GENOMICS
1,
3-18
(1987)
Chromosome
Maps of Man and Mouse,
A. G. SEARLE,* J. PETERS,* M. F. LYON,* E. P. hANS,t *Medical
1. H. EDWARDS,*
III AND V.
J. BUCKLE+
Research Council, Radiobiology Unit, Chilton, Didcot, Oxon OX1 1 ORD, United Kingdom; and tsir William Dunn School of Pathology and *Genetics Laboratory, Biochemistry Department, University of Oxford, Oxford, United Kingdom Received
March
30, 1987
some high-resolution banding and that of Nesbitt and Franckg (1973) for mouse chromosome banding. In Table 1, a few mouse loci require comment. Several loci now have alternate or duplicate names, resulting from the discovery of the protein defect underlying the disease by which the locus was previously named. These include: (i) spherocytosis, sph, now known to be due to a deficiency of cw-spectrin and hence having the alternative symbol Spnu-1; (ii) shiverer, shi, due to a deficiency of myelin basic protein, and with the alternate symbol Mbp; and (iii) the Xlinked loci sparse fur, spf, and jimpy, jp, with the alternative symbols Ott and Pip, respectively. The Xlinked locus mdx has been entered twice, since it may be homologous with either that for Duchenne or that for Emery-Dreifuss muscular dystrophy in man. References given in Table 1 of the preceding paper in this series (Buckle et al., 1984) have been omitted. In the human chromosome maps (Fig. 1) the positions of loci are mostly based on individual assignments without reference to data on gene order. The sequence in which genes are listed is based on other evidence when available, but sources are not given. In general, this sequence conforms to that given in the Human Gene Map (McKusick, 1986b). In the mouse banded chromosome maps (Fig. 2), the breakpoint positions of extant reciprocal translocations and insertions are shown on the left. The estimated positions of those loci listed in Table 1 which can be located regionally are shown on the right, while symbols for those loci which have only been localized to a specific chromosome are shown on the extreme right. The same sources of information have been used as in the previous paper (Buckle et al., 1984), with the addition of the most recent linkage map of the mouse (Davisson and Roderick, 1986) and the latest listing of chromosome anomalies (Searle, 1986). A grid of the distribution of homologous loci among human and mouse autosomes (Fig. 3) shows evidence for 40 autosomal conserved segments, represented by groups of two or more loci, compared with 27 in our last paper. Every mouse autosome now has at least
Data on loci whose positions are known in both man and mouse are presented in the form of chromosomal displays, a table, and autosomal and X-chromosomal grids. At least 40 conserved autosomal segments with two or more loci, as well as 17 homologous X-linked loci, are now known in the two species, in which mitochondrial DNA is also highly conserved. Apart from the Y, the only chromosome now lacking a conserved group is human 13. Human 17 has a single conserved group which includes both short and long arms, and so may have remained largely intact in mammalian evolution. Human and mouse chromosomal maps show the approximate locations of homologous genes while the mouse map also shows the positions of translocaQ 1987 Academic Press, Inc. tions used in gene location.
Assignment of autosomal and X-linked loci to chromosomes in man and mouse continues to proceed rapidly. In the present paper, 184 autosomal and 19 sex-linked loci with regional assignments in both species are documented, compared with 102 autosomal and 12 X-linked loci by Buckle et al. (1984) and 47 autosomal with 9 X-linked loci by Dalton et al. (1981). As previously, we have taken the mouse nomenclature as standard for the reasons given by Lyon (1987), but we have included the human symbol as given by McAlpine et al. (1985) in Table 1, where it differs from the mouse equivalent in more than just capitalization. Oncogene loci are no longer distinguished by the prefix c- but retain periods as prefixes to their names. We have deviated from the standard mouse nomenclature (Lyon, 1985) by the use of-m rather than -2 to define mitochondrial proteins coded by nuclear DNA. In other respects, mouse gene nomenclature agrees with that given in the latest gene listing in the Mouse News Letter (Peters, 1987). This occasionally differs from that originally given by the authors, with changes mainly designed to bring human and mouse gene symbolism closer together. We have continued to use the nomenclature of the ISCN (1981) for human chromo3
088%7543187
$3.00
Copyright 0 1987 by Academic Press, Inc. All rights of reproduction in any form reserved.
SEARLE
ET
AL.
TABLE Positions
of Homologous
1
Loci on Human
and Mouse
Chromosomes Location
Chromosome human;mouse
w w w
Locus symbol human;mouse
Name
of protein,
phenotype,
1;l 1;l
PEPC;Pep-3 SPTA;Spna-1 APCS;Sap APOA2;Alp-2 Ren
Peptidase a-Spectrin (12,83) Serum amyloid, P component Apolipoprotein A-2 (101,108) Renin (26)
lp;3 lp;3 lp;3 lp;3 lp;3
Amy-l Amy-2 Ngn3 Tshb Nras
a-Amylase (salivary) (41) cY-Amylase (pancreatic) (41) Nerve growth factor fi (205) Thyroid-stimulating hormone, .Neuroblastoma-transforming
1;3
ACTA;Acts
or-Actin,
lp;4 lp;4 lpi4 lp;4 lp;4 lp;4 lp;4 14 1;4
Eno-1 GDH;Gpd-1 Pd Pnd Ak-2 FUCAl;Fuca PGMl;Pgm-2 XPAC;Xpa ALPL;Akp-2
Enolase Glucose dehydrogenase Phosphogluconate dehydrogenase Pronatriodilatin (201) Adenylate kinase a-L-Fucosidase Phosphoglucomutase DNA repair in xeroderma pigmentosum, Alkaline phosphatase (196)
a;1 2q;l
Idh-1 cryg-1
Isocitrate Crystallin,
2~;6 2~;6
LEU2;Ly-2 I&
T-lymphocyte K light chain
2p;ll
Rel
.Reticuloendotheliosis
oncogene
2p;12 2p;12
Acp-1 Pomc-1
Acid phosphatase Proopiomelanocortin
a (44, 203)
3~;6
Raf-1
.Murine
3p;9 3p;9 a;9
Acy-1 GLBl;Bgl TF;Trf
3q;16
skeletal
muscle
Human
(55, 130)
@ polypeptide (141) oncogene (69,121,164)
(34)
dehydrogenase y polypeptide
2 (16,137,
(u-rat-I)
Mouse
q25 or q42 q22-q25 ql2-q23 p21-qter p21-qter
D HB-ter H3-ter H3-ter Cl-H3
P21 P21 p21-p22.1 P22 p22 and/or
D-H1 D-H1
pll-p12
pal-qter
group
A (105)
p36.13-pter p36.13-pter p36.13-~36.2 ~36 P34 P34 p22.1 q
E2 E2
c7 D3
(sol) (138) 1 (175)
alloantigen
leukemia
etc.
q33.3 q33-q35
B-Cl Cl-H3
P12
Cen-C2 Cen-C2
180)
(15)
ten-p13 p23 or p25 ~23
oncogene
(13,99,
162)
p24-p25
C2-G1
Aminoacylase fl-Galactosidase Transferrin (30, 126, 200)
P21 ten-p21 q21-q26.1
E3-ter EB-ter E3-ter
SST,Smst
Somatostatin
@8
a3
Adh-1
Alcohol
dehydrogenase
4q;3
Adh-3
Alcohol
dehydrogenase
Ed
Epidermal
a5 4q;5 $5 $5
AfP ALB;Alb-1 PGM2;Pgm-1 PEPS;Pep-7
a-Fetoprotein Albumin Phosphoglucomutase Peptidase
5q;ll
GMCSF;Csfgm
Colony-stimulating
5q;13 5q;13 5;13
Dhfr HEXB,Hex-2 ARSB;As-1
Dihydrofolate Hexosaminidase Aryl sulfatase
5q;18 5;18
GRL;Grl-1 DHLAG,Ii
Glucocorticoid receptor (58,64, 194) HLA-Dand Ia-associated invariant chain
6q;4
CGA;Tsha
Chorionic gonadotrophin stimulating hormone,
w
growth
Malic
enzyme
2 (mt)
%;9
MEl;Mod-1
Malic
enzyme
(sol)
sol, soluble.
(41, 75)
q21-q25
D-H1
(class
I) y polypeptide
(41, 75, 77)
q21-q25
D-H1
factor
(131, 205)
q25-q27 qll-q13 qll-q13 p14-q12 pll-q12
factor
ME2;Mod-m
mt, mitochondrial;
I) (Y polypeptide
(59, 68, 84)
reductase (61) B (Sandhoff B (49,102a)
6;7
Note.
(class
E2-G2 E2-G2 B-D B-E2
q21-q23 qll.l-q13.2
disease)
a chain;
(97) pll-q13
thyrotropin-
Dl-ter
qll-q13 (28,160) q12-q21
a (98)
El-F1 ql2
EB-ter
CHROMOSOME
MAPS
TABLE
OF MAN
AND MOUSE,
5
III
l-Continued Location
Chromosome human;mouse
Locus symbol human;mouse
Name of protein, phenotype, etc.
Human
60
Pgm-3
Phosphoglucomutase
w
6q;lO
M yb
.Avian myeloblastosis oncogene
q15-q24
6p;17 6p;17 6p;17 6p;17 6p;17 6p;17 6p;17 6p;17 6q;17 617 617
HLA;H-2 Bf c2 c4 CA21H;Oh21 Glo-1 Tnfa Tnib Sod-m Tcp-1 Pim-1
Major histocompatibility complex (102) Complement factor B Complement component 2 Complement component 4 Congenital adrenal hyperplasia (al-hydroxylase) Glyoxalase 1 Tumor necrosis factor (Y(142, 143,178) Tumor necrosis factor fl (142, 143,178) Superoxide dismutase (mt) T-complex protein 1 (72, 174,197) .ProviraI integration, MCF (33,74,135)
~21.3 ~21.3 ~21.3 ~21.3 ~21.3 p21.1-~21.31 p21.1-~21.3 p21.1-~21.3 cl21
7~;2
Blvr
Biliverdin
7;5 7;5 7q;5 7;5
PSP;Psph As1 GUSB,Gus MDHB;Mor-m
7~;6 7~;6 W 7q;6 7q;6
(195)
Mows E3-ter
B-C B-C B-C B-C B-C B B-C B-C
pter-ql2
A3-B B-C
ten-pl4
E4-ter
Phosphoserine phosphatase Argininosuccinate lyase &Glucuronidase Malate dehydrogenase (mt)
pter-q22 p21-q22 cenq22 p13-q22
E2-ter E2-G2
GCTG,Ggc Hox-1 Tcrb %a Try-l
y-Glutamyl cyclotransferase (11,189) Homoeobox 1 (17,123,155) T-cell receptor, /3 polypeptide (21, 104) Carboxypeptidase A (86) Trypsin 1 (192)
pl4-pter p14-p21 q32 or q35 q22-qter q22-qter
CenC2 B3-C B
7p;ll
Erbb
.Avian erythroblastosis
p12-p14
Cen-Bl
7p;13
Tcrg
T-cell receptor y polypeptide (100)
COLlA2;Cola-2
Collagen, type I, (~2 chain (20,90, 182)
P15 q21.3-q22.1
A2-A3
7q;16 8;3 8;3
CAl;Car-1 CA2;Car-2
Carbonic anhydrase 1 (19) Carbonic anhydrase 2
8q;4
Mos
.Moloney sarcoma oncogene
qll-q22
8p;8
reductase
oncogene (173,179,204)
Cen-D Cen-D
GSR;Gr-1
Glutathione
p21.1
Cen-A4
8q;15 8q;l5
MYC TG;Tgn
.Myelocytomatosis oncogene (1) Thyroglobuiin (184)
reductase
q24 @4
D2-D3 BI-ter
gq;2 %;2 9@ 9q;2
Ak-1 AbI Fpgs Ass
Adenylate kinase .Abelson leukemia oncogene Folylpolyglutamate synthetase (56,88,89) Argininosuccinate synthetase (136)
44 434 cenq34 q34-qter
Cen-Cl
9p;4 9p;4 9p;4 9p;4 90 9;4
Galt Ace-1 IFNA,Ifa IFNB,Ifb Orm-1 ALAD;Lv
Galactose-l-phosphate uridyl transferase Aconitase Interferon, CY(leukocyte) (25,38,94,107,187) Interferon, B (fibroblast) (71,95,191) Orosomucoid &Aminolevulinate dehydratase (46)
P13 p13-p22 pl3-pter P21 q
CenC2 Cen-C2 C3-C6 C3-C6 c2-Cl B2
9q;19
ALDHl;Ahd-2
Aldehyde dehydrogenase (cytoplasmic) (82,186)
9
B
lOq;7
Oat
Omithine
q23-qter
1Oq;lO lo;10
PP;Pyp Hk-1
lOq;14 lOq;19 16q;19 lOq;19 lo;19 llp;2
Adk Tdt Got-l PGAMA;Pgam-1 LIPA,Lip-1 Acp-2
Pyrophosphatase (inorganic) Hexokinase Adenosine kinase Terminal deoxynucleotidyltransferase (202a) Glutamic oxaloacetic transaminase (sol) Phosphoglycerate mutase A (62,66,91) Acid lipase Acid phosphatase
aminotransferase
(146, 156)
Cen-Cl
qll.l-q24 cenq24 q23-q24 q25.3 q25.3 ten-pl2
B4 A2-B Dl
6
SEARLE TABLE
ET AL.
l-Continued Location
Chromosome human;mouse
Locus symbol human;mouse
Human
Name of protein, phenotype, etc.
Mouse
llp;2 llp;2
CAT;Cas-1 Fshb
Catalase Follicle-stimulating
llp;7 llp;7 llp;7 llp;7 llp;7 llp;7 llq;7
Th Hras-1 Hbb INS;Ins-2 CALCl;Calc LDHA;Ldh-1 Int-2
Tyrosine hydroxylase (31) .Harvey rat sarcoma oncogene Hemoglobin beta chain Insulin Cakitonin (140) Lactate dehydrogenase .Mammary tumor integration site 2 (23, 148)
P15 p15.5 p15.5 p15.5 p15.1-p15.4 p12-p14 ql3
llq;9 llq;9 llq;9 llq;9 llq;9 llq;9 llq;9 llq;9
APOAl;Alp-1 ESA4;Es-17 UPS GST3;Gsta Thy-l Ncam Em-1 T3d
Apolipoprotein Al (2) Esterase A4 Uroporphyrinogen I synthase Glutathione S-transferase, isozyme 3 (36, 181) Thy-l cell surface antigen (159) Cell adhesion molecule, neural (45, 145) .E26 avian leukemia oncogene (183,193) TiT3 complex, 6 polypeptide (190)
ql3-qter ten-qter q23.2-qter ql3-qter q22.3 @3 q23-q24 q23-qter
12;4
ALDH2;Ahd-m
Aldehyde dehydrogenase (mt) (76,82)
12p;6 12p;6 12p;6 12p;6
Kras-2 LDHB;Ldh-2 Gapd Tpi-1
.Kirsten rat sarcoma oncogene (22,62) Lactate dehydrogenase Glyceraldehyde-phosphate dehydrogenase Triosephosphate isomerase (151)
p12.1 p12.1-p12.2 P13 P13
F3-G3 C2-G1
12p;8
Proline-rich
~13.2
Cen-B
12q;lO 12q;lO 12;lO
Prp 1FNc;Ifg PEPB,Pep-2 cs
Interferon y (187) Peptidase (199) Citrate synthase
q24.1 q21 pll-qter
Dl-D3
12q;15 12;15 12;15
Hox-3 Ela-1 Int-1
qll-q15
F
pter-ql4
F
12;15 12;15
GPDl;Gdc-1 PFKB;Pfk-4
Homoeobox 3 (155) Elastase 1 (78, 79) .Murine mammary tumor oncogene (integration sitt ?) (1, 148) Glycerol-3-phosphate dehydrogenase (96) Phosphofructokinase, brain and testis type (4)
13q;14
ESD,Es-10
E&erase (165)
q14.1
D2-E2
14q;12 14q;12 14q;12
PI;Pre-1 I& Fos
a,-Antitrypsin (153) Immunoglobuhn heavy chains .Murine FBJ osteosarcoma oncogene (6,43)
q32.1 q32.3 q21-q31
Cen-Fl Cen-Fl Cen-Fl
14q;14 14;14
Np-1 Tcra
Purine nucleoside phosphorylase (165) T-cell receptor, (Ypolypeptide (7, 101)
q13.1 pter-q21
B-Cl C-D
15q;2 15;2
B2m SORD;Sdh-1
&-Microglobulin Sorbitol dehydrogenase
@2 pter-q21
E4-Hl E4
15q;7 15q;7 15q;9 15q;9 15q;9 15q;17 16q;8 16q;S 16q;8 16q;8 16q;8 16q;8 168 16p;ll
Idh-m Fes
Isocitrate dehydrogenase (mt) .Feline sarcoma oncogene
q21-qter q25-q26
B3-El Cen-A3
Mpi-1 PKM2;Pk-3 CYP2;P450-1 Actc
Mannosephosphate isomerase Pyruvate kinase Cytochrome P-450, dioxin-inducible cu-Actin, cardiac muscle (35, 70)
q22-qter q22-qter
B-E4 B-E4 A4
Aprt Got-m Mt-1 Mt-2 HP Tat Ctrb Hba
Adenine phosphoribosyltransferase Glutamic oxaloacetic transaminase (mt) Metallothionein 1 (29,92) Metallothionein 2 (29,92) Haptoglobin (9,51) Tyrosine aminotransferase (8, 139) Chymotrypsinogen B (192)
q22 q12-q22 @2 @2 q22.1 q22-q24
Hemoglobin (Ychain (145a)
p13.1
hormone, fl polypeptide (67)
protein (5, 117)
P13 pl3-pter
E4-Hl
Fl-ter B3 Cen-A4 Cen-A4 Cen-A4 Cen-A4 A4-E4
D3
C2-Gl
C-ter
1 (73, 188) qll-qter
A4-El A4-El El-ter A4-El Cen-Bl
CHROMOSOME
MAPS
TABLE
OF MAN AND MOUSE,
7
III
l-Continued Location
Chromosome human;mouse
Locus symbol human;mouse
Name of protein, phenotype, etc.
Human
Mouse
17p;ll 17p;ll 17q;ll 17q;ll 17q;ll 17q;ll 17q;ll 17q;ll
Myh-1 TP53;Trp53 GALK;Glk Tk-1 COLlA-l:Cola-1 ERBAl;Erba Hox-2 Umph-2
Myosin heavy polypeptide, skeletal muscle Transformation-associated p53 (122,163) Galactokinase Thymidine kinase (166) Collagen, type 1, (Y1 (51, 132, 133a) .Avian erythroblastosis oncogene Homoeobox 2 (133,154) Uridine monophosphatase 2 (198)
pll-pter P13 q21-q22 q21-q22 q21.31-q22 qll-q21 q q
18q;18 18;18
PEPA,Pep-1 MBP;shi
Peptidase Myelin basic protein; shiverer (161,167,172)
q23
19p;7 19q;7
PEPQPep-4 CYPl;Coh
Peptidase Cytochrome P-450, phenobarbital-inducible hydroxylase (40)
19q;7 19q;7 197
Gpi-1 ‘kfb Lhb
Glucosephosphate isomerase (85, 108) Transforming growth factor fi (60) Luteinizing hormone 6 subunit
19p;17 19;17
c3 Pgk-2
Complement component 3 (147) Phosphoglycerate kinase 2 (47,63)
2op;2 2op;2 2oq;2 2oq;2
PRNP;Prn-p ITPA,Itp Ada Src
Prion protein (177) Inosine triphosphatase (129) Adenosine deaminase (152,171) .Rous sarcoma oncogene (103)
pl2-pter P q13.2-qter q12-q13
21;16 21q;16 21q;16 21q;16
Ets-2 Prgs Sod-l 1FNR;Ifrc
.E26 avian leukemia oncogene (193) Phosphoribosylglycinamide synthetase Superoxide dismutase (sol) Interferon receptor
q22.1 q22.1 q21-qter
21;17
Crya-l
Crystallin, a A (176)
B-C
22;ll
TC2;Tcn-2
Transcobalamin
Cen-B
22q;15 22q;15 22q;15
Sis ARSA,As-2 Dia-1
.Simian sarcoma oncogene (1) Arylsulfatase Diaphorase (NADH)
q12.3-q13.1 q13.31-qter q13.31-qter
E
1; coumarin
El-E2 B5-D D D
D-ter
ten-p13.2 q13.1-q13.3
Cen-A3 Cen-A3
ten-q13.2 q13.1-q13.3
Cen-A3
D-ter B-C
II (3)
D-ter Cl-ter H3-ter
BS-ter
22q;16
1GLC;Igl
Immunoglobulin
qll
Cen-B5
Xp;X&Y
sts
Steroid sulfatase (32, 50,53,65,93)
p22.32-pter
F4-ter
Xp;X Xp;X Xp;X
CDPX,Bpa HPDR,Hyp DMD,mdx 0TC;spf syn-1 Pgk-1 Xce EDA;Ta GLA,Ags XLA,xid
p22.3-pter P22 P21 p21.1 p11.2 cl13 q13 or q21.1 @l q21-q22 q21.3-q22
A6-D F2-ter A6-D A2 A2-A3 D-F1 D D Fl Fl
X,X x;X x;X
PLP;jp Hprt F9;Cf-9 GGpd EMD;mdx MNK,Mo DHTR;Tfm PYK;Phk
Chondrodysplasia punctata; bare patches (32) Hypophosphatemia (114,158) X-linked muscular dystrophy (homology doubtful) Ornithine carbamoyltransferase; sparse fur (106,112) Synapsin 1 (202) Phosphoglycerate kinase X-inactivation center (24, 54, 157, 185) Ectodermal dysplasia, anhidrotic; tabby (113, 124) a-Galactosidase (57,128) Agammaglobulinemia; X-linked immune deficiency (9a, 126a) Proteolipid protein; jimpy (39, 119) Hypoxanthine phosphoribosyltransferase (111) Coagulation factor IX (4a, 18a) Glucose-B-phosphate dehydrogenase (118,150) X-linked muscular dystrophy (homology doubtful) Menkes’ disease; mottled (81) Testicular feminization Phosphorylase kinase
@2 q26-q27.3 q27.1 @8 @fJ pll-qll pll-q13
Fl A6 A6-A7 A6-A7 A6-D D-F1 A6-D A6-D
YPiY
TDF;Tdy
Testis-determining
pll.2-pter
A-B
XPS XPS X%X X%X =xX X%X X%X X%X m;x xq;x X6 X%X
X chain
D
factor (48, 115, 116)
8
SEARLE
- (1,111 ;I;;; >N - (1,111 3; z ‘n& - -E 2-
ET
AL.
1 I&“
Pnd
)Ishb,Nras
- R‘f
I= -1
1 I fw
=
-hd 1
1
= -
El
J-
UnY, “IY r
Rfp,RLs
!
Adkl,ndh-3
,,,,I/ 3:u11,111
- f -
J
]Esf
nUb
El
uDM2 i
-J- cou2
Z-Mb =Iwb
Ink-i,nbl,nss
Hsa7 FIG.
1.
The human
karyotype,
to show positions
of genes also located
in the mouse.
1I .,111 II !
CHROMOSOME
I
MAPS
OF MAN AND MOUSE,
9
III
Idt T3d
Hsa 11
1: 1
= 2-
I
,LDHB
M-1
”
I
Hox-3 )PEPB
SliNC
,HJ
-l-
Hsa 12
= 1=
SORD
Hsa 16
Hsa 15
I= i-I-
/ J-HPIat3-G0t-s l-
&,I In3 1
1
z:::1 #ifi Hex-21-EBB41 I- colsnl UMPh-2 -R,,,,,1 J 1 -U = 2-
Hsa17
?
EP
Hsa X FIG. l-Continued.
I- CDPX
7llPDR
SEARLE
10
ET
AL.
-171 -Ml -T27H
!
-1lUa
Rrn Crysl
- IllAd
-T13H,T14RI -T7Ca -T24ll -II1H,TlCso
-T3Bi,T26H,TSCa -TISn,T2Ua -128H
h-1
FUN was
Eno-1
-Tsha Its ilk-2
_
- ‘,,>!;, !4 Ld Mm3
R
I II
I GYC
- 131H,Md,ISlld B
&
Tcrb 1
-1264Ca,19Rl
FIG.
2.
R=
The mouse
karyotype,
to show positions
of genes also located
in man,
as well
as positions
I
Hox4 Cpa - t$
of translocation
breakpoints.
CHROMOSOME
MAPS
OF MAN AND MOUSE,
11
III
Idk-n llod-2 Hbb J
1 z-P4W1
Mm9
.Icn-2 -13BH
Rep-1 Pm-1 r
-142N,19nd D= -?38N E _ -Ud
R
Nox-2
Ik-1
l&i’
I
7 Clk
._ . Mmu 12
Mmu 11
-ti99N
-t264H,I3nd B -1716 c = -17#I,IlHa ;h-1 ISnd,tCnd a l-
c= -
it;
D -
= /Ml
-1lGSO E= 1 -16Q
!
d
Mmu 14
Mmu13 FIG.
2-Continued.
Np-1
12
SEARLE
ET
AL.
-16k -19H -T4nd :r lye
,Glc-1
7s
Sis M-1 1 Hox-3
I :
Mmu 15
1
-17Rl,r3Rl,t37H
i
bra-1 a
I
Sod-n Rctc
Syn-1
-116H -t5Rl 16R1‘s1ct rlR1:l3Ikl -TM FIG. 2-Continued.
TW I-
I
p1 M-1
CHROMOSOME MOUSE I I
.”. . . .., ...
II
MAPS
IIllllll
MAN ;
I
i 12
i
iiiiiiiiiil 3
4
5
6
7
8
9
10 1: 12 13 141516171319
FIG. 3. Grid showing assignments of homologous autosomal loci in man and mouse. The sides of the rectangles are proportional to chromosomal length. Loci assigned to short or long arms in man are represented by triangles, the apex pointing to the centromere. Other loci are represented by circles. The larger triangle refers to all the loci in the MHC complex.
one conserved group; the only human exception is chromosome 13. The known genetic length of the conserved groups is usually of the order of a few centimorgans. As a corollary of this, some chromosomes carry a number of conserved segments. Human chromosome 7 is now known to have homologies on at least six mouse chromosomes; likewise, mouse chromosome 11 has homologies on at least six human chromosomes (Fig. 3). However, a few conserved segments appear to be larger. Examples include the groups on l;l, 9;4, and 1711 (human chromosomes give first) which each appear to extend over 20-25 CM on the mouse chromosome. In general, the data still support the finding of Nadeau and Taylor (1984) that the average length of conserved segments is approximately 8 CM. More detailed study of the larger conserved groups suggests that in some instances the genetic changes that have occurred during evolution have been complex. Evidence for this includes, in some cases, apparently different arrangements of loci within a conserved group in the two species or intercalation of one or more loci from other chromosome(s) within a conserved group. The groups that provide information of this kind are those that consist of more than two loci and in which the relative order of more than two loci is known in both species. There appear to be about 10 such groups. In two, 12p;6 and 19;7, the order of loci appears to be the same in the two species, but in 19;7
OF MAN AND MOUSE,
III
13
one gene Fes from another human chromosome (15q) is intercalated. Similarly, in the groups 1;4,6;17, and 9;4, genes on other human chromosomes are intercalated into the mouse group. Nadeau et al. (1986) have suggested that, for the 9;4 homologies, two separate segments have been conserved since divergence of the human and mouse lineages, but there has been a rearrangement of gene order. In the group 14q;12 the order of loci appears to be different in the two species. The groups 3;9 and 7;6 each apparently consist of two separate groups of loci on the human chromosome, although they appear as a single group on the mouse chromosome. There are a variety of possible explanations for these complexities in the conserved segments. The first is that of error, either in determination of order of loci in one or both species or in the ascription of homology. In the mouse the order of loci is taken from the map of Davisson and Roderick (1986), but the authors of this map point out that in some instances the order of loci is relatively uncertain. An example of uncertainty concerning ascription of homology concerns the insulin loci, where there is some doubt as to which mouse locus corresponds to which human locus. However, an equally possible explanation is that the differing orders of loci, and intercalated loci, are indeed correct findings and that they indicate a sequence of chromosomal changes in evolution. Such sequences of changes would include a combination of translocations with inversions to explain differing orders of loci. There could also have been insertions, either of individual loci or of small segments, preceding or following translocations. In several cases, e.g., 17;11, genes apparently belonging to a single conserved group are dispersed between the short and long arms of a human chromosome. This suggests the inclusion of pericentric inversions among the chromosomal changes. Figure 4 shows orders of X-linked loci in the two species. Buckle et al. (1985) suggested that the differing arrangements in man and mouse imply the occurrence of relatively few rearrangements during the evolution of the X. Only two rearrangements were required to explain the known locations up to that time. There have since been various further localizations of X-linked genes, including those for hypophosphatemia and anhydrotic ectodermal dysplasia in man and Factor 9 in mouse. In general, the original suggestion of two rearrangements still holds good. However, there does appear to be an exception, namely, the locus of synapsin. In man, this is located in Xp, proximal to the locus of ornithine carbamoyltransferase, whereas in the mouse, synapsin is located distal to Ott. This discrepancy apparently requires that another rearrangement be postulated. The re-
SEARLE
HP~ 1 FQ/Cf-9 GW EMDImdx MOUSE
X XLAlxid GLAIAQS
PLPljp
FIG.
4.
chromosomal locus symbols well known.
Relationship between approximate positions loci defined in both man and mouse. Lines to X have been omitted where locus positions
attechmmt
tRNALw
of Xjoining are less
Approximnte site of to inner membrane1
I 11
ET
AL.
sults of further detailed mapping of the mouse and human X-chromosomes will be awaited with interest. Whereas many homologous loci are known in man and mouse, and over 200 have regional assignments, very few homologous alleles are known. This is not unexpected, for the detailed knowledge of gene and protein structure required to establish such homologies is limited to relatively few proteins. Two examples are known, both at loci coding for globin polypeptides. A mouse homolog, Hbbd4, of human hemoglobin Rainier has been found, in which the substitution /3145 Tyr + Cys occurs (Peters et al., 1985). A second example concerns a-globin, for the mutant haplotype HbcP in the mouse is homologous with hemoglobin Jackson ((~127 Lys + Asn) in man (Peters, 1986). This comparison of human and mouse genomes would be incomplete without considering that of the mitochondrion (Fig. 5), which is highly conserved (Fischer Lindahl, 1985; McKusick, 198613). Both mitochondrial genomes are circular, consisting of 16,569 base pairs in man and 16,295 base pairs in the C3H mouse (Bibb et al., 1981). Both contain loci for 12- and
tRNATh’
NADH
1
w
‘4-l dehyd wbmt
nase “$
$j tR/Ah(CUN) tRNA’” tRNAm’
.
-
,
tRNA*(AGY) ‘tRNAnia
NADH
Direction L-ShlU tRNAT’F’+
’ _ it&it
cytodllo~ c OXIdwe II (ATt%o
FIG. 5.
Gene map of the human
mitochondrial
81
chromosome.
[Courtesy
of Victor
A. McKusick]
4L
CHROMOSOME
MAPS
OF
16-S ribosomal RNA and the same 22 transfer RNAs. One cytochrome b and three cytochrome c oxidase loci are found, as well as two ATPase subunits. These are all located at similar positions along the human and mouse H and L strands. In addition, loci for seven NADH dehydrogenase subunits have been identified in the human mitochondrial genome (Chomyn et al., 1985), while the mouse genome has seven unidentified reading frames (URF) in similar positions. It seems highly likely that they code for the same coenzymes. However, Fischer Lindahl(198.5) and colleagues have described a maternally inherited gene Mtf in the mouse which is probably mitochondrial and which is unknown in man. Mtf combines with the Hmt gene of the mouse major histocompatibility complex to form a maternally transmitted cell-surface antigen called Mta. There is evidence for a number of maternally transmitted diseases in man, although no disease clearly related to a mitochondrial lesion has yet been defined, despite the relatively high mutability of the mitochondrion (Brown et aZ., 1979; Merril and Harrington, 1985). It seems likely, however, that some disorders of mitochondrial function will be defined in both man and mouse in the near future. Finally, it may be useful to consider man-mouse genetic conservation and divergence in evolutionary terms. It seems reasonable to assume, like Nadeau and Taylor (1984), that the common ancestor of the two species lived about 70 million years ago. If we assume four generations per year in the lineage to mouse and one per year on average in the lineage to man, then their distance apart in terms of generations is roughly 350 million. Yet present evidence suggests that at least five homologous segments 20 CM or more in length have remained intact. Nadeau and Taylor consider that conserved segments “are probably relics of ancient linkage groups not yet disrupted by chromosomal rearrangements.” For some of these segments, however, their persistence intact may well be connected with factors other than chance. In this connection, evidence from other species should prove useful.
MAN
AND
ASHLEY, P. L., FLANDERMEYER, R. R., AND Cox, D. R. (1986). Amer. J. Hum. Genet. 39: A186. PFOC.Natl. Acad. Sci. USA 84: 4a. AVNER, P., et al. (1987). 1629-1633. 5. AZEN, E. A., et al. (1984). Science 226: 967-969. 6. BARKER, P. E., et al. (1984). Proc. Natl. Acad. Sci. USA 81: 5826-5830. 7. BARKER, P. E., ROYER, H.-D., RIJDDLE, F. H., AND REINHERZ, E. L. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 576-577 (Abstr.). 8.
BARTON, D. E., YANG-FENG, Hum. Genet. 72: 221-224.
T. L., AND FRANCKE,
9.
BAUMANN,
F. G. (1984).
BERNING, A. K., EICHER, E. M., PAUL, (1980). J. Immurwl. 124: 1875-1877.
10.
BIBB, M. J., et al. (1981). Cell 26: 167-180. BISSBORT, S., BENDER, K., AND GRZESCHIK, Cytogenet. Cell Genet. 37: 421 (Abstr.).
11.
ARWERT,
F., et al. (1986).
Hum.
Genet.
74:
378-381.
Lett.
W. E., AND SCHER,
K.-H.
I.
(1984).
BODINE, D. M., BIRKENMEIER, (1984). Cell 37: 721-729.
13. 14.
BONNER, T., et al. (1984). Science 223: 71-74. BROWN, W. M., GEORGE, M., AND WILSON, A. C. (1979). Proc. Natl. Acad. Sci. USA 76: 1967-1971. BROWNELL, E., et al. (1986). Amer. J. Hum. Genet. 39: 194-202. BRUNS, G., et al. (1985). Hum. Genet. 70: 311-314. BUCAN, M., et al. (1986). EMBO J. 5: 2899-2905.
15. 16. 17. 18.
BUCKLE,
V. J., et al. (1984).
C. S., AND BARKER,
Clin.
Genet.
26:
J. E.
l-11.
18a. BUCKLE. V. J., CRAIG, I. W., HUNTER, D., AND EDWARDS, J. H. (1985). H&man Gene Mapping 8, Cytogenet. Cell Genet. 40: 593-594. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.
BUTTERWORTH, P., et al. (1985). Human Gene Mapping Cytogenet. Cell Genet. 40: 597 (Abstr.). BYRNE, D. E. S., AND CHURCH, R. L. (1983). Somatic Genet. 9: 313-331. CACCIA, N., et al. (1984). Cell 37: 1091-1099. CAHILLY, L. A., AND GEORGE, D. L. (1985). Cytogenet. Genet. 39: 140-144. CASEY, G., et al. (1986). Mol. Cell. Biol. 6: 502-510. CATTANACH,
B. M. (1983).
Mouse
News
Lett.
69:
8, Cell
Cell
24.
CHENG, Z. Y., LOVETT, M., EPSTEIN, L. B., AND EPSTEIN, C. J. (1986). Cytogenet. Cell Gem%. 41: 101-106. CHIRGWIN, J. M., et al. (1984). Somatic Cell MoZec. Genet. 10: 415-422. CHOMYN, A., et al. (1985). Nature (London) 314: 592-597.
34. 35.
CLAESSON-WELSH, L., et al. (1984). Immunogenetics 20: 89-93. Cox, D. R., AND PALMITER, R. D. (1983). Hum. Genet. 64: 61-64. Cox, D. W., FRANCKE, U., ALLERDICE, P. W., AND McALPINE, P. J. (1984). Genetics 107: 522. CRAIG, S. P., et al. (1986). Cytogenet. Cell Genet. 42: 29-32. CURRY, C. J. R., et al. (1984). N. Engl. J. Med. 311: 1010-1015. CWPERS, H. T., SELTEN, G., BERNS, A., AND GEURTS VAN KESSEL, A. H. M. (1986). Human Genet. 72: 262-265. CZOSNEK, H., et al. (1982). EMBO J. 1: 1299-1305. CZOSNEK, H., et al. (1983). EMBO J. 2: 1977-1979.
36.
CZOSNEK,
30. 31.
33.
3.
News
12.
REFERENCES
2.
Mouse
9a.
32.
ADOLPH, S., EUL, J., GROHEMEYER, H., AND HAMEISTER, (1986). Mouse News Z&t. 76: 40. ANTONUCCI, T. K., et al. (1984). Genetics 107: 436475.
H., AND BERGER,
U. (1986).
71: 49.
29.
1.
15
III
4.
ACKNOWLEDGMENTS We are grateful to Colin Beechey for preparing the grids of autosomal and sex-linked homologies and to Mark Bellamy and Daniel Bryant for help with the computer graphics. We are indebted to Dr. Victor McKusick for allowing us to reproduce Fig. 5.
MOUSE,
H.
H., et al. (1984).
Nucleic
Acids
Res.
12: 4825-4833.
16 37. 38. 39. 40.
SEARLE DALTON,
T. P., et al. (1981).
DANDOY,
F., et al. (1984).
P., AND
Genet.
23:
H., MOHR, 150-154.
News
160: 827-838.
J. Exp. Med. RUDDLE,
919-924. D’EUSTACHIO, P., OWENS, NINGHAM, B. A. (1985). 7631-7635.
46. EIBERC, 47.
69. GUERRERO,
20: 407-415.
160: 294-302. (London) 321: 867-869.
T. (1985). Mouse News Lett. 73: 19. T., AND RODERICK, T. H. (1986). Mouse P. (1984).
F. (1983).
Science
220:
G. C., EDELMAN, G. M., AND CUNProc. Natl. Acad. Sci. USA 82:
J., AND NIELSON,
L. S. (1983).
EICHER, E. M., CHERRY, M., AND FLAHERTY, Molec. Gen. Genet. 168: 225-228. E. M., PHILLIPS, S. J., AND WASHBURN, In “Recombinant DNA and Medical Genetics” and I. H. Porter, Eds.), pp. 57-71, Academic York.
49. ELLIOTT,
R. W., DANIEL, W. L., TAYLOR, E. K. (1985). J. Hered. 76: 243-246.
Clin.
L. (1977).
48. EICHER,
L. L. (1983). (A. Messer Press. New
B. A., AND NOVAK,
50. EVANS, E. P., BURTENSHAW, 51.
M. D., AND CATTANACH, B. M. (1982). Nature (London) 300: 443-445. FERGUSON-SMITH, M. A., AND Cox, D. R. (1984). Cytogenet. Cell Genet. 37: 127-154.
52. FISCHER LINDAHL, K. (1985). Trends Genet. 1: 135-139. 53. FISHER, G., AND LYON, M. F. (1981). Mouse News Lett. 64: 58. 54. FLEJTER, W. L., VAN DYKE, D. L., AND WEISS, L. (1986). Hum.
Genet.
74: 63-66.
55. FLOYD-SMITH, 56.
G., WHITEHEAD, A. S., COLTER, H. R., AND FRANCKE, U. (1986). Immunogenetics 24: 171-176. FOURNIER, R. E. K., AND MORAN, R. G. (1983). Somatic Cell Genet. 9: 69-84.
57. Fox,
M. F., DUTOIT, D. C., WARNICK, L., AND RETIEF, (1984). Cytogenet. Cell Genet. 38: 45-49.
A. E.
58. FRANCKE, U., AND GEHRING, U. (1980). CeU 22: 657-664. M. et al. (1981). Biochem. Genet. 23: 59. FRATER-SCHRODER, 139-153.
60. FUJII, D., BRISSENDEN, U. (1986).
Somat.
J. E., DERYNCK, Cell Molec. Genet. 12:
61. FLJNANAGE,
V. L., MYODA, T. T., MOSES, H. R. (1984). Mol. Cell Biol. 4: 2010-2016.
62. FUNDELE, (1981).
R., BUCHER, T., GROPP, Deuel. Genet. 2: 291-303.
63. GARTLER, Human (Abstr.).
64. GEHRING, (1985).
S., RILEY, Gene Mapping
R., AND FRANCKE,
281-288. P. A., AND COWELL,
A., AND
U., SEGNITZ, B., FOELLMER, Proc. Natl. Acad. Sci. USA 82:
P. S., AND GRZESCHIK, K. H. (1984). 7, Cytogenet. Cell Genet. 37: 103-126.
Mapping
67. GLASER, T., et al. (1985). Humun Gene Mapping Cell Genet.
68. GOUGH,
40:
U.
71. 72. HERMANN, B., et al. (1986). Cell 44: 469-476. C. E., GONZALEZ, F. J., MCBRIDE, 0. W., AND 73. HILDEBRAND, NEBERT, D. W. (1985). Nucleic Acids Res. 13: 2009-2016. 74. HILKENS, J., etal. (1986). Somatic Cell Mol. Genet. 12: 81-88. 75. HOLMES, R. S. (1977). Genetics 87: 709. 76. HOLMES, R. S. (1978). Biochem. Genet. 16: 1207-1218. 77. HOLMES, R. S. (1979). Biochem. Genet. 17: 461. 78. HONEY, N. K., et al. (1984). Somatic Cell Molec. Genet. 10: 369-376. 79. HONEY, N. K., et al. (1984). Somatic Cell Molec. Genet. 10: 377-383. 80. HONEY, N. K., et al. (1986). Hum. Genet. 72: 27-31. 81. HORN, N., STENE, J., MOLLEKAER, A.-M., AND FRIEDRICH, U. (1984).
Nature
(London)
Ann.
Hum.
Genet.
48:
161-172.
82. Hsu, L. C., YOSHIDA, Hum.
Genet.
A., AND MOHANDAS, 38: 641-648.
83. HLJEBNER,
K., et al. (1985).
3790-3793. HUEBNER,
K., et al. (1985).
84. 85. HULSEBOS, genet.
T. (1986).
Proc. Natl. Science
Acad.
230:
T., et al. (1985). Human Cell Genet. 40: 658 (Abstr.).
Amer.
J. Genet.
Cytol.
82:
1282-1285.
Gene Mapping
8, Cyto-
Canad.
4: 219-225.
88. JONES, C., AND KAO, F.-T. 499-500
J.
Sci. USA
86. ISCN (1981). Cytogenet. Cell Genet. 31: l-23. 87. JOE, M., TEASDALE, J. M., AND MILLER, J. R. (1962). (1984).
Cytogenet.
Cell Genet.
37:
(Abstr.).
89. JONES, C., KAO, F.-T., 90. 91. 92.
AND TAYLOR, R. T. (1980). Cytogenet. Cell Genet. 28: 181-194. JLJNIEN, C., HLJERVE, C., AND RETHO&, M. 0. (1984). Cytogenet. Cell Genet. 37: 502 (Abstr.). JUNIEN, C., et al. (1982). Ann. Genet. 26: 25-27. KARIN,
M.,
et al. (1984).
Proc.
Natl.
Acad.
Sci.
81:
USA
5494-5498. 93.
KEITGES, E., RIVEST, M., SINISCALCO, M., AND GARTLER, S. M. (1985). Nature (London) 315: 226-227.
94.
KELLEY,
K. A., et al. (1983).
95.
KELLEY, Interferon
K. A., KOZAK, C. A., AND PITHA, Res. 5: 409-413.
96.
KIELTY, 290.
97.
KILLARY, A. M., LEACH, R. J., MORAN, R. E. K. (1986). Amer. J. Hum. Genet.
98.
K~MPF, J., AND RITTER, H. (1985). Human Cytogenet. Cell Genet. 40: 672 (Abstr.). KOZAK, C., GUNNELL, M. A., AND RAPP, Viral. 49: 297-299.
99. 100.
102. 102a.
C., AND POVEY,
Gene 26:
S. (1982).
181-188.
Cytogenet.
P. M. (1985). Cell Genet.
J. 32:
R. G., AND FOURNIER, 39: A159. Gene Mapping
8,
U. R. (1984).
J.
KRANZ, P. M., et al. (1985). Science 227: 941-945. LACKNER, N. J., et al. (1984). Biochem. Biophys. Res. Commun. 122: 877-883. LADER, E., et al. (1965). Immunogenetics 22: 49-54. LAMM,
L. U., AND OLAISEN, B. (1985). Cell Genet. 40: 128-133.
Human
Gene Mapping
8, Cytogenet. 8, Cytogenet.
103.
643 (Abstr.).
N. M., et al. (1984).
81:
P., et al. (1964). Proc. Natl. Acad. Sci. USA 1813-1817. HENRY, L., et al. (1984). Hum. Genet 68: 67-69.
101.
Gene
P., AND PEL-
70. GUNNING,
T. K. (1986). Human
I., VILLASANTE, A., D’EUSTACHIO, A. (1984). Science 226: 1041-1043.
LICER,
H.
B., AND FRANCKE, 3751-3755.
R. L. SHAPIRO, L. J., AND MOHANDAS, J. Hum. Genet. 38: 664-690.
66. GERALD,
WINKING,
D., EDDY, R., AND SHOWS, T. (1985). 8, Cytogenet. Cell Genet. 40: 635-636
65. GELLER, Amer.
AL.
Med.
DAUTIGNY, A., et al. (1986). Nature DAVIS, M. B., WEST, L. F., SHEPHARD, E. A., AND PHILLIPS, I. R. (1986). Ann. Hum. Genet. 60: 237-240.
41. DAVISSON, M. 42. DAVISSON, M. L&t. 75:12-15. 43. D’EUSTACHIO, 44. D’EUSTACHIO, 45.
Clin. Genet.
J. Exp.
ET
309:
763-767.
104.
LEBEAU, M. M., WESTBROOK, C. A., Dwz, M. O., AND RowLEY, J. D. (1984). Nature (L.ondon) 312: 70-71. LEE, N. E., et al. (1984). J. Exp. Med. 160: 905-913.
MAPS
Nature
289:
106. 107.
LINDGREN,
108. 109.
LUSIS, A. J., TAYLOR, B. A., WANGENSTEIN, R. W., AND LE BOELJF, R. C. (1983). J. Biol. &em. 268: 5071-5078. LYON, M. F. (1985). Mouse News Lett. 72: 2-20.
110. 111.
LYON, LYON,
M. F. (1987). Nature (London) 325: 22. M. F., et al. (1986). Personal Communication.
112.
LYON, 75-85.
M.
113.
MACDERMOT, (1986). Hum.
114.
M.&CHLER,
M., et al. (1986).
115.
MAGENIS,
R. E., et al. (1982).
116.
MAGENIS, R. E., et al. (1985). Human genet. Cell Genet. 40: 686 (Abstr.).
117.
MAMULA, P. W., HEEREMA, N. A., PALMER, C. G., AND KARN, R. C. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 687 (Abstr.).
118.
MARTIN-DELEON, 39: 87-92.
119.
MATTEI,
120.
MCALPINE, P. J., SHOWS, STIS, A. J. (1985). Human Genet. 40: 6-66.
T. B., MILLER, Gene Mapping
121.
MCBRIDE, 8221-8236.
(1983).
11:
150.
122.
MCBRIDE, 0. W., MERRY, D. E., OREN, M., AND GIVOL, D. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 694-695 (Abstr.).
123.
MCGINNIS, MCKUSICK,
126. 126a. 127.
F., et al. (1986).
Proc.
Natl.
698-700.
138.
NARAHARA,
K., et al. (1985).
Hum.
Genet.
J. 3: 1643-1646.
139.
NATT, E., KAO, F.-T., RETTENMEIER, R., AND SCHERER, G. (1986). Hum. Genet. 72: 225-228. NAYLOR, S. L., et al. (1984). Cytogenet. Cell Genet. 37: 551 (Abstr.).
Exp.
MorphL
R. M.,
AND
MALCOLM,
Genet.
73:
Hum. Hum.
Genet.
0. W.,
Hum.
97: S.
271-275.
62: 271-276.
Gene Mapping
P. A., et al. (1985).
M. G., et al. (1986).
Cytogenet.
Genet.
72:
140.
142.
NEDOSPASOV, S. A., et al. (1986). Nucleic 7713-7725. NEDWIN, G. E., et al. (1986). Nucleic 6361-6373.
143.
352-353.
Nucleic
Acids
Res.
W., et al. (1984). Cell 38: 675-680. V. A. (1986a). Clirz. Genet. 29: 545-566.
MCKUSICK, V. A. (1986b). “Mendelian 7th ed., Johns Hopkins Univ. Press,
Inheritance Baltimore/London.
MCKUSICK, Cell Genet.
P. M. (1984).
V. A., AND CONNEALLY, 37: 205-209.
in Man,” Cytogenet.
128.
MILLER, 0. J., AND SINISCALCO, Genet. 32: 179-190.
129.
MOHANDAS,
130.
MORTENSEN, Immunogenetics
131.
MORTON, Mapping
132.
M~NKE, M., et al. (1985). Human genet. Cell Genet. 40: 706 (Abstr.).
133.
M~NKE,
M., et al. (1986).
133a.
MONKE,
M., et al. (1986).
134.
NADEAU, Sci. USA
J. H., AND TA~OR, 81: 814-818.
134a.
NADEAU,
J. H., et al. (1986).
135.
NAGARAJAN, 25562560.
136.
NAKAMURA, D., POPP, R.: EICHER, E., AND LALLEY, P. A. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 710 (Abstr.).
T., et al. (1980).
M.
(1982).
Cytogenet.
Cell Genet.
Res.
14:
Res.
13:
Acids Acids
145a. 146.
NICHOLLS, R. D., et al. (1987). J. Med. Gent%. 24: 39-46. O’DONNELL, J. J., VANNAS-SULONEN, K. M., SHOWS, T. B., AND Cox, D. R. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 716 (Abstr.). PERICAK-VANCE, M. A., et al. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 721-722 (Abstr.).
148a.
U. (1973)
Human
Chromosoma
Gene
Mapping
8, Cyto-
PETERS, G., KOZAK, C., AND DICKSON, C. (1984). Biol. 4: 375-378. PETERS, J. (1986). Mouse News L&t. 76: 74.
Mol.
Cell
Z.&t.
73:
Lett.
70:
J. (1987). Mouse News Z&t. J., AND BALL, S. T. (1985).
151.
PETERS, 82.
J., AND BULFIELD,
151a.
PETERS, J., ANDREWS, S. J., LOUTIT, J. B. (1985). Genetics 110: 709-721.
152.
PHILIP,
153.
PURRELLO, M., et al. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 725 (Abstr.). RABIN, M., et al. (1985). Nature (London) 314: 175-178.
154.
156. 157.
T., et al. (1980).
77: 6-72. Mouse News
41:
PETERS, PETERS, 17-18.
Cell
26: 28-35.
12:
NGUYEN, C., et al. (1985). genet. CeU Genet. 40: 713.
158.
Cytogenet.
Genet.
145.
147.
M. N., AND FRANCKE,
Cell Molec.
NESBITT, 145-158.
155.
MENSINK, E. J. B. M., et al. (1986). Hum. Genet. 73: 327-332. MERRIL, C. R., AND HARRINGTON, M. G. (1985). Trends Genet. 1: 140-144.
Somat.
82:
144.
148.
R. L., AND PAK8, Cytogenet. Cell
S. L., et al. (1986).
Sci USA
71: 37-40.
NAYLOR, 307-311.
8, Cyto-
Cell Genet.
Acad.
141.
149.
et al.
17
III H., et al. (1985).
J. Embryol.
K. D., WINTER, Genet. 74: 172-173.
MOUSE,
NAKAUCHI, 5126-5130.
226:
EMBO
AND
137.
V., et al. (1984).Science M., et al. (1984).
(London)
MAN
LIN, P.-F., 191-194.
124. 125.
F. H. (1981).
OF
105.
LOVETT,
AND RUDDLE,
CHROMOSOME
G. (1984).
Cytogenet.
Mouse
News
J. F., AND
Cell Genet.
27:
CLEGG, 187-189.
RABIN, M., FERGUSON-SMITH, A., HART, C. P., AND RUDDLE F. H. (1986). Amer. J. Hum. Genet. 39: A165. RAMESH, V., et al. (1986). Amer. J. Hum. Genet. 39: A166. RASTAN, S., AND ROBERTSON, E. J. (1985). J. Embryol. Morphol. 90: 379-366. READ, A, P., et al. (1986). Hum. Genet. 73: 267-270.
Exp.
159.
RE~IG, W. J., DRACOPOLI, N. C., SILVER, J., AND OLD, L. J. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 731 (Abstr.).
Gene
160. 161.
RICHARDS, J. E., et al. (1985). Immunogenetics ROACH, A., et al. (1985). Cell 42: 149-155.
Gene Mapping
8, Cyto-
162. 163.
Cytogenet.
Cell Genet.
42:
236-240.
Cytogenet.
Cell Genet.
43:
140-149.
ROBBINS, J. M., et al. (1986). J. Virol. 67: 709-713. ROAR, V., WOLF, D., PRAVTCHEVA, D., AND RUDDLE, (1984). Mol. Cell. Biol. 4: 383-385. RYAN, J. (1984). Nucleic Acids Res. 12: 6063-6072.
R. F., LEE, P. H., AND TAYLOR, 22: 367-375.
C., BELL, G., AND SHOWS, T. (1985). 8, Cytogenet. Cell Genet. 40: 702-703.
L., et al. (1986).
B. A. (1984). Genetics
104:
Proc. Natl.
B. A. (1985). Human
Proc. Natl.
Acad.
1239-1255.
Acad.
Sci. USA
164. 165.
SAM~ELSON, Mol. Genet.
L. C., AND FARMER, 157-165.
22:
193-199.
R. A. (1985)Somat.
F. H.
CeU
11:
166.
SAWYER, J. R., MOORE, M. M., CLIVE, D., AND HOZIER, J. C. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 738 (Abstr.).
167.
SAXE, (1985).
168.
SEARLE,
83:
D. F., TAKAHASHI, N., HOOD, L., AND SIMON, Cytogenet. Cell Genet. 39: 246-249. A. G. (1981).
In “Genetic
Variants
and Strains
M.
I. of
18
SEARLE the Laboratory Gustav Fischer,
169. 170.
171. 172.
SEARLE, SEARLE, iants and Ed.), pp.
Mouse” Stuttgart.
(M.
C. Green,
Ed.),
pp.
324-357,
A. G. (1986). Mouse News Lett. 74: 57-62. A. G., AND BEECHEY, C. V. (1981). In “Genetic VarStrains of the Laboratory Mouse” (M. C. Green, 360-365, Gustav Fischer, Stuttgart.
SICILIANO, M. J., FOURNIER, R. E. K., AND STALLINGS, R. L. (1984). J. Hered. 75: 175-180. SIDMAN, R. L., CONOVER, C. S., AND CARSON, J. H. (1985). Cytogenet. Cell Genet. 39: 241-245.
173.
SILVER,
174.
SILVER, L. M., ULMAN, (1983). CeZZ 35: 35-45.
175. 176.
SKOW, L. C. (1982). Exp. Eye Res. 34: 509. SKOW, L. C., AND DONNER, M. E. (1985). Genetics
177.
SPARKES, R. S., et al. (1986). Proc. Natl. Acad. Sci. USA 83: 73587362. SPIES, T., et al. (1986). Proc. Natl. Acad. Sci. USA 83: 8699-8702. SPURR, N. K., et al. (1984). EMBO J. 3: 159-163.
178. 179. 180. 181. 182. 183. 184. 185.
J. S., et al. (1985).
SUKHATME,
Mol.
J., DANSKA,
5: 1784-1786.
J., AND GARRELS,
J. I.
AL.
189.
TULCHIN, 109-116.
N.,
AND
TAYLOR,
B. A. (1981).
190.
VAN DEN ELSEN, 82: 2920-2924.
191.
VAN DER KORPUT, 493-502.
192.
WATANABE, T., OGASAWARA, ckm. Genet. 14:999-1002.
N., AND GOTO,
193.
WATSON, 1792-1796.
Proc. Natl.
194.
WEINBERGER, C., et al. (1985). Human togenet. CeZl Gene& 40: 776 (Abstr.).
P., et al. (1985).
Proc. Natl.
J. A. G. M., et al. (1985).
D. K., et al. (1986).
Genetics
99:
Acad. Sci. USA J. Gen. Virol. H. (1976).
Acad.
66: Bio-
Sci. USA 83:
Gene Mapping
8, Cy-
312: 465-467.
195.
WHITE,
196.
WILCOX, 387-390.
197.
WILLISON, K., DUDLEY, K., SPURR, N., AND GOODFELLOW, P. (1985). Human Gene Mapping 8, Cytogenet. Cell Genet. 40: 779-780 (Abstr.).
198. 199.
WILSON,
200.
YANG, F., et al. (1984). 2752-2756.
201.
YANG-FENG, 1117-1128.
202.
YANG-FENG, T. L., DE GENNARO, (1986). Proc. Natl. Acad. Sci. USA
202a.
YANG-FENG, 121-126.
Lett.
203.
ZABEL, B. U., et al. (1983). 6932-6939.
Proc.
Natl.
Acad.
Sci.
M., OLSON, S., AND LAWN, R. M. (1982). Proc. Sci. USA 79: 7809-7813. H., LALLEY, P. A., AND NEBERT, D. W. (1984). Acad. Sci. USA 81: 3163-3166.
204.
ZABEL, B. U., et al. (1984). 4874-4878.
Proc.
Natl.
Acad.
Sci. USA
81:
205.
ZABEL, B. U., et al. (1985). 469-473.
Proc.
Natl.
Acad.
Sci.
82:
V. P., et al. (1985).
SUZUKI, T., AND BOARD, 10: 319-320.
J. Exp.
P. (1984).
Med.
Somat.
SYKES, B., AND SOLOMON, E. (1978). Nature 548-549. TAISNE, C. DE, et al. (1984). Nature (London)
110: 723.
161: 429-434. Cell Molec.
Genet.
(London)
272:
310: 581-583.
TAYLOR, B. A., AND ROWE, L. (1987). Proc. Natl. Acad. Sci. USA 84: 1986-1990. THERMAN, E. (1983). In “Cytogenetics of the Mammalian X Chromosome, Part B” (A. A. Sandberg, Ed.), pp. 159-173, Liss, New York.
186.
TIMMS, G. P., AND HOLMES, 66: 60.
187.
TF~ENT, J. Natl. Acad. TUKEY, R. Proc. Natl.
188.
Cell. Biol.
ET
R. S. (1982).
Mouse
News
P. C., et al. (1984).
WOMACK, 70: 100.
Nature
F. H., AND TAYLOR,
D. E., et al. (1987).
Amer.
J. E., AND ASHLEY,
(Londonl
B. A. (1981).
J. Hum.
Natl.
T. L., et al. (1985).
T. L., et at. (1986).
Amer.
Genet.
72:
39: A173.
Mouse News Lett.
P. S. (1984).
Proc.
J. Hered.
Acad.
Sci.
J. Hum.
USA
81:
Genet.
37:
L. J., AND FRANCKE, 83: 8679-8683. Cytogenet.
Cell Genet. USA
USA
U. 43: 80: