Coefficient bounds for a subclass of starlike functions of complex order

Coefficient bounds for a subclass of starlike functions of complex order

Applied Mathematics and Computation 218 (2011) 693–698 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

190KB Sizes 0 Downloads 46 Views

Applied Mathematics and Computation 218 (2011) 693–698

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Coefficient bounds for a subclass of starlike functions of complex order Murat Çag˘lar ⇑, Erhan Deniz, Halit Orhan Atatürk University, Faculty of Science, Department of Mathematics, 25240 Erzurum, Turkey

a r t i c l e

i n f o

Dedicated to Professor H. M. Srivastava on the Occasion of his Seventieth Birth Anniversary Keywords: Analytic functions Coefficient bounds Starlike functions of complex order Differential operator

a b s t r a c t In the present work, we determine coefficient bounds for functions in certain subclass of starlike functions of complex order b, which are introduced here by means of a multiplier differential operator. Several corollaries and consequences of the main results are also considered. Ó 2011 Elsevier Inc. All rights reserved.

1. Introduction Let A denote the family of functions f of the form

f ðzÞ ¼ z þ

1 X

ak zk

ð1:1Þ

k¼2

that are analytic in the open unit disk U ¼ fz : jzj < 1g and X denote the class of bounded analytic functions (Schwarz functions) w(z) in U which satisfy the conditions w(0) = 0 and jw(z)j < 1 for z 2 U. If f and g are in A, we say that f is subordinate to g, written f  g, if there exists a function w 2 X such that f ðzÞ ¼ gðwðzÞÞ ðz 2 UÞ. For a function f(z) in A, the multiplier differential operator Dna;d f was extended by Deniz and Orhan in [8] as follows:

D0a;d f ðzÞ ¼ f ðzÞ; D1a;d f ðzÞ ¼ Da;d f ðzÞ ¼ adz2 ðf ðzÞÞ00 þ ða  dÞzðf ðzÞÞ0 þ ð1  a þ dÞf ðzÞ; ð1:2Þ

.. .

  Dna;d f ðzÞ ¼ Da;d Dn1 a;d f ðzÞ ; where a P d P 0 and n 2 N0 ¼ N [ f0g. If f is given by (1.1) then from the definition of the operator Dna;d f ðzÞ it is easy to see that

Dna;d f ðzÞ ¼ z þ

1 X

Unk ak zk ;

k¼2

where Uk ¼ ½1 þ ðadk þ a  dÞðk  1Þ; ðUnk ¼ ½Uk n Þ; a P d P 0 and n 2 N0 . ⇑ Corresponding author. E-mail addresses: [email protected] (M. Çag˘lar), [email protected] (E. Deniz), [email protected] (H. Orhan). 0096-3003/$ - see front matter Ó 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.01.085

ð1:3Þ

M. Çag˘lar et al. / Applied Mathematics and Computation 218 (2011) 693–698

694

It should be remarked that the Dna;d is a generalization of many other linear operators considered earlier. In particular, for f 2 A we have the following:  Dn1;0 f ðzÞ  Dn f ðzÞ the operator defined by Sa˘la˘gean (see [16]).  Dna;0 f ðzÞ  Dna f ðzÞ the operator studied by Al-Oboudi (see [2]).  Dna;d f ðzÞ the same operator considered for 0 6 d 6 a 6 1, by Ra˘ducanu and Orhan (see [14]). By using the extended operator Dna;d we define a new subclass of functions belonging to the class A. Definition 1.1. Let b – 0 be any complex number, a P d P 0; 0 6 k 6 1; n 2 N0 and for the parameters A and B such that 1 6 B < A 6 1, we say that a function f ðzÞ 2 A is in the class Hnb;k;a;d ðA; BÞ if it satisfies the following subordination condition:

0  1 0 n 1 B F k;a;d ðzÞ C 1 þ Az  1A  1 þ @z n ; b 1 þ Bz F k;a;d ðzÞ

z 2 U;

ð1:4Þ

n where F nk;a;d ðzÞ ¼ ð1  kÞDnþ1 a;d f ðzÞ þ kDa;d f ðzÞ. Recently, Altintas et al. [3], Aouf and Al-Yamy [4], Orhan and Kamali [13], Sohi and Singh [17], Wiatrowski [18], Aouf and Owa [6], Aouf et al. [5], Murugusundaramoorthy and Srivastava [11], Nasr and Aouf [12], Attiya [7], Goel and Mehrok [9] and others, introduced and studied some properties of certain classes of analytic functions of complex order.

Remark 1.1. Throughout our present investigation, we tacitly assume that the parametric constraints listed in (1.3) and Definition 1.1 are satisfied. Our basic tool is the following lemma known as Rogosinski Inequality for majorization. P P1 k k Lemma 1.1 [15]. Let gðzÞ ¼ 1 k¼q dk z and GðzÞ ¼ k¼q Dk z ; q P 0. If g(z) = w(z)G(z) where w(z) 2 X, then dq = 0 and Pn Pn1 2 2 jd j 6 jD j (n = q + 1, q + 2, . . .). k k¼qþ1 k k¼q 2. Coefficient inequalities Firstly, for functions in the class Hnb;k;a;d ðA; BÞ we establish the following theorem. Theorem 2.1. Let the function f(z) defined by (1.1) be in the class Hnb;k;a;d ðA; BÞ; z 2 U. (i) If (A  B)2jbj2 > (k  1){2B(A  B)Re{b} + (1  B2)(k  1)}, let



ðA  BÞ2 jbj2 ðk  1Þf2BðA  BÞRefbg þ ð1  B2 Þðk  1Þg

;

k ¼ 2; 3; . . . ; n  1;

M = [G] (Gauss Symbol), and [G] is the greatest integer not greater than G. Then

jaj j 6

j Y

1 n j ½ð1

 kÞUj þ kðj  1Þ!

jðA  BÞb  ðk  2ÞBj for j ¼ 2; 3; . . . ; M þ 2

ð2:1Þ

n j ½ð1

Mþ3 Y 1 jðA  BÞb  ðk  2ÞBj for j > M þ 2:  kÞUj þ kðj  1ÞðM þ 1Þ! k¼2

ð2:2Þ

U

k¼2

and

jaj j 6

U

(ii) If (A  B)2jbj2 6 (k  1){2B(A  B)Re{b} + (1  B2)(k  1)}, then

jaj j 6

ðA  BÞjbj ðj  1ÞUnj ½ð1  kÞUj þ k

for j P 2:

ð2:3Þ

Proof. If f ðzÞ 2 Hnb;k;a;d ðA; BÞ, then there is a Schwarz function w(z) = w1z +    2 X such that

0 

F nk;a;d ðzÞ

0

1

1B C 1 þ AwðzÞ  1A ¼ ; 1 þ @z n b 1 þ BwðzÞ F k;a;d ðzÞ

z 2 U:

ð2:4Þ

M. Çag˘lar et al. / Applied Mathematics and Computation 218 (2011) 693–698

695

By definition of Dna;d f ðzÞ and F nk;a;d ðzÞ, we can write

F nk;a;d ðzÞ ¼ z þ

1 X

Unk ½ð1  kÞUk þ kak zk :

ð2:5Þ

k¼2

From (2.4), we obtain

n  0  0 o z F nk;a;d ðzÞ  F nk;a;d ðzÞ ¼ F nk;a;d ðzÞ½ðA  BÞb þ B  zB F nk;a;d ðzÞ wðzÞ;

wðzÞ 2 X:

ð2:6Þ

Now, by using (2.5) Eq. (2.6) can be written as 1 X

( n k ½ð1

U

k

 kÞUk þ kðk  1Þak z ¼

ðA  BÞbz þ

k¼1

1 X

) n k ½ð1

U

k

 kÞUk þ k½ðA  BÞb  Bðk  1Þak z

wðzÞ:

k¼1

By using Lemma 1.1, we have j X

2 2 2 2 2 U2n k ½ð1  kÞUk þ k ðk  1Þ jak j 6 ðA  BÞ jbj þ

k¼2

j1 X

2 2 2 U2n k ½ð1  kÞUk þ k jðA  BÞb  Bðk  1Þj jak j :

k¼1

After simple calculation from last inequality, we obtain j1 X

2 2 2 2 2 2 2 2 2n U2n k ½ð1  kÞUk þ k ðk  1Þ jak j þ Uj ½ð1  kÞUj þ k ðj  1Þ jaj j 6 ðA  BÞ jbj

k¼2

þ

j1 X

2 2 2 U2n k ½ð1  kÞUk þ k jðA  BÞb  Bðk  1Þj jak j

k¼1

and for j P 2 j1 X

2 2 2 2 ðj  1Þ2 U2n j ½ð1  kÞUj þ k jaj j 6 ðA  BÞ jbj þ

2 2 2 2 U2n k ½ð1  kÞUk þ k fjðA  BÞb  Bðk  1Þj  ðk  1Þ gjak j :

ð2:7Þ

k¼2

Now there may be following two cases: (i) Let (A  B)2jbj2 > (k  1){2B(A  B)Re{b} + (1  B2)(k  1)}, suppose that j 6 M + 2, then for j = 2, (2.7) gives

ja2 j 6

ðA  BÞjbj

Un2 ½ð1  kÞU2 þ k

;

which gives (2.1) for j = 2. We establish (2.1) for j 6 M + 2, from (2.7), by mathematical induction. Suppose (2.1) is valid for j = 2, 3, . . . , (k  1). Then it follows from (2.7) j1 X fjðA  BÞb  Bðk  1Þj2  ðk  1Þ2 g

2 2 2 2 ðj  1Þ2 U2n j ½ð1  kÞUj þ k jaj j 6 ðA  BÞ jbj þ

k¼2

( 

1

k Y

ððk  1Þ!Þ2

p¼2

) jðA  BÞb  ðp  2ÞBj

2

¼

1

j Y

ððj  2Þ!Þ2

k¼2

jðA  BÞb  ðk  2ÞBj2 :

Thus, we get the inequality (2.1) which completes the proof of (2.1). Next, we suppose n > M + 2. Then (2.7) gives 2 2 2 2 ðj  1Þ2 U2n j ½ð1  kÞUj þ k jaj j 6 ðA  BÞ jbj þ

Mþ2 X

2 2 2 2 U2n k ½ð1  kÞUk þ k fjðA  BÞb  Bðk  1Þj  ðk  1Þ gjak j

k¼2 j1 X

þ

2 2 2 2 U2n k ½ð1  kÞUk þ k fjðA  BÞb  Bðk  1Þj  ðk  1Þ gjak j

k¼Mþ3

6 ðA  BÞ2 jbj2 þ

M þ2 X

2 2 2 2 U2n k ½ð1  kÞUk þ k fjðA  BÞb  Bðk  1Þj  ðk  1Þ gjak j :

k¼2

On substituting upper estimates for a2, . . . , aM+2 obtained above and simplifying, we obtain (2.2). (ii) Let (A  B)2jbj2 6 (k  1){2B(A  B)Re{b} + (1  B2)(k  1)}, then from (2.7) we have 2 2 2 2 ðj  1Þ2 U2n j ½ð1  kÞUj þ k jaj j 6 ðA  BÞ jbj

which completes the proof of (2.3).

h

ðj P 2Þ;

M. Çag˘lar et al. / Applied Mathematics and Computation 218 (2011) 693–698

696

Remark 2.2 (1) For a = k = 1, d = 0, in Theorem 2.1, we get the result due to Attiya [7]. (2) For a = k = b = 1, d = n = 0, in Theorem 2.1, we get the result of Goel and Mehrok [9]. (3) For B ¼ 1M ; A ¼ a ¼ k ¼ 1; d ¼ 0, in Theorem 2.1, we get the result of Aouf et al. [5]. M Next, we will obtain sharp upper bounds for ja4j for the class Hnb;k;a;d ðA; BÞ. Theorem 2.3. Let f ðzÞ 2 Hnb;k;a;d ðA; BÞ and a2, a3 and a4 are real, then

8 jcþBj ; if 1 6 jcj 6 Bþ4 ; > 3 > > 3M3 > > < jcþBjðj3cBj2 16Þ3 ð3M 22 M 3 2M32 Þ ðj3cBj2 8jcjjcBjÞ jcþBj ; if 4B 6 jcj 6 Bþ4 þ 3M32M ; ja4 j 6 3M3 þ 324M4 ðj3cBj2 8jcjjcBjÞ 2 3 3 2 ðj3cBjþ4Þ 3 > > > > > : jcjjcþBjjcBj ðj3cBj2 8jcjjcBjÞ ; if Bþ4 þ 3M32M 6 jcj 6 B þ 2; 3 3!M3 2 ðj3cBjþ4jÞ m where M k ¼ ðUnk ½ð1  kÞUk þ kÞ; ðMm k ¼ ½M k  Þ and c = (A  B)b  B.

Proof. Setting wðzÞ ¼ zðb1 þhðzÞÞ ; hðzÞ ¼ c1 z þ c2 z2 þ    2 X. After some computation, (2.4) yields 1þb hðzÞ

1 ( ) 1 1 X X ½Mk ðk  1Þak  b1 M k1 ½ðA  BÞb  Bðk  2Þak1 zk ¼ hðzÞ ½M k1 ½ðA  BÞb  Bðk  2Þak1  b1 Mk ðk  1Þak zk :

k¼2

k¼2

ð2:8Þ Equating the coefficients of z2,

a2 ¼

M1 ðA  BÞbb1 M2

and a2 ¼

M1 ðA  BÞbb1 : M2

ð2:9Þ

Also, Eq. (2.8) can be written as ( ) 1 1 X X ½M k ðk  1Þak  b1 M k1 ½ðA  BÞb  Bðk  2Þak1 zk ¼ hðzÞ ½M k1 ½ðA  BÞb  Bðk  2Þak1  b1 M k ðk  1Þak zk : k¼3

Putting hðzÞ ¼ z 1 n X

h

ð2:10Þ

k¼2

i ; b 2 X. By (2.10) and definition of h(z), we have

c1 þbðzÞ 1þc1 bðzÞ

o ðM k ðk  1Þak  b1 M k1 ½ðA  BÞb  Bðk  2ÞÞak1  c1 ðM k2 ½ðA  BÞb  Bðk  3Þak2  b1 M k1 ðk  2Þak1 Þ zk

k¼3

¼ bðzÞ

1 n X

o Mk2 ½ðA  BÞb  Bðk  3Þak2  b1 ðk  2ÞM k1 ak1  c1 ððk  1ÞMk ak  b1 M k1 ½ðA  BÞb  Bðk  2Þak1 Þ zk :

k¼3

ð2:11Þ Equating the coefficients of z

3

2M 3 a3  b1 M 2 ½ðA  BÞb  Ba2 ¼ c1 ½ðA  BÞb  b1 M 2 a2 :

ð2:12Þ

By (2.9) and (2.12), we obtain

c1 ¼

" #, ! 2M3 M2 ½ðA  BÞb  Ba22 M 22 ja2 j2 1 : a3  2 ðA  BÞb 2M 3 ðA  BÞb ðA  BÞ2 jbj2

ð2:13Þ

Now jc1j 6 1 and it follows from (2.13) that

  !  M 22 ½ðA  BÞb  Ba22  ðA  BÞjbj M 22 ja2 j2  : 1 6 a3   2M3 2M3 ðA  BÞb  ðA  BÞ2 jbj2

ð2:14Þ

By using Lemma 1.1, for n = 4 in the equality (2.11) we obtain

jð3M3 a4  b1 M 3 ½ðA  BÞb  2Ba3 Þ  c1 ðM 2 ½ðA  BÞb  Ba2  2b1 M3 a3 Þj 6 jðA  BÞb  b1 M2 a2  c1 ð2M 3 a3  b1 M 2 ½ðA  BÞb  Ba2 Þj:

ð2:15Þ

M. Çag˘lar et al. / Applied Mathematics and Computation 218 (2011) 693–698

697

Using (2.9), (2.12) and (2.13), (2.15) can be written as

  M 3 ½ðA  BÞb  2B½ðA  BÞb  Ba32 M 3 M 2 ½3ðA  BÞb  4Ba2   3M 3 a4  2 2  ðA  BÞb 2ðA  BÞ2 b ! " # " #2 ,  M 22 ½ðA  BÞb  Ba22 4M 23 M 2 a2 M 22 ½ðA  BÞb  Ba22 M 22 ja2 j2   a3  a3  1 þ  2M3 ðA  BÞb 2M3 ðA  BÞb ðA  BÞ2 jbj2 ðA  BÞ2 jbj2  ,  ! ! M 22 ja2 j2 4M23  M 22 ½ðA  BÞb  Ba22  M22 ja2 j2 1  6 ðA  BÞjbj 1   a  :   3 ðA  BÞjbj  2M 3 ðA  BÞb  ðA  BÞ2 jbj2 ðA  BÞ2 jbj2

ð2:16Þ

Assuming a2, a3 and a4 to be real, (2.14) and (2.16) can be written as

M 2 jðA  BÞb  Bja22 ðA  BÞjbj M22 ja2 j2 a3  2 1 ¼l 2M 3 2M3 ðA  BÞjbj ðA  BÞ2 jbj2

! ð1 6 l 6 1Þ

ð2:17Þ

and

! M 2 j3ðA  BÞb  4Bja2 M 22 ja2 j2 3a4 ¼ þl 1 2M3 2M 3 ðA  BÞ2 jbj2 ðA  BÞ2 jbj2 ! ! M22 ja2 j2 M 22 ja2 j2 2 M 2 a2 2 ðA  BÞjbj þ ðg  l Þ ð1 6 g 6 1Þ: 1 1 l M3 M3 ðA  BÞ2 jbj2 ðA  BÞ2 jbj2 M32 jðA  BÞb  2BjjðA  BÞb  Bja32

The right-hand side is maximum when g = 1. Thus,

! ðA  BÞjbj M22 ja2 j2 3a4 6 þ 1 M3 2M 3 ðA  BÞ2 jbj2 ðA  BÞ2 jbj2   M 2 a2 M 2 j3ðA  BÞb  4Bja2  1  l2  l2 þl ðA  BÞjbj 2ðA  BÞjbj !  3 2 2 3 l2 M2 x lM2 j3c  Bjx M cjc  Bjx jc þ Bj M2 x 2 ¼ 2 þ ¼ hðl; xÞ; þ 1  l  1  M3 jc þ Bj 2jc þ Bj 2M 3 jc þ Bj2 jc þ Bj2 M32 jðA  BÞb  2BjjðA  BÞb  Bja32

ð2:18Þ

say (where (A  B)b  B = c and a2 = x). For extreme values, @@hl ¼ 0 ¼ @h which yield @x



M 2 j3c  Bjx ; 4ðjc þ Bj þ M 2 xÞ



2jc þ Bjðj3c  Bj2  16Þ 3M 3 ðj3c  Bj2  8cjc  BjÞ

;

x ¼ 0:

ð2:19Þ

It is easy to verify that (0, 0) gives the maximum value of h(l, x) provided j3c  Bj 6 4. From (2.18), we obtain first part of Theorem 2.3 provided 1 6 jcj 6 Bþ4 . 3 Also

2

16Þ M2 j3cBjx0 l0 ¼ 4ðjcþBjþM ; x0 ¼ 2jcþBjðj3cBj gives maximum value of h(l, x) 2 x0 Þ 3M ðj3cBj2 8cjcBjÞ 3

  ðj3c  Bj2  16Þ3 3M22 M 3  2M32 jc þ Bj jc þ Bj hðl0 ; x0 Þ ¼ þ M3 108M 43 ðj3ðA  BÞb  4Bj2  8jðA  BÞb  BjjðA  BÞb  2BjÞ2 2

ðj3cBj 8cjcBjÞ provided j3c  Bj P 4 and jcj 6 Bþ4 þ 3M32M . From (2.18), we have second part of Theorem 2.3 provided 3 2 ðj3cBjþ4Þ 4B 3

2

ðj3cBj 8cjcBjÞ 6 jcj 6 Bþ4 þ 3M32M . 3 2 ðj3cBjþ4Þ

ðABÞjbj When x0 P ðABÞjbj M 2 , maximum value of h(l,x) occurs at x0 ¼ M 2 . Thus, from (2.18) we obtain last part of Theorem 2.3 if Bþ4 3

2

ðj3cBj 8cjcBjÞ þ 3M32M 6 jcj 6 B þ 2. h 2 ðj3cBjþ4Þ

Finally, we give sharp upper bounds for ja3  ma22 j for the class Hnb;k;a;d ðA; BÞ. To prove our main result, we need the following lemmas. Lemma 2.1 [1]. If w 2 X, then

8 > < t   w2  tw2  6 1 1 > : t

if t 6 1; if  1 6 t 6 1; if t P 1:

M. Çag˘lar et al. / Applied Mathematics and Computation 218 (2011) 693–698

698

When t < 1 or t > 1, the equality holds if and only if w(z) = z or one of its rotations. If 1 < t < 1, then equality holds if and only if w(z) = z2 or one of its rotations. Equality holds for t =1 if and only if wðzÞ ¼ zðzþkÞ ð0 6 k 6 1Þ or one of its rotations, while for t = 1 1þkz the equality holds if and only if wðzÞ ¼  zðzþkÞ ð0 6 k 6 1Þ or one of its rotations. 1þkz Lemma 2.2 [10]. If w 2 X, then for any complex number t

  w2  tw2  6 maxf1; jtjg: 1 The result is sharp for the functions w(z) = z or w(z) = z2. Theorem 2.4. If f(z) given by (1.1) belongs to Hnb;k;a;d ðA; BÞ, then

    8 Un3 ½ð1kÞU3 þk > ðABÞjbj >  B if m 6 r1 ; ðA  BÞjbj 1  2 m > n 2U3 ½ð1kÞU3 þk > U2n ½ð1kÞU2 þk2 > 2 > <   ðABÞjbj a3  ma2  6 if r1 6 m 6 r2 ; 2 2Un3 ½ð1kÞU3 þk > >     > > ðABÞjbj > Un ½ð1kÞU þk > if m P r2 : 2Un ½ð1kÞU3 þk ðA  BÞjbj 1 þ 2m U2n3½ð1kÞU 3þk2 þ B 3

2

2

and for m complex,

  a3  ma2  6 2

where

) (  !   ðA  BÞjbj Un3 ½ð1  kÞU3 þ k   max 1; ðA  BÞb 1 þ 2m 2n þ B ; n 2   2U3 ½ð1  kÞU3 þ k U2 ½ð1  kÞU2 þ k

2n

2

2n

2

U2 þk ððABÞbB1Þ U ½ð1kÞU2 þk ððABÞbBþ1Þ r1 ¼ U2 ½ð1kÞ , r2 ¼ 2 2Un ½ð1kÞ . The results are sharp. U3 þkðABÞb 2Un3 ½ð1kÞU3 þkðABÞb 3

Proof. By making use of Lemmas 2.1 and 2.2, we prove Theorem 2.4. h Acknowledgement The present investigation was supported by Atatürk University Rectorship under ‘‘The Scientific and Research Project of Atatürk University’’, Project No.: 2010/28. References [1] R.M. Ali, V. Ravichandran, N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007) 35–46. [2] F.M. Al-Oboudi, On univalent functions defined by a generalized Sa˘la˘gean operator, Int. J. Math. Math. Sci. 27 (2004) 1429–1436. [3] O. Altintas, H. Irmak, S. Owa, H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett. 20 (2007) 1218–1222. [4] M.K. Aouf, M.A. Al-Yamy, Coefficient estimates for certain class of analytic functions of complex order and type beta, Demonstratio Math. 38 (2005) 313–322. [5] M.K. Aouf, H.E. Darwish, A.A. Attiya, On a certain class of analytic functions defined by using Hadamard product and complex order, Proc. Pakistan Acad. Sci. 37 (1) (2000) 71–77. [6] M.K. Aouf, S. Owa, M. Obradovic, Certain classes of analytic functions of complex order and type beta, Rend. Mat. 11 (1991) 691–714. [7] A.A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math. Comput. 187 (2007) 62–67. [8] E. Deniz, H. Orhan, The Fekete–Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50 (2010) 37–47. [9] R.M. Goel, B.S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math. 12 (5) (1981) 634–647. [10] F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Am. Math. Soc. 20 (1969) 8–12. [11] G. Murugusundaramoorthy, H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2) (2004) 1–8. Article 24, electronic. [12] M.A. Nasr, M.K. Aouf, Starlike functions of complex order, J. Nat. Sci. Math. 25 (1985) 1–12. [13] H. Orhan, M. Kamali, Starlike, convex and close-to-convex functions of complex order, Appl. Math. Comput. 135 (2003) 251–262. [14] D. Ra˘ducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal. 4 (1) (2010) 1–15. [15] M.S. Robertson, Quasi-subordinate functions, Mathematical Essays Dedicated to A.J. MacIntyre, Ohio University Press, Athens, Ohio, 1967, pp. 311–330. [16] G.S. Sa˘la˘gean, Subclasses of univalent functions, in: Complex Analysis, Proc. 5th Rom. Finn. Semin., Part 1, Bucharest 1981, Lect. Notes Math., vol. 1013, 1983, pp. 362–372. [17] N.S. Sohi, L.P. Singh, A class of bounded starlike functions of complex order, Indian J. Pure Appl. Math. 33 (1991) 29–35. [18] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lódz Nauk. Mat. Przyrod (Ser. 2) 39 (1971) 75–85.