Circadian variations of plasma atrial natriuretic peptide and corticosterone in rats with continuous or restricted access to food

Circadian variations of plasma atrial natriuretic peptide and corticosterone in rats with continuous or restricted access to food

Life Sciences, Vol. 53, pp. 1795-1801 Printed in the USA Pergamon Press C I R C A D I A N V A R I A T I O N S OF P L A S M A A T R I A L N A T R I U...

372KB Sizes 5 Downloads 62 Views

Life Sciences, Vol. 53, pp. 1795-1801 Printed in the USA

Pergamon Press

C I R C A D I A N V A R I A T I O N S OF P L A S M A A T R I A L N A T R I U R E T I C A N D C O R T I C O S T E R O N E IN R A T S W I T H C O N T I N U O U S O R R E S T R I C T E D A C C E S S TO F O O D M a n u e l H.A. O l i v e i r a , A n g e l a M.O. Leal, L u c i l a

PEPTIDE

Jos~ Antunes-Rodrigues (i), L.K. E l i a s a n d A y r t o n C. M o r e i r a

D i v i s i o n of E n d o c r i n o l o g y , D e p a r t m e n t of M e d i c i n e a n d D e p a r t m e n t of P h y s i o l o g y (I), F a c u l t y of M e d i c i n e 1 4 0 4 8 - 9 0 0 , R i b e i r a o Preto, SP, Brazil.

(Receivedinfinal~rm October6,1993) Summary In the p r e s e n t s t u d y p l a s m a A t r i a l N a t r i u r e t i c Peptide (ANP) a n d C o r t i c o s t e r o n e (B) l e v e l s w e r e d e t e r m i n e d in 2 g r o u p s of W i s t a r rats, a C o n t r o l g r o u p (C) w i t h free access to food, a n d a Food Shift group (FS) with a c c e s s to f o o d o n l y f r o m 0900 to ii00 h for 2 weeks. Blood samples were collected by d e c a p i t a t i o n at 4 h o u r intervals. ANOVA indicated that B v a r i e d o v e r t i m e in b o t h g r o u p s (F (6,46) = 10.14, p < 0.0001 for C a n d F (6,45) = 5.10, p = 0.0005 for FS) . T h e r e w a s a l s o time variation in plasma ANP levels in both g r o u p s (F (6,54) = 3.78, p = 0.003 for C a n d F (6,48) = 2.73, p = 0.02 for FS group). P l a s m a B presented circadian variations f r o m 78 + 17 n m o l / l (mean + SEM) at 0800 h to 339 + 79 n m o l / l at 2000 h. The day peak plasma ANP l e v e l (pmol/l) was a l s o a t t a i n e d at 2000 h (68 + 19). This value was higher than all others measured t h r o u g h o u t the day. The restricted feeding regimen r e s u l t e d in a 12 h o u r shift of peak B values (395 + 39 vs 125 + 24). The FS rats p r e s e n t e d the h i g h e s t A N P level at 5 8 0 0 h. The p r e s e n t study indicates similar circadian v a r i a t i o n s of p l a s m a A N P a n d B in rats o n an ad lib or restricted feeding regimen. ANP and B secretion may o c c u r in a n t i c i p a t i o n of the feeding p e r i o d or day activity. A t r i a l n a t r i u r e t i c peptide, A N P (99-126) is s y n t h e s i z e d and r e l e a s e d f r o m m a m m a l i a n c a r d i a c a t r i a a n d has s e v e r a l a c t i o n s on fluid and electrolyte homeostasis.Thus, systemic administration of ANP results in n a t r i u r e s i s and diuresis and a simultaneous decrease in p l a s m a renin, a n g i o t e n s i n a c t i v i t y and aldosterone secretion. Moreover ANP has been shown to be an effective i n h i b i t o r of v a s o p r e s s i n s e c r e t i o n a n d of salt a n d water intake in the rat (1,2). P e p t i d e s r e l a t e d to A N P are also synthesized l o c a l l y w i t h i n the C e n t r a l N e r v o u s S y s t e m ( C N S ) , w i t h p a r t i c u l a r l y high concentrations p r e s e n t in the hypothalamus, where atrial peptides m a y f u n c t i o n as n e u r o t r a n s m i t t e r s or neuromodulators. Recent studies have a l s o s u g g e s t e d that A N P m a y suppress the .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A y r t o n C. M o r e i r a , Medicine 14048-900,

.

.

.

.

.

MD, Division of Endocrinology, R i b e i r a o Preto, SP, Brazil. ~24-3~5/93 ~.00 + . ~

Copyri~t©1993PergamonPressLtd Allrightsrese~ed.

Faculty

of

1796

Circadian Variation of ANP

Vol. 53, No. 24, 1993

hypothalamus-pituitary a d r e n a l axis b y i n t e r a c t i n g w i t h CRF 41 or by inhibiting pituitary corticotropin secretion (3 7). The role of ANP in a c u t e v o l u m e expansion has been extensively studied, but the i n f l u e n c e of A N P d u r i n g n o r m a l d a y - t o - d a y l i v i n g has b e e n not a d e q u a t e l y d e m o n s t r a t e d . It is w e l l e s t a b l i s h e d that the rhythmicity of the h y p o t h a l a m u s - p i t u i t a r y - a d r e n a l axis is r e l a t e d to p o s s i b l e n e u r a l mechanisms involved in sleep-wake, rest-activity, light-dark or feeding cycles. R a t s maintained under ad lib feeding or daytime food restriction manifest a circadian peak of p l a s m a B just p r i o r to the time of o n s e t of predominant food intake (8). Diurnal rhythm of plasma ANP c o n c e n t r a t i o n s w a s o b s e r v e d in normal volunteers or patients. However, detailed information on ANP periodicity in rats is scanty. Thus, we d e c i d e d to s t u d y the d a i l y v a r i a t i o n of plasma A N P in rats a n d the role of f o o d r e s t r i c t i o n on its s e c r e t i o n .

Methods Studies were p e r f o r m e d on 144 s i n g l y housed adult male Wistar rats weighing 200 g w h i c h had been acclimated to our l a b o r a t o r y for one week. L i g h t s on at 0700 h, off at 1900 h, r o o m t e m p e r a t u r e 24 C, l a b o r a t o r y c h o w a n d water ad lib, food and w a t e r c o n t a i n e r s r e p l e n i s h e d daily. Animals were handled daily and weighed by the same p e r s o n a n d the f o o d intake was also measured. A f t e r this first w e e k the a n i m a l s were divided into t w o groups, a C o n t r o l G r o u p (C) w i t h free a c c e s s to food, a n d a Food Shift G r o u p (FS) w i t h a c c e s s to food o n l y f r o m 0900 h to II00 h. O n the 21st day, a n i m a l s were sacrificed by decapitation a n d b l o o d w a s c o l l e c t e d at 0800, 1200, 1600, 2000, 2400, 0400 a n d 0800 h into tubes containing enzyme inhibitors, i0 ul Pepstatin A (500 uM), i0 ul p h e n y l m e t h y l s u l f o n i l f l u o r i d e (0,001 M), EDTA 1 mg/ml of blood for ANP determination, and into s e p a r a t e t u b e s for B d e t e r m i n a t i o n . P l a s m a B was d e t e r m i n e d b y a p r e v i o u s l y d e s c r i b e d R I A (9). The l o w e r l i m i t of s e n s i t i v i t y was 13 nmol/L, a n d the i n t r a - a n d i n t e r a s s a y c o e f f i c i e n t s of v a r i a t i o n (CVs) were 2% a n d 8%, r e s p e c t i v e l y . The i m m u n o r e a c t i v e A N P was e x t r a c t e d f r o m 1 ml of p l a s m a b y u s i n g S e p - P a k c a r t r i d g e s (Waters Associates, MilFord, MA) . P l a s m a A N P l e v e l s were measured by R I A as p r e v i o u s l y d e s c r i b e d (2). The mean recovery of s t a n d a r d A N P w a s 75 + 5% (mean + SD) . The intra- a n d interassay CVs were 8% and 12%, respectively. The s e n s i t i v i t y of the a s s a y w a s 2.5 p m o l / L . The antiserum used cross reacts with alpha-h ANP, 100%, rat A N P (Ile 12 a l p h a - h ANP), 100%, rat A t r i o p e p t i n III, 100%, ANP (8-33) (Ile 12 a l p h a - h A N P 3-28), 90%, ANP (18-28), 57%, rat ANP (13-28), 50%, rat A t r i o p e p t i n II, 27%, A u r i c u l i n A, 10%, and rat Atriopeptin I, 3%. The data were a n a l y z e d s t a t i s t i c a l l y b y one - w a y a n a l y s i s of v a r i a n c e (ANOVA), b y the W i l c o x o n M a n n - W h i t n e y Test and by the Spearman rank correlation coefficient. Weight and food intake data were a n a l y z e d b y the Student t-test. P v a l u e s less t h a n 0.05 were considered significant.

Vol. 53, No. 24, 1993

Circadian Variation of ANP

1797

Results There was no significant difference between the initial body weight (bw) g, m e a n + SE, of t h e t w o g r o u p s (192.6 + 1.5 x 1 9 4 . 7 + 1.23, C x FS) but the control animals were heavier than their FS counterparts (312.4 + 1.9 vs 246.4 + 2.0, p < 0 . 0 0 0 1 C x FS) at t h e e n d of t h e e x p e r i m e n t . T h e i n i t i a l f o o d i n t a k e (g/day) w a s t h e s a m e f o r the t w o g r o u p s (23.2 + 0.5 x 2 2 . 6 + 0.5, g / d a y , C x FS) . A l t h o u g h t h e FS group showed smaller food ~ntake than the C g r o u p on the 2 1 s t day (24.5 + 0.4 x 1 9 . 0 + 0.4, p < 0 . 0 0 0 1 , C x FS), w h e n the d a i l y i n t a k e w a s - e x p r e s s e d in g/day/100 g bw there was no significant difference in the initial food intake (9.8 + 1.4 x 9.5 + 1.8 g / d a y / 1 0 0 g bw, C x FS) o r in t h e f i n a l f o o d i n t a k e (7.8 ~ 1.0 x 7.7 + 1.3 g/ d a y / i00 g bw, C x FS). F i g u r e 1 s h o w s t h e r e s u l t s of B a n d A N P d e t e r m i n a t i o n s . ANOVA indicated that B varied over time in both groups (F (6,46) = 10.14, p < 0.0001 for C a n d F (6,45) = 5.10, p = 0 . 0 0 0 5 f o r FS) . There was also a time v a r i a t i o n in p l a s m a ANP l e v e l s in both groups (F (6,54) = 3.78, p = 0 . 0 0 3 f o r C a n d F (6,48) = 2.73, p = 0 . 0 2 f o r FS) . P l a s m a B p r e s e n t e d circadian v a r i a t i o n s f r o m 78 + 17 n m o l / l at 0 8 0 0 h to 339 + 79 n m o l / l (mean + SEM) at 2000 h? The restricted feeding r e g i m e n r e s u l t e d in 12 h o u r s h i f t of p e a k B values (395 + 39 vs 125 + 24). T h e d a y p e a k plasma ANP level (pmol/l) w a s a l s o attained at 2 0 0 0 h (68 + 19). T h i s v a l u e w a s higher than the remaining ones obtained throughout the day (2000 h x 0 8 0 0 h p = 0 . 0 0 0 4 , 2 0 0 0 h x 1 2 0 0 h p = 0.001, 2 0 0 0 h x 1 6 0 0 h p = 0.003, 2000 x 2400 h p = 0.04 and 2000 h x 0400 h p = 0.009). FS rats presented the highest ANP l e v e l at 0 8 0 0 h. However, this value was only significantly higher than the 1200 h value (p = 0.01) . In a d d i t i o n t h e r e w a s a p o s i t i v e c o r r e l a t i o n between ANP and B levels o b t a i n e d in t h e s a m e p l a s m a s a m p l e s f o r the C o n t r o l g r o u p (r = 0.39, p = 0.003) a n d f o r the FS group (r = 0.37, p = 0 . 0 0 7 1 ) .

Discussion The existence of a circadian rhythm of ANP in humans is s t i l l somewhat controversial. Nevertheless, the prevalent e v i d e n c e is t h a t in d i u r n a l l y a c t i v e s u b j e c t s , f o l l o w i n g a n o r m a l p a t t e r n of a c t i v i t y - r e s t , food and sleep at n i g h t , A N P has a circadian variation with a peak at 0 4 0 0 h, both in n o r m a l volunteers (10-14) a n d in h y p e r t e n s i v e (14) and congestive heart failure patients(15) . Contradictory results may reflect different ways of time sampling (16), p o s t u r e (17, 18), d i e t (16, 18), water intake, collection and h a n d l i n g of s a m p l e s (16, 18), a n d assays. Pulsatility has also been described for ANP and can both m i m i c a n d c o n c e a l u l t r a d i a n r h y t h m for A N P (19). N o studies of this type have been carried out on animals. Our results d e m o n s t r a t e t h e w e l l k n o w n c i r c a d i a n r h y t h m of p l a s m a B in r a t s w h i c h i n c r e a s e s b e f o r e the beginning of dark activity period, and peaks at 2 0 0 0 h. We also c o n f i r m e d as previously described (20, 21), t h a t B l e v e l s s h o w a 12 h o u r s h i f t when the f o o d is r e s t r i c t e d f r o m 0 9 0 0 to i i 0 0 h. T h e s e f i n d i n g s

1798

Circadian Variation of ANP

Vol. 53, No. 24, 1993

600

1A 500

t,I

---- 4 0 0 -6

E

&

m

/!

300

g h-

2o0

100 8 B

0 100

1B 80

8 v

8

,/I'"

6o

n Z < cO

E u)

4O

20

8 L l~r,11s o f f

0 0400

l

I

1200

I

I

2000

0400

1200

Clockt~me (hours)

Circadian levels in rats on a are means

Fig. 1 periodicity of plasma B (IA) or ANP (IB) control rats under a d lib feeding ( ) or restricted feeding schedule (---) . V a l u e s + SEM. Solid bars indicate t i m e of d a r k n e s s .

Vol. 53, No. 24, 1993

Circadian Variation of ANP

1799

r e p r e s e n t e d the g o l d s t a n d a r d for the c o n t r o l of the e x p e r i m e n t . A N P l e v e l s in the c o n t r o l g r o u p also s h o w e d a p e a k at 2000 h, a v a l u e that was h i g h e r t h a n the r e m a i n i n g ones t h r o u g h o u t the day. Moreover, the circadian variation in ANP changed with the manipulation of r h y t h m by p h a s e - s h i f t of a s y n c h r o n i z e r as the food schedule ( r e s t r i c t i o n from 0900 to ii00 h) . Although there are c o n f l i c t i n g d a t a about the role of food a m o u n t for p r e f e e d i n g B p e a k s in rats (20, 22), in o u r e x p e r i m e n t there was no s i g n i f i c a n t d i f f e r e n c e in food intake (g/day/100 g bw) between restricted and ad lib fed animals. T h e r e f o r e we cannot e x p l a i n the v a r i a t i o n s in h o r m o n a l levels s o l e l y on this basis. S i n c e food r e s t r i c t i o n induces a d i s r u p t i o n of activityrest a n d s l e e p - w a k e p a t t e r n s w i t h c h a n g e s in h i p p o c a m p a l content of n o r e p i n e p h r i n e a n d serotonin, a n d in the c o r t i c a l c o n t e n t of serotonin (20), C R F - r e l a t e d n e u r o t r a n s m i t t e r s i n v o l v e d in f e e d i n g behavior (23), more studies are necessary to clarify the interactions among different neuropeptides (CRF,CCK, n e u r o t e n s i n , Pancreatic Polypeptide, galanin, ANP) and the c h a n g e s observed. The correlation between ANP and B under the experimental conditions used may have resulted from a common regulatory mechanism for both hormones as well as from a regulatory i n f l u e n c e of one hormone upon the other. Since in rats PRA, Aldosterone and B p e a k at the b e g i n n i n g of the dark activity p e r i o d (20,24,25), the s i m u l t a n e o u s i n c r e a s e of A N P m a y indicate a possible interaction between ANP and renin secretion as proposed by Donckier et al. (i0) . F u r t h e r support for the possibility that the circadian ANP concentration modulates plasma renin c o n c e n t r a t i o n is p r o v i d e d by the fact that when a p e r s o n is kept r e c u m b e n t for 24 hours and there is no n o c t u r n a l p e a k of A N P (17, 18), r e n i n c o n c e n t r a t i o n t h e n rises d u r i n g the n i g h t (26, 27). If not causal, this time relationship is very i m p o r t a n t due to the fact that ANP, just like r e n i n and cortisol, is a n t i c i p a t o r y in its p e r i o d i c c i r c a d i a n rise p r i o r to a w a k e n i n g in p r e p a r a t i o n for the day's a c t i v i t i e s (28). We additionally demonstrated a significant correlation between plasma ANP and B concentrations in both groups. Glucocorticoids s t i m u l a t e m y o c a r d i a l A N P gene a c t i v i t y (29), and secretion of ANP in vitro by cardiac myocytes (30), or hypothalamic neurones (31) in v i t r o and in v i v o in m a n (32, 33) or in rats (34). This s t i m u l a t i n g glucocorticoid e f f e c t on A N P s e c r e t i o n m a y be c o n s i s t e n t w i t h a p o s s i b l e hypothalamic-cardioa d r e n a l f e e d b a c k c o n t r o l mechanism, w h e r e b y A N P m a y be modulated by glucocorticoids and/or play a role in modulating the a c t i v a t i o n of the h y p o t h a l a m i c p i t u i t a r y a d r e n a l s y s t e m at one or m o r e levels. In c o n c l u s i o n , o u r r e s u l t s d e m o n s t r a t e that the circadian variations of ANP and B in rats on an ad lib or r e s t r i c t e d feeding regimen are parallel. Since the homeostasis of physiological functions usually relies on an interplay of antagonist factors, ANP may play a role in a putative hypothalamic-cardio-adrenal axis. The n a t u r e and m e a n i n g of these interactions deserve further investigation.

1800

Circadian Variation of ANP

Vol. 53, No. 24, 1993

Acknowledgements The authors thank Miss Adriana Rossi, Miss Marina Holanda a n d Mr. A d a l b e r t o Verceze for technical assistance and Miss Ana Cristina C. P e r e i r a for secretarial assistance. This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnol~gico, and HCFMRP-FAEPA.

References i.

J. ANTUNES-RODRIGUES, S.M. McCANN and W.K. SANSON, Endocrinology 118 1 7 2 6 - 1 7 2 8 (1986). 2. S. BALDISSERA, J.W. MENANI, L.F.S. DOS SANTOS, A.L.V. FAVARETTO, J. G U T K O W S K A , M.Q.A. TURRIN, S.M. M c C A N N a n d J. ANTUNES-RODRIGUES, P r o c . N a t l . A c a d . Sci. U S A 86 9621 - 9625 (1989) . 3. M . S . K I N G and A.J. BAERTSCHI, Endocrinology 124 286 - 292 (1989) . 4. K.J. K O V A C S and F.A. A N T O N I , Endocrinology 127 3003 - 3008 (1990). 5. A . T . LIM, W.J. S H E W A R D , D. C O P O L O V , D. W I N D M I L L and G. F I N K , J. Neuroendocrinology 2 15 17 (1990). 6. G. F I N K , R.C. DOW, D. C A S L E Y , C.I. J O H N S T O N , A.T. LIM, D. L. COPOLOV, J. B E N N I E , S. C A R R O L L a n d H. D I C K , J. Endocrinol, 1 3 1 9 - 12 (1991). 7. F.A. A N T O N I , E . F . M . H U N T E R , P.J. J O W R Y , J.M. N O B L E a n d J.R. SECKL, Endocrinology 130 1 7 5 3 1 7 5 5 (1992). 8. D . T . K R I E G E R , R h y t h m s in CRF, A C T H a n d C o r t i c o s t e r o i d s , D.T. KRIEGER (ed) 123 142, R a v e n P r e s s , N e w Y o r k (1979). 9. M. L O P E Z - J I M E N E Z , M.M. V A L E N C A , A.C. M O R E I R A a n d J. A N T U N E S RODRIGUES, Brazilian J. Med. B i o l . Res. 22 779 782 (1989). I0. J. D O N C K I E R , J.V. A N D E R S O N , T. Y E O a n d ~.R. B L O O M , N. E n g l . J. M e d . 315 710 711 (1986). ii. D . L . V E S E L Y , E.L. K A N A B R O C K I , R.B. S O T H E R N , L.E. S C H E V I N G , T. H. T S A I , J. G R E C O , D.L. B U S H E L L , E. K A P L A N , J. R U M B Y R T , R.P. STURTEVANT, F.M. S T U R T E V A N T , W.F. BREMNER, J.L.H.C. THIRD, W.J.M. HRUSHESKY and J.H. O L W I N , C h r o n o b i o l . Int. 7 51 - 57 (1990) . 12. C.J. W I N T E R S , A.L. SALLMAN and D.L. V E S E L Y , C h r o n o b i o l . Int. 5 4 0 3 - 4 0 9 (1988) . 13. F. P O R T A L U P P I , L. M O N T A N A R I , B. B A G N I , E.D. U B E R T I , G. TRANSFORINI a n d A. M A R G U T T I , Cardiology 7 6 428 432 (1989). 14. F. P O R T A L U P P I , B. BAGNI, E.D. UBERTI, L. MONTANARI, R. CAVALLINI, G. T R A S F O R I N I , A. M A R G U T T I , M. F E R L I N I , M. Z A N E L L A a n d M. P A R T I , J. Hypertens 8 85 - 95 (1990). 15. F. Y O S H I N O , N. S A K U M A , T. D A T E , T. U N O K I , K. F U K A G A W A , T. MIYAMOTO a n d Y. M A T S U D A , A m e r . H e a r t . J. 117 1316 - 1319 (1989) . 16. J. L E P P A L U O T O a n d H. R U S K O A H O , A c t a P h y s i o l S c a n d 139 47 53 (1990) . 17. A . M . RICHARDS, G. T O N O L O , R. FRASER, J.J. M O R T O N , B.J. L E C K I E , S.G. B A L L a n d J . I . S . R O B E R T S O N , C l i n . Sci. 73 489 4 9 5 (1987). 18. M. F O L L E N I U S , G. B R A N D E N B E R G E R and J. S A I N I , Life Sci. 51 143 - 149 (1992) .

Vol. 53, No. 24, 1993

19. 20. 21. 22. 23. 24.

25. 26. 27. 28. 29.

30. 31. 32.

33. 34.

Circadian Variation of ANP

1801

T. H A A K , E. J U N G M A N N a n d K. S C H O F F L I N G , L a n c e t 335 167 168 (1990) . D.T. K R I E G E R , E n d o c r i n o l o g y 95 1 1 9 5 - 1 2 0 1 (1974). A . C . M O R E I R A a n d D.T. K R I E G E R , P h y s i o l . B e h a v . 28 787 790 (1982). K. H O N M A , S. H O N M A a n d T. H I R O S H I G E , Am. J. P h y s i o l . 245 339 344 (1983). B. B E C K , A n n . E n d o c r i n o l . (Paris) 53 44 - 56 (1992). F.C. B A R T T E R , J . C . M . C H A N a n d H.W?--SIMPSON, C h r o n o b i o l o ~ i c a l Aspects of Plasma Renin Activity, Plasma Aldosterone, and Urinary electrolites, D.T. K R I E G E R (ed) 225 - 245, Raven P r e s s , N e w Y o r k (1979). C. G O M E Z - S A N C H E Z , O.B. H O L L A N D , J.R. H I G G I N S , D.C. K E M and N.M. KAPLAN, Endocrinology 99 567 - 572 (1976) . R.D. GORDON, L.K. W O L F E , D.P. I S L A N D and G.W. L I D D L E , J. C l i n . I n v e s t . 45 1 5 8 7 1 5 9 2 (1966). R.S. M O D L I N G E R , K. S H A R I F - Z A D E H , N.H. E R T E L and M. G U T K I N , J. C l i n . E n d o c r i n o l . M e t a b . 43 1 2 7 6 - 1 2 8 2 (1976). F. H A L B E R G , G. C O R N E L I S S E N , K. M A R T E - S O R E N S O N , Chronobiologia 13 3 6 1 364 (1986). D.G. G A R D N E R , S. H A N E , D. T R A C H E W S K Y , D. S C H E N K and J.D. BAXTER, Biochem. Biophys. Res. C o m m u n . 139 1047 1054 (1986) . P.P. S H I E L D S , J.E. D I X O N a n d C.C. G L E M B O T S K I , J. B i o l . Chem. 263 1 2 6 1 9 - 1 2 6 2 8 (1988). W. H U A N G , G.L. CHOI, Z. YANG, D.L. C O P O L O V and A.T. LIM, Endocrinology 128 2 5 9 1 2 6 0 0 (1991). P. W E I D M A N N , D.R. M A T T E R , E.E. M A T T E R , M.P. G N A D I N G E R , D.E. UEHLINGER, S. S H A W a n d C. HESS, J. Clin. E n d o c r i n o l . Metab. 66 1 2 3 3 1 2 3 9 (1988). ~ SAXENHOFER, M. A N G S T , P. W E I D M A N N , S.G. S H A W and C. FERRIER, Acta Endocrinol. (Copenh) 118 179 186 (1988). R. G A R C I A , W. D E B I N S K I , J. G U T K O W S K A , O. K U C H E L , G. T H I B A U L T , J. G E N E S T a n d M. C A N T I N , B i o c h e m . B i o p h y s . Res. Commun. 131 806

-

814

(1985)

.