 1 1 ) and t h e d e f i n i t i o n of A
,
one v e r i f i e s € o r t h e
compact s p a c e K a C l i c X and t h e " r e s t r i c t i o n o f t h e i d e a l I" t o K
(de-
IIK) t h a t t h e c o n d i t i o n s of t h e p r e v i o u s Lemma 1 . 2 a r e s a t i s f i e d . T h e r e f o r e , t h e r e e x i s t s a f u n c t i o n g e C ( K ) ( = I ) which n e v e r IK v a n i s h e s on K (see a l s o Remark 1.1 ) Thus a p p l y i n g l ' i e t z e ' s Extension n o t e d by
.
Theorem ( c f . , f o r i n s t a n c e , J . DUGUNDJI [1: p. 1 4 9 , Theorem 5.11) one ob1 t a i n s a n e l e m e n t h e C t X l e x t e n d i n g - e C I K ) s u c h t h a t one h a s ( s e e g
1.
219
SPECTRUM OF c ( X )
also ( 1 . 1 1 ) ) (1.12)
(we actually consider here the extension of g to the hole of X ) , and this finishes the proof. I Lemma 1.4. Let X be a compact space and I an i d e a l of t h e algebra
CtX)
.
Then, one g e t s t h e r e l a t i o n
(1.13)
" I A ,
where A C X is given by ( 2 . 1 0 ) and
7 denotes
t h e closure of I in the Banach alge-
bra e i x ) . Proof. Let @ $,
8 IA
, with
@
# 0 , and
0. Then, by hypothesis for
E
the sets
(1.14)
M = { z 8 X :
I@(zII5 E } and N = { r e X : ( @ ( rE)] ( >
define two non-empty closed subsets of X , with M n N = 0. Hence, since X is, in particular a normal space, there exists ( Uryson's L e m ) an element g E ClX),with 0 < g 6 1 , and in such a manner that M E Z ( g l and
(1.15)
g = l
on N .
Thus, by definition of M and (1.15), one obtains set u = C r e X : (qdrllc 1
$ g = 0 on the open
-$-
hence, in particular, A C U E Ziggl.
Therefore (Lemma 1.3) , $9 €I, so that for any and (1.15))
/ 1 ~ - s ~= /ll@(1-9)ll /
E
> 0 , one gets (cf. (1.14)
< E r
i.e., $E?, and hence I A C I . Moreover, I E I A (cf. (1.6) and (l.lO)), S O that since I A is a closed ideal of the preceding yields already the proof of the asserti0n.I
e(X),
Thus, the previous discussion provides already the following basic result. That is, we have
Corollary 1 . 1 . Let X be a compact space and C (XI t h e respective Banach a l gebra of comptex-vatued continuous functions on X i n t h e uniform (sup-norm) topology in X. Furthermore, l e t F t X ) be the s e t of a l l non-empty closed and proper subs e t s of X, and
J ( C t x ) ) t h a t of non-trivial ctosed and proper i d e a l s of t h e Ba-
nach algebra C i X l . Then, the map
(1.16)
8: F(X)-
J i C ( X ) ) : A -eiAl:=
'A '
220
VII
SPECTRA OF PARTICULAR ALGEBRAS
&ere IA i s given by ( 1 . 5 ) , y i e l d s a b i j e c t i o n between t h e r e s p e c t i v e s e t s . t h e range o f 8 i s J I
Proof. W e h a v e a l r e a d y n o t i c e d t h a t
f o r a completely regular space X )
. NOW,
,B
if A
CIX))(even
a r e any two members of F ( X )
with A # F , then t h e r e e x i s t s ( X is a f o r t i o r i a completely regular
C I X l i n s u c h a way t h a t o n e h a s , f o r i n s t a n c e , A G Z I f ) and f ( x ) = l , f o r some X E B ~ C A T . h u s , i n any c a s e , o n e o b t a i n s I A # IB, t h a t i s t h e map 8 i s o n e - t o - o n e . F u r t h e r m o r e , i f I e l J ( C ( X ) ) and I , i s t h e c o r r e s p o n d i n g i d e a l of C i X ) d e f i n e d by ( 1 . 5 ) and ( l . l O ) , s p a c e ) a n e l e m e n t f~
H
one h a s
Lemma I . 4 ) e(A)=I =I=i, A
(1.17)
and t h i s f i n i s h e s t h e p r o o f . 1
I n p a r t i c u l a r , w e now g e t t h e f o l l o w i n g .
Theorem 1.1. Suppose we have t h e c o n t e x t o f t h e preceding Corollary 1.1. Then, t h e r e e x i s t s a o n e - t o - o n e and onto CGrrespondenCe between t h e s e t o f a l L maximal i d e a l s of t h e Banach algebra C I X ) and t h e p o i n t s o f X ( d e r i v e d from t h e res p e c t i v e r e s t r i c t i o n of t h e above map ( 1 . 1 6 ) ) .
I I f I i s a maximal i d e a l of C I X l , t h e n (Lemma 1 . 4 ) , iA= i s g i v e n b y ( 1 . 1 0 ) ( e v e r y maximal i d e a l of a & - a l g e b r a w i t h a n i d e n t i t y e l e m e n t and h e n c e of t h e Banach a l g e b r a C l X ) , i s c l o s e d ; Proof.
where A E X
c f . Theorem I I ; 6 . 1 ) . N o w I I = I=~I ~ . (~s o ) since
e
f o r e v e r y x e A , one g e t s
Furthermore, f o r any x
€
I A = II x } I h e n c e
one g e t s A = { z > a s w e l l ) .
i s 1-1,
the set
X
I =I ={fEetxi:frxi=oi x tx}
(1.18)
d e f i n e s a maximal i d e a l of C i X l : I n d e e d s u p p o s e , o t h e r w i s e , t h a t I i s a maximal i d e a l of C i X ) w i t h I GI; t h e n
by t h e p r e c e d i n g o n e h a s
5
i G I = I X
f o r some p o i n t
Y
Y E X . Now, t h e l a s t r e l a t i o n e n t a i l s t h a t I GI x Ix,yl
Ix
'
s o t h a t one h a s 8 1 1 d ) = I, = 'i'hat
is (Corollary 1.1)
, x=y,
Yl =
e(b, ~ 1 ) .
a n d hence I = I which i s t h e a s s e r t i o n , X
and t h i s c o m p l e t e s t h e p r o o f of t h e t h e o r e m . 1 The f o l l o w i n g i s now a d i r e c t a p p l i c a t i o n o f Lemma 1.1 and t h e p r e v i o u s Theorem 1 . 1 , i n c o n j u n c t i o n w i t h C o r o l l a r y 11; 7 . 3 . T h u s I w e have.
221
Corollary 1 . 2 . L e t X be a compact space and C(X/ t h e r e s p e c t i v e Banach a l gebra, as above. Then, concerning t h e s p e c t r m of C(X/,one has t h e r e l a t i o n
m(e(x)) = X
(1.19)
,
w i t h i n a homeomorphism o f t h e r e s p e c t i v e topological spaces ( g i v e n by
(
.I
1.2) )
.-
Schol i u m 1 . I S i n c e e v e r y maximal i d e a l of a Banach a l g e b r a ( a n d y e t , more g e n e r a l l y , of a Q-alg e b r a ) w i t h a n i d e n t i t y e l e m e n t i s c l o s e d (Theorem 11; 6 . 1 ) , i t i s a c o n s e q u e n c e of t h e p r e v i o u s r e l a t i o n ( 1 . 1 9 ) t h a t t h e topology of a compact space X i s compZeteZy determined by t h e algebra ( a c t u a l l y r i n g ) structure of i t s r e s p e c t i v e “function algebra” C I X l ; t h i s e s s e n t i a l l y amounts t o t h e c l a s s i c a l Banach-Stone Pheorern, a c c o r d i n g t o which two compact spaces are homeomorp h i c if, and o n l y i f , t h e i r r e s p e c t i v e f u n c t i o n algebras are isomorphic ( a s r i n g s ) . Now, w i t h i n t h e p r e c e d i n g framework, t h e l a s t r e s u l t t u r n s o u t t o be t h e b e s t p o s s i b l e ; namely, t h e l o c a l l y m-convex algebra C,(Xl, w i t h X a c o m p l e t e l y r e g u l a r s p a c e , i s a &-algebra i f , and only i f , X i s a compact space ( c f . , f o r i n s t a n c e , W . DIETRICH, J r . [3: p. 58, Theorem 2.1.5, i)])
.
T h u s , w e come now t o t h e p r o m i s e d e x t e n s i o n of the p r e v i o u s C o r o l l a r y 1 . 2 t o t h e case one h a s a n a r b i t r a r y compZeteZy regular space
x; b u t
w e f i r s t g e t a s i m i l a r e x t e n s i o n of C o r o l l a r y 1 . 1 . T h a t i s , w e h a v e .
Lemma 1.5. Let X be a completely regular space and C (Xl t h e l o c a l l y m-conv e x algebra of complex-valued continuous f u n c t i o n s on X i n t h e compact-open topology. Then, there e x i s t s a one-to-one and onto correspondence between t h e s e t o f a l l non-empty closed and proper s u b s e t s o f X and t h a t o f n o n - t r i v i a l closed and proper i d e a l s o f c c I X 1 , g i v e n by t h e r e s p e c t i v e map t o (1.161. Proof. W e h a v e a l r e a d y remarked i n t h e p r o o f of C o r o l l a r y 1 . 1
t h a t t h e map 0 , g i v e n by ( 1 . 1 6 ) , d e f i n e s a n i n j e c t i o n f o r e v e r y comp l e t e l y r e g u l a r s p a c e X ; so it r e m a i n s a c t u a l l y t o p r o v e t h a t ‘8 i s an
onto map: Thus, a p p l y i n g t h e n o t a t i o n of C o r o l l a r y I . 1 , w e
must p r o v e t h a t
i s of t h e form IA , where t h e s e t A -C X i s g i v e n by ( 1 . l o ) . Moreover, s i n c e w e a l w a y s h a v e t h a t I C IA, we are a c t u a l l y led t o prove t h e every l e J l e c ( X I I relation
I r?=1 A
(1.20)
( t h a t i s , t h e r e s p e c t i v e r e l a t i o n t o ( 1 . 1 3 ) ) . Thus, by d e f i n i t i o n o f t h e topology i n
cc(Xl
,
i f I$e IA one h a s t o p r o v e t h a t , f o r any
and K a compact s u b s e t of X I t h e f o l l o w i n g r e l a t i o n i s v a l i d (1.21)
p K ( b- h / <
E
,
E
>0
222
VII
f o r some h e r , where
SPECTRA OF PARTICULAR ALGEBRAS
i s d e f i n e d by I ; ( 3 . 1 3 ) :
p,
t o t h e compact set
Thus, r e s t r i c t i n g t h e g i v e n i d e a l I e J ( C c ( X ) I K : c X ( c o n s i d e r e d by ( 1 . 2 1 ) ) , i . e . ,
transpose
t a k i n g t h e image of I u n d e r
j, = tiK o f t h e c a n o n i c a l i n j e c t i o n
set
fl,
j,(~) = { j K ( f ): f E I 3 = c
(1.22)
S
i, : KS X, one g e t s t h e
:f e
CIKI.
which, i n f a c t , i s an i d e a l o f the algebra
the
r1 g e C ( K l , there
Indeed, i f
c ( X l e x t e n d i n g g (“every compact K C X is c ( X i embedded”; c f . L . GILLMAN-M. JERISON [l: p. 43, (c)] , o r y e t S. WARNER [5: p.
e x i s t s a function
E
2661); so one o b t a i n s
K if) = jK (S)-j K (f) = j,(g.f) E jK(I) , f o r e v e r y f 8 I ( t h e “ r e s t r i c t i o n map“ j, i s , of c o u r s e , an a l g e b r a g.j
morphism), and t h i s p r o v e s t h e above a s s e r t i o n . NOW,
C(K),
a p p l y i n g Lemma 1.4 t o t h e Banach s l g e b r a
(cf. (1.13))
-
,
jK(I)= IA,
(1.23)
one g e t s
where one d e f i n e s
(1.24) F u r t h e r m o r e , one h a s
n z(j,(j-)~
f €1
=
n
(zifi
n
KI = (
f E I
n
z(f)) n
I(
= A nK
,
f E I
so t h a t one c o n c l u d e s by ( 1 . 2 4 ) t h a t ___
j (I) = I A n K K
(1.25) Therefore, s i n c e
4 € I A‘ I A n K
.
t h e r e e x i s t s by ( 1 . 2 5 )
,
f o r any g i v e n E > O
( a s i n ( l . 2 1 ) ) l an e l e m e n t g e j K ( I ) , t h a t i s , g - j K I h ) , with h E I , i n such
a way t h a t
Ilm-4,
= PK(Q-g) = p , ( @ - h h
So t h e d e s i r e d r e l a t i o n ( 1 . 2 1 )
:
i s f i n a l l y p r o v e d , and t h i s c o m p l e t e s
t h e proof of t h e 1emma.I Remark 1.2.We c a n a c t u a l l y e x t e n d t h e map (1.16) t o a l l c l o s e d s u b s e t s of ( t h e c o m p l e t e l y r e g u l a r s p a c e ) X and c l o s e d i d e a l s of by s e t t i n g (1.26)
I@=
CIx)
c,(XI,
and
I~ =
to}.
Thus, one o b t a i n s , w i t h i n t h e c o n t e x t of t h e precedi n g Lemma 1 . 5 , a one-to-one c o r r e s p o n d e n c e of t h e s e t of a l l c l o s e d s u b s e t s of X o n t o t h e s e t of c l o s e d i d e a l s of C J X I ( a s o - c a l l e d “GaZois correspondence” 1 .
223
Now, i n a n a l o g y w i t h Theorem 1 . 1 ,
one g e t s , i n p a r t i c u l a r , t h e
following.
C o r o l l a r y 1.3. Assume t h a t ~3 have t h e c o n t e x t of t h e preceding Lemma 1 . 5 . and onto correspondence between t h e s e t Gf c l o s e d
Then, t h e r e e x i s t s a one-to-one
maximal i d e a l s of ( t h e l o c a l l y m-convex a l g e b r a ) q X l and t h e p o i n t s o f X , g i v e n by t h e r e l a t i o n
f o r every x E X .
Proof.
I t i s a consequence of t h e p r e v i o u s Lemma 1 . 5 t h a t t h e
map (1.27) i s one-to-one,
where
I, i s a c l o s e d maximal i d e a l of
ec(Xi.
For by (1.27) one h a s t h e r e l a t i o n
I3: = kerf&,)
(1.28)
,
where S , E ~ ( ~ ~ ( X (, c) f . (1.4)) i s g i v e n by (1.3)(.,-c-e also Lemma 11:7.2). O n t h e o t h e r hand,
if
I
€
J ( c c ( X i ) i s , i n p a r t i c u l a r , a ( c l o s e d ) maxi-
m a l i d e a l of e c f X i , t h e n by Lemma 1.5 one h a s I =IA , f o r some ( u n i q u e l y defined) A
€
F I X ) . Thus, f o r e v e r y
A , one h a s by h y p o t h e s i s f o r I
L€
the relation 1=1 = I A
x'
and t h i s p r o v e s t h e a s s e r t i 0 n . I Thus, w e now g e t t h e f o l l o w i n g fundamental r e s u l t , a n a p p l i c a t i o n of t h e p r e v i o u s C o r o l l a r y 1.3, i n c o n j u n c t i o n w i t h Lemma 1 . 1 and C o r o l l a r y II;7.2 r e f e r r e d t o t h e l o c a l l y m-convex a l g e b r a
c (Xl. Name-
l y , we h a v e . Theorem 1.2. L e t X be a completely r e g u l a r space and
c,(X)t h e
l o c a l l y m-
convex algebra of complex-valued continuous f u n c t i o n s on X i n t h e compact-open t o pology. Then, t h e spectrum of
(1.29)
eJX)i s g i v e n by
the relation
m(ccixi)= X ,
w i t h i n a homeomorphism of t h e r e s p e c t i v e spaces ( d e f i n e d by t h e map ( 1 . 2 ) )
.
A s a m a t t e r of f a c t , one c o n c l u d e s i n p a r t i c u l a r t h a t : The map 6 ( c f . (1.2)) i s a homeomorphism i f , and only if, t h e t o p o l o g i c a l space X i s completely r e g u l a r .
(The "holomorphic analogon" of t h e l a s t s t a t e m e n t is g i v e n by Theorem 2.1 b e l o w ) . Now, by c o n s i d e r i n g t h e G e l ' f a n d map of t h e a l g e b r a has
(1.30)
?(xi =
xff)
= Axif) = f(x)
,
Cc(Xi,one
224
VII SPECTRA OF PARTICULAR ALGEBRAS
f o r any f E q ous c h a r a c t e r by (1.29)
.
X
x
) a n d x e ~ ( c c ( X i l w; e h a v e i d e n t i f i e d h e r e a c o n t i n u -
of
CJX) w i t h
the c o r r e s p o n d i n g p o i n t x e X
Thus, t h e r e s p e c t i v e Gel'fand map of t h e algebra
-
defined
C J X i i s the
.
i d e n t i t y map, and t h e r e f o r e continuous. Namely, w e h a v e (see a l s o V I ; ( 1 1 ) )
g : cctx)
(1.31)
c p.
ecim(c c i X ) i i
So i f X i s , i n p a r t i c u l a r , a locaZZy compact space
then consider-
i n g X I v i a ( 1 . 2 9 ) , as t h e s p e c t r u m of t h e a l g e b r a C c I X I , o n e o b t a i n s
by t h e p r e v i o u s c o n c l u s i o n , c o n c e r n i n g ( 1 . 3 1 ) , t h a t
X i s l o c a l l y equi-
continuous ( c f . C o r o l l a r y V I ; 1 . 3 . See a l s o t h e n e x t c h a p t e r , Example 1.1). I n t h i s r e s p e c t , w e f i n a l l y n o t e t h a t it may happen t h a t e v e r y c h a r a c t e r o f a n a l g e b r a o f t h e form q
X
I
t o b e g i v e n by ( t h e r e -
s p e c t i v e " e v a l u a t i o n map" a t ) some ( u n i q u e l y d e f i n e d ) p o i n t of X
,
w i t h o u t X t o be n e c e s s a r i l y a compact s p a c e . So t h i s i s , f o r i n s t a n c e , t h e case i f X i s a c o m p l e t e l y r e g u l a r Lindellif space ( c f . E . A . MICHAEL [l: p. 54, P r o p o s i t i o n 12.51
,
as w e l l as S e c t i o n 3 i n t h e s e q u e l ) .
cm(X)
2. Spectrum o f t h e algebra
w e consider next t h e al-
A s t h e t i t l e of t h i s s e c t i o n i n d i c a t e s ,
gebra of
( c o m p l e x - v a l u e d ) e m - f u n c t i o n s on a g i v e n ( f i n i t e d i m e n s i o n a l ) e " - m a n i f o l d X. Thus, w e h a v e s e e n a l r e a d y i n C h a p t e r IV;4. ( 2 ) t h a t b y assuming X t o b e s e c o n d c o u n t a b l e ( c f . IV; ( 4 . 1 9 ) ) c"iXi m u t a t i v e ) Frgchet l o c a l l y m-convex algebra NOW,
i s a (com-
(with an i d e n t i t y element)
.
t h e canonical i n j e c t i o n
i : C"(x)--Cctxi
(2.1)
i s a continuous map
by t h e same d e f i n i t i o n of t h e t o p o l o g i e s o f t h e t o -
p o l o g i c a l a l g e b r a s i n v o l v e d ; namely t h e S c h w a r t z t o p o l o g y i n c " l U l
,
w i t h U open i n X I i s by i t s d e f i n i t i o n s t r o n g e r t h a n t h e compact-open
-
t o p o l o g y i n C t U i (see I V ; ( 4 . 1 3 ) 1 . So o n e g e t s by ( 1 . 2 ) a
continuous map
6 :X
(2.2)
(canonical)
(c"cX),;
which i s g i v e n by t h e a n a l o g o u s r e l a t i o n t o ( 1 . 3 ) ; i . e . ,
by " e v a l u a t -
i n g " a t any g i v e n p o i n t x E X ( i n f a c t , b y a n o b v i o u s a b u s e o f n o t a t i o n , w e h a v e i d e n t i f i e d t h e a b o v e map 6 w i t h t h e map ti o 6 1 . F u r t h e r m o r e , i t i s a l s o c l e a r t h a t t h e r a n g e o f 6 i s c o n t a i n e d i n t h e s p e c t r u m of C m ( X / , i.e.
(2.3)
,
one h a s
rm (6)
=_
6(;:) G r n 1 e m t x ) )
.
On t h e o t h e r h a n d , s i n c e X i s l o c a l l y compact ( a s b e i n g " l o c a l -
2.
c"(X)
SPECTRUM OF
225
ly e u c l i d e a n " ) , i f it i s , m o r e o v e r , s e c o n d c o u n t a b l e t h e n X i s a l s o a paracompact s p a c e ; t h i s w i l l b e q u i t e f u n d a m e n t a l f o r t h e s e q u e l ( c f . ,
f o r i n s t a n c e , S. STERNBERG[I: p. 55,Lemma 4 . 1 1 f o r a p r o o f of t h e l a s t a s s e r t i o n , as w e l l a s f o r t h e p e r t i n e n t d e f i n i t i o n s of t h e terms u c e d ) . T h u s , w i t h i n t h e p r e c e d i n g f rarnework, o n e c o n c l u d e s t h a t e m ( X ) separates t h e p o i n t s of X : I n
f a c t , t h i s is a
Cw-analogon of Uryson's Lem"em-particion of
ma", which i n t u r n i s d e r i v e d from t h e e x i s t e n c e of a unity" i n e v e r y paracompact
for every p o i n t x
C " - d i f f e r e n t i a l manifold ( i b i d . )
X , and every neighborhood
e m ( X ) , w i t h O S f 6 1 , f(x) = I , and f = O l
Lemma I ] ,
.
Thus,
U of 2, t h e r e e x i s t s a f u n c t i o n f
E
( c f . S . KOBAYASHI-K. NOMIZU[l:p.272,
cu
a n d / o r Y . MATSUSSHIMA [1:p. 69, Lemma I ] f o r a n o t h e r v e r s i o n
more a k i n t o t h e p r e v i o u s a n a l o g o n ) . T h e r e f o r e , t h e above map 6 i s a continuous i n j e c t i o n ; a s a m a t t e r of f a c t , i t i s e s s e n t i a l l y a homeomorphism o n t o i t s r a n g e , w i t h r e s p e c t to t h e r e l a t i v e t o p o l o g y . T h a t i s , one h a s t h e f o l l o w i n g Lemma 2.1.
emanalogon
of Lemma 1 . 1 .
L e t X be an n-dimensional
e m - d i f f e r e n t i a Z manifold whose under-
Lying topoLogica1 space X i s (Hausdorff connected a n d ) second countable (and hence paracompact). Moreover, l e t e m ( X ) be t h e Fre'chet locally m-convex algebra of complex-vaZued
C--functions
on X i n t h e r e s p e c t i v e C"-topoZogy
( C h a p t e r N . 4 . ( 2 )1.
Then, t h e corresponding Dirac ( i . e . , e v a l u a t i o n ) map
( g i v e n by ( 1 . 3 ) ) d e f i n e s a homeomorphism between t h e r e s p e c t i v e t G p h g i c a i s, *:;es i n j v c h a m y ;hut its rai?gc fo b e contained i n t h e spectrum of e m ( X / . Proof. I t s u f f i c e s t o p r o v e , a c c o r d i n g t o t h e p r e v i o u s d i s c u s s i o n ,
t h a t t h e i n v e r s e map of 6 i s c o n t i n u o u s when 31x1 c a r r i e s t h e r e l a t i v e t o p o l o g y from ( c " ( X ) I i ; e q u i v a l e n t l y , w e h a v e t o p r o v e t h a t , f o r any point x e X
and a n e i g h b o r h o o d V o f
Ii
n X , t h e r e e x i s t s a neighbor-
h o o d , s a y h i , of x i n t h e r a n g e of 6 , a s a b o v e , which i s c o n t a i n e d i n V . T h a t i s , W must b e d e t e r m i n e d b y ;he ( i n i t i a l ) topology d e f i n e d on X by
t h e e m - f u n c t i o n s . Now, t h i s i s a s s u r e d by t h e f o l l o w i n g : Lemma 1. (Whitney's Imbedding Theorem). Euery C m - p a r a compact manifold i s diffeomorphic t o a c l o s e d submunifoZd of t h e 12n+li-dimensionul a f i n e space B 2 ' ' + I . ( C f . , f o r i n s t a n c e , S. STERNBERG [ I : p. 6 3 , Theorem 4.4:).
Thus, i f V i s a n y n e i g h b o r h o o d of a p o i n t x e X , t h e r e e x i s t s a a l o c a l c h a r t , s a y ( U , $ ) , of t h e m a n i f o l d X a t x , w i t h U C V . Hence, i f )': : X - - t h ( X ) = Y C IR2'+I i s t h e d i f f e o m o r p h i s m ( embedding) of X , p r o v i d e d by t h e p r e v i o u s L e m m a 1
,
t h e n t h e r e e x i s t s a l o c a l c h a r t (H, x) o f
VII SPECTRA OF PARTICULAR ALGEBRAS
226
h ( x ) (which w e may t a k e , of c o u r s e , t o b e t h e o r i g i n of
a t the point BZn+I)
,
such t h a t one h a s
B n h l X i C h(Ui C k i V ) . T ~ u s ,t h e s e t
W = h-I(Bnhtxi) = C x e x
(2.5)
: j u i o 7 z I < & ; i =I,.
. . ,2n+1 I
i s t h e d e s i r e d neighborhood of x , a s above; h e r e t h e l o c a l c h a r t l B , x ) ia
I R ~ ~c a+n ~b e t h u s c h o s e n ( b y s u i t a b l y r e s t r i c t i n g
E
> O ) so a s t o
b e an a p p r o p r i a t e open b a l l a t h l z i = O d e f i n e d by t h e r e s p e c t i v e c o o r d i n a t e f u n c t i o n s (ui
of
)
Thus, t h e c m - f u n c t i o n s kio h
€
ewlXi,
I < i < 2 n + l , w i l l b e t h e n t h o s e d e f i n i n g W i n ( 2 . 5 ) , and t h i s c o m p l e t e s t h e proof. I The p r e v i o u s lemma f o r m u l a t e d i n a less t e c h n i c a l manner s a y s , t h e r e f o r e , t h a t t h e topology o f a
em( p a r a c o m p a c t ) manifold
i s determined
by ( i t i s , namely, t h e i n i t i a l topoZogy o f ) its e m - f u n c t i a n s , v i a t h e r e s p e c t i v e D i r a c map 6 . W e h a v e a l r e a d y e n c o u n t e r e d t h e a n a l o g o u s f a c t i n
case of t h e a l g e b r a
q
X
l (Lemma 7 - 1 ) ; y e t t h i s w i l l be also t h e case,
as w e s h a l l see i n t h e n e x t s e c t i o n , f o r a n i m p o r t a n t c l a s s of c o m plex a n a l y t i c manifolds ( i n f a c t , s p a c e s ) , concerning the respective t o p o l o g i c a l a l g e b r a s of h o l o m o r p h i c f u n c t i o n s .
Now suppose, i n p a r t i c u l a r , t h a t X i s a t i a l ) manifold
t h a t i n t h e p r o o f of Lemma 1 . 2 ,
niz's m l e
compact
Cm-(differen-
of d i m e n s i o n n. Thus, a p p l y i n g a n a n a l o g o u s argument t o o n e g e t s ( a s a n a p p l i c a t i o n of
Leib-
on a d i f f e r e n t i a l o p e r a t o r a p p l i e d on t h e p r o d u c t of two
Cm-functions; cf.
IV; ( 4 . 1 4 ) ) t h a t ,
an i d e a l I G C " i X ) is proper i f , and
o n l y i f , it has a t l e a s t one z e r o i n X ; namely, t h e r e i s a t l e a s t one p o i n t o f X a t which a l l f u n c t i o n s of I v a n i s h . A c c o r d i n g l y , one o b t a i n s t h a t
every mazimal i d e a l o f C " l X i i s o f t h e form I,,
f o r some ( u n i q u e l y d e f i n e d )
p o i n t x e X ; hence, it is c l o s e d . Of c o u r s e , t h i s e n t a i l s e v e r y character of C " t X l
in particular that
is continuous ( s e e a l s o C o r o l l a r y I I ; 7 . 3 i n con-
n e c t i o n w i t h Scholium I I ; 7 . 1 ) . I n t h i s c o n c e r n , w e f u r t h e r r e m a r k t h a t one c o u l d a l s o o b t a i n
s i m i l a r r e s u l t s t o t h e p r e v i o u s Lemmas 1 . 3 a n d 1 . 4 , h e n c e t o C o r o l l a r y 1.1 a s w e l l .
So one h a s , i n d e e d , t h e f o l l o w i n g .
Lemma 2 . L e t X be a paracompact C " - m a n i f o l d and A a c l o s e d s u b s e t o f X . Then, every e w - f u n c t i o n on A can be extended t o a C w - f u n c t i o n on X. ( S e e , f o r i n s t a n c e , S. KOBAYASHI-K. NOMIZU [I: p. 273, Theorem 2 1 ) . Thus, t h e p r e v i o u s d i s c u s s i o n p r o v i d e s a l r e a d y t h e p r o o f of t h e
2.
227
SPECTRUM OF e - ( X )
following.
Theorem 2.1. Let X be an n-dimensional campact
c"(X)
e m - m a n i f o l d and
t h e r e s p e c t i v e Fre'chet l o c a l l y m-convex algebra a s i n Lemma 2 . 1 . Then, concerning t h e s p e c t m o f t h t s algebra, one has t h e r e l a t i o n
m( c v ) )= X ,
(2.6)
w i t h i n a homeomorphism o f t h e r e s p e c t i v e topological spaces ( g i v e n by ( 2 . 4 ) )
.
Furthermore, t h e l a s t r e l a t i o n y i e l d s , i n e f f e c t , t h e s e t o f a l l characters
em(xl.
of t h e algebra
On t h e o t h e r h a n d , t h e p r e c e d i n g p r o v i d e s , i n f a c t ,
a character-
i z a t i o n o f X i n terms o f e m i X j . T h a t i s , o n e h a s t h e f o l l o w i n g lemma, a "
C"-analogon"
of Banach-Stone Theorem ( c f
.
Scholium 1 . 1 )
.
Lemma 2 . 2 . Suppose t h a t t h e Cm-manifoZds X , Y s a t i s f y t h e c o n d i t i o n s o f
t h e previous Theorem 2 . 1 . Then, one has t h e r e l a t i o n
ew
(2.7)
= e"(yj
,
w i t h i n a t o p o l o g i c a l algebra isomorphism, i f , and only if, t h e r e l a t i o n
x =Y
(2.8)
holds t r u e , w i t h i n a diffeomorphism. Proof.
I t i s c l e a r , of c o u r s e , t h a t w e h a v e o n l y t o p r o v e t h e
" o n l y i f " p a r t o f t h e a s s e r t i o n . So i f j d e n o t e s t h e isomorphism i n (2.7)'
t h e n o n e g e t s by ( 2 . 6 )
respective manifolds X,Y
a homeomorphism, s a y i : X - Y ,
of
the
i n s u c h a way t h a t o n e h a s
[j-'(g)](x) = g(i(x!) = ( g o i ) ( x i ,
(2.9) f o r any x e X
a n d g E e m f Y ) . Thus one c o n c l u d e s , i n d e e d , by ( 2 . 9 ) t h e
re l a t i o n g oiE
(2.10)
for every g
E
em(Y)
which
C"(X),
c e r t a i n l y i m p l i e s t h a t i i s a e"-map
of X
c n t o Y , a n d t h e same i s s i m i l a r l y p r o v e d f o r t h e i n v e r s e map of i ; i . e . , the assertion. I I n t h i s r e s p e c t , w e s t i l l n o t e t h a t , i n view of t h e l a s t s t a t e m e n t o f Theorem 2 . 1 , i t s u f f i c e s , i n e f f e c t , t h e isomorphism i n ( 2 . 7 ) t o be only an algebraic one i n order (2.8) t o hold t r u e .
Scholium 2.1.-
The argument a p p l i e d i n t h e p r e c e d i n g c a n b e ex-
t e n d e d , i n f a c t , t o t h e g e n e r a l c a s e of n o t n e c e s s a r i l y compact manif o l d s , by means, however, o f a more i n v o l v e d t e c h n i q u e from t h e p a r t
228
VII SPECTRA OF PARTICULAR ALGEBRAS
of D i f f e r e n t i a l A n a l y s i s ( o r T o p o l o g y ) . Thus, one c a n o b t a i n t h e analogous r e s u l t t o t h e above Theorem 2 . 1
( u s i n g an a p p r o p r i a t e c h a r a c -
t e r i z a t i o n of " l o c a l sets'' of i d e a l s i n e m ( X ) : " S p e c t r a l Theorem" ; H . WHITNEY [l]. Cf. a l s o B . MALGRAIANGE [l: p. 2 5 , C o r o l l a r y 1 . 7 1 a n d / o r J . C . TOUGERON [l: p. 89, Th6orGme 1 - 3 1 1 .
F u r t h e r m o r e , s i m i l a r r e s u l t s t o Theorem 2 . 1 a r e a l s o a v a i l a b l e (even f o r n o t n e c e s s a r i l y compact m a n i f o l d s ) by c o n s i d e r i n g o t h e r " d i f f e r e n t i a l s t r u c t u r e s " of " h i g h e r o r d e r " on a g i v e n d i f f e r e n t i a l manifold S t h a n algebra
Xo(X)
E. PURSELL-M.E. §XI
emlXl; this
is, f o r instance, the case f o r the L i e
e c a - v e c t o r f i e l d s on
of a l l
X w i t h compact support. Cf. L .
SHANKS [l] a n d / o r A . KORIYAM.4 e t aZ.[l];
y e t H . OMORI [l:p. 123,
*
3. Spectrum o f the algebra O ( X ) .
Stein algebras
W e c o n s i d e r i n t h e s e q u e l t h e spectrum of t h e t o p o l o g i c a l a l g e -
bra
0lXl = T(X, 0,)
(3.1)
t h a t i s , of t h e Fmkhet
,
ZocalZy m-eonvex algebra
of
(complex-valued) holo-
morphic f u n c t i o n s on a complex a n a l y t i c space (X, Ox) w i t h
struetiire
sheaf 0, (we simply w r i t e X , h o w e v e r ) ; t h i s w i l l b e , i n p a r t i c u l a r , a S t e i n s p a c e . I n t h i s r e g a r d , w e r e f e r t o R . C . G U N N I N G - H . ROSSI [l] f o r t h e d e t a i l s of t h e t e r m i n o l o g y a p p l i e d . ( S e e a l s o C . ANDREIAN CAZACULl] and/ o r L . KAUP - B. KAUP [I]
.
w e mean a complex a n a l y t i c s p a c e X i n such a way t h a t X i s , i n p a r t i c u l a r , second c o u n t a b l e holomorS p e c i f i c a l l y , by a S t e i n space
p h i c a l l y s e p a r a b l e r e g u l a r and convex. I n t h i s r e s p e c t , one means by hoZomorphicaZZy separabZe algebra (3.I )
that the
"separates the p o i n t s of X". F u r t h e r m o r e , t h e same a l g e b r a
p r o v i d e s "ZocaZ-gZobaZ coordinates" f o r X ( holomorphicaZZy r e g u l a r ) , and f i n a l -
i s a g a i n a compact s e t Z c X . ( F o r t h e t e r m i n o l o g y a p p l i e d h e r e c f . also Chapter V;(4.9), as w e l l as Chapter I V ; 4 . ( 3 ) ) . For s i m p l i c i t y w e s h a l l c o n s i d e r i n t h e s e q u e l o n l y reduced comp l e x spaces which amounts, w i t h i n t h e p r e s e n t c o n t e x t , t o t h e assumpl y the
holomorphically convex h u l l o f a compact K S X
t i o n t h a t the respectioe GeI'fand map of the algebra ( 3 . 2 ) i s i n j e c t i v e . T h i s p e r m i t s , among o t h e r t h i n g s , t o c o n s i d e r t h e same a l g e b r a a s a s u b a l g e b r a of
c c ( X l and t h e n w i t h t h e c o r r e s p o n d i n g r e l a t i v e t o p o l o g y , a s
we s h a l l p r e s e n t l y see i n t h e s e q u e l .
Now, a t o p o l o g i c a l a l g e b r a E i s s a i d t o be a e v e r one h a s t h e r e l a t i o n
S t e i n aZgebra, when-
2.
229
SPECTRUM OF c ) ( X ) . STEIN ALGEBRAS
E =
(3.2)
r(x, o x ) ,
within a topological algebraic isomorphism, where ( X , O , )
is a Stein
space. Thus, our main conclusion will be the fact that t h e spectrum of a given S t e i n aZgebra E is homeomorphic t o t h e S t e i n space X of ( 3 . 2 ) (Theorem 3.1).
Indeed, much more is essentially valid (ibid.; see also Scholium 3.1 below). In this respect, we first note that the usual evaluation map f -4Jf)
(3.3)
for any xe X and f e O t X l , defines 6,
:=
f(.C.‘,
,x e X ,
as a complex algebra mor-
phism of O ( X ) which is also continuous,according to the inclusion (3.4)
and Lemma 1.1.
OIX)
c
ep
Thus, t h s map 6:X-
(3.5)
defined by (3.3)(with 6 i x ) =
)
1OtXil’ i s one-to-one;
namely, X being, by hypo-
thesis, a Stein space, it is O(XI-separabZe, that is, for any x , y in X, with z # y , there exists an element f e O ( X ) such that f l x ) # f l y ) . Besides, t h e map 1 3 . 5 ) i s continuous with respect to the weak topological dual of OtXl , i.e. , the space This follows certainly from Lemma 1 . 1 and the continuous injection (3.4)(thereforeI the continuity of the
(O(X))i .
respective transpose map and of its composition with 6, the resulting map being denoted still by 6). NOW, one verifies that 6 i s essentiaZZy a homeomorphism onto its image in (O(X))i This is based on the O(X)-reguZarity of X , which
.
amounts to the fact that t h e (original)topology of X i s determined by t h e s e t o f i t s hoZomorphic f u n e t i o n s : Indeed, this is a consequence of the following Embedding L e m a (Remmert-Bishop-Narasimhan)
.
Lemma 1. Let X be a (reduced) S t e i n space of dimens i o n n. Then, t h e r e e x i s t s an i n j e c t i v e proper immersion (and hence a homeomorphism) of X onto a complex analyt i c subvariety of ~ 2 ’ 2 ~. 1 ( See, for instance, R . C. GUNNING- H . ROSSI 224,Theorem 101
.
[I:p.
Therefore, by a similar argument to that used in the proof of the analogous statement in Lemma 2.1, one now gets the assertion (see also 0. FORSTER [ 1: p. 3121). So it remains only to prove that 6 t X ) E 1 O t X i i ~ is indeed t h e whole of t h e spectrum o f O i X l ; this is based, in fact, on some of the deepest
230
VII SPECTRA OF PARTICULAR ALGEBRAS
r e s u l t s o f Complex A n a l y s i s ( C a r t a n ' s Theorems A and B , Cartan-Oka Theory of c o h e r e n t a n a l y t i c s h e a v e s ; see R. C'. G U N N I N G - H . ROSSI [ I ] ) .
More s p e c i f i c -
a l l y , one h a s t h e f o l l o w i n g . Lemma 2. ( H . C a r t a n ) . Let I be an i d e a l of t h e algebra O(X). P x n , m e gets (3.6) I = rix, J ( V ( I ) ) )
( t h e c l o s u r e i s t a k e n i n O ( X 1 ) ; here J ( V ( I ) ) denotes the coherent a n a l y t i c s4eaf o f i d e a l s of t h e anaZytic vari e t y V ( I 1 of t h e given i d e a l I .
(Cf. H. CARTAN [I] a n d / o r 0. FORSTER [ I : p. 312, S a t z S e e a l s o h'. FIHITNEY [2: p. 280, S e c t i o n 9 1 o r R . C . GUlVNINC- H. ROSSI [ I : p. 138, Theorem 21 ) I]
.
.
T h u s , a s a c o n s e q u e n c e of t h e p r e v i o u s Lemma 2 , o n e r e a l i z e s t h a t e u e q proper closed idea2 o f t h e algebra O ( X ) has a t l e a s t one zero ( p l a c e : N u l l s t e l l e ) i n X . Hence, f o r e v e r y c l o s e d maximal i d e a l Iof c ) ( X ) , one c o n c l u d e s t h a t I C I z , f o r some X E X , so t h a t by h y p o t h e s i s f o r I, one has the relation
I = I = ker(6,)
(3.7)
3:
, p r o v e s t h a t t h e image
and t h i s , i n connection w i t h C o r o l l a r y I I i 7 . 2 ,
of 6 i n ( 3 . 5 ) d e s c r i b e s , i n f a c t , t h e s p e c t r u m o f O ( X ) . So w e h a v e a c t u a l l y p r o v e d by t h e p r e v i o u s d i s c u s s i o n t h e f o l lowing. Lemma 3.1.
Let X be a S t e i n space. Then, t h e spectrum of t h e algebra O ( X ) i s
given by
i r r r i O ( X ) ) = mirrx, ox ) ) = x ,
(3.8)
w i t h i n a homeomorphism ( d e f i n e d b y t h e map ( 3 . 5 ) ) Furthermore,
(x, 0X
)
t h e above r e l a t i o n
.
I
(3.8) c h a r a c t e r i z e s , i n f a c t ,
a s a S t e i n space, i n v i e w o f t h e f o l l o w i n g r e s u l t (Igusa-Remert-
Iwahashi Theorem )
.
Theorem 3.1. Let (X, 0,)
be a complex a n a l y t i c space. Then, X i s a S t e i n
space if, and o n l y i f , t h e canonical map (3.9)
6 :x
-mtr(x,
ox 1 ) ,
given by ( 3 . 5 1 , i s a homeomorphism ( o n t o ) . Proof. The n e c e s s i t y of t h e s t a t e d c o n d i t i o n i s d e r i v e d a l r e a d y f r o m t h e p r e v i o u s Lemma 3 . 1 . F o r t h e " i f " p a r t of t h e a s s e r t i o n c o n s u l t , f o r i n s t a n c e , 0 . FORSPER [4: p. 139, S a t z 7 1 . I
4, SPECTRUM OF L1 ( G) Schol ium 3.1
.-
23 1
The p r e c e d i n g Theorem 3.1 y i e l d s a c h a r a c t e r i z a
-
t i o n o f S t e i n s p a c e s i n t e r m s of t h e r e s p e c t i v e S t e i n a l g e b r a s . A s a
matter of f a c t , t h e two n o t i o n s are c a t e g o r i c a l l y ( a n t i ) e q u i v a l e n t
( c f . 0.
FORSTER [3: p. 378, S a t z 11 o r C. BANICA- 0. STANASILA [l: p. 46, Theorem 4.111).
I n t h i s c o n c e r n , w e a c t u a l l y have t h a t t h e a l g e b r a i c equivalence o f two
S t e i n algebras i r r p l i ? ~ in , e f f e c t , t h e i r t o p o l o g i c a l one a s w e l l , h e n c e t h e homeomorphism o f t k L e r e s p e c t i v e S t e i n s p a c e s by ( 3 . 8 ) ; t h e r e f o r e , t h e i r e q u i v a l e n c e by t h e f o r e g o i n g ( c f . a l s o 0 . FORSTER [2: p. 161, C o r o l l a r y 11). On t h e o t h e r h a n d , i n t h e p a r t i c u l a r c a s e t h a t mann domain o v e r
enrwhich
tX,p) is a Rie-
i s a l s o a S t e i n m a n i f o l d ( i . e . , a domain of
holomorphy; c f . C h a p t e r V ; S e c t i o n 4 )
,
one c o n c l u d e s t h a t e v e r y c h a r a c t e r
o f t h e corresponding S t e i n algebra 0lXl i s continuous ( s e e R . C . GUNNING - H . IiOSSI [ l : p. 283, Theorem 4 1 ) . T h i s amounts t o t h e same t h i n g a s t h a t
every
maximal ideal o f L)(Xl is c l o s e d a n d h e n c e f i n i t e l y g e n e r a t e d ( c f . C. FOtiSTER [2: p. 159, Theorem 21,
a s w e l l a s E . A . MICHAEL [l: p. 5 4 , P r o p o s i t i o n 12.51).
F i n a l l y , w e a l s o h a v e t h a t a g i v e n S t e i n space ( X , 0,) l c c a l r i n g ( a l g e b r a ) 0,
, with
i s reduced ( t h e
EX, d o e s n o t c o n t a i n n i l p o t e n t e l e
m e n t s ) i f , and o n l y i f , t h e r e s p e c t i v e GeZ'fand map o f O t X ) , i . e . ,
-
t h e map
(3.10)
i s one-to-one
( c f . 0 . FORSTER
[ 1:
p. 3101). I n t h i s case w e a l s o s a y t h a t
t h e (commutative) S t e i n a l g e b r a
O ( X ) i s semi-simple
( c f . a l s o i.n t h e se-
q u e l Chapt. V I I I ; D e f i n i t i o n 3 . 2 ) . 1 4. Spectrum o f t h e a l g e b r a L (G) The a l g e b r a i n t i t l e of t h i s s e c t i o n i s o f c o u r s e a Banach a l g e b r a , t h e c l a s s i c a l a l r e a d y "group algebra" ( a b e l i a n ) group G .
of a g i v e n l o c a l l y compact
But t h e main r e a s o n o f i n c l u d i n g it h e r e i s r a t h e r
f o r purpose o f l a t e r a p p l i c a t i o n s , s p e c i f i c a l l y , i n c o n n e c t i o n w i t h t o p o l o g i c a l t e n s o r p r o d u c t s . So w e i n c l u d e i n t h e p r e s e n t s e c t i o n t h e r e l e v a n t d i s c u s s i o n i n o r d e r t o have t h e r e s p e c t i v e e x p o s i t i o n l a t e r more " s e l f - c o n t a i n e d " . Thus, w e a r e c o n s i d e r i n g i n t h e e n s u i n g d i s c u s s i o n a l o c a l l y compact ( t o p o l o g i c a l a b e l i a n ) g r o u p G , t o g e t h e r w i t h t h e a s s o c i a t e d
Haar measure on i t ; w e d e n o t e t h e l a t t e r b y dx a n d c o n s i d e r it a s a complex-valued Radon measure on t h e s p a c e ( a l g e b r a ) K ( G i of complex-valued c o n t i n u o u s f u n c t i o n s on G w i t h compact s u p p o r t . The r e s p e c t i v e v e c t o r space
L ' I G ) of complex-valued
dx ( i . e .
,
s u ma b l e f u n c t i o n s on G , w i t h r e s p e c t t o
t h e Hausdorff completion o f K ( G )
,
with respect t o t h e s e m i -
normed t o p o l o g y d e f i n e d on it by t h e n e x t r e l a t i o n ( 4 . 1 ) ) i s made i n t o
232
VII
SPECTRA OF PARTICULAR ALGEBRAS
a Banach s p a c e whose n o r n i s g i v e n by
iv,(fl=(I”fI/, = ( I f l d s = J l P ( d l d 3 : = u ( 1 f l I
(4.1) 1
f o r e v e r y f E L ( G I . ( W e d e n o t e by u = d z
as an e l e m e n t of ( K ( G I ) ‘ ,
i.e.,
I
t h e Haar measure on G c o n s i d e r e d
o f t h e t o p o l o g i c a l d u a l of
K(GI
where
t h e l a t t e r s p a c e i s t o p o l o g i z e d a s i n C h a p t . I V ; 4. ( 1 ) ; cf. N ;( 4 . 6 ) ) . Now, d e n o t i n g t h e g r o u p o p e r a t i o n i n G a d d i t i v e l y , one d e f i n e s 1
t h e convolution
o p e r a t i o n ( m u l t i p l i c a t i o n ) i n L (GI b y t h e r e l a t i o n
(f* g ) ( X I =
(4.2)
with
J f (3: - ylg(yi d y
e G , and f o r a n y f , g e L ‘ I G ) , w h i l e t h e l a s t r e l a t i o n i s a s s u r e d
3:
1
by an a p p l i c a t i o n of ELbini’s Theorem on L ( G I ( c f . , f o r example, L . H . LOOMIS [I:
P. 122, C o r o l l a r y ] ) . I n t h i s r e s p e c t , s i n c e t h e Haar measure
i n is by d e f i n i t i o n l e f t
( a n d s i n c e G i s a b e l i a n , a l s o r i g h t ) transla-
tion invariant,
one a c t u a l l y g e t s by ( 4 . 2 ) t h e r e l a t i o n
(4.3)
(f * g I i ~ I = ~ f ( ~ - y I g ( y I- d( fyl y ) g i x - y I d y ,
w i t h z f G , and f o r a n y f , g
1
in LiG) ( w e
refer, for instance, t o L.H.
LOOMIS [l: Chapt. V I ] f o r t h e r e l e v a n t t e r m i n o l o g y a p p l i e d h e r e ) . Thus,
(4.2)
p r o v i d e s a n ( a l g e b r a ) m u l t i p l i c a t i o n i n L ’ i G l (whit\
i s a l s o commutative i n c a s e t h e g r o u p G i s a b e l i a n , and o n l y t h e n of 1
,
so t h a t L (GI becomes a Banach algebra. F u r t h e r m o r e , i t a l w a y s h a s a (bounded) approximate i d e n t i t y , w h i l e it h a s an i d e n t i t y e l e m e n t i f (and o n l y i f ) t h e group G carries t h e d i s c r e t e topology ( i b i d . ) . 1 NOW, w e a r e f u r t h e r i n t e r e s t e d i n i d e n t i f y i n g t h e s p e c t m of L ( G l course)
when G i s commutative. T h a t i s , t h e ( G e l ‘ f a n d ) s p a c e ?l‘i!(L1(GI) (Definition o r what amounts t o t h e s a m e ( C o r o l l a r y 11; 7 . 3 ) t h e s p a c e of
V;l.l),
1
( c l o s e d ) r e g u l a r maximal i d e a l s ( “maximal i d e a l space” ) of L ( G I (endowed w i t h t h e r e s p e c t i v e G e l ’ f a n d t o p o l o g y ) . A s w e s h a l l see, t h i s i s ( w i t h i n a homeomorphism) c a n o n i c a l l y i d e n t i f i e d w i t h t h e G (Theorem 4 . 1 )
.
character group of
I n t h i s r e s p e c t , g i v e n a t o p o l o g i c a l g r o u p G , one means by a
character of G I a complex-valued c o n t i n u o u s f u n c t i o n on G , s a y a : G + C , o f modulus 1 ( i . e . , l a ( s ) I = I , f o r e v e r y 3 : E G ) which i s a l s o a morphism of G i n t o t h e ( m u l t i p l i c a t i v e , “ u n i t a r y “ ) group
u = I x € c : ( x I = z l,
(4-4)
t h u s a continuous morphisrn
t e r s of G by
2.
o f G i n t o U. W e d e n o t e t h e s e t of a l l c h a r a c -
S o , t h i s is,
by d e f i n i t i o n , a s u b s p a c e of
C c ( G , U)
where t h e l a t t e r s p a c e c a r r i e s t h e compact-open t o p o l o g y , as i n d i c a t e d . Thus,
2
e q u i p p e d w i t h t h e r e l a t i v e t o p o l o g y becomes a n ( a b e l i a n ) t o p o -
l o g i c a l g r o u p ( p o i n t w i s e d e f i n e d o p e r a t i o n s ) , which i s a l s o l o c a l l y
4. SPECTRUM OF
233
L'(G)
c o m p a c t , whenever G i s ) . W e c a l l i t t h e c h a r a c t e r group
c; c f .
n o t e d by
(4.5)
iz e
1
= f o I , :G +G
f2
so t h a t
ment
L.H. LOOMIS [ I : C h a p t . VII]).
f o r a n y g i v e n f e 5 (G) and x e G ,
NOW,
of G ( s t i l l d e -
:y
I (y) = f (2,(y) I
o I,
-(f
one d e f i n e s t h e map
f (x+y )
:=
w e s t i l l t a k e , by t h e t r a n s l a t i o n i n v a r i a n c e of d z , an e l e -
.
1 L (G)
Moreover
,
t h c mu;;
( 4 .6)
5:
1
-&
: G d L (G)
( w i t h r e s p e c t t o t h e L1-norm ( 4 . 1 ) .
i s continuous
I b i d . : p. 118, Theorem
30C).
On t h e o t h e r h a n d , we a l s o o b t a i n t h e r e l a t i o n
(4.7)
fz*g =f*gx
f o r every
LCE
G , and any
Thus, by 1 4 . 2 )
f, g i n L 1 ( G 1, which w e s h a l l p r e s e n t l y u s e below.
and ( 4 . 5 ) , one g e t s f o r e v e r y a e C
(fa
* q ) (x) = I fa (x - y l g ( y ) d y = / f (a+.,- - y ) g i y i d y
= ( v i a t h e t r a n s f o r m a t i o n y-a = /f(.-yig,iy)dy with x EG,
+ y ) Jfiz-ylgia +yidy
= (f*gn
)(XI ,
which p r o v e s ( 4 . 7 ) .
Thus, w e come n e x t t o t h e f o l l o w i n g
Lemma 4.1. Let L1(G1 be the group algebra of a l o c a l l y compact a b e l i a n group G and m ( L 1 ( G I J
i t s spectrum. Moreover, l e t
8
be t h e c h a r a c t e r group of G . Then,
the relation
1
where f i s any element of L ( G I , w i t h
a@):=
(4.9)
@(f) # 0
,
p r o v i d e s a we22 d e f i n e d map between t h e r e s p e c t i v e spaces. Proof. W e f i r s t remark t h a t 14.81 1
of f e L (GI s a t i s f y i n g 1 4 . 9 1 , @ emIL1(G)).
i s , i n d e e d , independent of t h e c h o i s e
and t h e e x i s t e n c e o f which i s a s s u r e d , s i n c e 1
T h u s , f o r a n y o t h e r e l e m e n t g e L (G) w i t h
g e t s , b y ( 4 . 7 ) and t h e h y p o t h e s i s f o r @,
@ i f z l @ ( g= l @(f)@(gziI f o r e v e r y x € G ; t h a t i s , one h a s
g ( @ 1= @ ( g 1 # 0 , one
234
VII
SPECTRA OF PARTICULAR ALGEBRAS
which i s t h e a s s e r t i o n , so t h a t t h e map a S : G + C
is w e l l defined.
F u r t h e r m o r e , we a l s o have t h e r e l a t i o n
a (x* y ) = a (xi.a@(y),
(4.10)
rp
for any x , y i n G : 1
G and f e L ( G ) ,
rp
(f = f z + y , f o r any Z , Y in setting g=f
I n d e e d , s i n c e by ( 4 . 5 )
one o b t a i n s by ( 4 . 7 1 , fx
Y‘
* fy = f*(fy)z= f *f,+, = f * f z + y-
T h e r e f o r e , one g e t s , f o r e v e r y @ e m f L ’ ( C 1 ) ,
@(f)Ufz+ y ) = @(fz)@(fy) * (rp(f)J2
Thus, d i v i d i n g t h e l a s t r e l a t i o n by @ (fz iy
-
-.@ (fx)
one h a s
@(&,)
@if)
@if)
,
(P(f)
that is, the desired relation ( 4 1 0 ) .
-.
la (x)1 > 1 , f o r e v e r y z e G , one g e t s by (4.10)
NOW, assuming t h a t
@
la (nx)l= / a(x)(”
rp
@
--+
m ,
with n
m
But t h i s i s a c o n t r a d i c t i o n , s i n c e by ( 4 . 8 ) one h a s la
(xi1 =
6
1
~
I o(f) I
IUf,)l ~ W f z l l =1k * l l f I I I = M
f o r every x e G ( w i t h k = ( l r p ( f I ( ) - ’ ;
m( L 1 ( G I ) ,
as w e l l a s t h e r e l .
t i o n i n v a r i a n c e of dx). Thus,
we t a k e here i n t o account t h a t
(4.1) la
one o b t a i n s
(P
1
rp
E
i n connection with t h e t r a n s l a i s a bounded f u n c t i o n . T h e r e f o r e ,
la (z)l
Hence, la fz) I = I , f o r every z~G . Q, F i n a l l y , one e a s i l y c o n c l u d e s by ( 4 . 8 ) and t h e c o n t i n u i t y of t h e map ( 4 . 6 ) t h a t t h e map a : G+
@
U G C i s continuous a s w e l l , a n d t h i s com-
p l e t e s t h e p r o o f of t h e lemma. I W e come now t o p r o v e t h a t 1
(4.8) provides, i n e f f e c t , a b i j e c t i o n
b e t w e e n t h e s p e c t r u m of L ( G ) and t h e c h a r a c t e r g r o u p of G .
However, w e
n e e d f i r s t some more p r e l i m i n a r y m a t e r i a l . Thus, s i n c e e v e r y e l e m e n t
1
@ e??Z( L (G)) i s , i n p a r t i c u l a r , a con-
t i n u o u s l i n e a r form on L ‘ I G ) , one h a s t h e r e l a t i o n (4.11)
MIL’IGI
= ZWL’(G)
I c: ( L ~ ( G Ij
*
2 LYG) .
4.
SPECTRUM OF L ' ( G )
235
The last relation in ( 4 . 1 1 ) yields, within an i s o m e t r i c isomorphism 0 , the 1 topological dual of (the Banach space) L f G / (in the respective "strong topology") as the Banach space L c ' ( G ) of all e s s e n t i a l l y bounded measurable on G . In parti.cular, this is expressed, through the Radon-Nikodini Theorem, by the relation
functions
@ I f ) = Jflzin(ccl d z
(4.12)
,
1
with f e L 1G1 , for a uniquely defined u e L " ( G I , which corresponds, via o, 1 to a given @ € ( L ( G l i ' . (In this regard, cf. L . H . LOOMIS [I: 7 5 C , D ] , and/ or M. A . NA?MARK 11: p. 140, 5 1 6 , Theorem 3 1 ) In this respect, we still remark that ~ ~ L c 4 ( G an ) , element of ?
.
being, by definition, a bounded and continuous (therefore, measurable) h
function on G. Furthermore, t h e i n v e r s e map o f a in 14.111 r e s t r i c t e d t o G 1 1 has range i n t o MIL ( G l l c ( L f G ) ) ' : thus, ( 4 . 1 2 ) yields a (continuous) character Q, of L 1(G), for every u e 6 : Thus, for any elements f , g in L 1i G ) , one gets by ( 4 . 1 2 ) (through a repeated application of Fubini's Theorem, and the translation invariance of d z ) Q , ( f * g i = J ( f * g ) f z i m d z = (by (4.2)) J(Jf(z-y)giyidy =
JJ : i r , ' p ( g ) a i z
ZZdx =
JJ f i z - y i g i y i Z Z d z d d y ___
+yiJzdg = ~
~
;i.t.Jy ~
i
~
= J I J f ( x l a l c ! ? z i g ( y i m d y = I J f ( x l ~ d x ) l J g f y l a ( y / d y / = @1fi@(g)
which is the assertion. On the other hand, the converse of the last assertion concerning ( 4 . 1 2 ) is also true. First we shall need, however, some more comment on the respective terminology. So if i e 6 i is an approximate i d e n t 1 ity of L (G) one has, by definition, the relation l i m ( f * e 6 i = l i m i e * f i =f
(4.13)
6
6
6
1
,
1
for e ery f E L ( G l . Thus, f o r every @Em(L fG)), @if)=@llimif*e6!)= limr$lf*e61 6 6
(4.14
= l i m @ i f i @ ( e 6=1 @ffi.lim@1e6
6
Hence
one gets
6
.
since @ # 0 , one concludes t h e r e l a t i o n limQ,ie6 i = 1 6
(4.15)
,
1
f o r every @ E m ( L(GI). (In this respect, we remark that the last conclu-
sion concerning ( 4 . 1 5 ) is certainly valid for any topological algebra whatsoever, withintof course, the appropriate context).
~
236
VII
NOW,
SPECTRA OF PARTICULAR ALGEBRAS
a p p l y i n g ( 4 . 7 ) w i t h g = e 6 one g e t s , f o r e v e r y
1
$€mfL(G)),
$(fxl$(e6 I = $ifi$((e6lz I
so t h a t f o r
@(f)
# 0
one o b t a i n s
Hence, by ( 4 . 8 ) , w e have $ f ( e 6 1 x I = $ ( e ) a (x)
(4. 6)
6
$
f o r e v e r y x e G . I n p a r t i c u l a r , o n e h a s by ( 4 . 1 5 ) l i m $ f i e 6 1 z I = a (z),
(4. 7)
$
6
f o r every x E G .
Thus, w e come f i n a l l y t o o u r p r e v i o u s a s s e r t i o n t h a t , namely, t h e i n v e r s e map of 0-1 I
(4.18)
:
2
-
1
M(L'(GI ) = 17il ( L ( c i
,
which i s , i n d e e d , t h e a s s e r t i o n . ( I n t h e p r e v i o u s argument w e h a v e a l s o a p p l y t h e f a c t t h a t , f o r e v e r y a e ; , one h a s t h e r e l a t i o n d - x / = a(x) , w i t h X E G I a s f o l l o w s from t h e same d e f i n i t i o n s ) , Thus, w e c a n summarize t h e p r e c e d i n g i n t o t h e form o f t h e n e x t . Lemma 4.2.
map (4.20)
-
Suppose t h a t t h e c o n d i t i o n s of L e m a 4 . 1 are s a t i s f i e d . Then, t h e 0 :$
a$: ~T(L'(GII
d e f i n e d by (4.81, y i e l d s a one-to-one
-E,
and o n t o correspondence between t h e r e s p e c t i v e
4.
231
SPECTRUM OF L?G) 1
of the canonicaZ
spaces. I n f a c t , it i s t h e r e s t r i c t i o n t o the s p e c t r m of L (G) 1
( i s o m e t r i c ) isomorphism (L (GII '
Lm(GI.
Proof. I f e ( @ ) = a = 9(J,) = a
t h e n by ( 4 . 1 9 )
@ one g e t s @ =
i),
J,
with
@, J,
that is,
hand, f o r any a E ~ ~ L m f G Ione , g e t s by ( 4 . 1 2 ) 1
1
i n g it a n e l e m e n t 9 € M(L (G)) € f L (GI)', 9(6) = a i s related t o @ v i a (4.19) 9
+; theref ore,
.
elements
of
0 i s one-to-one.
,
mfL1(GI)
On t h e o t h e r
and t h e comment f o l l o w -
i n s u c h a way t h a t t h e r e s p e c t i v e Hence, one h a s o-'faI = o-"(a I =
@
= 0( @I = o ( @ ), t h a t i s 9 i s an onto map a s w e l l . The a =a+ l a s t a s s e r t i o n of t h e s t a t e m e n t i s c l e a r a l r e a d y by t h e p r e v i o u s d i s c u s s i o n , and t h i s t e r m i n a t e s t h e proof o f t h e 1emma.I W e come n e x t t o prove t h a t t h e p r e c e d i n g map 9 i s , i n f a c t , a
homeomorphism. Thus, w e h a v e . Theorem 4.1.
Let t h e conditions of Lemma 4 . 2 be s a t i s f i e d . Then, the map
e
(4.21)
: ~ ( L ' I G ) -Z, ) 1
defined by ( 4 . 8 1 , i s a homeomorphism of t h e spectmun of L ( G I
onto the character
group of G. Proof. According t o Lemma 4 . 2 ,
f i r s t that
6 - l i s continuous. Namely,
9 i s a b i j e c t i o n . Thus, w e prove w e must prove t h a t f o r any n e i g h -
borhood v ( @ O ; f , E= ) { cp
(4.22)
E
I f^rw -?(ao) I < E I
~ ( L ~ I G I ) :
1
from a fundamental system of such a t t h e p o i n t
$,=9-l(a0) e ?YZ(L I G ) ) ,
t h e r e e x i s t s a neighborhood
U(ao;K,61={af2:
(4.23)
of a. E (4.24)
ECcfGI
Ic~(T)--c~~(x)~<~
V T ~ K I
such t h a t
O-*(U(aO ; K, 6 1 ) E V ( @ o ; f ,
E
I.
Thus, one has t o prove t h a t (4.25)
l@(f)-@o(Jc)l
'€3
f o r every @ = €I-l(aI, w i t h a € U(ao;K , 6 1 . T h e r e f o r e , i n view of
obtains (4.26)
F u r t h e r m o r e , one h a s by d e f i n i t i o n t h e r e l a t i o n (4.27)
K(GI = L?GI
( 4 .19), one
238
VII SPECTRA OF PARTICULAR ALGEBRAS
with respect t o t h e since
L1 -norm
1
1 L (GI d e f i n e d by
(topology) of
(4.1 )
. So
f € L f G ) , o n e c o n c l u d e s t h a t f o r a n y E > O t h e r e e x i s t s an e l e m e n t such t h a t
g€KfG)
N1(f-g)
=!I
5.
f(s)-gfz)\dx<
Thus, f o r e v e r y compact K C G , o n e h a s t h e r e l a t i o n (see a l s o N . BOUR-
BAKI [8: Chap. 4 ; p. 185, C o r o l l a i r e ]
)
jIf(x)-g(z)ldx= JKIf(zi-g(xiIdr+j
CK
Consequently, t a k i n g obtains
/f(xl-g(xiIdz < + .
K = Supp ( : I ) , w i t h g a s b e f o r e , s i n c e g = O ( C K
Thus, from ( 4 . 2 6 ) a n d t a k i n g K a s b e f o r e a n d i n ( 4 . 2 3 ) 6 =
One
E
211fl11
one h a s f o r e v e r y a e t i o n 1)
c'(clo;
1 @(f)- 4Jo
K, 6) ( c f . a l s o
If) I S
I If K
I
t h e above R e f . ; p . 205, P r o p o s i -
- -
-
(sl I */adz)~1 (xi I d x $0
- -
If(x)I.la ( x i - a lxlldx 4J 40
( w e a l s o r e c a l l t h a t la ixll = 1 , w i t h z e G , f o r e v e r y 4 J € ?7?(L'(G)l). T h a t 4J i s , w e do h a v e ( 4 . 2 5 ) , which w a s t o b e p r o v e d . The p r e c e d i n g p a r t of t h e p r o o f e s t a b l i s h e s , i n f a c t , one h a l f o f t h e a s s e r t i o n . The rest w i l l b e d e r i v e d from t h e f o l l o w i n g two l e m -
mas.
Lemma 1 . L e t G be a ZocaZly compact a b e l i a n group, L ' f G )
-
1
t h e r e s p e c t i v e group algebra and ?Z(L ( G I ) Then, t h e f u n c t i o n (1)
h : (x,4 )
i t s spectrum.
h(x, $11:=a f x ) ,
4J
d e f i n e d b y 1 4 . 8 1 , is a (complex-valued) continuous f u n c t i o n Iroof. F o r e v e r y f e LI(G)
1
,
( w e assumed t h a t $ E mfL(G)) )
one o b t a i n s
,
which p r o v e s ( c f
.
4. SPECTRUM OF
d(G)
239
-
a l s o ( 4 . 6 ) ) the continuity of the function
(z,@ ) j p :) G x VY(L’(G)I
(2)
1
f o r every f e L ( G ) . Now, f o r e v e r y
( x ~ , @t ~ h e) r e e x i s t s
# 0 . Thus, o n e g e t s
an e l e m e n t f , e L’fG), w i t h t h e c o n t i n u i t y of
( 1 ) a t a given point
t i o n of a
$
FJ$)+t(@o)#
fxo ,@o) b y where w e
t($),
d i v i d i n g t h e map a p p e a r e d i n ( 2 ) b y a l s o have t h a t
c ,
0 (see a l s o t h e d e f i n i -
i n Lemma 4 . 1 ) . 1
Furthermore, w e a l s o need t h e f o l l o w i n g t o p o l o g i c a l f a c t .
Lemma 2 . Suppose we upG g i v e n t h e t o p o l o g i c a l spaces X, a s w e l l as a continuous f u n c t i o n
Y,Z
h :X x Y d Z . Then, f o r any compact s u b s e t K of X , and any open subset A o f 2, t h e s e t V=
y e Y :h f z , y )
E
A
V
z e K}
i s an open s u b s e t o f Y. Proof. C f . L . H . LOOMIS [ I : p. 12, Lemma
5 ~ 1 1.
End o f t h e proof o f Theorem 4.1. W e p r o v e now t h a t t h e map 0 - I , which i s g i v e n by ( 4 . 2 1 ) , i s an o p m map: Thus, g i v e n aoeG a n d any open n e i g h h
borhood
K,
U(clo;
t h a t E-l~i!!’ao;K,
ao= N$,i = a
)
$0
.
E)
E))
1
,
a s i n ( 4 . 2 3 ) , one p r o v e s
is an open s e t i n 5 W f L fG)) c o n t a i n i n g $o= 8 - l ( a 0 ) ( s o
Namely, w e h a v e
a-I(uia,;
NOW,
. from a l o c a l b a s i s a t a
K,
E
)I =
c + e V Z ( L1(GI) : ei4) =
t h i s i s a n open s e t i n
2
1 m ( L f G ) ) containing
u(a0;K, EJI
@o
,
a s t h i s follows
from t h e c o n t i n u i t y o f t h e map ( c f . t h e above Lemma 1 )
h :(z,ql)-hfz,f$,):=
ja f x ) - a
@
(.El $0
a n d Lemma 2 , which i s j u s t t h e a s s e r t i o n . T h i s c o m p l e t e s t h e proof of Theorem 4 . 1 . I A d i r e c t a p p l i c a t i o n of t h e i d e n t i f i c a t i o n provided by t h e p r e -
c e d i n g Theorem 4 . 1
i s t h a t t h e c l a s s i c a l Fcurier-Gel’fand
transform of t h e
1
g r o u p a l g e b r a L f X n l a c t s on t h e c h a r a c t e r g r o u p of IRn ( c o r r e s p o n d i n g
t o t h e c a n o n i c a l i n n e r product of I R n )
,
n a m e l y , t h e g r o u p IRn i t s e l f ( w i t h -
i n a n isomorphism of t o p o l o g i c a l g r o u p s ) by t h e r e l a t i o n
240
V I I SPECTRA OF PARTICULAR ALGEBRAS
(4.28) 1
with f e L ( E n ) . (See, for instance, E.M. S T E I N - G . WEISS [I:pp. 2 , 31). Thus, one also gets, straightforwardly, the classical fact (ibid.) that the Fatrier transform of t h e convolution of two functions i s the (pointwise) product of t h e i r Fourier transforms (the Gel'fand map is an (algebra) morphism). Now consider the given group G , as above, and its character group G ; thus the latter, being a locally compact (abelian) group,has its own character group, denoted by 2 (second character group of G ) Now this group is, within a homeomorphism, the initial group G itse1f;in l o c a l l y compact abelian group i s (within a homeomorphism) i t s other words, own second character group ( Pontrjagin Duality Theorem; cf . , for example , L . H. LOOMIS [I: p.151, 37D]). h
.
h
C"(X) (contn'd.). The Nachbin Theorem ( n e c e s s i t y )
5. The l o c a l l y m-convex algebra
We consider in this and the following section the Cm-analogon" of the classical Stone-Waierstrass Theorem (see, for instance, L . NACHBIN [4: p. 48, Corollary 21) : it is due to L . NACHBIN [l] . We need first, however, still more terminology from the theory of Differential Manifolds than the one already applied in Section IV;4.(2) and Section 2 above, which thus we are going next to supply. Thus suppose we are given a d i f f e r e n t i a l manifold X which we assume, thereinafter, to be connected second countable and Hausdorff, of course. Furthermore, we suppose henceforth that
cw
(5.11
C ;
(XI
(see also Section IV;4.(2)), that is, we consider exclusively r e a l functions on X . (The complex-case can be treated in a simivalued ( em-) lar way to the analogous one used for Stone-Weierstrass Theorem; namely, " s e l f - a d j o i n t " subalgebras of ( X I should be considered instead. Cf. Section 7.2 below) Thus, for every x e X , denote by T ( X , X I the tangent space of the manifold X at x ; this is (isomorphic to) the n-dimensional numerical space IRn , where n =dimX S o , for every element V E T ( X , x ) , tangent vector of X at x , one defines a (real) linear form on C " t X I , say l,.,, by the relation
ccm
.
.
(5.2)
5.
the notation applied i n (5.2) , ( A i )
CmIX).C o n c e r n i n g
f o r every f E
24 1
N A C H B I N THEOREM (NECESSITY)
w i t h l S i < n , d e n o t e s t h e s e t of
,
( l o c a l ) C o o r d i n a t e s of veT'IX,x:I a t t h e
p o i n t x € X ( c f . a l s o ( 5 . 7 ) b e l o w ) , which c o r r e s p o n d s t o t h e l o c a l c h a r t
iu, @) = (U;X I ,. . . , xni
(5.3)
of t h e m a n i f o l d X a t x , where (5.4)
xi=uio@, I S i S n ,
1SiSn
a n d ui : W n+iR,
,
are the canonical coordinates (projections
o n t o t h e r e s p e c t i v e a x e s ) of
so one h a s , by d e f i n i t i o n ,
IRn;
(5.5) with i = I ,
...,
Now,
eqression"
n , f o r e v e r y f &?Xi.
t h e expression of an element v E T ( X , x ) i n local coordina*es ( " l o c a l of v )
, which
c o r r e s p o n d s t o any g i v e n c h a r t of the manifold
X a t x , l i k e ( 5 . 3 ) , i s g i v e n by t h e r e l a t i o n n
(5.6)
1)
= t A i ( Za J x i=l 7,
.
Furthermore, one o b t a i n s A . = v(xiI = idxilz
(5.7)
(vl ,
( 5 . 4 ) ) . T h u s , t h e ( r e a l ) numbers X i , l S i 6 n ,
with 16i<,n ( c f .
i n (5.7)
a
Local coordinates of v , w i t h r e s p e c t t o t h e canonical b a s i s {C-) j ax-. s I S i S n , of T I X , x ) d e f i n e d , f o r i n s t a n c e , b y ( 5 . 5 ) and c o r r e s p o n d i n g " t o
are the
. ,snI
t h e g i v e n c h a r t (U;xI ,. .
of X a t z.
In p a r t i c u l a r , t h e r e l a t i o n ( 5 . 2 ) defines T(X, X I ,
as a (real-valued)
emlX) (viz.
,a
"Leibniz m a p " )
. Thus,
( 5 . 2 ) and I V ; ( 4 . 1 4 ) ) .
2
V
E
by c o n s i d e r i n g t h e l a t t e r a l g e b r a
equipped with t h e c a n o n i c a l em-topology ( c f readily verifies that
Zv , f o r e v e r y v
derivation ( a t t h e p o i n t x ) of t h e a l g e b r a
.
Section IV; 4 . ( 2 ) )
,
one
i s , i n f a c t , a continuous l i n e a r f o m on c m ( X ) ( c f .
W e a r e now i n t h e p o s i t i o n t o s t a t e t h e f o l l o w i n g lemma which
a c t u a l l y c o n s t i t u t e s t h e " o n l y i f " p a r t of o u r main a s s e r t i o n b e l o w (Theorem 6 . 1 ) . Lemma 5.1.
Thus, w e h a v e .
Let X be u ( n o n - t r i v i a l ) finite-dimensional
1 5 n =dimX < m ) and
em-munifoZd ( v i z . ,
~ " t x lt h e algebra o f (real-valued) C m - f u n c t i o n s on X en-
dowed w i t h t h e canonical
c -topology m
( c f . S e c t i o n IV; 4 . ( 2 ) ) . Moreover, l e t A
be a dense subalgebra o f c m i X I ; i . e . , we assume t h a t
Then, t h e following t h r e e c o n d i t i o n s are s a t i s f i e d :
242
VII SPECTIiA OF PARTICULAR ALGEBRAS 1 ) The algebra A i s %on-vanishing
on X"; namely, not a l l f u n c t k n s from A
vanish a t a l l p o i n t s o f X . ( E q u i v a l e n t l y , f o r every p o i n t ment f € A ,
X , t h e r e e x i s t s an e l e -
with f l x l # 0 ) .
2 ) The algebra A '!separates t h e p o i n t s o f X"; i . e . ,
x #y,
X E
there e x i s t s an element f
E A,
f o r any x , y i n X , w i t h
with f i x ) # f ( y l .
3 ) For any p o i n t X E X and tangent v e c t o r v E T l X , x l , w i t h v # 0, t h e r e i s f E A , such t h a t
( d f J X ( v l = v ( f I # 0.
(5.9)
Thus, t h e ( p o i n t ) d i f f e r e n t i a l s o f t h e f u n c t i o n s i n A , a t any p o i n t X E X , separate t h e F o i i t i s of t h e r e s p e c t i v e tangent space T ( X , x ) .
Proof. By c o n s i d e r i n g t h e t o p o l o g i c a l d u a l s o f t h e ( l o c a l l y convex) spaces appeared i n ( 5 . 8 ) , (5.10)
A'
o n e h a s , of c o u r s e , t h e r e l a t i o n
= (~OO(XI)',
w i t h i n a l i n e a r s p a c e isomorphism ( s e e , f o r i n s t a n c e , G . KOTHE [l: p. 158, ( I l ) ] ) . On t h e o t h e r h a n d , i n view o f Lemma 2 . 1 ,
one g e t s
(5.11) where t h e map
6:
i s , one o b t a i n s
f o r any x e X
and
is the Xs c"(X))'
e v a l u a t i o n map ( "Dirac map") ; t h a t
f 6 e m ( X ) . So t h e f i r s t r e a t i o n i n
(5.11) is valid
w i t h i n a homeomorphism ( Whitney's Imbedding Lemma; c f . t h e p r o o f o f t h e s a n e lemma above (Lemma l ) ) , w h i l e t h e p o i n t s of X c o r r e s p o n d t h r o u g h ( 5 . 1 2 ) t o non-zero c o n t i n u o u s l i n e a r f o r m s on
C"(X)( t h e
l a t t e r alge-
bra contains the constants). Thus, t h e f i r s t two of t h e s t a t e d c o n d i t i o n s f o r A a r e now a d i r e c t c o n s e q u e n c e of
( 5 . 1 0 ) and ( 5 . 1 1 ) . Furthermore,
f o r every v f 0
i n T ( X , x ) , one g e t s from ( 5 . 2 ) c o n c e r n i n g t h e r e s p e c t i v e d e r i v a t i o n , lv#O
( t h e map v ~ - + l ~ , v ~ T ( X , xd )e ,f i n e d by ( 5 . 2 ) , i s a b i j e c t i o n ) . So
s t i l l from ( 5 . 1 0 ) a n d t h e f a c t t h a t lv€ lC"lX)I'
( s e e t h e comment be-
f o r e Lemma 5 . 1 ) , o n e c o n c l u d e s t h a t t h e r e e x i s t s f € A , w i t h %,if) = v ( f )
= tdf),(v)
# 0 ; i.e., one o b t a i n s c o n d . 3 ) a s w e l l , a n d t h i s f i n i s h e s t h e
proof. The f o l l o w i n g i s a n e s s e n t i a l t e c h n i c a l i s s u e i n t h e p r o o f o f t h e c o n v e r s e of t h e p r e v i o u s Lemma 5 . 1 , which w e p r o v e i n t h e s e q u e l . Lemma 5 . 2 . Consider a Cm-rnanifot"oZd X and t h e r e s p e c t i v e ( r e a l ) algeb1.a Cm(X)
5. NACHBIN THEOREM
24 3
(NECESSITY)
a s in t h e above L e m a 5 . 1 . Moreover, l e t A be a subalgebra of
C m ( X ) satisfying
cond. 3 ) of t h e same lemma. FinaZZy, l e t T ( X , x ) be t h e tangent space of X a t a p o i n t z~X . Then, t h e r e e x i s t s a b a s i s
c v l , . . . , 'n'
(5.13)
of T(X, x i , t o g e t h e r w i t h a b a s i s of (T(X, xi)* = T*IX,2) ( a l g e b r a i c d u a l of TiX, x), o r y e t t h e cotangent space o f t h e m a n i f o l d X a t z),c o n s i s t i n g of d i f f e r e n t i a l s a t x of f u n c t i o n s from t h e algebra A S C " ( X 1 ;
i . e . , of t h e form
{(dfi)x)lsi gn
(5.14)
w i t h f. E A, 1 5 i 5 n , in such a manner t h a t one has
(df.) z xI v7,. )
(5.15)
a d
=1, 1 S i L n ,
(df.)(v.l=O, l S i < j S n .
(5.16)
Froof.
I f vl # 0 i n
zx 3 T(X, x ) , t h e r e e x i s t s b y h y p o t h e s i s ( c o n d . 3 )
o f Lemma 5 . 1 ) a n e l e m e n t g l f A s u c h t h a t
IdglIx(v,) = u l ( g l ) # 0
(5.17) Now,
-
i f d i m X = n > 2 , o n e g e t s from ( 5 . 1 7 ) t h a t dimiker idgl
(5.18)
Ix I
(see, f o r i n s t a n c e , J . HORVLTH [I: p.411);
21
hence, t h e r e e x i s t s v I E T / X , x )
i n s u c h a way t h a t
C # u2e k e r
(5.19) Therefore,
(dgl)x )
.
s t i l l by h y p o t h e s i s , o n e f i n d s a n e l e m e n t g 2 e A , w i t h (dg,
(5.20)
Now,
(
).-
iv,) = u 2 ( g g I # 0 .
i f dimX23, then ( i b i d . ) dimfker(dgiiZ) 2 2 , i = l , 2
(5.21)
,
so t h a t o n e h a s (5.22)
dim(ker(dgl),n
Thus , t h e r e e x i s t s v3 E TIX, (5.23)
2)
ker(dg2Sc) t 1 .
such t h a t
0 # u3 E ker(dgI),
n ker(dg2ix ,
w h i l e o n e o b t a i n s , by h y p o t h e s i s ,
(dg3!,1v3) = v3(g3) # O r
(5.24)
f o r some g3 E A . So r e p e a t i n g t h i s a r g u m e n t one f i n a l l y o b t a i n s a ( f i n i t e ) s e q u e n c e { v2,. quence
.., v n }
i n T(X, x ) , t o g e t h e r w i t h a c o r r e s p o n d i n g se-
{g,, . . . , g n } i n A ; now by s e t t i n g
244
VII
SPECTRA OF PARTICULAR ALGEBRAS
(5.25)
fi
with a . = v . ( f . ) # 0 2
2
a sequence
2
{f,,
,1 S i S n
..., f n }
:=I gieA,
(cf. (5.17)
,
lziln, (5.20), e t c . )
,
one f i n a l l y o b t a i n s
i n A , which b y t h e p r e c e d i n g s a t i s f i e s t h e re-
lation ( d f .) ( v . ) = v , . ( f . ) = 6 . . , zx 3 d 2 23
(5.26)
w i t h l < i < j S n . T h a t i s , w e h a v e ( 5 . 1 5 ) and ( 5 . 1 6 ) . F u r t h e r m o r e , it i s r e a d i l y s e e n from ( 5 . 2 6 ) t h a t t h e two f a m i l i e s { v i } and
{(dfiIx 1
,
1 S i S n , a r e l i n e a r l y i n d e p e n d e n t i n T(X, x ) a n d i t s a l g e b r a i c d u a l , re-
s p e c t i v e l y , a n d t h i s c o m p l e t e s t h e p r o o f of t h e 1emma.i NOW, t h e f o l l o w i n g s t a n d a r d f a c t s from t h e r u d i m e n t s of
Rieman-
nian D i f f e r e n t i a l Geometry w i l l n e x t b e n e e d e d . T h u s , o u r m a n i f o l d X bei n g a l w a y s l o c a l l y compact a n d , by h y p o t h e s i s , 2nd c o u n t a b l e , it i s pa-
racompact ( c f . , f o r i n s t a n c e , J . Dugundji [l: p. 174, Theorem 6 . 5 1 ) . So :he manifold X admits a Cm-Riemannian metric o r , e q u i v a l e n t l y , it i s , i n f a c t , a Cm-Riemannian manifold (see S . KOEAYASHI -K. NOMIZU
[ 1 : p.
6 0 1 ) . Thus , a s a
c o n s e q u e n c e of t h e r e s p e c t i v e t h e o r y f o r t h e "exponential function" i n X I one g e t s t h e f o l l o w i n g l e m m a . ( C f . ,
f o r e x a m p l e , t h e l a s t R e f . : p. 148,
P r o p o s i t i o n 8 . 3 ; o r y e t F . BRICKELL- R.S. CLARK [I: p. I 8 O f l ) . Lemma. (Normal coordinates). Let X be a Cm-Riemannian
manifold and x a point of X . Then, f o r every b a s i s { v l , ...,
vn} of T ( X , x ) , there e x i s t s a local chart (17, $ ) = (U; x l , . .
.
, 3cn) (see ( 5 . 3 ) ) of the manifold X a t x such t h a t t h e basis ( v . ) coincides w i t h the Ncanonical basis" (-1 a oxi x ' 1 <= i S n , of T(X,x ) which corresponds t o the chart (U,@). i-kt i s , one has the r e l a t i o n (5.27)
vi =
a
(-)axi
x
w i t h 1 5 i S n. The f o l l o w i n g r e s u l t i s now a c o n s e q u e n c e o f t h e p r e v i o u s Lem-
m a and Lemma 5 . 2 . Namely, w e h a v e .
Corollary 5.1. Let the conditions of L e m 5.2 be s a t i s f i e d . Then, f o r every point x
X , there e x i s t s a local chart of the manifold X a t x , whose "coordinate
functions" are (appropriate r e s t r i c t i o n s of f u n c t i o n s ) from t h e given algebra A C
C"(X).Y e t
which, i n f a c t , amounts t o t h e same t h i n g , the algebra A provides "glo-
bal-local coordinates" a t every p o i n t of the manifold X . Woof. If ( V i ) l 5 i 6 n i s t h e b a s i s o f Ti'X, x ) , p r o v i d e d from Lemm a 5 . 2 , t h e n i n v i e w o f t h e p r e v i o u s Lemma t h e r e e x i s t s a l o c a l c h a r t
5.
245
NACHBIN THEOREM (NECESSITY)
vie T(X,x), I S i S n , as t h e c o r r e s p o n d i n g c a n o n i c a l b a s i s . Moreover, t h e f u n c t i o n s f . E A , 1 < i=C n , p r o (U, $1 a t x h a v i n g t h e g i v e n v e c t o r s
v i d e d by t h e same Lemma 5 . 2 ,
satisfy the relation
((=Is a
(djy,
(5.28)
)
= 6i
,
3 w i t h I < i l n ( c f . ( 5 . 2 6 ) and ( 5 . 2 7 ) ) . Now, by c o n s i d e r i n g t h e v e c t o r -
valued function f := (fi I I < i S n : x-f
(5.29) w i t h fi",
matrix o f
p
lRn,
a s a b o v e , o n e o b t a i n s , c o n c e r n i n g t h e r e s p e c t i v e Jacobian a t x, the relation
(5.30) w i t h I < i , j S n . So o n e g e t s (5.31)
from ( 5 . 2 8 ) ( s e e a l s o ( 5 . 2 ) ) clij
with 1 < iS j < n
.
,
Hence, d e t J z ( f I # O F so t h a t t h e map
id$),
(5.32)
= €iij
+
: T(X,x ) - T ( I R n ,
?(XI)
d e f i n e s a n isomorphism. T h e r e f o r e , b y t h e
3
IRn
Inverse Function Theorem ( f o r
-
m a n i f o l d s ( !) ; see , f o r i n s t a n c e , F. BRICKELL R. S. CLARK [l : p. 63, Prop+ c s i t i o n 4.4.11 ) , t h e map f i s a "local diffeomorphism": Namely, t h e r e ex-
i s t s a n open n e i g h b o r h o o d V of x , i n s u c h a way t h a t t h e r e s t r i c t i o n -+ t o V i s a d i f f e o m o r p h i s m o f V o n t o ( t h e open s e t ) f ( V l c IR'I T h e r e -
of
f'
fore, the pair
+
( V , f J , ) = (L';
(5.33)
(f.1z V ) l 5 i S n 1
y i e l d s a l o c a l c h a r t of t h e manifold X a t t h e p o i n t x , s a t i s f y i n g t h e r e q u i r e d c o n d i t i o n s ( c f . a l s o ( 5 . 3 ) ) ; moreover, t h e f u n c t i o n s
fiIv
(5.34)
, IsiSn,
correspond, of c o u r s e , t o t h e l a s t s t a t e m e n t of t h e c o r o l l a r y ( c f . a l s o t h e r e l . (5.35) i n t h e s e q u e l ) ,and t h e proof i s f i n i s h e d . I I n v i e w o f t h e p r e v i o u s lemma, o n e o b t a i n s a e m - a t l a s m a n i f o l d X which i s , of c o u r s e , c o m p a t i b l e w i t h t h e g i v e n
t u r e of X .
I t b e l o n g s , namely, t o t h e
maximal e m - a t l a s
of t h e
em-struc-
o f X . Thus, w e
are l e d t o t h e following. D e f i n i t i o n 5.1. Keeping t h e n o t a t i o n of C o r o l l a r y 5.1
,
the
em-
a t l a s o f t h e m a n i f o l d X which i s p r o v i d e d , a c c o r d i n g t o t h e p r e v i o u s comment, from t h i s c o r o l l a r y , i s c a l l e d t h e Nachbin a t l a s o f X associated
with +,he algebra A C C " ( X ) . Any c h a r t o f t h i s a t l a s i s a l s o c a l l e d a Nachof X , a t t h e p o i n t I C E X u n d e r c o n s i d e r a t i o n , corresponding t o the
b i n chart
246
VII
SPECTRA OF PARTICULAR
ALGEBRAS
algebra A . NOW, g i v e n a n y c h a r t (U, $I) = (U; x
,..., x
)
( c f . ( 5 . 3 ) ) o f t h e mani-
f o l d X a t x E X , i t s coordinate functions xi, 1 < i < = nmay , be considered as appro-
priate restrictions
( e v e n t u a l l y , however, t o an open s u b s e t o f V ) of func-
t i o n s from the algebra e m ( X ) ( c f . , f o r i n s t a n c e , S. HELGASON [ I : p . 6 , Lemma
1.2, a n d t h e comment a t t h e end o f p . 71 ) terminology ( c f . C o r o l l a r y 5.1)
,
. Thus,
applying t h e previous
one c o n c l u d e s t h a t , for every em-rizani-
C r n t X )provides global-lo-
f o l d X ( n o t n e c e s s a r i l y p a r a c o m p a c t ) , t h e algebra cal coordinates a t every point x e X .
The p r e c e d i n g c h a r a c t e r i z e s , i n f a c t , c o n d . 3 ) of Lemma 5 . 1 . So one h a s t h e following f a c t :
Cond. 3 ) of Lema 5 . 1 i s equivalent with t h e assumption t h a t the algebra A C e r n t X ) provides global-ZocaZ coor-
(5.35)
d i n a t e s , for every p o i n t x e X. Namely ( s e e a l s o C o r o l l a r y 5 . 1 ) , f o r e v e r y p o i n t x E X , t h e r e exi s t a n open n e i g h b o r h o o d U o f x a n d f u n c t i o n s C e A , w i t h 1 S i S n = dim X, such t h a t t h e p a i r
cu; (f:I u )l
(5.36)
d e f i n e s a l o c a l c h a r t of t h e m a n i f o l d X a t x
( t h e c h a r t (5.36) belongs
t o t h e maximal e m - a t l a s o f X). The r e s p e c t i v e by t h e f o l l o w i n g map ($: u-IRn:
(5.37)
x
-
$ ( x i := I
= ( f 1 ( x ) ,..., f
chart-map o f U i s g i v e n
(filU)(X)ll'
.<
-t=n
n ( X H .
Thus, o n e h a l f of t h e a s s e r t i o n i n ( 5 . 3 5 ) i s d e r i v e d a l r e a d y from C o r o l l a r y 5 . 1 .
F u r t h e r m o r e , s u p p o s e now t h a t t h i s c o n d i t i o n
is
t r u e , and l e t v e T ( X , x ) , w i t h v f 0 ; so f o r any c h a r t , l i k e (5.31, a t x , one a t l e a s t of t h e r e s p e c t i v e c o o r d i n a t e s of
1)
( c f . ( 5 . 7 ) ) i s non-
z e r o . Hence, c o n s i d e r i n g a t x t h e p r e v i o u s c h a r t ( 5 . 3 6 ) , o n e g e t s ( c f . a l s o (5.37))
v(xi)=v(filu) =v(fil =idfilx(vl# 0 ,
(5.38)
f o r o n e i n d e x i , a t l e a s t , a s above; i . e . ,
f o r some f .
E
A , which p r o v e s
the assertion.
6 . The Nachbin Theorem (sufficiency) W e prove f u r t h e r i n t h i s s e c t i o n t h a t t h e t h r e e c o n d i t i o n s f o r
a n a l g e b r a A S e " ( X i , s e t f o r t h b y Lemma 5 . 1 , a r e , i n d e e d , s u f f i c i e n t
6. NACHBIN THEOREM (SUFFICIENCY)
247
i n o r d e r t h a t ( 5 . 8 ) t o hold t r u e . W e f i r s t h a v e t h e f o l l o w i n g r e s u l t , which a l s o s u p p l e m e n t s t h e
p r e v i o u s Lemma 5 . 2 .
Lemma 6.1
. Let
X be an n-dimensional (paracompact) e m - m a n i f o I d and K a e m ( X ) , satisfying the
compact s u b s e t of X . Moreover, l e t A be a subalgebra of
-
t h r e e c o n d i t i o n s of Lermna 5 . 1 . Then, t h e r e e x i s t s a diffeomorphism
0: V
(6.1)
@(V)C B N ,
for an appropriate p o s i t i v e i n t e g e r N , where V i s an open neighborhood of K and @(V) c a r r i e s t h e submanifold s t r u c t u r e induced on it from B N under t h e n a t u r a l imbedding 0 ( V j E R N . In p a r t i c u l a r , t h e map 0 i s made of f u n c t i o n s from t h e g i v e n algebra A
C
c"(X!
( c f . a l s o t h e n e x t C o r o l l a r y 6.1 )
.
S i n c e t h e m a n i f o l d X i s a l o c a l l y compact s p a c e , t h e r e ex-
Prcof.
i s t s an open n e i g h b o r h o o d V of t h e g i v e n compact K E X which i s r e l a t i v e l y compact, i . e . ,
one h a s
(6.2)
K C V Cv,
w i t h V C X a compact s e t ( s e e , f o r i n s t a n c e , N . EOUREAKI [4: Chap. I ; p . 65, P r o p o s i t i o n
lo] ) . NOW, f o r e v e r y x
€ 7 ,t h e r e
e x i s t s by h y p o t h e s i s
, so
a f u n c t i o n f e A , w i t h f ( x l # O ( c f . c o n d . 1 ) of Lemma 5 . 1 ) f o r e v e r y y e N J I l w i t h Nx
b e i n g a n open n e i g h b o r h o o d o f
a r e f i n i t e many s u c h n e i g h b o r h o o d s T d x . l l S i S k , i n g of t h e compact
v,
Thus, t h e r e
p r o v i d i n g a n open c o v e r -
7
i n s u c h a way t h a t t h e r e s p e c t i v e f u n c t i o n s f .
d e f i n e a map (6.3)
F = ( f i ) I S{$
which n e v e r v a n i s h e s on
7. T h a t
-
z: : v-
k
IR
,
i s , one h a s
F ( z l := ( f i (xt.))15i6k # OelR
(6.4)
2.
t h a t f(y)#O,
k
,
f o r every x E V . On t h e o t h e r h a n d , by C o r o l l a r y 5 . 1 , c o v e r i n g of
7,
t h e r e e x i s t s a f i n i t e open
c o n s i s t i n g o f Nachbin c h a r t s , s a y
I ( u ~ ;( $ ) l S j 5 n ) ~ , ~ ~ i z l ,
(6.5)
so t h a t , b y t a k i n g ( 6 . 4 )
and ( 6 . 5 ) i n t o a c c o u n t , w e f u r t h e r s e t
i
$
(6.6)
with 1 6 i S l
atd
= 'k+(i-I)i1+j '
ISj6n.
Furthermore, f o r any x, y i n T l w i t h x f y , t h e r e 2 ) o f Lemma 5 . 1 a f u n c t i o n f ~ A , w i t h f ( x l # f ( y ) .
a n open n e i g h b o r h o o d W o f
(2,y
i
s u c h t h a t f(x7 # f ( y ' i ,
T h u s , t h e compact s e t ( c f . a l s o ( 6 . 5 ) )
e x i s t s by c o n d .
T h e r e f o r e , one f i n d s f o r any (x', y') e W.
248
VII SPECTRA OF PARTICULAR ALGEBRAS
n=~x~-(ru,xu1lv...uIUzxVz)~
(6.7)
d o e s n o t c o n t a i n t h e d i a g o n a l of 7 x 7 . T h u s , o n e c o n c l u d e s by t h e p r e c e d i n g t h a t t h e r e e x i s t f i n i t e many f u n c t i o n s , s a y h,,.. ., hm i n A , i n s u c h a way t h a t one h a s h . ( x f # h.(yl, Z < i < m
(6.8) f o r every
(2,y l
E R
. Thus,
,
setting
h . = fk+ln+i
(6.9)
, 1ai5m ,
we f u r t h e r consider t h e function =lR N
Q = ( f c i ) l < a < N: V-Q(V)
(6.10)
I
w i t h N = k + l n +m e m . NOW, a p p l y i n g ( 6 . 8 )
f o r e l e m e n t s of 0 , o r a n a p p r o p r i a t e Nach-
b i n c h a r t from ( 6 . 5 ) , o t h e r w i s e ( i . e . , f o r n o n - d i a g o n a l e l e m e n t s of - V x V b e l o n g i n g , however, t o t h e s e t ( U 1 x U 2 1 U . U (Ul x U,)) , o n e r e a d i l y
..
r e a l i z e s t h a t t h e map Q i s one-to-one. B e s i d e s , it i s a c L n - m a p definition ( c f . (6.6) inverse map CP-'
, (6.9)
by t h e same
and ( 6 . 1 0 ) ) . F u r t h e r m o r e , c o n s i d e r i n g t h e
o f Q , l e t x = @ - ' ( @ ( x ) ) GV ; t h u s t a k i n g a g a i n a Nachbin
c h a r t a t x , o n e c o n c l u d e s t h a t Q i s indeed a diffeomorphism. T h a t i s , i f
x e V S v b e l o n g s t o a Nachbin c h a r t , s a y ( U i ; f l '
,...,ft I , from
( 6 . 5 ) one
e s s e n t i a l l y c o n s i d e r s t h e diffeomorphism CP
(6.11)
1 ui
@(U.) c R n S R N
; ' iU
w i t h r e s p e c t t o t h e induced C " - s t r u c t u r e t h e " c a n o n i c a l imbedding" that
,
since f
ci
€
A Cc"(X)
r e s t r i c t i o n o f t h e map
lRnS I R N .
,1Sa 2 N ,
,
on lRn from R N I d e f i n e d by
( I n t h i s concern , w e f u r t h e r n o t e
one a c t u a l l y c o n s i d e r s b y ( 6 . 1 0 ) t h e
(fa):X+IRN
to
V;
a s i m i l a r remark h o l d s t r u e
f o r t h e map ( 6 . 1 1 ) 1 . I A s a c o n s e q u e n c e o f t h e p r e v i o u s Lemma 6 . 1 ,
i n g f a c t which, a s w e s h a l l see ( c f . Theorem 6 . 2 1 ,
w e have t h e f o l l o w characterizes, in
e f f e c t , the r e l a t i o n (5.8) concerning t h e given algebra A E e m f X ) .
So
one has
e
"-manifoZd and A Coroll ary 6.1. Let X be an n-dimensional (paracompact) a subalgebra of e " t X ) s a t i s f g i n g the three conditions of Lema 5 . 1 . Then, t h e foZlowing f a c t holds t r u e :
For every compact K G X , there e x i s t s a canonical imbedding (6.12.1 )
@:v-@(v)GlR
N- I a ) E n N
249
6. NACHBIN THEOREM (SUFFICIENCY)
of an open neighborhood V of K i n t o a ( f i n i t e dimensional) R N , whose coordinate functions
eucZidean space
0.= u . 0 O : V -W,
(6.12.2)
z
(see also ( 5 . 4 )
,
z
ISiSlV,
a r e r e s t r i c t i o n s t o V of ( r e a l -
v a l u e d ) C m - f u n c t i o n s on X which) belong t o the algebra A.
The p r e v i o u s a s s e r t i o n f o l l o w s , o f c o u r s e , d i r e c t l y from t h e p r o o f o f Lemma 6 . 1
c a l imbedding" NOW,
( c f . ( 6 . 1 0 ) ) and t h e same d e f i n i t i o n of a "canoni-
( s e e , f o r i n s t a n c e , F. BRICKELL- R.S. CLARK [ l : p. 811)
-
t a k i n g t h e d e f i n i t i o n o f t h e e m - t o p o l o g y i n t h e algebra c w ( X )
.
i n t o a c c o u n t ( s e e C h a p t e r Iv; S e c t i o n 4. ( 2 ) : t h e r e l s ( 4 . 1 4 ) a n d (4.191 ) , it i s on t h e image o f a compact K C X t h r o u g h t h e p r e v i o u s imbedding (6.12.1)
on which o n e a c t u a l l y c o n s i d e r s t h e a p p r o x i m a t i o n s e t f o r t h
by t h e r e l a t i o n ( 5 . 8 ) . So w e have now t h e f o l l o w i n g .
Theorem 6.1. (L. Nachbin). Consider a finite-dimensional 2nd countable Hausd o r f f e m - m a n i f o l d X , and l e t e " ( X ) be the algebra o f real-valued C m - f u n c t i o n s
ew(X). Then,
on X endowed w i t h t h e e m - t o p o l o g y . Moreover, l e t A be a subalgebra oJ the following two a s s e r t i o n s are equivalent: 1) A i s a dense subalgebra of i . e . , one has the r e l a t i o n (6.13) A = em(X).
e"(X),
2 ) A i s " s u f f i c i e n t l y separating"
ordinates a t every point of
on X providing, moreover, global-locaZ co-
x. Note.-
S a y i n g t h a t t h e a l g e b r a A i s suffici.enton X , w e mean t h a t it i s non-vanishi n g and s e p a r a t i n g ; c f . Lemma 5.1 f o r t h e relev a n t terminology.
ly separating
Proof of Theorem 6 . 1 , I f
( 6 . 1 3 ) i s v a l i d , t h e n it h a s a l r e a d y b e e n
p r o v e d i n t h e p r e v i o u s s e c t i o n (Lemma 5 . 1 ) t h a t A i s s u f f i c i e n t l y s e p a r a t i n g , y i e l d i n g a l s o global-local coordinates a t every p o i n t x e X ( c f . C o r o l l a r y 5.1 a n d a l s o ( 5 . 3 5 ) ) . Thus, 1 ) * 2 ) . On t h e o t h e r h a n d , from what h a s b e e n s a i d above, t o p r o v e (6.13) it s u f f i c e s t o t a k e any compact K C X on
which one c o n s i d e r s , i n t u r n ,
t h e a p p r o x i m a t i o n c l a i m e d by ( 6 . 1 3 ) . Thus,
by assuming 2), o n e g e t s from
C o r o l l a r y 6.1 t h a t , c o n c e r n i n g t h e g i v e n compact K C X ,
i s satisfied.
-
T h e r e f o r e , by c o n s i d e r i n g t h e i n v e r s e map o f (6.14)
,-I
:0 ( V l
V L X
Condition ( 6 . 1 2 )
(6.12.1), i.e.,
250
VII
SPECTRA OF PARTICULAR ALGEBRAS
one o b t a i n s t h a t f o @-I E C " ( @ ( V ) ) , f o r e v e r y t i o n t o t h e compact s e t
f E c"(X). Thus by r e s t r i c -
@ ( K I G @ ( V ) G i R None , f i n d s a function $ee"tiRN)
( c f . S e c t i o n 2 ; Lemma 2 ) s u c h t h a t (6.15) T h e r e f o r e , one h a s (6.16)
s o t h a t one g e t s f r o m ( 6 . 1 2 . 2 ) f(x) = @(O(xil = $4@l(x),...,@N(x)),
(6.17)
f o r e v e r y xEK.Furthermore, due t o (6.12.1),
one c o n c l u d e s t h a t O / Q . ( V )
and h e n c e 0 d @(K) S @ ( V ) .
(6.18)
Thus, b y c o n s i d e r i n g C O ( K ) a s a n open n e i g h b o r h o o d of 0 E X N , one may f i n a l l y assume t h a t
$to) = 0
(6.19)
( s e e a l s o , f o r example, S. KOBAYASHI-K. NOMIZU [ l : p. 272, Lemma 2 1 1 . NOW, a n a p p l i c a t i o n o f t h e c l a s s i c a l Weierstrass Theorem y i e l d s , i n view of ( 6 . 1 7 ) , t h a t t h e g i v e n f u n c t i o n f e c"(Xl i s approximated i n t h e Cm-topology of
ern(X) through
f u n c t i o n s from t h e g i v e n a l g e b r a A .
Namely, by p o l y n o m i a l s ( w i t h o u t c o n s t a n t terms; c f . (6.19) ) i n t h e v a r i ables
Q1 ix),.
(6.20)
.. , b N ( X ) ,
w i t h x e K , h e n c e i n t h e f u n c t i o n s Qi, 1 5 i S N . Thus, t h e f u n c t i o n s c"(X)
are a p p r o x i m a t e d i n t h e
C"-topo:ogy
in
by e l e m e n t s from t h e
g i v e n a l g e b r a A ( c f . ( 6 . 1 2 ) ; t h e a l g e b r a A d o e s n o t n e c e s s a r i l y cont a i n t h e i d e n t i t y e l e m e n t of r e l a t i o n (6.13), i.e.,
e m ( X ) ) . S o w e f i n a l l y have t h e d e s i r e d
2 ) = > 1 ) as w e l l ,
and t h i s c o m p l e t e s t h e p r o o f
of t h e theorem. 4 The s i t u a t i o n set f o r t h by t h e p r e c e d i n g p r o o f i s f u r t h e r c l a r i f i e d b y t h e n e x t t h e o r e m . However, w e do s e t f i r s t t h e f o l l o w i n g .
Definition 6.1. L e t X b e a f i n i t e - d i m e n s i o n a l C " - m a n i f o l d a s u b a l g e b r a of
C"(X).Now,
and A
w e s h a l l say t h a t t h e algebra A s a t i s f i e s
Condition ( N l , i n c a s e t h e t h r e e c o n d i t i o n s i n Lemma 5 . 1 h o l d t r u e f o r A (Namely, A i s t h u s s u f f i c i e n t l y s e p a r a t i n g on X (Theorem 6 . 1 ) and a l s o y i e l d s g l o b a l - l o c a l c o o r d i n a t e s a t every p o i n t of X ( c f . ( 5 . 3 5 ) ) .
.
The f o l l o w i n g i l l u m i n a t e s t h e meaning o f
Cond. (6.12). So w e h a v e .
7.
251
V A R I A N T S OF N A C H B I N ’ S THEOREM
Theorem 6.2. Let X be an n-dimensional (paracompact) e m - m a n i f o l d and
C”(X).Then,
subalgebra o f
1 ) A is a dense subalgebra o f
.
C”-topotogy
A a
t h e following three a s s e r t i o n s are e q u i v a l e n t :
Cml.XI, where t h e l a t t e r algebra c a r r i e s t h e
21 A s a t i s f i e s Condition ( N I ( c f . D e f i n i t i o n 6.1 )
.
5) A s a t i s f i e s Condition ( 6 . 1 2 ) .
Proof. The f a c t t h a t 1 ) - 2 ) i s Nachbin’s Theorem ( i - e . , Theorem 2)+3) a s f o l l o w s from C o r o l l a r y 6 . 1 . On t h e o t h e r h a n d ,
6 . 1 ) . NOW,
b y a s s u m i n g 3 ) and a p p l y i n g t h e argument u s e d i n t h e s e c o n d h a l f o f t h e p r o o f of Theorem 6 . 1
,
one o b t a i n s t h a t
=
Cm(X).
T h a t i s , 3 ) => 1 )
a s w e l l , and t h i s f i n i s h e s t h e p r o o f . 1
7. Appendix: Variants o f Nachbin’s Theorem W e c o n s i d e r , i n b r i e f , i n t h i s a p p e n d i x some v a r i a n t s o f Nach-
b i n ’ s Theorem r e f e r r i n g t o t h e a l g e b r a s e c t i o n 7.1 below)
,
and t h e a l g e b r a
CgtX),
cl(X)
w i t h 15rn
o f complex-valued
em-
f u n c t i o n s on a C m - m a n i f o l d X (see S u b s e c t i o n 7 . 2 ) .
7.1. Differentiability of class t h e previous Sections 5, 6 e d a l r e a d y i n L . NACHBIN [ I ] .
t h a t t h e space X i n
is a (finite-dimensional) d i f f e r e n t i a l
d i f f e r e n t i a b i l i t y class
m a n i f o l d of
em.The case
ern ,w i t h
1 2 rn < 03,
h a s been c o n s i d e r -
Thus, a s f a r a s o n e c o n s i d e r s real-valued
functions, t h e argument a p p l i e d i n t h e p r e v i o u s s e c t i o n s i s s i m i l a r l y
C g l X ) of r e a l - v a l u e d d i f f e r e n t i a b l e f u n c on a ( p a r a c o m p a c t ) C”-rnanifoId X. So one g e t s t i o n s of “cZass t h e a n a l o g o n o f Theorem 6 . 1 i n t h i s c a s e too. Of c o u r s e , t h e a l g e b r a
used h e r e f o r t h e a l g e b r a
em
i s endowed, i n t u r n , w i t h t h e r e s p e c t i v e c a n o n i c a l
Cm-topology,i.e.,
t h e topology of uniform convergence on cornpacta of t h e ( d i f f e r e n t i a b l e ) f u n c t i o n s on X and of t h e i r d e r i v a t i v e s u p t o order rn (see, f o r i n s t a n c e , F. TREVES [ I :
p. 85 f f ] )
.
The t o p o l o g i c a l a l g e b r a
( r e a l ) Frgehet localZy m-eonuex algebra a l s o Corollary I;7.2 compact X )
.
CrnfX) thus
defined is s t i l l a
( w i t h an i d e n t i t y e l e m e n t ; i b i d . See
o r y e t C o r o l l a r y I ; 7 . 3 of t h i s book i n c a s e o f
I n t h i s r e s p e c t , w e s t i l l n o t e t h a t t h e r e s p e c t i v e m a t e r i a l of C h a p t e r IV, S e c t i o n 4 . ( 2 ) u s e d above h o l d s t r u e , of c o u r s e , f o r t h e ‘I
( r e a l ) Crn-caseIt as w e l l .
7.2. Comp1exification.-
W e consider next the case t h a t the differ-
252
VII
SPECTRA OF PARTICULAR ALGEBRAS
e n t i a b l e f u n c t i o n s i n v o l v e d i n t h e p r e c e d i n g d i s c u s s i o n a r e complexv a l u e d . That i s , w e s e t
c"(x) =
(7.2)
The c a s e of t h e a l g e b r a
e,"(X)
cCrncx).
is then treated similarly a s i n the
previous s e c t i o n 7 . 1 . Thus , c o n c e r n i n g Condition ( N l ( D e f i n i t i o n 6.1 ) f o r every f E e , " ( X )
,
, we
remark t h a t ,
t h e c o r r e s p o n d i n g d i f f e r e n t i a l of f a t some p o i n t i s now, i n g e n e r a l , a complex-valued map on T(X, x); i.e., one h a s
x EX,
( d f )x : F(X, X I
(7.3)
-
Q:
t h i s b e i n g , o f c o u r s e , IR-linear ( s a t i s f y i n g , moreover, t h e L e i b n i z c o n d i t i o n ; c f . ( 5 . 2 ) ) . So one may c o n s i d e r ( 7 . 3 ) a s a Leibniz map on t h e compZexified tangent space o f X a t x of the aZgebra 1 7 . 2 ) ) . T h a t i s , w e have
( o r y e t a co.nplex derivation a t X E X ,
,
( d f l , : T (X,x) = T I X , x) 8 C -C C IR i n s i c h a manner t h a t (7.4)
(dfl,
(7.5)
f o r a n y v e T ( X , x I and X E C . NOW, s i n c e C % I R + i l R imaginary part of
(7.4)
,
(V
8 A) =
, with
X. t d f l , ( v )
I
i = R , by c o n s i d e r i n g t h e r e a l and
namely, R e ( ( d f & ) and l r n ( ( d f ) x ) , r e s p e c t i v e l y ,
one g e t s t h e a n a l o g o u s r e s u l t to Lemma 5 . 2 , h e n c e , f i n a l l y , a Nachbin c h a r t a t x e x c o r r e s p o n d i n g t o R e ( i d f 1 , ) . [ I n t h i s r e s p e c t , see a l s o N . BOURBAKI [2:
Chap. 2 ; p . 1 4 , C o r o l l a i r e I] )
i n t h e proof of Theorem 6 . 1
. So
t h e argument a p p l i e d
i s s t i l l v a l i d , assuming moreover t h a t t h e
a l g e b r a A G C Z t X ) i s seZf-adjoint; t h a t i s , w e assume t h a t P E A , f o r e v e r y f e A
(7d e n o t i n g
t h e complex-conjugate of t h e (complex-valued) f u n c -
t i o n f e A ) . Thuslone obtains t h e following. Theorem 7.1. Let X be an n-dimensional paracompact Cm-manifoZd and c " ( X l the l o c a l l y m-convex algebra o f complex-valued e " - f u n c t i o n s
.
on X i n the C " - t o -
p o l o g y ( c f . S e c t i o n I V ; 4 . ( 2 ) ) Moreover, l e t A be a s e l f - a d j o i n t subalgebra of Then, one has the r e l a t i o n (7.6) A = em(X)
c"(X).
i f , and o n l y i f , the corresponding t h r e e conditions of Lema 5.1 are s a t i s f i e d . I