Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols

Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols

Accepted Manuscript Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols Khaled H.A.E. Alkhaldi, Ad...

5MB Sizes 2 Downloads 128 Views

Accepted Manuscript Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols Khaled H.A.E. Alkhaldi, Adel S. Al-Jimaz, Mohammad S. AlTuwaim PII: DOI: Reference:

S0021-9614(17)30056-3 http://dx.doi.org/10.1016/j.jct.2017.02.022 YJCHT 4990

To appear in:

J. Chem. Thermodynamics

Received Date: Revised Date: Accepted Date:

5 September 2016 8 February 2017 24 February 2017

Please cite this article as: K.H.A. Alkhaldi, A.S. Al-Jimaz, M.S. AlTuwaim, Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols, J. Chem. Thermodynamics (2017), doi: http://dx.doi.org/10.1016/j.jct.2017.02.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols Khaled H. A. E. Alkhaldi, Adel S. Al-Jimaz, Mohammad S. AlTuwaim* Department of Chemical Engineering, College of Technological Studies, P. O. Box 42325, Shuwaikh 70654, Kuwait Abstract Densities, refractive indices and speeds of sound along with their excess or deviation properties for both 1,3–dimethylimidazolium methylsulfate ([dmim][MeSO4]) and 1– ethyl–3–methylimidazolium methylsulfate ([emim][MeSO4]) with 1–propanol, 1– butanol and 1–pentanol over the entire range of mole fraction are reported at temperatures ranging from 298.15 K to 313.15 K and atmospheric pressure. Isentropic and excess isentropic compressibilities for both ionic liquids with 1–alcohols were calculated from the experimental results. Excess and deviation properties were further correlated using the Redlich-Kister polynomial. The measured speeds of sound were compared to the values obtained from Schaaffs' collision factor theory, Jacobson's intermolecular free length theory of solutions and Nomoto’s relation. In addition, the experimentally obtained refractive indices were compared to the calculated values using Lorentz-Lorenz, Dale-Gladstone and Eykman mixing rules.

Keywords:, Density, Refractive index, Speed of sound, Ionic liquids, 1–alkanols, Binary mixtures * Corresponding author. Tel: +965-22314415; Fax: +965-24811568 E-mail address: [email protected]

1

1. Introduction Binary mixtures of ionic liquids (ILs) with molecular solvents serve as replacements for binary mixtures involving traditional volatile organic solvents used in liquid-liquid extraction, gas separation, catalytic reaction and biochemical processes. Ionic liquids emerge as green-designed solvents due to their unique properties such as negligible vapour pressure, thermal stability and ability to dissolve organic and nonorganic compounds. The design of new chemical processes and the development of existing processes are conditioned by an adequate knowledge on physical properties of pure ILs and their binary mixtures. Experimental values and excess thermodynamic properties of IL systems allow researchers to draw information on the structure and interactions of liquid mixtures. The focus on halogen free ILs (anions based such as [HSO4]¯ , [MeSO4]¯ and [Et SO4]¯ ) is growing because they are safe and nontoxic, can be synthesised using low cost chemicals, moisture stable at room temperature, have low viscosity and have high reaction rates contrary to fluorinated ILs (such as [BF4]¯ , [PF6]¯ and [NTf]¯ ) [1]. A literature survey for systems under study including NIST data base shows only two research articles [2,3] have been cited for binary mixtures of [emim][MeSO4] with 1– alkanols (methanol, ethanol and 1–butanol at a single temperature 298.15 K and methanol, ethanol, 1–propanol, 2–propanol, 1–butanol and 1–pentanol at 288.15, 298.15 and 308.15 K). On the other hand, several articles are cited for binary mixtures of [dmim][MeSO4] with molecular solvents (methanol, water, DMSO and DMF) and with organic solvents (2–butanone, ethylacetate, 2–propanol, ethanol and 1–butanol) [4–7]. However, no physical properties for either ILs with 1–propanol or 1–pentanol at 303.15 and 313.15 K were previously reported and only one set of data, density and surface tension at single temperature, for [dmim][MeSO4] with 1–butanol was reported. In this work experimental measurements of density, refractive index and speed of sound for two halogen free anion based ILs, [dmim][MeSO4] and [emim][MeSO4] with 1–propanol, 1–butanol or 1–pentanol at T = (298.15, 303.15, 308.15 and 313.15) K and atmospheric pressure were obtained. The corresponding excess molar volume, excess refractive index, speed of sound deviations, excess isentropic compressibility and coefficients of thermal expansion were calculated. Furthermore, the Redlich and 2

Kister (R–K) polynomial was used to obtain the coefficients and to estimate the standard deviations for the calculated excess and deviation properties. Moreover, the effect of the alkyl chain in ILs, chain length of 1–alkanol and the temperature on the excess and deviation properties are investigated.

2. Experimental 2.1 Materials Both ILs and all 1–alkanols used in this work were manufactured by Sigma– Aldrich. The CAS numbers, supplier and purities of these substances are listed in Table 1. Table 2 compares the measured densities, refractive indices and speeds of sound of the pure chemicals with previously published data [3–5, 8–20]. 2.2 Apparatus and procedure The water content was analysed using a Mettler Toledo C20–KF coulometer for all chemicals used (Table 1). Each sample mixture was prepared, on a mass basis, by mixing the calculated volumes of liquid components in air–tight stoppered glass bottles using the electronic balance model (Mettler H51), with precision of +10 -8kg. The uncertainty in the mole fraction composition was estimated to be + 3×10 -3. The Anton Paar (DSA 5000) density/sound velocity meter (at 3 MHz and ABBE Mark II model 104810 Cambridge Instrument Inc., USA) refractometer was used to measure density, speed of sound and refractive index, respectively. A Mettler Toledo DSC1 STAR system was used for heat capacity measurements with sample size (24 to 29) mg, 15 minute isotherm at 293.15 K, temperature range from 293.15 K to 353 K with rate of 10 K·min-1 and sapphire method with + 5% uncertainty. For all mixtures and pure components, triplicate of measurements were performed and the results were averaged. The uncertainties in measured density, refractive index, speed of sound, temperature and heat capacity were within + 1×·10 -3 g·cm-3, + 5×10-3, + 10 m·s-1, + 0.01 K and ±20 J·Κ−1·mol−1, respectively.

3. Results and calculations The experimental density ρ, speed of sound u and refractive index n D values for binary systems of [dmim][MeSO4] and [emim][MeSO4] with 1–propanol, 1–butanol or 1–pentanol are reported at T = (298.15 to 333.15) K and atmospheric pressure as shown 3

in Tables 3a and 3b. Figures 1 and 2 illustrate the comparison of experimental and available literature values for density and speed of sound for ILs with 1–alkanols as functions of temperature. Although the deviations in experimental properties relative to literature sources may be due to the difference in the purity of the ILs, the problem of single or few available sources still exists. Moreover, the comparison between previously published data showed deviations within 10 kg·m-3 for density and more than 100 m·s-1 for speed of sound, which emphasizes the need for more studies.

3.1 Excess and deviation Properties Excess molar volumes VE, speed of sound deviations uD and excess refractive indices nDE were calculated, respectively, as follows: n

∑ xi M V

E

=

i

i =1

ρ

n

−∑

xi M

i

(1)

ρi

i =1 m

where x is the mole fraction, M is the molar mass, ρ is the density, the subscripts i represent pure components and m represents the mixture; D u =u −u

id

[21]

(2)

and u id is defined as −0.5

(3)

s

n  id  id id  u = V m  ∑ xi M i  κ     i =1

where u id, Vmid and κsid are the calculated speed of sound, molar volume and isentropic compressibility of the ideal solution (see next section) , respectively;

(n )

2 E

E

nD =

(2 n

D id

D

+ nD

E

) [22]

(4)

where nDi is the refractive index of pure component i and φi is the ideal volume fraction of pure component i in the mixture, φ i =

(n )

2 E

D

2

( )

= nD − nD

2 id

2

n

xi V i ∑ V   xi i   i =1  n

2

= nD − ∑ φi nDi [23] i =1

4

and

(5)

The values of V E, uD and nDE for the binary mixtures are given in Tables 4a and 4b. The dependency of V E on composition is shown in figures 3 and 4 where all V E values are negative for all systems under study and this is due to the interstitial accommodation of ILs into alkanols structure [24]. The negative V E trend depicted (1– pentanol > 1–butanol > 1–propanol) reflects the formation of hydrogen bonded hetero associations and the dissociation of alkanol structure as the chain length increases. This conforms to previously reported studies [2,3,5,12]. Moreover, calculated V E values for alkanols with the ILs used are more negative compared to those reported for traditional solvents such as NMP [25] while for DMF [26] and phenetole [27] they are positive. On the other hand, for anisole with 1–butanol V E is slightly negative whereas it is positive with 1–pentanol [28] at 303.15 and 313.15. In addition as expected, V E becomes less negative as the temperature increases for both ILs with 1–propanol, 1–butanol and 1– pentanol (see Figures 5 and 6). Moreover, comparing the excess volume for [dmim][MeSO4] mixtures with [emim][MeSO4] mixtures shows more negative values for the first compared to the latter due to the increase in the chain length of the ionic liquid. As for the dependency of uD on composition, figures S1 and S2 of supplementary data show positive deviations in speed of sound values for all systems investigated. As the chain length increases uD decreases whereas the deviation increases as the temperature increases (figures S3 and S4). In the case of excess refractive index values, nDE are negative over the whole range of composition and they become less negative when the chain length increases as indicated in figures S5 and S6. Moreover, nDE exhibited more negative values as the temperature increases as it is depicted in figures S7 and S8.

3.2 Thermodynamic Properties The excess isentropic compressibility values κsE were calculated from relations by Benson et al. [29] and Douhéret et al. [30]

E id κs = κs − κs

(6)

( )

( )

(

α

2 2    α 2  T (∑ xiVi ) ∑ φi α i 1 κ = φ1 κ s,1 + T V 1  + φ1 κ s,2 + T V 2 − ∑ xi C p,i Cp,1  Cp,2   

s

id

5

)

2

(7)

where κsid is the isentropic compressibility of the ideal solution, κs is the isentropic compressibility and it is calculated using the Laplace–Newton equation ( κs = – ( ∂ Vm / ∂ p )s/ Vm = 1/u2ρ ) where the relation is judged to be valid and therefore the speed

of sound may be regarded as a thermodynamic quantity [31]; Cp,i and αi are the molar isobaric heat capacity and expansion coefficient of pure component i, respectively. The heat capacities Cp of 1–alkanols were obtained from DIPPR [32] while heat capacities as a function of temperature for [emim][MeSO4] and [dmim][MeSO4] were obtained experimentally as mentioned previously. The thermal expansion coefficient defined as α = –ρ −1 (dρ/dT)p was calculated from the experimental density data of pure components of the system under study. The calculated κSE values are listed in Tables 4a and 4b where Cp and α values are listed in Table 5. The excess isentropic compressibility are negative for all systems under study and exhibited a similar trend as the excess volume (1–pentanol > 1–butanol > 1–propanol) (see figure 7 and 8) while κsE becomes more negative as the temperature increases as shown in figures 9 and 10. The negative values of κSE for the binary mixtures suggest the dominance of interstitial of accommodation of the components effect over the dissociation effect [26].

3.3 Empirical Relations and Prediction The calculated excess properties were fitted to the Redlich-Kister (R–K) polynomial type of n degree [33] n

Q = x1 x2 ∑ ai (x1 − x2 )i

(8)

i =0

where Q is VE, κSE or uD while x1 and x2 refer to the mole fractions of the pure components. The correlated results are shown in Table 6 in which the tabulated standard deviation σ, was defined as: σ

 n ( y − y )2  calc  ∑ exp  =  i =1  n− p    

1/2

(9)

where ycalc is the calculated value using equation (6), n is the number of data points and p is the number of coefficients.

6

Schaaff’s Collision Factor Theory (CFT), Jacobson’s Free Length Theory (FLT) and Nomoto’s relation (NR) [34–37] were used to predict the speed of sound (um) for [emim][MeSO4] and [dmim][MeSO4] binary systems. The critical temperatures for the pure ILs were predicted using available surface tension data [38] since they are needed for CFT and FLT calculation. They are as follows: Schaaff’s Collision Factor Theory

um

n ∑  n   xi S i   ∑ xi B i  i =1 i =1     = u∞ Vm

(10)

where u∞ = 1600 m·s-1, Si and Bi are the space filling factor and the actual volume of the molecule per mole of pure component i in the mixture, Jacobson’s Free Length Theory um =

K

(11)

1/ 2

L f ,m ρm

where K is the Jacobson’s constant and Lf,m [39] is the intermolecular free length of the binary mixture and Nomoto’s relation

um

n ∑  xi Ri =  i =n1 xiV i  i∑ =1

   

3

(12)

where Ri is the molar speed of sound of pure component i in the binary mixture. In addition, Lorentz-Lorenz (L–L), Dale-Gladstone (D–G) and Eykman (Eyk) mixing rules [40–43] were used to predict refractive indices for both studied system. They are given by Lorentz-Lorenz 2 n  nDi 2 − 1  nD − 1 = ∑ φi  2  , 2 n D + 2 i =1  n Di + 2 

(13)

Dale-Gladstone n

nD − 1 = ∑ [φi ( nDi − 1)]

(14)

i =1

and Eykman

7

n  nDi 2 − 1  = φ ∑  i  2 2 nD + 0.4 i=1  nDi + 0.4  2

nD − 1

(15)

The experimental values of the speed of sound and refractive index were compared to the predicted values in figures S9–S16. The comparison shows that Nomoto’s relation for predicting speed of sound is the best among the relations used in the case of 1–ethyl–3–methylimidazolium methylsulfate while both Nomoto’s and Schaaff’s Collision Factor Theory are the best for 1,3–dimethylimidazolium methylsulfate. As for the refractive index mixing rules, all rules used showed good agreement with the experimental data for systems under study.

5. Conclusions

Density, speed of sound and refractive index and their excess or deviation properties of two ILs with 1–propanol, 1–butanol or 1–pentanol binary mixtures have been reported at different temperatures and atmospheric pressure. Although both ILs show stronger hydrogen bonding with 1–alkanols than conventional solvents (i.e., DMF, anisole, phenetole and NMP), dimethylimidazolium

the hydrogen bonding in mixtures of 1,3–

methylsulfate

is

stronger

than

that

in

1–ethyl–3–

methylimidazolium methylsulfate mixtures. Prediction of the speed of sound can be obtained using Nomoto’s relation and Schaaff’s Collision Factor Theory while refractive index can be predicted using Lorentz-Lorenz, Dale-Gladstone and Eykman mixing rules for systems containing ionic liquids. In addition, The calculations showed a systematic dependence of excess and deviation properties on the chain length and on temperature for all investigated mixtures. Acknowledgements

The authors thank the Public Authority for Applied Education and Training for the financial support of this work under the contract (PAAET–TS–12–09) and research project titled ‘Study of Thermophysical Properties of Ionic Liquids at Different Temperatures and Pressures’.

8

Literature Cited

[1] H. Shekaari, S. M. Sedighehnaz, Fluid Phase Equilib. 291 (2010) 201–207. [2] J.-Y. Wang, F.-Y. Zhao, Y. Min Liu, X.-L. Wang, Y.-Q. Hu, Fluid Phase Equilib. 305 (2011) 114–120. [3] P. F. Requejo, E. J. Gonzalez, E. A. Macedo, A. J. Dominguez, Chem. Thermodyn. 74 (2014) 193-200. [4] A. B. Pereiro, A. Rodiguez, J. Chem. Eng. Data 52 (2007) 600–608. [5] U. Domanska, A. Pobudkowska, A. Wisniewska, J. Solution Chem. 35 (2006) 311334. [6] A. B. Pereiro, A. Rodiguez, J. Chem. Thermodyn. 39 (2007) 978–989. [7] A. Gołdon, K. Daübrowska, T. Hofman, J. Chem. Eng. Data 52 (2007) 1830–1837. [8] L. I. N. Tomé, P. J. Carvalho, M. G. Freire, I. M. Marrucho, I. M.A. Fonseca, A.G. M. Ferreira, J. A. P. Coutinho, R. L. Gardas, J. Chem. Eng. Data 53 (2008) 1914–1921. [9] L. E. Ficke, R. R. Novak, J. F. Brennecke, J. Chem. Eng. Data 55 (2010) 4946–4950. [10] R. Kato, J. Gmehling, Fluid Phase Equilib. 226 (2004) 37–44. [11] E. Gomez, N. Calvar, E. A. Macedo, A. Dominguez, J. Chem. Thermodyn. 45 (2012) 9–15. [12] U. Domanska, A. Pobudkowska, M. Rogalski, J. Colloid and Interface Sci. 322 (2008) 342---350. [13] B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, F. Sadeghian, J. Chem. Thermodyn. 41 (2009) 1432–1438. [14] A. Wandschneider, J. K. Lehmann, A. Heintz, J. Chem. Eng. Data 53 (2008) 596–599. [15] U. Domanska, M. Laskowska, J. Solution Chem. 38 (2009) 779–799. [16] A. B. Pereiro, F. Santamarta, E. Tojo, A. Rodiguez, J. Tojo, J. Chem. Eng. Data 51 (2006) 952–954. [17] P. Alfaro, E. Langa, J.F. Martinez-Lopez, J.S. Urieta, A.M. Mainar, J. Chem. Thermodyn. 42 (2010) 291–303. [18] TRC Thermodynamic Tables, Non-Hydrocarbons, p. d-5030, Thermodynamics Research Center, Texas A&M University, College Station, TX, 1966. [19] A. Rodiguez, J. Canosa, J. Tojo, J. Chem. Eng. Data 46 (2001) 1476–1486. [20] T.P. Iglesias, J.L. Legido, J. Peleteiro, L. Romani, M.I. Paz Andrade, Phys. Chem. Liq. 30 (3)(1995) 159–168. [21] G. Douhéret, A. Pal, M. I. Davis, J. Chem. Thermodyn., 22 (1990) 99-108. [22] J. Reis, I. Lampreia, A. Santos, M. Moita, G. Douhéret, Chem. Phys. Chem. 11 (2010) 3722 – 3733. [23] A. H. Buep, J. Mol. Liq. 51 (1992) 279–306. [24] K. Nakanishi, S. Hideko, Bull. Chem. Soc. Jpn. 43 (1970) 1634-1642. [25] T. M. Letcher, U. Domanska, E. Mwenesongole, Fluid Phase Equilib. 149 (1998) 323– 337.. [26] M. S. AlTuwaim, K. H. A. E. Alkhaldi, A. S. Al–Jimaz, A. A. Mohammad, J. Chem. Thermodyn., 48 (2012) 39–47. [27] A. S. Al–Jimaz, J. A. Al–Kandary, A. M. Abdul–Latif, Fluid Phase Equilib. 218 (2004) 247–260.. [28] W. L. Weng, J. Chem. Eng. Data 44 (1999) 63–66. [29] G. C. Benson, O. Kiyohara, J. Chem. Thermodyn. 11 (1979) 1061-1064. [30] G. Douhéret, C. Moreau, A. Viallard, J. Fluid Phase Equilib. 22 (1985) 277-287. [31] J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworth, London, 1959. [32] DIPPR version 9.0, T.P. Laboratory Brigham Yang University (2015). [33] O. Redlich, A. T. Kister, Ind. Eng. Chem. 40 (1948) 345-348. 9

[34] W. Schaffs. Molekularakustich; Springer-Verlag, Berlin 1963, (Chapters. XI and XII). [35] B. Jacobson, Acta. Chem. Scand. 8 (1952) 1485-1498. [36] B. Jacobson, J. Chem. Phys. 20 (1952) 927-928. [37] O. Nomoto, J. Phys. Soc. 13 (1958) 1528-1532. [38] M. S. AlTuwaim, K. H. A. E. Alkhaldi, A. S. Al–Jimaz, A. A. Mohammad, J. Chem. Eng. Data 59 (2014) 1955–1963. [39] S. L. Oswal, K. D. Prajapati, N. Y. Ghael, S. P. Ijardar, Fluid Phase Equilib. 218 (2004) 131–140. [40] H. A. Lorentz, Weid. Ann. 9 (1880) 641-665. [41] L. Lorentz, Weid. Ann. 11 (1880) 70-75. [42] J. H. Gladstone, T. P. Dale, Philos. Trans. 153 (1863) 317-343. [43] J. F. Eykman, Reel. Trao. Chim Pays-Bas 14 (1895) 185-188. [44] P. Bhanuprakash, C. Narasimha Rao, K. Sivakumar, J. Mol. Liq. 219 (2016) 79–87. [45] Z. Shan, A. A. Asfour, Fluid Phase Equilib. 143 (1998) 253–262. [46] K.P. Singh, H. Agarwal, V. K. Shukla, I. Vibhu, M. Gupta, J.P. Shuka, J. Mol. Liq. 39 (2010) 1749–1762. [47] A. Pal, R. Gaba, J. Chem. Thermodyn., 40 (2008) 750–758. [48] M. Hasan, A. P. Hiray, U. B. Kadam, D. F. Shirude, K. J. Kurhe, A. B. Sawant, J. Solution Chem. 40 (2011) 415–429. [49] T. M. Aminabhavi, K. Banerjee, J. Chem. Eng. Data 43 (1998) 509–513. [50] M. Swetha Sandhya, C. Narasimha Rao, K. Sivakumar, P. Bhanuprakash, P. Venkateswarlu, J. Mol. Liq. 222 (2016) 981–987.

10

Figure 1. Comparison of experimental and available literature values for; (a) density {C3 + [emim][MeSO4]}, (b) density {C4 + [emim][MeSO4]}, (c) density {C5 + [emim][MeSO4]}, (d) speed of sound {C3 + [emim][MeSO4]}, (e) speed of sound {C4 + [emim][MeSO4]},and (f) speed of sound {C5 + [emim][MeSO4]}; () experimental at 298 K, () experimental at 303 K,() experimental at 308 K,() experimental at 313 K;() reference [50] at 298 K,() reference [50] at 303 K,() reference [50] at 308 K,() reference [50] at 313 K; () reference [3] at 298 K,(); () reference [2] at 298 K, () reference [2] at 308 K. Figure 2. Comparison of experimental and available literature density values for { C4 + [dmim][ MeSO4]}; () experimental at 298 K, () literature at 298 K, (); reference [3]. Figure 3. Excess molar volumes, (VE) as a function of x1 at T = 298K of {x [dmim][ MeSO4] + (1 − x) C3 (●),+ C4 (○), + C5 (▼)} binary mixtures. Solid line, Redlich–Kister equation. Figure 4. Excess molar volumes, (VE) as a function of x1 at T = 298K of {x [emim][ MeSO4] + (1 − x) C3 (●),+C4 (○), + C5 (▼)} binary mixtures. Solid line, Redlich–Kister equation. Figure 5. Excess molar volumes, (VE) as a function of x1 for {x [dmim][MeSO4] + (1 − x) C5}binary mixtures, at T = 298K (●),303K (○), 308K (▼), 313K (). Solid line, Redlich–Kister equation. Figure 6. Excess molar volumes, (VE) as a function of x1 for {x [emim][MeSO4] + (1 − x) C5}binary mixtures, at T = 298K (●),303K (○), 308K (▼), 313K (). Solid line, Redlich–Kister equation. Figure 7. Excess isentropic compressibility κsE as a function of φ1 at T = 298K of {x[dmim][MeSO4] + (1 − x) C3 (●),+C4 (○), + C5 (▼)} binary mixtures. Solid line, Redlich–Kister equation. Figure 8. Excess isentropic compressibility κsE as a function of φ1 at T = 298K of {x [emim][MeSO4] + (1 − x) C3 (●),+C4 (○), + C5 (▼)} binary mixtures. Solid line, Redlich–Kister equation. Figure 9. Excess isentropic compressibility κsE as a function of φ1 for {x [dmim][MeSO4] + (1 − x) C5}binary mixtures, at T = 298K (●),303K (○), 308K (▼), 313K (). Solid line, Redlich–Kister equation. Figure 10. Excess isentropic compressibility κsE as a function of φ1 for {x [emim][MeSO4] + (1 − x) C5}binary mixtures, at T = 298K (●),303K (○), 308K (▼), 313K (). Solid line, Redlich–Kister equation.

11

Fig. 1

12

Fig. 2

13

Fig. 3

14

Fig. 4

15

Fig. 5

16

Fig. 6

17

Fig. 7

18

Fig. 8

19

Fig. 9

20

Fig. 10

21

Table 1. Chemicals and Purities. CAS Number

Supplier

Mass fraction purity

Purity Method

Water Content ppm

1–ethyl–3–methylimidazolium methylsulfate

516474-01-4

Sigma

≥ 0.98

as stated by supplier

470

1,3–dimethylimidazolium methylsulfate

97345-90-9

Sigma

≥ 0.97

as stated by supplier

620

1–propanol

71-23-8

Sigma

≥ 0.997

as stated by supplier

180

1–butanol

71-36-3

Sigma

≥ 0.998

as stated by supplier

30

1–pentanol

71-41-0

Sigma

≥ 0.998

as stated by supplier

15

Compound

22

Table 2. Experimental Physical Properties of Pure ILs and Alkanols at different temperatures and and P = 101.3 kPa. /T (K)

[emim][MeSO4] Exp.

[dmim][ MeSO4]

Lit. (ref.)

Exp.

1–propanol

Lit. (ref.)

Exp.

Lit. (ref.)

1–butanol Exp.

1–pentanol

Lit. (ref.)

Exp.

Lit. (ref.)

ρ / (g·cm-3)

(a) Density 298.15

1.292

303.15 308.15

1.289 1.285

313.15

1.282

1.28081 1.28602 1.28775 1.28437 1.27913

[3] [8] [9] [9] [44]

1.27574 [44] 1.27761 [9]

1.329

0.800

0.80050 [3] 0.80009 [11]

0.806

1.322 1.319

1. 3272 [4] 1.3290 [5] 1.3280 [10] 1.32365 [16] 1.32009 [16]

0.796 0.792

0.79584 [39]

0.802 0.798

1.315

1.31657 [16]

0.789

1208

1208.9 [17]

1240

1191 1174 1158

1189 [46] 1172.04 [47] 1157.1 [17]

1224 1206 1190

1.38307 [17] 1.38307 [19] 1.382 [46] 1.3803 [49] 1.37674 [17]

1.397

0.7916 [45] 0.78858 [17]

0.794

0.811

0.81099 [3] 0.81094 [15]

0.807

0.80711 [39]

0.803

0.8036 [45]

0.800

0.7999 [45] 0.79975 [17]

1239.7 [17] 1240 [18] 1224 [46] 1207 [48] 1189.8 [17]

1276

1275.4 [17]

1259 1242 1226

1262 1245 1228

1.39729 [17] 1.39716 [20] 1.393 [46] 1.3936 [49] 1.39114 [17]

1.408

1.40784[17] 1.40789[19] 1.4065 [49] 1.4047 [49] 1.40178 [17]

0.8056 0.8060 0.8053 0.80190

[12] [13] [14] [39]

0.7981 [45] 0.79412 [17]

(b) Speed of Sound 298.15

1762

1756 [3]

1811

u/(m·s-1) 1813 [16]

303.15 308.15 313.15

1750 1739 1727

1745 [44] 1734 [44] 1723 [44]

1799 1787 1775

1801 [16] 1789 [16] 1777 [16]

[48] [48] [48]

(c) Refractive Index nD 298.15

1.480

1.48125 [3]

1.483

1.48270 [16]

1.383

303.15 308.15 313.15

1.479 1.478 1.476

1.47998 [3] 1.47868 [3] 1.47740 [3]

1.481 1.480 1.479

1.48129 [16] 1.47999 [16] 1.47867 [16]

1.382 1.380 1.378

Standard uncertainty: T is ±0.01 K, P is ±1 kPa, x is ±1×10-3, ρ is ±1×10-3 g·cm-3, u is ±10 m· s-1, nD is ±5×10-3.

23

1.395 1.392 1.389

1.407 1.406 1.404

Table 3a. Mole fraction x1, volume fraction φ1, density ρ, refractive index nD and speed of sound u for the binary systems { x1 [emim][ MeSO4 ] + (1- x1) 1-propanol, 1-butanol and 1pentanol)} at different temperatures and P = 101.3 kPa. [emim][MeSO4] + 1-propanol nD u/(m·s-1) ρ/(g· cm-3)

x1

φ1

0.000 0.059 0.228 0.375 0.524 0.720 0.874 1.000

0.000 0.126 0.403 0.579 0.716 0.855 0.941 1.000

0.800 0.864 1.003 1.090 1.156 1.223 1.264 1.292

1.383 1.394 1.419 1.435 1.448 1.463 1.473 1.480

1208 1247 1377 1487 1588 1681 1730 1762

0.000 0.041 0.219 0.417 0.571 0.731 0.909 1.000

0.000 0.074 0.344 0.572 0.714 0.836 0.949 1.000

0.000 0.059 0.228 0.375 0.524 0.720 0.874 1.000

0.000 0.126 0.403 0.578 0.715 0.855 0.941 1.000

0.796 0.859 0.998 1.085 1.152 1.219 1.260 1.289

1.382 1.393 1.417 1.433 1.446 1.461 1.471 1.479

1191 1230 1362 1473 1574 1668 1717 1750

0.000 0.041 0.219 0.417 0.571 0.731 0.909 1.000

0.000 0.074 0.344 0.571 0.713 0.835 0.949 1.000

0.000 0.059 0.228 0.375 0.524 0.720 0.874 1.000

0.000 0.125 0.402 0.578 0.715 0.854 0.941 1.000

0.792 0.855 0.993 1.080 1.148 1.215 1.257 1.285

1.380 1.391 1.415 1.431 1.444 1.459 1.469 1.478

1174 1214 1347 1458 1560 1654 1704 1739

0.000 0.041 0.219 0.417 0.571 0.731 0.909 1.000

0.000 0.074 0.343 0.571 0.713 0.835 0.949 1.000

0.000 0.059 0.228 0.375

0.000 0.125 0.402 0.577

0.789 0.851 0.989 1.076

1.378 1.389 1.413 1.428

1158 1197 1332 1443

0.000 0.041 0.219 0.417

0.000 0.074 0.343 0.570

x1

φ1

[emim][MeSO4] + 1-butanol nD u/(m·s-1) ρ/(g· cm-3) T = 298 K 0.806 1.397 1240 0.843 1.403 1260 0.976 1.424 1372 1.087 1.442 1504 1.156 1.454 1593 1.214 1.464 1662 1.268 1.475 1729 1.292 1.480 1762 T = 303 K 0.802 1.395 1224 0.839 1.401 1243 0.972 1.422 1356 1.083 1.440 1488 1.152 1.452 1578 1.210 1.462 1648 1.264 1.473 1716 1.289 1.479 1750 T = 308 K 0.798 1.392 1206 0.835 1.398 1226 0.967 1.419 1340 1.078 1.437 1473 1.147 1.449 1563 1.206 1.461 1634 1.261 1.472 1702 1.285 1.478 1739 T = 313 K 0.794 1.389 1190 0.830 1.395 1209 0.963 1.416 1324 1.074 1.435 1457 24

[emim][MeSO4] + 1-pentanol nD u/(m·s-1) ρ/(g· cm-3)

x1

φ1

0.000 0.050 0.284 0.459 0.613 0.768 0.922 1.000

0.000 0.077 0.385 0.573 0.715 0.839 0.950 1.000

0.811 0.849 0.999 1.089 1.157 1.216 1.268 1.292

1.408 1.413 1.435 1.448 1.458 1.468 1.476 1.480

1276 1291 1425 1527 1603 1662 1721 1762

0.000 0.050 0.284 0.459 0.613 0.768 0.922 1.000

0.000 0.077 0.385 0.573 0.715 0.839 0.949 1.000

0.807 0.845 0.994 1.085 1.153 1.212 1.265 1.289

1.407 1.412 1.434 1.447 1.457 1.466 1.475 1.479

1259 1274 1409 1511 1588 1648 1708 1750

0.000 0.050 0.284 0.459 0.613 0.768 0.922 1.000

0.000 0.077 0.385 0.572 0.714 0.839 0.949 1.000

0.803 0.841 0.990 1.081 1.149 1.208 1.261 1.285

1.406 1.411 1.432 1.445 1.455 1.465 1.473 1.478

1242 1258 1393 1496 1573 1634 1695 1739

0.000 0.050 0.284 0.459

0.000 0.077 0.384 0.572

0.800 0.837 0.986 1.077

1.404 1.409 1.430 1.443

1226 1241 1377 1480

0.524 0.714 0.720 0.854 0.874 0.940 1.000 1.000 Standard uncertainty: T

1.143 1.211 1.253 1.282 is ±0.01 K, P

1.442 1546 0.571 0.712 1.143 1.447 1.457 1641 0.731 0.835 1.202 1.459 1.468 1692 0.909 0.949 1.257 1.470 1.476 1727 1.000 1.000 1.282 1.476 is ±1 kPa, x is ±1×10-3, ρ is ±1×10-3 g·cm-3, u is ±10 m·s-1, nD is ±5×10-3.

25

1548 1620 1689 1727

0.613 0.768 0.922 1.000

0.714 0.839 0.949 1.000

1.145 1.205 1.258 1.282

1.453 1.463 1.472 1.476

1559 1620 1682 1727

Table 3b Mole fraction x1, volume fraction φ1, density ρ, refractive index nD and speed of sound u for the binary systems { x1 [dmim][ MeSO4 ] + (1- x1) 1-propanol, 1-butanol and 1pentanol)}at different temperatures and P = 101.3 kPa. [dmim][MeSO4] + 1-propanol nD u/(m·s-1) ρ/(g· cm-3)

x1

φ1

0.000 0.039 0.208 0.382 0.561 0.702 0.912 1.000

0.000 0.078 0.354 0.563 0.727 0.831 0.956 1.000

0.800 0.843 0.995 1.107 1.193 1.246 1.307 1.329

1.383 1.389 1.413 1.434 1.452 1.464 1.477 1.483

1208 1225 1348 1481 1605 1684 1773 1811

0.000 0.063 0.221 0.432 0.640 0.781 0.927 1.000

0.000 0.102 0.326 0.564 0.752 0.858 0.956 1.000

0.000 0.039 0.208 0.382 0.561 0.702 0.912 1.000

0.000 0.078 0.354 0.563 0.727 0.831 0.956 1.000

0.796 0.839 0.989 1.100 1.186 1.239 1.301 1.322

1.382 1.387 1.410 1.432 1.450 1.461 1.476 1.481

1191 1208 1332 1465 1590 1670 1760 1799

0.000 0.063 0.221 0.432 0.640 0.781 0.927 1.000

0.000 0.102 0.326 0.564 0.752 0.858 0.956 1.000

0.000 0.039 0.208 0.382 0.561 0.702 0.912 1.000

0.000 0.078 0.353 0.562 0.727 0.830 0.955 1.000

0.792 0.834 0.984 1.095 1.181 1.234 1.297 1.319

1.380 1.385 1.408 1.429 1.447 1.459 1.474 1.480

1174 1191 1316 1450 1575 1656 1747 1787

0.000 0.063 0.221 0.432 0.640 0.781 0.927 1.000

0.000 0.102 0.325 0.564 0.752 0.858 0.956 1.000

0.000 0.039 0.208 0.382

0.000 0.078 0.353 0.562

0.789 0.830 0.979 1.090

1.378 1.382 1.404 1.426

1158 1175 1300 1434

0.000 0.063 0.221 0.432

0.000 0.102 0.325 0.563

x1

φ1

[dmim][MeSO4] + 1-butanol nD u/(m·s-1) ρ/(g· cm-3) T = 298 K 0.806 1.397 1240 0.861 1.405 1263 0.982 1.421 1357 1.108 1.443 1500 1.205 1.460 1617 1.258 1.470 1688 1.307 1.479 1761 1.329 1.483 1811 T = 303 K 0.802 1.395 1224 0.857 1.401 1246 0.977 1.418 1341 1.102 1.439 1485 1.198 1.457 1602 1.252 1.468 1675 1.300 1.477 1748 1.322 1.481 1799 T = 308 K 0.798 1.392 1206 0.852 1.398 1229 0.972 1.414 1325 1.097 1.435 1469 1.193 1.454 1587 1.248 1.465 1661 1.297 1.475 1735 1.319 1.480 1787 T = 313 K 0.794 1.389 1190 0.848 1.395 1213 0.967 1.410 1309 1.092 1.431 1454 26

[dmim][MeSO4] + 1-pentanol nD u/(m·s-1) ρ/(g· cm-3)

x1

φ1

0.000 0.100 0.350 0.540 0.661 0.790 0.931 1.000

0.000 0.137 0.437 0.629 0.737 0.844 0.951 1.000

0.811 0.884 1.041 1.140 1.195 1.250 1.304 1.329

1.408 1.417 1.439 1.454 1.463 1.471 1.479 1.483

1276 1311 1448 1552 1618 1672 1751 1811

0.000 0.100 0.350 0.540 0.661 0.790 0.931 1.000

0.000 0.137 0.437 0.629 0.737 0.844 0.951 1.000

0.807 0.879 1.035 1.134 1.189 1.243 1.298 1.322

1.407 1.416 1.438 1.452 1.461 1.469 1.477 1.481

1259 1295 1432 1536 1603 1659 1738 1799

0.000 0.100 0.350 0.540 0.661 0.790 0.931 1.000

0.000 0.137 0.437 0.628 0.737 0.844 0.951 1.000

0.803 0.875 1.031 1.129 1.185 1.239 1.294 1.319

1.406 1.414 1.436 1.451 1.459 1.467 1.476 1.480

1242 1278 1417 1521 1588 1645 1725 1787

0.000 0.100 0.350 0.540

0.000 0.137 0.436 0.628

0.800 0.871 1.026 1.125

1.404 1.412 1.433 1.448

1226 1261 1401 1506

0.561 0.726 0.702 0.830 0.912 0.955 1.000 1.000 Standard uncertainty: T

1.176 1.229 1.293 1.315 is ±0.01 K, P

1.444 1561 0.640 0.751 1.189 1.450 1.456 1642 0.781 0.858 1.243 1.461 1.472 1734 0.927 0.956 1.293 1.472 1.479 1775 1.000 1.000 1.315 1.479 is ±1 kPa, x is ±1×10-3, ρ is ±1×10-3 g ·cm-3, u is ±10 m· s-1, nD is ±5×10-3.

1572 1647 1722 1775

0.661 0.790 0.931 1.000

0.737 0.843 0.951 1.000

1.181 1.235 1.290 1.315

1.456 1.465 1.474 1.479

1574 1631 1713 1775

Table 4a. Mole fraction x1, volume fraction φ1, excess molar volume VE, excess isentropic compressibilty κsE, excess refractive index nDE and speed of sound deviation uD for the binary systems { x1 [emim][ MeSO4 ] + (1- x1) 1-propanol, 1-butanol and 1-pentanol)} at different temperatures and P = 101.3 kPa. [emim][MeSO4] + 1-propanol [emim][MeSO4] + 1-butanol [emim][MeSO4] + 1-pentanol x1 nDE uD / x1 nDE uD / x1 nDE uD / VE / VE / VE / φ1 κsE / φ1 κsE / φ1 κsE / -1 -1 3 -1 -1 3 -1 -1 3 -1 -1 (m·s ) (m·s ) (m· s-1) (m · mol ) (TPa ) (m · mol ) (TPa ) (m · mol ) (TPa ) T = 298 K 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.059 0.126 -0.1321 -37.55 -0.0013 29.28 0.041 0.074 -0.0813 -19.68 -0.0005 15.73 0.050 0.077 -0.0813 -13.27 -0.0002 11.50 0.228 0.403 -0.3760 -92.31 -0.0040 104.56 0.219 0.344 -0.3150 -76.21 -0.0023 85.18 0.284 0.385 -0.2947 -73.50 -0.0011 94.14 0.375 0.579 -0.4674 -96.68 -0.0050 145.09 0.417 0.572 -0.3760 -87.13 -0.0032 136.98 0.459 0.573 -0.3048 -77.12 -0.0015 129.00 0.524 0.716 -0.4471 -84.63 -0.0049 163.38 0.571 0.714 -0.3455 -72.79 -0.0032 144.98 0.613 0.715 -0.2540 -61.76 -0.0015 128.23 0.720 0.855 -0.3150 -51.74 -0.0035 131.16 0.731 0.836 -0.2439 -46.16 -0.0024 114.15 0.768 0.839 -0.1524 -36.09 -0.0011 91.72 0.874 0.941 -0.1524 -22.53 -0.0019 68.57 0.909 0.949 -0.0915 -14.96 -0.0011 46.56 0.922 0.950 -0.0544 -9.76 -0.0005 30.46 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 1.000 0.0000 0.00 0.0000 0.00 T = 303 K 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.059 0.126 -0.1016 -39.74 -0.0014 29.85 0.041 0.074 -0.0711 -19.94 -0.0006 15.30 0.050 0.077 -0.0670 -13.38 -0.0003 11.17 0.228 0.403 -0.3150 -97.63 -0.0045 106.62 0.219 0.344 -0.2540 -79.47 -0.0026 85.62 0.284 0.385 -0.2337 -76.60 -0.0014 94.62 0.375 0.578 -0.3861 -101.63 -0.0056 147.41 0.417 0.571 -0.3150 -90.84 -0.0037 137.97 0.459 0.573 -0.2540 -80.40 -0.0019 129.95 0.524 0.715 -0.3760 -88.77 -0.0055 166.03 0.571 0.713 -0.2845 -75.77 -0.0036 146.23 0.613 0.715 -0.2032 -64.30 -0.0018 129.38 0.720 0.855 -0.2642 -54.01 -0.0040 133.17 0.731 0.835 -0.1931 -47.94 -0.0028 115.25 0.768 0.839 -0.1321 -37.51 -0.0014 92.63 0.874 0.941 -0.1169 -23.39 -0.0022 69.52 0.909 0.949 -0.0711 -15.32 -0.0013 46.56 0.922 0.949 -0.0442 -9.97 -0.0007 30.35 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 1.000 0.0000 0.00 0.0000 0.00 T = 308 K 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.059 0.125 -0.0915 -42.42 -0.0016 30.51 0.041 0.074 -0.0508 -21.46 -0.0007 15.86 0.050 0.077 -0.0515 -13.52 -0.0004 10.87 0.228 0.402 -0.2744 -103.53 -0.0050 108.77 0.219 0.343 -0.1931 -83.91 -0.0029 87.00 0.284 0.385 -0.1829 -79.91 -0.0017 95.12 27

0.375 0.524 0.720 0.874 1.000

0.578 0.715 0.854 0.941 1.000

-0.3252 -0.3150 -0.2235 -0.1118 0.0000

-107.05 -93.24 -56.47 -24.36 0.00

-0.0063 -0.0061 -0.0044 -0.0024 0.0000

149.82 168.79 135.26 70.51 0.00

0.417 0.571 0.731 0.909 1.000

0.571 0.713 0.835 0.949 1.000

0.000 0.059 0.228 0.375 0.524 0.720 0.874 1.000

0.000 0.125 0.402 0.577 0.714 0.854 0.940 1.000

0.0000 -0.0813 -0.2235 -0.2744 -0.2642 -0.1829 -0.0915 0.0000

0.00 -44.51 -109.05 -112.29 -97.59 -58.83 -25.24 0.00

0.0000 -0.0018 -0.0056 -0.0070 -0.0068 -0.0049 -0.0027 0.0000

0.00 30.67 110.34 151.65 171.00 136.94 71.25 0.00

0.000 0.041 0.219 0.417 0.571 0.731 0.909 1.000

0.000 0.074 0.343 0.570 0.712 0.835 0.949 1.000

-0.2337 -95.37 -0.2134 -79.35 -0.1423 -50.07 -0.0508 -15.78 0.0000 0.00 T = 313 K 0.0000 0.00 -0.0305 -20.70 -0.1321 -86.98 -0.1571 -99.11 -0.1398 -82.43 -0.0976 -51.93 -0.0360 -16.13 0.0000 0.00

28

-0.0042 -0.0041 -0.0032 -0.0015 0.0000

139.81 148.24 116.94 46.80 0.00

0.459 0.613 0.768 0.922 1.000

0.572 0.714 0.839 0.949 1.000

-0.1931 -0.1524 -0.1016 -0.0340 0.0000

-83.83 -66.96 -38.99 -10.18 0.00

-0.0022 -0.0022 -0.0017 -0.0008 0.0000

130.92 130.54 93.56 30.26 0.00

0.0000 -0.0008 -0.0033 -0.0047 -0.0046 -0.0036 -0.0017 0.0000

0.00 14.73 86.87 140.36 149.17 117.83 46.68 0.00

0.000 0.050 0.284 0.459 0.613 0.768 0.922 1.000

0.000 0.077 0.384 0.572 0.714 0.839 0.949 1.000

0.0000 -0.0361 -0.1321 -0.1342 -0.1118 -0.0711 -0.0238 0.0000

0.00 -13.64 -83.41 -87.43 -69.79 -40.53 -10.40 0.00

0.0000 -0.0004 -0.0021 -0.0027 -0.0027 -0.0021 -0.0010 0.0000

0.00 10.56 95.61 131.88 131.71 94.50 30.13 0.00

Table 4b. Mole fraction x1, volume fraction φ1, excess molar volume VE, excess isentropic compressibilty κsE, excess refractive index nDE and systems { x1 [dmim][ MeSO4 ] + (1- x1) 1-propanol, 1-butanol and 1-pentanol)} at different temperatures and P = 101.3 kPa. [dmim][MeSO4] + 1-propanol [dmim][MeSO4] x1 nDE uD / x1 nDE uD / x1 VE / VE / φ1 κsE / φ1 κsE / -1 3 -1 -1 3 -1 -1 (m·s ) (m·s-1) (m · mol ) (TPa ) (m · mol ) (TPa ) T = 298 K 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.039 0.078 -0.1626 -18.35 -0.0022 12.73 0.063 0.102 -0.2337 -21.23 -0.0017 16.50 0.100 0.208 0.354 -0.7011 -84.56 -0.0062 87.72 0.221 0.326 -0.6402 -68.71 -0.0042 73.34 0.350 0.382 0.563 -0.9145 -95.03 -0.0062 140.18 0.432 0.564 -0.7824 -83.06 -0.0030 130.26 0.540 0.561 0.727 -0.8434 -78.07 -0.0042 158.63 0.640 0.752 -0.6198 -57.36 -0.0014 125.32 0.661 0.702 0.831 -0.6503 -54.35 -0.0026 137.76 0.781 0.858 -0.4065 -33.88 -0.0007 91.84 0.790 0.912 0.956 -0.2032 -14.35 -0.0009 48.86 0.927 0.956 -0.1626 -8.63 -0.0004 29.08 0.931 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 T = 303 K 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.039 0.078 -0.1423 -18.92 -0.0029 12.68 0.063 0.102 -0.2032 -21.37 -0.0028 16.05 0.100 0.208 0.354 -0.5995 -87.94 -0.0078 88.15 0.221 0.326 -0.5487 -71.05 -0.0056 73.34 0.350 0.382 0.563 -0.7723 -98.71 -0.0072 140.97 0.432 0.564 -0.6706 -85.97 -0.0050 130.52 0.540 0.561 0.727 -0.7215 -80.99 -0.0053 159.59 0.640 0.752 -0.5284 -59.24 -0.0031 125.63 0.661 0.702 0.831 -0.5487 -56.41 -0.0041 139.08 0.781 0.858 -0.3455 -35.04 -0.0016 92.45 0.790 0.912 0.956 -0.1727 -14.84 -0.0015 49.34 0.927 0.956 -0.1016 -8.86 -0.0007 29.39 0.931 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 T = 308 K 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.039 0.078 -0.1118 -19.81 -0.0032 12.90 0.063 0.102 -0.1473 -22.90 -0.0032 16.82 0.100 0.208 0.353 -0.4979 -92.36 -0.0086 89.39 0.221 0.325 -0.4471 -75.14 -0.0071 74.98 0.350 0.382 0.562 -0.6402 -103.46 -0.0086 142.90 0.432 0.564 -0.5487 -90.35 -0.0070 132.70 0.540 0.561 0.727 -0.5894 -84.65 -0.0065 161.80 0.640 0.752 -0.4369 -62.09 -0.0047 127.80 0.661 0.702 0.830 -0.4573 -59.01 -0.0049 141.52 0.781 0.858 -0.2845 -36.79 -0.0033 94.54 0.790 0.912 0.955 -0.1321 -15.44 -0.0021 50.28 0.927 0.956 -0.1016 -9.37 -0.0014 30.33 0.931 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 1.000 0.0000 0.00 0.0000 0.00 1.000 T = 313 K 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.000 0.0000 0.00 0.0000 0.00 0.000 0.039 0.078 -0.0915 -20.02 -0.0037 12.57 0.063 0.102 -0.1219 -22.46 -0.0036 15.89 0.100 0.208 0.353 -0.4065 -96.38 -0.0106 89.99 0.221 0.325 -0.3556 -77.85 -0.0083 75.04 0.350 0.382 0.562 -0.5284 -108.00 -0.0099 144.17 0.432 0.563 -0.4369 -93.94 -0.0096 133.51 0.540 29

speed of sound deviation uD for the binary [dmim][MeSO4] nDE κsE / -1 (TPa )

uD / (m· s-1)

φ1

VE / 3 (m · mol-1)

0.000 0.137 0.437 0.629 0.737 0.844 0.951 1.000

0.0000 -0.1931 -0.4268 -0.3861 -0.3048 -0.1931 -0.0508 0.0000

0.00 -27.99 -71.13 -63.38 -50.42 -26.95 -5.42 0.00

0.0000 -0.0015 -0.0020 -0.0012 -0.0008 -0.0005 -0.0002 0.0000

0.00 25.93 98.57 117.52 112.66 72.57 18.38 0.00

0.000 0.137 0.437 0.629 0.737 0.844 0.951 1.000

0.0000 -0.1626 -0.3455 -0.3150 -0.2540 -0.1626 -0.0406 0.0000

0.00 -28.60 -73.56 -65.56 -52.18 -28.00 -5.64 0.00

0.0000 -0.0016 -0.0023 -0.0016 -0.0013 -0.0009 -0.0004 0.0000

0.00 25.54 98.48 117.64 113.01 73.28 18.69 0.00

0.000 0.137 0.437 0.628 0.737 0.844 0.951 1.000

0.0000 -0.1219 -0.2744 -0.2439 -0.1931 -0.1219 -0.0356 0.0000

0.00 -29.47 -76.77 -68.39 -54.44 -29.36 -6.00 0.00

0.0000 -0.0019 -0.0031 -0.0023 -0.0019 -0.0015 -0.0008 0.0000

0.00 25.42 99.20 118.78 114.36 74.79 19.39 0.00

0.000 0.137 0.436 0.628

0.0000 -0.0813 -0.1931 -0.1727

0.00 -30.31 -80.07 -71.35

0.0000 -0.0023 -0.0039 -0.0035

0.00 25.23 99.87 119.88

0.561 0.702 0.912 1.000

0.726 0.830 0.955 1.000

-0.4877 -0.3760 -0.1118 0.0000

-88.20 -61.51 -16.01 0.00

-0.0078 -0.0060 -0.0028 0.0000

163.39 143.43 50.92 0.00

0.640 0.781 0.927 1.000

0.751 0.858 0.956 1.000

-0.3455 -0.2235 -0.0762 0.0000

-64.50 -38.28 -9.74 0.00

30

-0.0068 -0.0049 -0.0024 0.0000

128.88 95.82 30.87 0.00

0.661 0.790 0.931 1.000

0.737 0.843 0.951 1.000

-0.1423 -0.0915 -0.0305 0.0000

-56.81 -30.78 -6.33 0.00

-0.0030 -0.0024 -0.0010 0.0000

115.67 76.25 20.00 0.00

Table 5 Specific heat capacity Cp and thermal expansivity α of pure liquids at different temperature. T/K [emim][MeSO4]

α /(104 Κ−1) −1

−1

298

303

308

313

0.5256

0.5269 319.9 (332[9])

0.5283

0.5297 333.2 (337[9])

Cp /(J·Κ ·mol )

313.3

α /(104 Κ−1)

0.6660 298.1

0.6693 303.1

0.6711 308.0

0.6729 312.9

0.9850 144.5 [32]

0.9900 147.2 [32]

0.9951 150.1[32]

0.9997 153.0[32]

0.9607 177.9 [32]

0.9652 181.1[32]

0.9699 184.5 [32]

0.9747 188.0 [32]

0.9199 0.9242 209.3 [32] 212.8 [32] Cp/(J. Κ −1·mol−1) Standard uncertainty: T is ±0.01 K, P is ±1kPa, Cp is ±20 J·Κ−1·mol−1.

0.9285 216.5 [32]

0.9328 220.3 [32]

[dmim][MeSO4]

Cp/(J·Κ−1·mol−1) 1-propanol

α /(104 Κ−1) Cp/(J·Κ−1·mol−1)

1-butanol

α /(104 Κ−1) Cp/(J·Κ−1·mol−1)

1-pentanol

α /(104 Κ−1)

326.6

31

Table 6 Coefficients of the Redlich-Kister-Type equation and standard deviation for the ([emim][MeSO4] + 1-propanol, 1-butanol and 1-pentanol) and ([dmim][MeSO4] + 1-propanol, pentanol) at different temperatures and P = 101.3 kPa. a2 a0 a1 a3 [emim][MeSO4] + 1-propanol T = 298 K -348.5694 247.8080 -104.4716 40.0923 κSE VE -1.8257 0.5910 -0.0117 0.0197 uD 648.0847 56.8689 -107.0612 -18.6463 -0.0197 0.0067 -0.0011 -0.0053 nDE T = 303 K -365.8491 265.3341 -112.1676 41.3022 κSE -1.5475 0.5111 0.1897 -0.0247 VE uD 658.6359 55.4713 -108.5333 -18.4546 nDE -0.0222 0.0075 -0.0012 -0.0059 T = 308 K -384.2845 283.6215 -124.1135 47.6730 κSE VE -1.2864 0.4786 -0.0528 -0.1464 uD 669.5712 54.4282 -109.4452 -19.8627 nDE -0.0247 0.0083 -0.0013 -0.0066 T = 313 K -402.6513 303.1572 -129.8290 44.5833 κSE -1.0667 0.3566 -0.0688 0.0311 VE 678.5796 52.7279 -114.5391 -14.8482 uD nDE -0.0278 0.0093 -0.0014 -0.0073 [emim][MeSO4] + 1-butanol T = 298 K -326.3420 214.2679 -10.4738 -42.8454 κSE VE -1.4748 0.5694 -0.1144 -0.0415 uD 579.3272 66.2874 -124.2129 21.4969 nDE -0.0129 0.0012 -0.0008 -0.0022 T = 303 K -341.2967 229.1447 -0.1700 -59.2804 κSE -1.2032 0.4432 -0.1107 0.1147 VE uD 585.4553 66.3057 -137.8632 27.8842 nDE -0.0149 0.0014 -0.0009 -0.0025 T = 308 K -357.4933 241.0918 -5.7660 -50.7795 κSE

binary systems 1-butanol and 1σSD 0.5658 0.0022 0.9540 6.9E-06 0.6749 0.0031 1.0503 7.9E-06 0.7541 0.0024 1.1402 9.1E-06 0.8841 0.0019 1.2691 1.0E-05 0.4050 0.0030 0.6636 3.4E-05 0.6198 0.0035 0.5810 4.0E-05 0.5924 32

VE uD nDE T = 313 K

-0.9061 593.5305 -0.0169

0.3767 70.1824 0.0015

-0.0291 -138.8771 -0.0010

0.0107 14.1360 -0.0028

0.0021 0.5412 4.5E-05

κSE

-374.5790 -0.6137 599.1459 -0.0189

262.5050 0.3023 67.9789 0.0016

20.0001 0.0065 -162.0457 -0.0011

-93.1399 -0.1418 34.4506 -0.0031

1.1427 0.0020 0.6611 5.1E-05

a0

a1

a2

a3

VE uD nDE

σSD

[emim][MeSO4] + 1-pentanol

T = 298 K

κSE

-307.6147 -1.1834 537.5780 -0.0059

179.7997 0.6257 76.1320 -0.0003

124.7012 -0.0451 -260.4113 -0.0004

-121.1759 -0.1103 21.3151 -0.0012

1.3631 0.0029 1.2750 1.8E-05

κSE

-321.3235 -0.9657 542.7829 -0.0074

188.6883 0.4352 80.4161 -0.0004

138.2347 -0.0395 -272.3265 -0.0005

-132.3983 0.0166 19.0573 -0.0015

1.5239 0.0025 1.4277 2.3E-05

κSE

-335.7612 -0.7381 548.0304 -0.0089

198.4843 0.3650 84.8523 -0.0005

152.1958 -0.0427 -283.7606 -0.0006

-144.4907 -0.0292 16.2660 -0.0018

1.7049 0.0018 1.5786 2.8E-05

κSE

-351.0273 -0.5280 553.3279 -0.0109

208.8292 167.4626 0.2649 -0.0163 89.4715 -295.6885 -0.0007 -0.0008 [dmim][MeSO4] + 1-propanol

-157.4736 -0.0307 13.0776 -0.0022

1.9010 0.0011 1.7384 3.4E-05

-139.5688 -0.2829 67.0307 0.0062

2.5594 0.0053 2.2135 0.0001

VE uD nDE T = 303 K VE uD nDE T = 308 K

VE uD nDE T = 313 K VE uD nDE

T = 298 K

κSE

VE uD nDE

-357.1844 -3.6138 642.0018 -0.0190

289.9590 1.2899 79.6404 0.0208

21.3246 0.2658 -200.0691 -0.0190

33

T = 303 K

κSE

-371.2494 -3.0606 646.4414 -0.0236

303.6065 1.0800 82.4353 0.0190

24.4894 0.1565 -201.9788 -0.0288

-149.7804 -0.1453 68.4157 0.0157

2.7478 0.0037 2.3070 0.0001

κSE

-388.9545 -2.5529 655.7676 -0.0281

320.8549 0.9550 86.5209 0.0204

26.3277 0.3259 -202.3867 -0.0325

-159.7849 -0.1914 67.3079 0.0146

2.9531 0.0082 2.3832 0.0002

κSE

-407.1371 -2.1016 663.3155 -0.0338

341.7328 38.1710 0.7713 0.2540 88.1107 -210.7372 0.0265 -0.0393 [dmim][MeSO4] + 1-butanol

-186.1739 -0.1801 76.5198 0.0080

3.3470 0.0051 2.6031 0.0001

VE uD nDE T = 308 K VE uD nDE T = 313 K

VE uD nDE

a0

a1

a2

a3

κSE

-318.4854 -3.0013 549.9508 -0.0104

212.1026 1.3597 97.0518 0.0203

93.6798 -0.2412 -254.5668 -0.0098

-99.9956 -0.5924 -20.6232 -0.0102

1.1704 0.0046 1.5591 0.0001

κSE

-330.6142 -2.6218 551.9080 -0.0173

222.6162 1.0005 97.2178 0.0200

104.9865 0.1858 -258.4999 -0.0148

-114.5097 0.1845 -11.4439 0.0010

1.3701 0.0050 1.6620 0.0001

κSE

-346.8923 -2.1577 560.6450 -0.0250

235.9312 0.9662 99.9518 0.0207

104.0293 0.1840 -252.0540 -0.0171

-118.0467 -0.4990 -14.2285 -0.0023

1.4224 0.0056 1.7055 0.0001

κSE

-362.8537 -1.7096 566.0955 -0.0339

250.5500 0.7463 101.2721 0.0217

124.6739 0.1359 -263.1681 -0.0191

-146.9648 -0.2538 2.2306 -0.0100

1.7729 0.0032 1.8800 0.0002

σSD

T = 298 K VE uD nDE T = 303 K

VE uD nDE T = 308 K VE uD nDE T = 313 K VE uD nDE

34

[dmim][MeSO4] + 1-pentanol T = 298 K

κSE

-275.8042 -1.6417 482.8725 -0.0057

142.1060 0.7608 128.7871 0.0079

105.6816 0.1906 -269.2583 -0.0061

-17.0652 0.0583 -163.1607 0.0014

0.9815 0.0040 2.1144 5.1E-05

κSE

-285.5256 -1.3384 483.4665 -0.0072

146.2682 0.5416 133.3841 0.0070

112.2993 0.1079 -269.8497 -0.0074

-20.9327 0.2247 -161.5558 0.0002

1.0427 0.0039 2.1486 2.6E-05

κSE

-298.1392 -1.0437 488.0018 -0.0100

152.5791 0.5347 139.0188 0.0088

119.6079 0.1011 -269.7306 -0.0106

-27.0802 -0.0854 -158.9127 -0.0044

1.1100 0.0023 2.1802 1.9E-05

κSE

-311.3210 -0.7426 492.4272 -0.0145

158.5535 0.3515 145.1823 0.0059

128.1416 0.0668 -270.9442 -0.0099

-32.9929 -0.1408 -157.5447 0.0009

1.1878 0.0021 2.2251 1.0E-05

VE uD nDE T = 303 K VE uD nDE T = 308 K

VE uD nDE T = 313 K VE uD nDE

35

Highlights • • • • •

Physical properties of binary mixtures of [dmim][MeSO4] and [emim][MeSO4]+1propanol, 1-Butanol or 1- pentanol at different temperatures were investigated. Densities, refractive indices and speed of sound were measured. VE, KsE, uD and nDE were calculated using the experimental data. Speed of sound data were analyzed using different theories and relations. Different mixing rules were used to predict the experimental refractive indices.

36