Chemical constituents from Bupleurum chinese and their chemotaxonomic significance

Chemical constituents from Bupleurum chinese and their chemotaxonomic significance

Biochemical Systematics and Ecology 86 (2019) 103929 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage:...

1MB Sizes 0 Downloads 141 Views

Biochemical Systematics and Ecology 86 (2019) 103929

Contents lists available at ScienceDirect

Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco

Chemical constituents from Bupleurum chinese and their chemotaxonomic significance

T

Danqi Lia, Dandan Yuea,b, Da Liua,c, Xuegui Liua,c,∗∗, Shaojiang Songd,∗ a

Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, PR China College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, PR China c College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, PR China d School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China b

ARTICLE INFO

ABSTRACT

Keywords: Bupleurum chinense DC Apiaceae Chemotaxonomy Phytochemical constituents

A phytochemical investigation of the roots of Bupleurum chinese DC. led to the isolation of eighteen compounds, including three chromones (1–3), seven flavonoids (4–10), one dihydrochalcone (11), two phenylpropanoid glycosides (12–13), one lignan (14), three sterols (15–17) and one stilbenoid (18). Their structures were elucidated on the basis of NMR spectroscopic analysis and comparison with literature data. Compounds 6–7, 11–14 and 18 were firstly reported from the genus Bupleurum and the family Apiaceae. Moreover, the chemotaxonomic value of the isolates was also discussed.

1. Subject and source The genus of Bupleurum, belonging to the family Apiaceae, is represented by 200 species in the world, which is widely distributed in the Northern Hemisphere, North Africa and Eurasia (Yao et al., 2013). The genus comprises annual and perennial species with bisexual flowers, containing five stamens, cremocarps, simple, long, and slender leaves (Neves and Watson, 2004). Bupleurum species are commonly used as medicinal plants with a variety of bioactive constituents and abundant pharmacological activities (Ashour and Wink, 2011). The roots of Bupleurum chinense DC., a well-known Traditional Chinese Medicine, was primarily used to treat cold fevers, chills, congestion and stuffiness in the chest and hypochondria in the form of pharmaceutical preparations for more than 2000 years (Tan et al., 2008). According to the Chinese Pharmacopoeia of 2015, Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. were regarded as the standard medical plants (Zhu et al., 2009). With the development of modern pharmacology, recent studies have indicated that the roots of B. chinense possesses a wide range of effcts, such as anti-inflammatory, antitumor, antidepressant, antipyretic, antiviral, antihepatitis, anticonvlsive, hepatoprotective and immunostimulant activities and so on (B.C. Yuan et al., 2017; Kuang et al., 2009; Ashour and Wink, 2011). In order to clarify the taxonomic characters of B. chinense, the systematic phytochemical investigation and

chemotaxonomic relationship were carried out. The roots of B. chinense were purchased from Tong-ren Pharmaceutical Company (Co. Ltd, Shenyang, China) and were authenticated by Prof. Jin-Cai Lu, Department of Pharmaceutical Botany, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University. A voucher specimen (No. 1012002) was maintained at the School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University (see Fig. 1). 2. Previous work Previous phytochemical investigations on genus Bupleurum revealed the presence of various active constituents, including triterpene saponins (Kok et al., 1995; Lin et al., 2013), lignans (Estevez-Braun et al., 1996), flavonoids and related chromones (Zhu et al., 2017), sterols (Pistelli et al., 2005), coumarins (Pistelli et al., 1996), polyacetylenes (Huang et al., 2009), volatile oils (Bertoli et al., 2004) and polysaccharides (Tong et al., 2014). Our group had identified numerous compounds from the roots of B. chinense, including seven new oleanane triterpenoids and one new lignan (Li et al., 2015, 2016). The chemotaxonomy of the flavonoids from aerial part of B. chinense had been investigated (Zhang et al., 2007). But, there are less reports about the constitutes in the roots of B. chinense, which one also have important chemotaxonomical significance.

Corresponding author. Corresponding author. Institute of Functional Molecules, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, PR China. E-mail addresses: [email protected] (X. Liu), [email protected] (S. Song). ∗

∗∗

https://doi.org/10.1016/j.bse.2019.103929 Received 1 July 2019; Received in revised form 5 August 2019; Accepted 10 August 2019 Available online 28 August 2019 0305-1978/ © 2019 Published by Elsevier Ltd.

Biochemical Systematics and Ecology 86 (2019) 103929

D. Li, et al.

Fig. 1. Compounds 1–18 from B. chinense.

3. Present work

(1.3 g) and Fr. 3-2-4-4 (0.8 g) were further purifed by semi-preparative HPLC with MeOH/H2O (v/v = 60 : 40) to give compounds 6 (15 mg), 7 (9 mg), 8 (13 mg) and 9 (11 mg), respectively. Fr. 3-3 (28.1 g) was fractionated using silica gel (200–300 mesh) column chromategraphy (CC) with CH2Cl2/MeOH (v/v = 20 : 1, 15 : 1, 10 : 1, 8 : 1, 5 : 1 and 0 : 1) to obtain subfractions (Fr. 3-3-1-Fr. 3-4-4), respectively. Fr. 3-3-2 was repeatedly subjected to Sephadex LH-20 column chromategraphy (CC) with MeOH/H2O (v/v = 60 : 40), and isolated by semipreparative HPLC (35% MeOH/H2O) to yield compounds 17 (11 mg) and 18 (10 mg). Similarly, compounds 10 (9 mg), 12 (8 mg) and 13 (17 mg) were obtained from Fr. 3-3-2 by Sephadex LH-20 column chromategraphy (CC) with MeOH/H2O (v/v = 60 : 40) and semipreparative HPLC (40% MeOH/H2O). In addition, Fr. 3-3-4 yielded one compound 14 (12 mg), each of which was purified by semipreparative HPLC with MeOH/H2O (v/v = 60 : 40). Based on spectroscopic analysis (1H NMR, 13C NMR, HRESIMS and CD) and comparison with the published data (Supporting materials), the isolated compounds were identified as eugenin (1) (Anh et al., 2014), 2, 5-dimethyl-7-hydroxycheomone (2) (Hang et al., 2008), saikochrome-A (3) (Kobayashi et al., 1990), isorhamnetin (4) (Ashour et al., 2018), luteolin (5) (Lin et al., 2014), vitexin-2-O-rhamnoside (6) (Jhoo et al., 2007), kaempferol-3-β-D-(6-O-trans-p-coumaroyl) glucopyranoside (7) (Tsukamoto et al., 2004), isorhamnetin-3-O-β-D-rutinoside (8) (Kuang et al., 2009), kaempferol-3-O-β-D-glucopyranoside (9) (Bencheraiet et al., 2012), apigenin-6, 8-di-C-β-D-glucopyranoside

The air-dried roots (9.5 kg) of B. chinense was extracted using homogenate extraction with 75% ethanol at room temperature for three times. The combined extract solution was evaporated under reduced pressure by a rotary evaporator to obtain 800.0 g residue. The brown residue was fractionated on silica gel (200–300 mesh) column chromategraphy (CC) and eluted with CH2Cl2/MeOH (v/v = 100:1, 50:1, 30:1, 20:1, 10:1 and 0:1) to obtain five fractions (Fr. 1–5). Fr. 3 (88 g) was further separated by polyamide (200–300 mesh) column chromatography (CC) eluting with a stepwise gradient system of MeOH/H2O (v/v = 30 : 70, 50 : 50, 70 : 30 and 100 : 0) to give four fractions (Fr. 31-Fr. 3–4). Fr. 3–2 (21.2 g) was chromatographed over a silica gel (200–300 mesh) column with CH2Cl2/MeOH (v/v = 30 : 1, 20 : 1, 15 : 1, 10 : 1, 8 : 1, 5 : 1 and 0 : 1) to afford four fractions (Fr. 3-2-1-Fr. 3-24). Fr. 3-2-3 (5.4 g) was passed over reversed phase C-18 silica gel column chromatography (CC) with MeOH/H2O mixtures (v/v = 60 : 40) and further purified by semi-preparative HPLC using MeOH/H2O (v/v = 70 : 30) as mobile phase to get compounds 1 (9 mg), 2 (10 mg), 3 (8 mg), 4 (8 mg), 5 (9 mg) and 11 (12 mg). Similarly, the purification of Fr. 3-2-2 (1.5 g) by semi-preparative HPLC with MeOH/H2O (v/ v = 65 : 35) afforded compounds 16 (9 mg). Fr. 3-2-4 (6.8 g) was subjected to reversed phase C-18 silica gel column chromatography (CC) and washed with MeOH/H2O (v/v = 30 : 70, 60 : 40 and pure MeOH) to afford eight subfractions (Fr. 3-2-4-1-Fr. 3-2-4-8). Fr. 3-2-4-3 2

Biochemical Systematics and Ecology 86 (2019) 103929

D. Li, et al.

(10) (Zhang et al., 2008), 1-(2, 4-dihydroxyphenyl)-3-hydroxy-3-(4′hydroxyphenyl)- 1-propanone (11) (Rafi et al., 2002), isoacteoside (12) (Chae et al., 2005), martynoside (13) (E. Fuji et al., 2018), 7R, 8Sdehydrodiconiferyl alcohol (14) (Deyama et al., 1987), β-amyrin (15) (Zhang et al., 2016), α-spinasterol (16) (Li et al., 1997), α-spinasterol-3O-β-D-glucoside (17) (Ashour et al., 2012), α-viniferin (18) (GonalezSarrías et al., 2011).

L. (Verbenaceae) (Saidi et al., 2018), Lagotis brevituba Maxim. (Scrophulariaceae) (X. Yuan et al., 2017), Roylea cinerea (D. Don) Baillon (Lamiaceae) (Sharma et al., 2017), Marrubium vulgare L. (Lamiaceae) (Masoodi et al., 2015), Strobilanthes cusia (Nees) Kuntze (Acanthaceae) (Gu et al., 2014), Calceolaria talcana Grau & C. Ehrhart (Scrophulariaceae) (Muñoz et al., 2013), Salvia viridis L. (Lamiaceae) (Rungsimakan and Rowan, 2014). These findings provided new information on the chemical aspects of B. chinense, and compounds 12 and 13 might serve as a chemotaxonomic marker for distinguishing B. chinense. Lignans are ubiquitously distributed throughout the plant kingdom and have many biological activities. The major subclasses of lignans in this genus are dibenzylbutyrolactone, arylnaphthalenes, aryltetralinelactones and tetrahydrofurofuranes derivatives, depending on the pattern of additional bridging between the two β-linked phenylpropanoid units (Yang et al., 2017). Compound 14 was acquired from Prunus tomentosa Thunb. (Rosaceae) (Liu et al., 2014), Sambucus williamsii Hance (Adoxaceae) (Xiao et al., 2014), Viburnum erosum Thunb. (Caprifoliaceae) (In et al., 2015), Tribulus terrestris L. (Zygophyllaceae) (Hong et al., 2013), Euonymus alatus (Thunb.) Sieb.(Celastraceae) (Jeong et al., 2011). The study exhibited the taxonomic relationships between Apiaceae and other families. Furthermore, compound 14 could be considered as specific markers of B. chinense. Stilbenoids are very rarely reported from other species of genus Bupleurum. This is the first report of a stilbenoid obtained from a species of genus Bupleurum. According to previous research, compound 18 was discovered from Shorea roxburghii G. Don (Dipterocarpaceae) (Kiyofumi et al., 2017), Caragana sinica (Buc'hoz) Rehder (Fabaceae) (Jeong et al., 2017), Dipterocarpus tuberculatus Roxb (Dipterocarpaceae) (Surapinit et al., 2014), Carex humilis Leyss (Cyperaceae) (Seo et al., 2017). Therefore, compound 18 may be of vital importance as the chemotaxonomic marker of B. chinense. In conclusion, the results of this study enriched the phytochemical diversity and added the knowledge about the chemistry of B. chinense. In addition, the presence of compounds 1, 9, 17 demonstrated that B. chinense has a close chemotaxonomic relationship with other Bupleurum species. Compound 6–7, 11–14, 18 had not been found in this genus Bupleurum or in the family Apiaceae. Therefore, These constituents might have chemotaxonomic significance for the identification of B. chinense. However, further studies about the chemical makeup of other Bupleurum species are required.

4. Chemotaxonomic significance In the present phytochemical study, eighteen compounds were obtained from the roots of B. chinense, including three chromones (1–3), seven flavonoids (4–10), one dihydrochalcone (11), two phenylpropanoid glycosides (12–13), one lignan (14), three sterols (15–17), one stilbenoid (18). The findings would enrich chemical diversity of B. chinense and provide evidences for further chemotaxonomic studies. To the best of our knowledge, compounds eugenin (1), 2,5-dimethyl-7-hydroxycheomone (2), saikochrome-A (3), isorhamnetin (4), luteolin (5), isorhamnetin-3-O-β-D-rutinoside (8), kaempferol-3-O-β-Dglucopyranoside (9), apigenin-6, 8-di-C-β-D-glucopyranoside (10), βamyrin (15), α-spinasterol (16), α-spinasterol-β-D-glucoside (17) have been previously reported from B. chinense and the genus Bupleurum. Among them, compounds 1, 9, 17 were previously reported from different species of the same genus. In brief, compounds 1, 9, 17 were previously isolated from Bupleurum scorzonerifolium Willd. (Chang et al., 2003), Bupleurum fruticosum L. (Bencheraiet et al., 2012), Bupleurum marginatum Wall. ex DC. (Ashour et al., 2012), respectively. Thus, the presence of compounds 1, 9, 17 indicated the close phylogenetic relationship among these species of Bupleurum. Significantly, vitexin-2-O-rhamnoside (6), kaempferol-3-β-D-(6-O-trans-p-coumaroyl) glucopyranoside (7), 1-(2,4- dihydroxyphenyl)-3-hydroxy-3-(4′-hydroxyphenyl)-1-propanone (11), isoacteoside (12), martynoside (13), 7R, 8S-dehydrodiconiferyl alcohol (14), α-viniferin (18) were new findings in the genus Bupleurum and the family of Apiaceae. Flavonoids are widely distributed in the genus Bupleurum as the characteristic constituents, which were widely used as vital chemotaxonomical markers to distinguish between different Bupleurum species (Zhang et al., 2007). The flavonoids in the genus Bupleurum are derivatives of the flavonol aglycones, such as kaempferol, isorhamnetin, quercetin, apigenin, acacetin, chrysin, luteolin and tamarixetin (Ashour et al., 2012). Compouds 6 and 7 are flavonoids which have never been found in other plants of Apiaceae family. In addition, compounds 6 and 7 were both obtained from Crataegus pinnatifida Bge. Var. Major N. E. Br. (Rosaceae) (Luo et al., 2015) and Fragaria ananassa Duch. cv. Tochiotome. (Rosaceae) (Tsukamoto et al., 2004). Compoud 6 was also previously isolated from Beta vulgaris var. cicla L. (Amaranthaceae) (Ninfali et al., 2017), Neptunia oleracea Lour. (Fabaceae) (Lee et al., 2016), Tetrastigma hemsleyanum Diels et Gilg (Vitaceae) (Sun et al., 2013), and compoud 7 had been reported from Croton gratissimus Burch. (Euphorbiaceae) (Pudumo et al., 2018). Therefore, the isolation of compouds 6 and 7 could be considered to be the chemotaxonomic signifcance and serve as valuable chemotaxonomic markers for distinguishing B. chinense. Compound 11 was isolated from Glycyrrhiza glabra L. (Fabaceae) (Rafi et al., 2002) and Pisum sativum L. (Fabaceae) (Evidente et al., 2010). Collectively, all of the above facts indicated some genetic relationship between Apiaceae and Fabaceae family. The phenylpropanoid glycosides isolated herein are broadly distributed among some plant families. The literatures revealed that compounds 12 and 13 were both recorded from Sesamum indicum L. (Pedaliaceae) (Y. Fuji et al., 2018), Adansonia digitata L. (Malvaceae) (Li et al., 2017). In addition, compound 12 was isolated from Lathraea squamaria L. (Orobanchaceae) (Dankova et al., 2016), Gynura cusimbua (Asteraceae) (Ma et al., 2017.), Incarvillea compacta Maxim. (Bignoniaceae) (Zhao et al., 2017), Syringa vulgaris L. (Oleaceae) (Tóth et al., 2016), Amphilophium paniculatum (L.) Kunth (Bignoniaceae) (Samy et al., 2015). Compound 13 was discovered from Citharexylum spinosum

Acknowledgments This research work was supported by the National Natural Science Foundation of China (No. 81703378), Foundation (No. LQ2017016) from the Project of Education Department of Liaoning province of P. R. China, and Foundation (No. 20170520250) from Department of Science and Technology of Liaoning province of P. R. China. Appendix A. Supplementary data Supplementary data to this article can be found online at https:// doi.org/10.1016/j.bse.2019.103929. References Anh, D.T., Duong, T.B., Hoang, V.D., 2014. A new chromone from Hymenocallis littoralis Salisb. (Amaryllidaceae). Nat. Prod. Res. 28, 1869–1872. https://doi.org/10.1080/ 14786419.2014.951931. Ashour, M.L., Wink, M., 2011. Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action. J. Pharm. Pharmacol. 63, 305–321. https://doi.org/ 10.1111/j.2042-7158.2010.01170.x. Ashour, M.L., El-Readi, M.Z., Tahrani, A., Eid, S.Y., Wink, M., 2012. A novel cytotoxic aryltetraline lactone from Bupleurum marginatum (Apiaceae). Phytochem. Lett. 5, 387–392. https://doi.org/10.1016/j.phytol.2012.03.009. Ashour, M.L., Youssef, F.S., Gad, H.A., El-Readi, M.Z., Bouzabata, A., Abuzeid, R.M., Sobeh, M., Wink, M., 2018. Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by

3

Biochemical Systematics and Ecology 86 (2019) 103929

D. Li, et al. virtual screening. J. Pharm. Pharmacol. 70, 952–963. https://doi.org/10.1111/jphp. 12904. Bencheraiet, R., Kabouche, A., Kabouche, Z., Touzani, R., Jay, M., 2012. Flavonol 3-Oglycosides from three Algerian Bupleurum specie. Rec. Nat. Prod. 6, 171–174. https:// doi.org/10.1080/14786419.2011.606220. Bertoli, A., Pistelli, L., Morelli, I., Fraternale, D., Giamperi, L., Ricci, D., 2004. Volatile constituents of micropropagated plants of Bupleurum fruticosum L. Plant Sci. 167, 807–810. https://doi.org/10.1016/j.plantsci.2004.05.017. Chae, S., Kim, J.S., Kang, K.A., Bu, H.D., Lee, Y., Seo, Y.R., Hyun, J.W., Kang, S.S., 2005. Antioxidant activity of isoacteoside from Clerodendron trichotomum. J. Toxicol. Environ. Health A. 68, 389–400. https://doi.org/10.1080/15287390590900750. Chang, W.L., Chiu, L.W., Lai, J.H., Lin, H.C., 2003. Immunosuppressive flavones and lignans from Bupleurum scorzonerifolium. Phytochemistry 64, 1375–1379. https://doi. org/10.1016/j.phytochem.2003.08.002. Dankova, I., Zemlicka, M., Svajdlenka, E., Bartl, T., Smejkal, K., 2016. The chemotaxonomic significance of phenylethanoid glycosides of Lathraea squamaria L. (Orobanchaceae). Biochem. Syst. Ecol. 64, 53–56. https://doi.org/10.1016/j.bse. 2015.11.006. Deyama, T., Ikawa, T., Kitagawa, S., Nishibe, S., 1987. The constituents of Eucommia ulmoides Oliv. VI. Isolation of a new sesquilignan and neolignan glycosides. Chem. Pharm. Bull. 35, 1803–1807. https://doi.org/10.1248/cpb.35.1803. Estevez-Braun, A., Estévez-Reyes, R., González, A.G., 1996. 13C-NMR assignemts of some dibenzyl-gamma-butyrolactone lignans. Phytochemistry 43, 885–886. https://doi. org/10.1016/0031-9422(96)00363-9. Evidente, A., Cimmino, A., Fernández-Aparicio, M., Andolfi, A., Rubiales, D., Motta, A., 2010. Polyphenols, including the new Peapolyphenols A-C, from pea root exudates stimulate Orobanche foetida seed germination. J. Agric. Food Chem. 58, 2902–2907. https://doi.org/10.1021/jf904247k. Fuji.Y., E., Uchida, A., Fukahori, K., Chino, M., Ohtsuki, T., Matsufuji, H., 2018. Chemical characterization and biological activity in young sesame leaves (Sesamum indicum L.) and changes in iridoid and polyphenol content at different growth stages. PLoS One 13 e0194449/1. https://doi.org/10.1371/journal.pone.0194449. Fuji, Y., Ohtsuki, T., Matsufuji, H., 2018. Accumulation and subcellular localization of acteoside in sesame plants (Sesamum indicum L.). ACS Omega 3, 17287–17294. https://doi.org/10.1021/acsomega.8b02798. Gonalez-Sarrías, A., Gromek, S., Niesen, D., Seeram, N.P., Henry, G.E., 2011. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. J. Agric. Food Chem. 59, 8632–8638. https://doi. org/10.1021/jf201561e. Gu, W., Zhang, Y., Hao, X.J., Yang, F.M., Sun, Q.Y., Morris-Natschke, S.L., Lee, K.H., Wang, Y.H., Long, C.L., 2014. Indole alkaloid glycosides from the aerial parts of Strobilanthes cusia. J. Nat. Prod. 77, 2590–2594. https://doi.org/10.1021/ np5003274. Hang, T.T., Zhou, J.S., Liu, Y., Wang, Q., 2008. Chemical constituents of the aerial part of Bupleurum longicaule. Chin. J. Nat. Med. 6, 430–434. https://doi.org/10.3724/SP.J. 1009.2008.00430. Hong, S.S., Choi, Y.H., Jeong, W., Kwon, J.G., Kim, J.K., Seo, C., Ahn, E.K., Lee, H.H., Ko, H.J., Seo, D.W., Oh, J.S., 2013. Two new furostanol glycosides from the fruits of Tribulus terrestris. Tetrahedron Lett. 54, 3967–3970. https://doi.org/10.1016/j.tetlet. 2013.05.081. Huang, H.Q., Zhang, X., Shen, Y.H., Su, J., Liu, X.H., Tian, J.M., Lin, S., Shan, L., Zhang, W.D., 2009. Polyacetylenes from Bupleurum longiradiatum. J. Nat. Prod. 72, 2153–2157. https://doi.org/10.1021/np900534v. In, S.J., Seo, K.H., Song, N.Y., Lee, D.S., Kim, Y.C., Baek, N.I., 2015. Lignans and neolignans from the stems of Vibrunum erosum and their neuroprotective and anti-inflammatory activity. Arch Pharm. Res. (Seoul) 38, 26–34. https://doi.org/10.1007/ s12272-014-0358-9. Jeong, E.J., Cho, J.H., Sung, S.H., Kim, S.Y., Kim, Y.C., 2011. Inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophage cells by lignans isolated from Euonymus alatus leaves and twigs. Bioorg. Med. Chem. Lett 21, 2283–2286. https://doi.org/10.1016/j.bmcl.2011.02.102. Jeong, W., Ahn, E.K., Oh, J.S., Hong, S.S., 2017. Caragasinin C: a new oligostilbene from the roots of Caragana sinica. J. Asian Nat. Prod. Res. 19, 1143–1147. https://doi.org/ 10.1080/10286020.2017.1302941. Jhoo, J.W., Ang, C.Y.W., Heinze, T.M., Deck, J., Schnackenberg, L.K., Beger, R.D.K., Dragull, C.S., Tang, 2007. Identification of C-glycoside flavonoids as potential mutagenic compounds in kava. J. Food Sci. 72, 120–125. https://doi.org/10.1111/j. 1750-3841.2007.00278.x. Kiyofumi, N., Saowanee, C., Yusuke, K., Ryohei, Y., Yutana, P., Osamu, M., Toshio, M., 2017. Quantitative determination of stilbenoids and dihydroisocoumarins in Shorea roxburghii and evaluation of their hepatoprotective activity. Int. J. Mol. Sci. 18, 451. https://doi.org/10.3390/ijms18020451. Kobayashi, M., Tawara, T., Tsuchida, T., Mitsuhashi, H., 1990. Studies on the constituents of umbelliferae plants. XVIII. Minor constituents of bupleuri radix: occurrence of saikogenins, polyhydroxysterols, a trihydroxy C18 fatty acid, a lignan and a new chromone. Chem. Pharm. Bull. 38, 3169–3171. http://211.140.227.254:7001/rwt/ 22/https/MSYXTLUQPJUB/10.1248/cpb.38.3169. Kok, L.D.S., Wong, C.K., Leung, K.N., Tsang, S.F., Fung, K.P., Choy, Y.M., 1995. Activation of the anti-tumor effector cells by Radix Bupleuri. Immunopharmacology 30, 79–87. https://doi.org/10.1016/0162-3109(95)00010-Q. Kuang, H.X., Sun, S.W., Yang, B.Y., Xi, Y.G., Feng, W.S., 2009. New megastigmane sesquiterpene and indole alkaloid glucosides from the aerial parts of Bupleurum chinense DC. Fitoteraia 80, 35–38. https://doi.org/10.1016/j.fitote.2008.09.007. Lee, S.Y., Abas, F., Khatib, A., Ismail, I.S., Shaari, K., Zawawi, N., 2016. Metabolite profiling of Neptunia oleracea and correlation with antioxidant and a-glucosidase inhibitory activities using 1H NMR-based metabolomics. Phytochem. Lett. 16, 23–33.

https://doi.org/10.1016/j.phytol.2016.02.014. Li, Q.C., Liang, H., Zhao, Y.Y., Zhang, L.H., 1997. The chemical constituents from the roots of Bupleurum chinense. J. Chin. Pharm. Sci. 6, 53–55. https://doi.org/10.1182/ blood-2009-06-226290. Li, D.Q., Wu, J., Liu, L.Y., Wu, Y.Y., Li, L.Z., Huang, X.X., Liu, Q.B., Yang, J.Y., Song, S.J., Wu, C.F., 2015. Cytotoxic triterpenoid glycosides (saikosaponins) from the roots of Bupleurum chinense. Bioorg. Med. Chem. Lett 25, 3887–3892. https://doi.org/10. 1016/j.bmcl.2015.07.053. Li, D.Q., Wang, D., Zhou, L., Li, L.Z., Liu, Q.B., Wu, Y.Y., Yang, J.Y., Song, S.J., Wu, C.F., 2016. Antioxidant and cytotoxic lignans from the roots of Bupleurum chinense. J. Asian Nat. Prod. Res. 19, 1–9. https://doi.org/10.1080/10286020.2016.1234456. Li, X.N., Sun, J., Shi, H., Yu, L.L., Ridge, C.D., Mazzola, E.P., Okunji, C., Iwu, M.M., Michel, T.K., Chen, P., 2017. Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res. Int. 99, 755–761. https://doi.org/10.1016/j.foodres.2017.06.025. Lin, T.Y., Chiou, C.Y., Chiou, S.J., 2013. Putative genes involved in saikosaponin biosynthesis in Bupleurum species. Int. J. Mol. Sci. 14, 12806–12826. https://doi.org/10. 3390/ijms140612806. Lin, L.C., Pai, Y.F., Tsai, T.H., 2014. Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. J. Agric. Food Chem. 63, 7700–7706. https://doi.org/10.1021/jf505848z. Liu, Q.B., Huang, X.X., Yan, X.J., Bai, M., Yu, L.H., Hu, C., Zhu, T., Li, L.Z., Song, S.J., 2014. Neolignans from the seeds of Prunus tomentosa (Rosaceae) and their chemotaxonomic interest. Biochem. Syst. Ecol. 55, 236–240. https://doi.org/10.1016/j.bse. 2014.03.030. Luo, M., Hu, J.Y., Song, Z.Y., Jiao, J., Mu, F.S., Ruan, X., Gai, Q.Y., Qiao, Q., Zu, Y.G., Fu, Y.J., 2015. Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from Crataegus pinnatifida leaves and evaluation of antioxidant activities of extracts. RSC Adv. 5, 67532. https://doi.org/10.1039/C5RA07445B. Ma, Q.G., Wei, R.R., Zhou, B., Sang, Z.P., Liu, W.M., Cao, Z.L., 2017. Antiangiogenic phenylpropanoid glycosides from Gynura cusimbua. Nat. Prod. Res. 20, 457–463. https://doi.org/10.1080/14786419.2017.1389931. Masoodi, M., Ali, Z., Liang, S., Yin, H.Q., Wang, W., Khan, I.A., 2015. Labdane diterpenoids from Marrubium vulgare. Phytochem. Lett. 13, 275–279. https://doi.org/10. 1016/j.phytol.2015.07.005. Muñoz, E., Avila, J.G., Alarcón, J., Kubo, I., Werner, E., Céspedes, C.L., 2013. Tyrosinase inhibitors from Calceolaria integrifolia s.l.: Calceolaria talcana aerial parts. J. Agric. Food Chem. 61, 4336–4343. https://doi.org/10.1021/jf400531h. Neves, S.S., Watson, M.F., 2004. Phylogenetic relationship in Bupleurum (Apiaceae) based on nuclear ribosomal DNA its sequence data. Ann. Bot. 93, 379–398. https://doi.org/ 10.1093/aob/mch052. Ninfali, P., Antonini, E., Frati, A., Scarpa, E.S., 2017. C-glycosyl flavonoids from Beta vulgaris cicla and betalains from Beta vulgaris rubra: antioxidant, anticancer and antiinflammatory activities-A review. Phytother Res. 31, 871–884. https://doi.org/ 10.1002/ptr.5819. Pistelli, L., Bertoli, A., Bilia, A.R., Morelli, I., 1996. Minor constituents from Bupleurum fruticosum roots. Phytochemistry 41, 1579–1582. https://doi.org/10.1016/00319422(95)00749-0. Pistelli, L., Noccioli, C., Giachi, I., Dimitrova, B., Gevrenova, R., Morelli, I., Potenza, D., 2005. Lupane-triterpenes from Bupleurum flavum. Nat. Prod. Res. 19, 783–788. https://doi.org/10.1080/14786410500045119. Pudumo, J., Chaudhary, S.K., Chen, W., Viljoen, A., Vermaak, I., Veale, C.G.L., 2018. HPTLC fingerprinting of Croton gratissimus leaf extract with Preparative HPLC-MSisolated marker compounds. S. Afr. J. Bot. 114, 32–36. https://doi.org/10.1016/j. sajb.2017.10.004. Rafi, M.M., Vastano, B.C., Zhu, N., Ho, C.T., Ghai, G., Rosen, R.T., Gallo, M.A., DiPaola, R.S., 2002. Novel polyphenol molecule isolated from licorice root (Glycrrhiza glabra) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines. J. Agric. Food Chem. 50, 677–684. https://doi.org/10.1021/jf010774e. Rungsimakan, S., Rowan, M.G., 2014. Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans. Phytochem. 108, 177–188. https://doi.org/10. 1016/j.phytochem.2014.08.029. Saidi, I., Waffo-Téguo, P., Ayeb-Zakhama, A.E.L., Harzallah-Skhiri, F., Marchal, A., Ben, J.H., 2018. Phytochemical study of the trunk bark of Citharexylum spinosum L. growing in Tunisia: isolation and structure elucidation of iridoid glycosides. Phytochemistry 146, 47–55. https://doi.org/10.1016/j.phytochem.2017.11.012. Samy, M.N., Khalil, H.E., Sugimoto, S., Matsunami, K., Otsuka, H., Kamel, M.S., 2015. Amphipaniculosides A-D, triterpenoid glycosides, and amphipaniculoside E, an aliphatic alcohol glycoside from the leaves of Amphilophium paniculatum. Phytochemistry 115, 261–268. https://doi.org/10.1016/j.phytochem.2015.02.020. Seo, H., Kim, M., Kim, S., Mahmud, H.A., Islam, M.I., Nam, K.W., Cho, M.L., Kwon, H.S., Song, H.Y., 2017. In vitro activity of alpha-viniferin isolated from the roots of Carex humilis against Mycobacterium tuberculosis. Pulm. Pharmacol. Ther. 46, 41–47. https://doi.org/10.1016/j.pupt.2017.08.003. Sharma, R., Mohammadi-Ostad-Kalayeh, S., Stahlc, F., Zeilinger, C., Drägerd, G., Kirschningd, A., Ravikumar, P.C., 2017. Two new labdane diterpenoids and one new β-lactam from the aerial parts of Roylea cinerea. Phytochem. Lett. 19, 101–107. https://doi.org/10.1016/j.phytol.2016.12.013. Sun, Y., Li, H., Hu, J., Li, J., Fan, Y.W., Liu, X.R., Deng, Z.Y., 2013. Qualitative and quantitative analysis of phenolics in Tetrastigma hemsleyanum and their antioxidant and antiproliferative activities. J. Agric. Food Chem. 61, 10507–10515. https://doi. org/10.1021/jf4037547. Surapinit, S., Jong-aramruang, J., Siripong, P., Khumkratok, S., Tip-pyang, S., 2014. Dipterostilbenosides A and B, oligostilbene glycosides from Dipterocarpus tuberculatus. Nat. Prod. Commun. 9, 1323–1326. https://doi.org/10.1177/ 1934578X1400900926.

4

Biochemical Systematics and Ecology 86 (2019) 103929

D. Li, et al. Tan, L.L., Cai, X., Hu, Z.H., Ni, X.L., 2008. Localization and dynamic change of saikosaponin in root of Bupleurum chinense. J. Integr. Plant Biol. 50, 951–957. https://doi. org/10.1111/j.1744-7909.2008.00668.x. Tong, H.B., Tian, D., Li, T.B., Wang, B., Jiang, G.Q., Sun, X., 2014. Inhibition of inflammatory injure by polysaccharides from Bupleurum chinense through antagonizing P-selectin. Carbohydr. Polym. 105, 20–25. https://doi.org/10.1016/j.carbpol.2014. 01.039. Tóth, G., Barabás, C., Tóth, A., Kéry, Á., Béni, S., Boldizsár, I., Varga, E., Noszál, B., 2016. Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomed. Chromatogr. 30, 923–932. https://doi.org/10.1002/ bmc.3630. Tsukamoto, S., Tomise, K., Aburatani, M., Onuki, H., Hirorta, H., Ishiharajima, E., Ohta, T., 2004. Isolation of cytochrome P450 inhibitors from strawberry fruit, Fragaria ananassa. J. Nat. Prod. 67, 1839–1841. https://doi.org/10.1021/np0400104. Xiao, H.H., Dai, Y., Wong, M.S., Yao, X.S., 2014. New lignans from the bioactive fraction of Sambucus williamsii Hance and proliferation activities on osteoblastic-like UMR106 cells. Fitoterapia 94, 29–35. https://doi.org/10.1016/j.fitote.2014.01.012. Yang, F.D., Dong, X.X., Yin, X.B., Wang, W.P., You, L.T., Ni, j., 2017. Radix bupleuri: a review of traditional uses, Botany, phytochemistry, pharmacology, and toxicology. BioMed Res. Int. 2017, 1–22. https://doi.org/10.1155/2017/7597596. Yao, R.Y., Zou, Y.F., Chen, X.F., 2013. Traditional use, pharmacology, toxicology, and quality control of species in genus Bupleurum L. Chin. Herb. Med. 5, 245–255. https://doi.org/10.1016/S1674-6384(13)60036-2. Yuan, B.C., Yang, R., Ma, Y.S., Zhou, S., Zhang, X.D., Liu, Y., 2017. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their

applications. Pharm. Biol. 55, 620–635. https://doi.org/10.1080/13880209.2016. 1262433. Yuan, X., Zhao, J., Wang, H.X., Yu, R.T., Wen, H.X., Liu, Z.G., Mei, L.J., Wang, Y.P., Tao, Y.D., 2017. Antiproliferative activity of phenylpropanoids isolated from Lagotis brevituba Maxim. Phytother Res. 31, 1509–1520. https://doi.org/10.1002/ptr.5875. Zhang, T.T., Zhou, J.S., Wa, Q., 2007. Flavonoids from aerial part of Bupleurum chinense DC. Biochem. Syst. Ecol. 35, 801–804. https://doi.org/10.1016/j.bse.2007.03.023. Zhang, T.T., Zhou, J.S., Liu, Y., Wang, Q., 2008. Chemical constituents of the aerial part of Bupleurum longicaule. Chin. J. Nat. Med. 6, 430–434. https://doi.org/10.3724/SP.J. 1009.2008.00430. Zhang, W.J., Weng, L.J., Yi, L.T., Geng, D., 2016. Chemical constituents in whole herb of Euphorbia lunulata. Chin. Tradit. Herb. Drugs 47, 554–558. https://doi.org/10. 7501/j.issn.0253-2670.2016.04.005. Zhao, J.Q., Wang, Y.M., Dang, J., Wang, Q.L., Shao, Y., Mei, L.J., Tao, Y.D., 2017. Chemical constituents of Incarvillea compacta. Chem. Nat. Comp. 53, 548–550. https://doi.org/10.1007/s10600-017-2044-x. Zhu, Z.B., Liang, Z.S., Hu, R.L., Dong, J.E., 2009. Growth and Saikosaponin production of the medicinal herb Bupleurum chinense DC. Under different levels of nitrogen and phosphorus. Ind. Crops Prod. 29, 96–101. https://doi.org/10.1016/j.indcrop.2008. 04.010. Zhu, L., Liang, Z.T., Yi, T., Ma, Y., Zhao, Z.Z., Guo, B.L., Zhang, J.Y., Chen, H.B., 2017. Comparison of chemical profiles between the root and aerial parts from three Bupleurum species based on a UHPLC-QTOF-MS metabolomics approach. BMC Complement Altern. Med. 17, 305. https://doi.org/10.1186/s12906-017-1816-y.

5