Life Sciences, Vol. 52, pp. 1709-1716 Printed in the USA
Pergamon Press
C O M P A R A T I V E EFFECTS OF D E H Y D R O E P I A N D R O S T E R O N E AND R E L A T E D STEROIDS ON PEROXISOME P R O L I F E R A T I O N IN RAT LIVER M. S. Rao, H. Ide, K. Alvares, V. Subbarao, J.K. Reddy, O. Hechter* and A.V. Yeldandi D e p a r t m e n t of P a t h o l o g y and *Department of Physiology, N o r t h w e s t e r n U n i v e r s i t y Medical School, Chicago, IL 60611 (Received in final form March 15, 1993) Summary D e h y d r o e p i a n d r o s t e r o n e (DHEA) is known to induce p e r o x i s o m e p r o l i f e r a t i o n and peroxisomal e n o y l - C o A h y d r a t a s e / 3 - h y d r o x y a c y l - C o A d e h y d r o g e n a s e (PBE) m R N A in the rat liver. We have compared the effects of 6 i n t e r m e d i a t e m e t a b o l i t e s of DHEA on the induction of p e r o x i s o m e p r o l i f e r a t i o n and PBE mRNA. Administration of epiandrosterone, etiocholanolone, androstenedione, e s t r o n e or estradiol for 2 weeks in the diet at 0.45% c o n c e n t r a t i o n to adult male F-344 rats failed to induce s i g n i f i c a n t increases in p e r o x i s o m e p r o l i f e r a t i o n and PBE m R N A when c o m p a r e d to the parent c o m p o u n d DHEA. Dietary a d m i n i s t r a t i o n of 5-androstene-3~,17~-diol (ADIOL) for 2 weeks at 0.45% c o n c e n t r a t i o n caused an increase in PBE m R N A and p e r o x i s o m e p r o l i f e r a t i o n but to a lesser extent than DHEA. Following a single i n t r a g a s t r i c dose of DHEA an increase in PBE mRNA level was o b s e r v e d in the liver at 1 hr and c o n t i n u e d to 16 hrs., but not with its metabolites. These results strongly suggest that DHEA or p o s s i b l y a n o t h e r yet to be identified m e t a b o l i t e might be r e s p o n s i b l e for p e r o x i s o m e proliferation. Dehydroepiandrosterone (DHEA) is a steroid secreted by adrenal c o r t e x in certain m a m m a l s p a r t i c u l a r l y humans (i). The functions of DHEA in humans are not fully understood. However, in e x p e r i m e n t a l animals which make little or no DHEA l o n g - t e r m administration of this steroid inhibits many pathological p r o c e s s e s i n c l u d i n g the d e v e l o p m e n t of tumors, diabetes, obesity and a t h e r o s c l e r o s i s (2-4). Recently, DHEA was shown to induce peroxisome proliferation, and to increase the activity of certain peroxisome-associated enzymes in the liver (5-8). Although it exerts a n t i c a r c i n o g e n i c effects in a v a r i e t y of tissues, l o n g - t e r m a d m i n i s t r a t i o n of this agent in the diet at a c o n c e n t r a t i o n of 0.45% for 84 weeks resulted in the d e v e l o p m e n t of h e p a t o c e l l u l a r c a r c i n o m a s in the rat (3,9-11). Accordingly, peroxisome proliferative property appears to make DHEA a hepatocarcinogen in rats, a function exhibited by other M.S. Rao, Dept. of Pathology, N o r t h w e s t e r n Univ. 303 E. C h i c a g o Ave., Chicago, IL 60611
Medical
0024-3205/93 $6.00 + .00 Copyright © 1993 Pergamon Press Ltd All rights reserved.
School,
1710
steroids and Peroxisomes
Vol. 52, No. 21, 1993
p e r o x i s o m e p r o l i f e r a t o r s (12,13). The question arises w h e t h e r DHEA itself is the active agent for the induction of p e r o x i s o m e proliferation, or serves as the source of an active m e t a b o l i t e formed ~ vivo which induces p e r o x i s o m e proliferation. The failure of DHEA to induce peroxisome proliferation in isolated h e p a t o c y t e s (14), and its inability to activate PPAR, a peroxisome proliferator activated receptor under ~ vitro conditions (15,16), suggests that DHEA in itself is not r e s p o n s i b l e for the p e r o x i s o m e p r o l i f e r a t i v e effects observed vivo. In this study, we examined the p e r o x i s o m e p r o l i f e r a t i v e effect of 6 recognized metabolites of DHEA. Except 5androstene-3~,17~-diol (ADIOL), none of the m e t a b o l i t e s tested showed a significant increase in peroxisome proliferation. A D I O L induced 50% less p e r o x i s o m e p r o l i f e r a t i o n than DHEA at the same dose level. These results suggest that DHEA in itself, DHEA with a c o f a c t o r or p o s s i b l y a DHEA m e t a b o l i t e other than those studied is r e s p o n s i b l e for the hepatic p e r o x i s o m e p r o l i f e r a t i o n o b s e r v e d ~ vivo. M a t e r i a l s and M e t h o d s Male F-344 rats, weighing 90-100g, were p u r c h a s e d from Charles River L a b o r a t o r i e s (Wilmington, Mass., USA). After a brief p e r i o d of a c c l i m a t i z a t i o n d e h y d r o e p i a n d r o s t e r o n e acetate, epiandrosterone, 4-androstenedione, estrone, 17~-estradiol, 3~e t i o c h o l a n o l o n e or 5-androstene-3~,17~-diol acetate (Sigma Chem. Co., St. Louis, MO) was fed to 3 to 5 rats at a c o n c e n t r a t i o n of 0.45% for a 2 week c o m p a r a t i v e study. Control animals were m a i n t a i n e d on normal rat chow. All rats were killed under ether anesthesia. For morphological evaluation and quantitative m o r p h o m e t r i c analysis of p e r o x i s o m e s liver was p r o c e s s e d for light and e l e c t r o n m i c r o s c o p y as p r e v i o u s l y d e s c r i b e d (17). To v i s u a l i z e the change in p e r o x i s o m e p r o l i f e r a t i o n a s s o c i a t e d Mr 80,000 p o l y p e p t i d e (PPA-80), 30 ~g of s o l u b i l i z e d p o s t n u c l e a r fractions were analyzed by SDS-PAGE (17,18). For immunoblotting, c y t o s o l i c p r o t e i n (20 ~g protein), from 1400xg s u p e r n a t a n t of 10% (w/v) h o m o g e n a t e s of liver in i0 mM p h o s p h a t e buffer (pH 7), was resolved by SDS-PAGE, transferred to nitrocellulose and immunostained with anti-PBE (19). For a s s e s s i n g the level of PBE mRNA total liver RNA was p r e p a r e d and a n a l y z e d by N o r t h e r n blot h y b r i d i z a t i o n using 3 2 p - l a b e l e d PBE cDNA (7,19). The levels of mRNA were m e a s u r e d by d e n s i t o m e t r i c scanning of autoradiographs. Further, to evaluate the rapidity with w h i c h the m R N A coding for peroxisomal PBE is induced rats were given a single dose of DHEA by gavage (450 m g / 1 0 0 g body wt in 2 ml corn oil) and s a c r i f i c e d in groups of 2 at i, 8 and 16 hours. Three control rats were given corn oil only and killed at 16 hours. A d d i t i o n a l groups of 2 rats were given a single intragastric dose (450 m g / 1 0 0 g body wt) of epiandrosterone, androstenedione, estrone, 17~-estradiol or A D I O L and killed after 8 hours. Results and D i s c u s s i o n Body and liver weights and the volume density of p e r o x i s o m e s in h e p a t o c y t e s of controls, and rats fed DHEA and its i n t e r m e d i a t e m e t a b o l i t e s in diet for 2 weeks are p r e s e n t e d in Table I. Liver w e i g h t for 100g body w e i g h t in DHEA and A D I O L treated groups increased s i g n i f i c a n t l y (P<0.001) w h e n c o m p a r e d
Vol. 52, No. 21, 1993
Steroids and Peroxisomes
1711
to o t h e r g r o u p s . Ultrastructural e x a m i n a t i o n of l i v e r c e l l s of r a t s t r e a t e d w i t h D H E A a n d A D I O L for 2 w e e k s r e v e a l e d a l a r g e n u m b e r of p e r o x i s o m e s w h e r e a s no s u c h i n c r e a s e w a s n o t e d in r a t s treated with other steroids tested. Morphometric analysis showed a 6 and 2.6 fold increase in t h e v o l u m e density of peroxisomes in D H E A a n d A D I O L t r e a t e d rats, r e s p e c t i v e l y (Table I). Figures 1 and 2 show SDS-PAGE profiles of p o s t n u c l e a r f r a c t i o n s p r e p a r e d f r o m l i v e r s of r a t s a f t e r 2 w e e k s of e x p o s u r e to D H E A a n d o t h e r s t e r o i d s . In D H E A a n d A D I O L t r e a t e d rats, a marked increase in the amount of peroxisome proliferationassociated PPA-80 was observed.
Fiq.
2
I
1 2 3 4 5 6 7 8 9
Fiq.
IA
3
4
IB
SDS-polyacrylamide s l a b gel e l e c t r o p h o r e s i s of p o s t n u c l e a r f r a c t i o n s of l i v e r f r o m c o n t r o l (1-3), D H E A (4-6) a n d e t i o c h o l a n o l o n e (7-9) (Fig. IA) a n d A D I O L (Fig. IB) t r e a t e d rats. The arrows indicate the p o s i t i o n of p e r o x i s o m e p r o l i f e r a t o r - a s s o c i a t e d 80,000 mol wt polypeptide. 1
2
3
4
5
Fiq.
6
7
8
9
2
S D S - P A G E of p o s t - n u c l e a r f r a c t i o n of l i v e r f r o m e s t r a d i o l (1-3), e s t r o n e (4-6) a n d a n d r o s t e n e d i o n e (7-9) t r e a t e d rats. N o i n c r e a s e in t h e a m o u n t of 8 0 , 0 0 0 m o l w t p o l y p e p t i d e is n o t e d (arrows). In c o n t r o l r a t s a n d r a t s t r e a t e d w i t h D H E A m e t a b o l i t e s no increase in the amount of this protein was evident. Immunoblotting using polyclonal antibodies to PBE further confirmed the increase in PBE in D H E A a n d A D I O L t r e a t e d rats. N o r t h e r n b l o t a n a l y s i s of t o t a l l i v e r R N A f r o m r a t s t r e a t e d w i t h DHEA and ADIOL for 2 weeks showed a marked increase in t h e l e v e l s of PBE m R N A (Fig. 3). N o a p p r e c i a b l e c h a n g e in PBE m R N A
178-estradiol
Estrone
3 ~Etiocholanolone
Control
5
6
7
8
3
3
using
"t" t e s t
6.9 ~ 0.4
7.5 ~ 0.2
6.4 ~ 0.3
6.7 ± 0.i
6.7 ! 0.2
6.5 ± 0.i
i0.0 ~ 0.4
11.5 ± 0.5
5.1 ~ 0.3
5.2 ~ 0.i
6.3 ~ 0.i
6.0 ± 0.I
4.9 ~ 0.2
5.4 ± 0.i
7.3 ~ 0.i
8.4 ± 0.2
NS
P<0.01
P<0.OI
NS
NS
P<0.001
P<0.001
and Peroxisome
Liver Weight/ 100g b.wt
Liver Weight
Liver Weight
student's
136 ~ 3
143 ~ 3
i01 ~
113 ± 2
137 ~ 3
2
136 ~ 3 121 ~
I
on B o d y Weight,
Weight
136 ~
Body
of D H E A
obtained
4-androstenedione
4
are
Epiandrosterone
3
P values
5-androstene-3B,178-diol
its
2
and
Dehydroepiandrosterone
Treatment
of M e t a b o l i t e s
1
Group
Effects
TABLE
Density
1.0
0.i
1.8 ! 0.2
1.3 ~ 0.4
i.i ~
1.6 ± 0.3
i.i ~ 0.i
1.7 ! 0.2
4.6 ~ 0.8
ii.0 !
Peroxisome volume density
Volume
O
tu
Z O
O
m
o
a;
o M
m o~
m
Vol. 52, No. 21, 1993
Steroids and Peroxisomes
1713
in other g r o u p s was evident (Fig. 3). Epiandrosterone not induce PBE m R N A (not shown in the picture).
1
2
34
5
6 7 8
also did
9
1
2
3
4
5
6
t g g
Fiq.
3A
Fiq.
3B
N o r t h e r n blot analysis for PBE m R N A in liver of rats t r e a t e d with DHEA (1-3), e t i o c h o l a n o l o n e (4,5), andros t e n e d i o n e (6,7), or estradiol (8-9) (Fig. 3A), and A D I O L (1-4) and control (5,6) (Fig. 3B) for 2 weeks in diet at 0.45% c o n c e n t r a t i o n : Total ~ A (20~g/lane was a n a l y z e d by N o r t h e r n b l o t t i n g with P-labeled PBE cDNA. The size of PBE mRNA is 3.0 kilobases.
Changes in the levels of PBE mRNA in the liver of rats at d i f f e r e n t time points after a large single i n t r a g a s t r i c dose of DHEA are shown in Figure 4. Levels of this mRNA increased A
A
A
B
B
C
C
D
I
............
Fiq.
D
e
4
N o r t h e r n blot analysis for PBE mRNA in livers of control (A) and rats killed at 1 (B), 8 (C), and 16 (D) hours after a single i n t r a g a s t r i c dose of DHEA (450 m g / 1 0 0 g body wt). Blot a n a l y s i s was carried out as d e s c r i b e d in Fig. 3. The r e l a t i v e amounts of 28s and 18s RNA used for N o r t h e r n blot a n a l y s i s is similar. at 1 hour and c o n t i n u e d to rise up to 16 hours. Quantitative d e n s i t o m e t r i c analysis showed 4.8, 6.8 and 9.2 fold increase at i, 8 and 16 hours respectively. There was no increase in PBE m R N A in rats t r e a t e d with DHEA metabolites. Peroxisome proliferative effects of DHEA are well c h a r a c t e r i z e d in rats and mice (5-7). The results of this study further c o r r o b o r a t e and extend these o b s e r v a t i o n s c o n c e r n i n g the effect of DHEA after a d m i n i s t r a t i o n of a single dose or feeding c o n t i n u o u s l y for 2 weeks. A d m i n i s t r a t i o n of DHEA for 2 weeks
1714
Steroids and Peroxisomes
Vol. 52, No. 21, 1993
caused s i g n i f i c a n t hepatomegaly, p e r o x i s o m e p r o l i f e r a t i o n and increased levels of PBE p r o t e i n and PBE mRNA. A f t e r a large single dose of DHEA (450 m g / 1 0 0 g body wt) a rapid increase in the rate of PBE m R N A a c c u m u l a t i o n was noted. This increase was o b s e r v e d 1 hour after DHEA dosing and c o n t i n u e d up to 16 hours. However, at a lower dose level (50 m g / 1 0 0 g body wt), increase in PBE m R N A was evident only at 24 hours (7). The m e c h a n i s m by w h i c h DHEA causes p e r o x i s o m e p r o l i f e r a t i o n is not clear. Since DHEA appears to be ineffective in a c t i v a t i n g PPAR or inducing p e r o x i s o m e p r o l i f e r a t i o n under ~ vitro conditions, the p o s s i b i l i t y arises that one of the i n t e r m e d i a t e metabolites of DHEA may play an important role in inducing p e r o x i s o m e proliferation. DHEA is known to be c o n v e r t e d to androgens and estrogens, as well as to other intermediate metabolites. We selected epiandrosterone, androstenedione, ~estradiol, estrone, etiocholanolone and A D I O L in this study because they are e s t a b l i s h e d m e t a b o l i t e s of DHEA. Several of these metabolites appear to be more potent than DHEA in p r e v e n t i n g and obesity (e.g., etiocholanolone) and inhibiting m i t o c h o n d r i a l r e s p i r a t i o n (e.g., epiandrosterone) (21,22). The present study shows that, except ADIOL, none of the compounds tested had any a p p r e c i a b l e effect on p e r o x i s o m e v o l u m e density, PPA-80 or PBE m R N A in the liver after dietary a d m i n i s t r a t i o n for 2 weeks at 0.45% concentration. ADIOL, a m e t a b o l i t e of DHEA produced in a reaction catalyzed by 17~-hydroxysteroid oxidoreductase also causes qualitatively similar pleiotropic effects in the liver as the parent compound. However, the p e r o x i s o m e p r o l i f e r a t i v e effect of A D I O L was 50% less than DHEA. S i m i l a r type of effects were also observed by Prough and Wu (23). A single large dose of DHEA m e t a b o l i t e s including A D I O L had no effect on PBE m R N A levels at 8 hrs. These results indicate that either DHEA itself, DHEA plus a c o f a c t o r or some DHEA m e t a b o l i t e other than those used in this study may be r e s p o n s i b l e for inducing p e r o x i s o m e proliferation. S t e r o i d h o r m o n e s exert their p h y s i o l o g i c a l effects through a r e c e p t o r m e d i a t e d mechanism. It is not clear w h e t h e r the p e r o x i s o m e p r o l i f e r a t i v e effect of DHEA is m e d i a t e d through a r e c e p t o r mechanism. Studies by Mohan and Cleary (24) indicate that rat h e p a t o c y t e s do not possess a DHEA b i n d i n g protein. However, studies by Kalimi and R e g e l s o n (25) and Meikle et al. (26) have identified specific DHEA binding p r o t e i n in rat liver and m u r i n e T cells which may be DHEA receptors. R e s o l v i n g this question of r e c e p t o r m e d i a t e d m e c h a n i s m of action of DHEA is important not only to u n d e r s t a n d the biological basis for the general effects of DHEA but also to gain an u n d e r s t a n d i n g of the m o l e c u l a r m e c h a n i s m s r e s p o n s i b l e for p e r o x i s o m e proliferation. Peroxisome proliferators, such as clofibric acid, exert peroxisome proliferative effect through a receptor mediated m e c h a n i s m (15,16,27) involving PPAR, the receptor a c t i v a t e d by p e r o x i s o m e proliferators, which belongs to steroid r e c e p t o r gene s u p e r f a m i l y (15). All p e r o x i s o m e p r o l i f e r a t o r s except DHEA so far tested have been shown to activate PPAR (15,16). Recent evidence suggests a coupling of the p e r o x i s o m e p r o l i f e r a t o r and 9 - c i s - r e t i n o i c acid signalling pathways (28). The failure of DHEA to p r o d u c e p e r o x i s o m e p r o l i f e r a t i o n under in WtFO conditions might be a t t r i b u t e d to short periods of incubation. However, the results of single dose DHEA e x p e r i m e n t s w h i c h d e m o n s t r a t e
Vol. 52, No. 21, 1993
Steroids and Peroxisomes
1715
marked increase in PBE m R N A levels w i t h i n 1 h o u r show that failure to o b s e r v e DHEA effects in isolated h e p a t o c y t e s cannot be a t t r i b u t e d to short p e r i o d s of incubation. With clofibric acid and its analogs, the rapid increase in the levels of ~o x i d a t i o n e n z y m e mRNAs is due to increase in the t r a n s c r i p t i o n of these genes (29). M a r k e d increase in PBE m R N A levels w i t h i n one hour after DHEA a d m i n i s t r a t i o n suggest a s i m i l a r mechanism. Acknowledqements This research was R e v i e w Program, M a y b e r r y
supported Foundation
by V e t e r a n s Affairs and NIH Grant GM23750.
Merit
References i. 2. 3. 4. 5.
6. 7. 8.
9. I0. ii. 12. 13. 14. 15. 16. 17.
18. 19.
20.
R.L. VANDE WIELE, P.C. M~cDONALD, E. GURPIDE and S. LIEBERMAN, Rec. Prog. H o r m o n e Res. i_99275-310 (1963). G.B. GORDON, L.M. SHANTZ and P. TALALAY, Adv. E n z y m e Regul. 2_66355-382 (1987). A.G. SCHWARTZ, J.M. WHITCOMB, J.W. NYCE, M.L. L E W B A R T and L.L. PASHKO, Adv. Cancer Res. 5!i 391-423 (1988). J.A. LUCAS, S.A. AHMED, M.L. CASEY and P.C. MACDONALD, J. Clin. Invest. 7_~52091-2093 (1975). R.A. FRENKEL, C.A. SLAUGHTER, K. ORTH, C.R. MOOMAW, S.H. HICKS, J.M. SNYDER, M. BENNETT, R.A. PROUGH and L. MILEWICH, J. Steroid Biochem. 3_55333-342 (1990). J. YAMADA, M. SAKUMA, T. IKEDA, K. FUKUDA and T. SUGA, B i o c h i m B i o p h y s Acta 1 0 9 2 2 3 3 - 2 4 3 (1991). M.S. RAO, S. M U S U N U R I and J.K. REDDY, Pathobiol. 60 82-86 (1992). H. WU, J. MASSET-BROWN, D.J. TWEEDIE, L. MILEWICH, R.A. FRENKEL, C. M A R T I N - W I X T R O M , R.W. E S T A B R O O K and R.A. PROUGH, C a n c e r Res. 4_992337-2343 (1989). M.S. RAO, V. SUBBARAO, A.V. YELDANDI and J.K. REDDY, C a n c e r Res. 5 2 2 9 7 7 - 2 9 7 9 (1992). C.W. BOONE, A.J. KELLOGG and W.E. MALONE, Cancer Res. 5 0 2 9 (1990). M.S. RAO, V. SUBBARAO, A.V. YELDANDI and J.K. REDDY, Cancer Lett 6 5 1 2 3 - 1 2 6 (1992). J.K. R E D D Y and N.D. LALWANI, CRC Crit. Rev. Toxicol. 1 - 2 1 53 (1983). M.S. RAO and J.K. REDDY, Carcinogenesis, 8 6 3 1 - 6 3 6 (1987). R. HERTZ, R. AURBACH, T. HASHIMOTO and J. BAR-TANA, Biochem. J. 2 7 4 7 4 5 - 7 5 1 (1991). I. I S S E M A N N and S. GREEN, Nature 3 4 7 6 4 5 - 6 5 0 (1990). M. GOTTLICHER, E. WIDMARK, Q. LI and J. GUSTAFSSON, Proc. Natl. Acad. Sci. USA. 8__994653-4657 (1992). R.S. DWIVEDI, K. ALVARES, M.R. NEMALI, V. SUBBARAO, M.K. REDDY, M.I. USMAN, A.W. RADEMAKER, J.K. R E D D Y and M.S. RAO, Toxicol. Pathol. 1_/716-28 (1989). U.K. LAEMMLI, Nature, 227, 680-685 (1970). E. BAULIEU, C. CORPECHOT, F. DRAY, R. EMILIOZZI, M. ~ B E A U , P. M A U V A I S - J A R V I S and P. ROBEL, Rec. Prog. H o r m o n e Re. 2_!i 411-500 (1965). E. H. LEITER, W. G. BEAMER, D. C O L E M A N and C. LONGCOPE, M e t a b o l i s m 3_66863-869 (1987).
1716
21. 22. 23.
24. 25. 26.
27.
28. 29.
Steroids and Peroxisomes
Vol. 52, No. 21, 1993
D.L. C O L E M A N , E n d o c r i n o l , 1172279-2283 (1985). P.F. M O H A N a n d M.P. CLEARY, Int. J. Biochem, 2_! 1 1 0 3 - 1 1 0 7 (1989). R..A. PROUGH,H-Q. W U a n d L. M I L E W I C H . The Biologic Role of Dehydmep~ndros~mne (DHEA). M. Kalimi and W. Ragelson (Eds.). 253-279, W a l t e r de G r u y t e r & Co., Berlin, N e w Y o r k (1990). P.F. M O H A N a n d M.P. CLEARY, S t e r o i d s 5_/7 2 4 4 - 2 4 7 (1992). M. K A L I M I a n d W. R E G E L S O N , Biochem. B i o p h y s Res. Commu. 156 22-29 (1988). A.W. M E I K L E , R.W. DORCHUCK, B.A. ARANEO, J.D. STRINGHAM, T.G. EVANS, S.L. SPRUANCE and R.A. DAYNES, J. Steroid B i o c h e m . Molec. Biol. 4 2 2 9 3 - 3 0 4 (1992). N.D. LALWANI, K. A L V A R E S , M.K. REDDY, M.N. REDDY, I. P A R I K H a n d J.K. REDDY, Proc. Natl. Acad. Sci. U S A 8_44 5 2 4 2 - 5 2 4 6 (1987). S.A. K L I E W E R , K. U M E S O N O , D.J. NOONAN, R.A. H E Y M A N a n d R.M. EVANS, N a t u r e 358 7 7 1 - 7 7 4 (1992). J.K. REDDY, S.K. GOEL, M.R. NEMALI, J.J. CAPRINO, T.G. L A F F L E R , M.K. REDDY, S.J. S P E R B E C K , T. OSUMI, T. H A S H I M O T O , N.D. L A L W A N I a n d M.S. RAO, Proc. Natl. Acad. sci. U S A 8_/3 1 7 4 7 - 1 7 5 1 (1986).