Email:
[email protected]
Login
Register
English
Deutsch
Español
Français
Português
Home
Add new document
Sign In
Create An Account
Comparing the Predictive and Classification Performances of Logistic Regression and Neural Networks: A Case Study on Timss 2011
HOME
Comparing the Predictive and Classification Performances of Logistic Regression and Neural Networks: A Case Study on Timss 2011
Comparing the Predictive and Classification Performances of Logistic Regression and Neural Networks: A Case Study on Timss 2011
Available online at www.sciencedirect.com ScienceDirect Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676 ...
Download PDF
362KB Sizes
0 Downloads
13 Views
Report
Recommend Documents
Neural networks and logistic regression: Analysis of a case-control study on myocardial infarction
Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird
Neural networks and logistic regression: Part I
Logistic regression and neural network classification of seismic records
Classification of EEG signals using neural network and logistic regression
Predicting shrimp disease occurrence: artificial neural networks vs. logistic regression
Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
Logistic regression, neural networks and Dempster–Shafer theory: A new perspective
Prediction of pipe failures in water supply networks using logistic regression and support vector classification
The predictive accuracy of artificial neural networks and multiple regression in the case of skewed data: exploration of some issues
Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study
Classification of malignant and benign tissue with logistic regression
PDF Reader
Full Text
Available online at www.sciencedirect.com
ScienceDirect Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
! "#
$% &% %$ && # '( #) $ *)'#$" +' ,-.# ) /' %0
!" !"
& & # 1 $ %% # #2% )-3 4 $ #)34 $ $ $ $ # 2 #)- % %$ & &
# ' $% )$% 0 # 1$ $ $ 3#')2+&- & 0) 34 $ 5 & # # ' &- # &- $ - & & $ -0# -$# #- % 0 24 & $&$ # % 2 $ # -# 1 # $ $%$ $ $ 2 63+#2#0 0)" 72 © 2013 The Authors. Published by Elsevier Ltd. % # % 0 )3+ -"# 3 &) 3+"3- ' ) Selection and peer-review under responsibility of The Association of Science, Education and Technology-TASET, Sakarya Universitesi, 8 -3#')2 Turkey. 9)(34- # '- &&
"# % )$ '& 0 $ 0#$ &# : $ 2 - 0 $ # 0 # $ & # %0 $ ) & # $% ;# ) # )$2 * $$ ) ;# $ $ # & 0 0 # 3 4 $ #)342 34 & $% #) % ## $ 0# # $ & <% )$ '-# - - % 4 -4# - -/ ! !-$-=9 )->>?23 < ##34 $ ,% & #23 2(@>A?>AB??>C <(@>5 #$% &)'#$ D&$ 2$
1877-0428 © 2013 The Authors. Published by Elsevier Ltd. Selection and peer-review under responsibility of The Association of Science, Education and Technology-TASET, Sakarya Universitesi, Turkey. doi:10.1016/j.sbspro.2013.12.076
668
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
$% # 1 $ 2 E $ # & # F !- # ## #$ & $ $ % #- C & C0CE0 .CE$
-$# # 1 # # - &<% -;# #% %
& +'0 - 73 0 ?C G - +0 - #$ C #' 7#;#CHI& C 4 )CE$
2 # # &- & - $ ) 0 '&# 2&2- % # - $- "-
#$0 0' $- # $% $ +)% )- "J K! ?C #$- 5C E$
C AC L ) 0J #2 $ 0 %% & % 0 $ 0 # 1 $ 2 E % %$ $ &- &
#$0 ;# $ & & # 2 M$ N # ?2 - '## $ & 34 2 % %-
' $ & $C & & 7M # ' - #2 # & 7M ) $% # 1 $ - #) $% & %0) # &% %$ 7M & 2 -$ % % 00 &($ & $ 0)# &34#) 3#'5& # $% % $0 $ & 2 1.1% 7M %%# $ &$ $0 0 0) ' &# % 0 /#=.& -> ) 0 %% $ ) # - - &# # & &2 7M $- $ &# - # ) $0 $ %$ # #$ $% & %F # )2 )- ;# %% #%$ 0) 0 %2 ) - # # % ) & # #2 3 & < $% 3#' #- % %# $ &$ )# % $ # & ' $% % $ $ 0) O - 8P G 2 + $ 0-#) 343#') %%# $- $ )7M #2+0$& & 2 1.1.123 3 7&& ) ;# *7& -0## '*7-$ #$ & 0 % 0 23#)# 0 )7M$ % 0 $#2 %0 0 ) #$ % $ & 23# $ 0# 0 #& ) %0 #2 3 $ Q-R 23 & $ %# & 0$%& ) $ $ & 2 3- % & ' )0 %2G% 0# # %%0) - $$$ # # &0# # 23$$% && $ $=7$-C
669
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676 1
4
4
41
1
1
4 F 4 41
F
41
1
4
% $ #$0 % 0 # $ 2 $ $ $- & $ %% 2
4 1 & 4 4
3 ";# $ & 0<%0)23 & # & $0) ' & %0 0 )#%0 0 ) # 2 + 0 )- ' # S & ' # S S2 3 & $ ) 0 ## % $ $=7$C+ % 2 7M- & % & $# #$$ & ## % 0 5 2 3 # ' & $ 0) # & $ <$#$ ' $ 47"$$ <$ ' # 23 & ' # & 0 $=7$-C
2 4 4
' # % $2 ) ' & % ;# ! & ' # !-0 $ <$#$ ' $ 6 23 #$ <$#$ ' $ - ! -$# & & # & 2 .$";# - 0 ) % ;# "#$ #- %0 % %2 3 0 ' # # & )$ 23& ) 7M$ - ' %$23 & 0 #( $ ) # $ $ 0 2 ;# 0# $# 0 <% & '()*+,- '*+,-./01234/35- & 6 78/-/1++,01-()*+,-9/-/1++,*+,-./01234/35- : 2 # )%( 1 ; < T & ## ) = >?& - # 0 $ $ 23E 3%$ ) # % $ % ;# ! 27@A $ <$#$ ' $ # ' % $@ BC@A @A23E ;# 0# &$ 00 (D @AE 9BC@AE 23 7 & &4# % 0 0# ) & ' $ % ' & ##$% $ < # $=7$- 2 1.117 8" # ' )#$%# $ $ $$%#$ 0 2 + &$ # ;# % # & & 0 ( 7' #$ 0 - 0 ) &
670
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
& ! &$% <% 2+ & $-#$ G% B- 0 ) & T#$ ) $ & & $ 2 )$ $% < % 0 %# % 0 #%# % 0 - $ '% #$% 0#$ $ $0 %# #%#2 0# )-$ & $% 20 $ & %# 0 )$ 0) 2 - 7 ) $ 0# $ ' # ;#2 #0 '0< #- %# 0 $ 0#
<% 2 . < $% # ' & & - ) & # # $ 2 + 7M 0 $ ' % )% $ ' #& )2 0 ) # %# 0 ' 2 7 )- & # & $# - & %0 $ $ ) # $-#$ -=G% -B2 + $ 0- 0 ) & & 0 0) &2 3 0 ' %% & &$ $%%# #% & $ %$ & $# ) %% =9 $0-B2
.&22+ # $% 47 )
34# )% 47 $% ( %# )- $ ) #%# )2. # )472# $ # % 0) 2 3 & # $ $ # 2 % 0 '%% & &$# &47 00 =9 $0-BC %( ! '&E& $ ) & $ #$02 %(% & %# " %# )# F $ # 2. %#F-#%#GH ;# %# #IH 23 %## F &%# )/ $%# IH JL KL HG L MH IH $0 %##L ; N 7CKL H & #-GL #%## $%# ) MH 0 # F$$0 ' #2<- # F$%##%# #G H %)% # OP2 3 $ %%# # # ) &$ & ## 0 # 2E %&$ # -#%## F 0 # G H N9N "QRS 2
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
%( '%% & 3%% & 0 ' 0)#% && 0 '1% 23#%# )0 0)CT TH GH N G H UH GH UH ' # #%#2 3 - )F # CT TH G H N G H JV CT TV KH VCT TV # W2 % ( 8% & 0 . KL H- & $ # 0)XKL H CT TH G H & ' #0 23 &#% 0 MH ' $# (KL H KL H XKL H2 $ )- 0 MH #% 0)XMH CT TH # 0 # MH MH XMH 2 3 & % # % % #$0 % <% # )$ % % 23 & ' & ) ## # >AU23$# &$ ) # ) & %0 $2 + )- 0 %% ) & % - %# 0 ## ) $ ! 2 3#- & & %%#% &% 2 119 34 $ $ $ 5 & # $ # ) # ) 0) + " # "# +$ "+ >>A2 -$ B-# $B# % % #) A $ $ & & $ 4# - 4 - .)- = + -2G # #) #B>53#'# 1 $ $# ;#
$ $ & # # <2 3 %0 $- > # 1 < # $ )2 3 0 2 % 0 # #) N 0 $
3)%
$
+&
M
3M3 G
/
$
3"V
# ' &$
% '
4+ 4-4-4G-4"2
# $
% '
# #$
% '
4B+-4B-4B-4BG-4B"- 4B.-4B/-4B -4B 4BH-4B9-4B7-4B4-4B-4.
# & & $
% '
4A+-4A-4A-4AG-4A"
# 0#
% '
/+-/-/-/G-/"-/.
% '
/-G/"G8-GG/AA
$# #
%% ) & 7M $ $ & 0 # 1 $ $ $ $% % F %$ -% % 0 $ 2 #)- % #0 # $ $ % 0 # 0 ) # & A- )WC - )W2 &$ $ $ -# &# #) ;# % ) # & 0 2 3 % 0 & 3 0 2 + &3 0 -<$<% & & 0 # 1% $ 0)34 $2 $ # & #$ 0 2 . < $% - X " 3 % % X % ' W ' & $ ( W$ ' & $ ( W 1 ' & $ $ # # 1 & 0#
671
672
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
$ $ 0 & % ' $ ( X T) & $ $ X 4+- X #) $ $ X 4- X4 $ 0 &X 4- X $ ) & & $ $ X 4G X ' $ $ X 4"2 X % % X $ & # : 0 0# 0 $ $ % ' W (W$ (W 2X## ) $ $ X-X &;#' ) $ $ X X4) $ $& $ $ X <$ $ # $ # -4 4# 2 1.19 ) # $$ & # # B-?B3#'5& # 1 $ 2 + % $ A2 # % - # $ $% $ # )2 3 0 $ % % 0 <% & % % 2 # &$ $ 0A- B# & 0 A2 E < $ & - X% X & $ 0 &#%2+ - $ X %X ;# 25?># 0 A- $ 2A5 # 0 & &#%2 3 $ $ )# % ;# ) & 0# X X2 - 0 X %X$ )0 0 & $ 2
3 0 2G% % 0 +0A % 0
A
4 4 <
4
2
4 4 <
4
2
B
25A
2
B
2A
2A>A
# ' &$
2BA
2??
25?
2?>
# $
25?>
2?B
2A5
2AB
# #$
2A
2B?
2??
2?5
# & & $
2B?
2B
2>B
2B>
# 0#
2A5
B?
2B>B
2?B
2
2B5
2B
2A
+&
$# # 3
W-
W-B
112: 77 30 ) 7M )%$ 0 & ) &#%# 2N 0 %#$ #& % 23
M % M& *%$! &$- # +- # # $ <$#$ ' % $$ 2+ -%$ 23 0 ' # # $ #& $ 2+ &# -$ $ % & & $ % 0 >AU % #Y2A2+ ;# & $ 7$ % # ;# 22 3 # )% X & 0 0 # % #XT AU& -$ 2
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676 3 0 27'
7&7'
7'
3 # $
4 0
;#
G.
% #
A2??
AA2
5B2B?A?
2
3 0 # $ <$#$ ' $ ) 0 #$ 23 &) &) < 2+ & ) 0 -#% # &X3 X-X% X-X X X %X ) & >AU 2 #%-Z % % [ )$ $ $ ' >U23% $$ @A @AY & % #E &$ )& %Y2A23#- 0 [ E @A\ ) & $ ' & 0# $ 2 * -@AZ @A @ & ) $ -% )2 -X $ X- X $ 0# X-X 0#$ )0# X X$ )# #X %0 ## &#% # 2 3 0 27M#
[ @
A2AAB
2?>
DGa $efGg" haai bcBd bcBd B2 2 A52>A
+&
[ &@
2>A
2>?
B2A
2
2B?
2
/
& @AE
2
2A
2
2BAA
2>AA
2BAA
[ \ 25 # ' ' &@ &$ A $ ' &@j 2>
25>
B2
2
2?
2B>
2A
2
2>
[ Z # @ $ @AY $ [ k # # #@ $ [ l $ #@
2BA
2
?2>
2
2
2B
2?
2
25
2>
2
25A
B2A
2B
2?A
2
2?
25
2A
2?5
& &@Am
25
2>
2
2>?
25
$ & &@A
2B
2?
2?5
2?B
25
$ @A
2
2?
2>
2?
25
[ E 0#$ )@
2
2?5
?2>>
2?
2>5
[ \ $ )#@
2>>
2?
>2
2
?2B
[ j $#@
2
2>>>
2?A
25B
2
B] G"
# & & $ # 0# $ # #
^GT G_"7G`"
@A
BC@A
$efGg" "O O "]
25
2
25
2B?A
2
2
+ )- # # 0 & $ 0# & %0 % % 0 2.< $% - $ @AZ f"T i gi@A 2;# 22 0 % 0 & ## &#% 2 $ & # $ # $ 2 .#$- % $ $ & # 0 # 1
673
674
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
$ $ 0 & ## &#%2 3 % 0 % $ )2 . )- $ # $ 0 # 7M $ 2 3 47 $ %$ ' ) # 23%$ 5 & 0T # # 2A5A2 3 < $ # % 0 : $ !$% X %X- X% X- X3 X X X ) & %2 3 $ $% % $ & # 0 X# $ $ X2 11; %) E &% # )7M $- #$ #% % ( & & 2U ' & 0# $ 23% U U 23 # T# $ $ '$& ) & 23 $ # $% # $ $ # ) 7 = )- 2 + $ $% - $ % $ 2 0 # $ < # # $ 1 % 0 3 0 A B23#& 0 - # )- )#% %) # & $ # 2 # $ 0# 9 $0B2
3 0 A2 # )7M$
3
%
N
0
)W
)W
)W
BB5
)W
>
5
)W A
AA
2AU
5>
A
A2A5U
?52?5U
A
>?
?525U
5>2U
3 0 B2 # )$
)W A
B25>U
3
N
%
0
)W
)W
)W
B55
B
B-BU
)W A
)W
)W
-AU
>-AU
?>U
A
>?
??-55U
>-U
+ & 0 - % 0 7M $ ) - $ $& $ # % 0 )2 E # )7M$?52AU-$ ?52BU # ) 23 $
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
675
# 2? 2?-% )23%)7M;# 25> %) ;# 2>2 E $ # $ $% # $ - 4"- & - & M* < ' # - 0$ $ % 0 )2 3 0 ? & 2 0 # & <0 $ % 7M $ 2 3 0 ?2$ & $% $ 4
4 4"
/
/ 2
M* <
7M
2
2A
52
2B
25
2
2A
5?2
2B
25
3 $ 0 $ # ! M*#& 0 .2 M*# - '& )$ 2
.&22M*#7M $
!"#! #)-B?B3#'5& # 1 $ $34 0 #$ %#%2. )- $$ & $ $ $ 23 - %%# $ & $- $ ) 0 ) 7M %$ % $0 $ & $% $ 2 7M # Z %[ $ $% % $ $ $ 2+ # Z $ [ 0#$ )0# [ Z$ )# #[ # ## &#%2* - % # ) $ $% - # $ & $ % 2 E $ $ # $ $% # $ - 4"- & - & M* < < $ - % # )7M# $ %$ # #)2 * $ ) # 0 ) < 0 % 0 < % 2 # 0 ' 0< #- # ' 7M-
<% %# $ 2 7M 0 # % )% $ ' 0 )23#-7M %% 0% $ #)2
676
Oykum Esra Askin and Fulya Gokalp / Procedia - Social and Behavioral Sciences 106 (2013) 667 – 676
$ ! +'0 - 42- 73 - /2- = 0 - H2 ?2 3 ;# )- %%# ) & %- $ B # 2 # : <-B> 5?2 + % -M22 3%=>"9 ?@" A" B % 2 '\022+ ' (G )L )\ \ \'2 +)% )-+2-"J -42-=K!-42?2N $ & $% 0 34 >>> 3#')2 # # -? A2 G - 2-+0 -.2-#$ -2-= -+24223 1;# -% %% # $ 34$ $ (+ % # 2 C 3.-B ??2 /#-2-=.& -2>2 )) 9; 3, " 022>H E )= -72 -H2-=9 $0-42B29; 3&D ) E " 0224& 9 #$
2 #'-"2-=7#;#-H22" ) ;#) # 2# % # : 8A-5 A2 $-G2-=7$-22 )) 23 : 3 " 022 0' (H E ) - 2 HI&- 2-= -922 # $ (+ $%%2( % # % : 8F -A? 52 7 -/2-=)-4229; 3 E &;" 3 D% : ); 3 % 3" 022 L(E )2 4 -42-=4# -224 %# 34 M72 # -4+(34=M7 #) - &2 4 -42-4# -2- -+2-/ ! !-"2-$-32-=9 )-G2>>?2 % )% &#G ; % 1 # -4+( &2 4 -H2-= )-"223 %$ )' && (<% &34 # # $ 8 2# : # & C + .H- A2 4# -2-4 -42-.)-2-=+ -+22;.. % % 1 # -4+-8+(34= M7 #) 2 #$- *2- - H2- = -G2523 & $ $ 34>>A 2 # # -AB ?2 % #- 2 2 < & $ $ $ ( $ & $ 342 # # <- ?2 &-2-= - +22 ! & & $ $ 8 +0 2# # + -A ?2 M$-2-=N # -2?2"# $ &(+#)$>>AA2#4) %8 )) -A B2 0- H2 2 2 # # # $ $ $ 2 C # : HFA-? 5B2 $- 2- #$ - 2- = G% - 2 B2 7 7 8" 3 ; <11 G ( 3 4/ #0 &$% )2 O -2-8P -"2-=G -G22 & )! & )# % $ (+ $ & %% 2#4) %8 )) H->B5 >?B2 E0-2-=.-G22 $ # #$ $ $ 22 3# % : <-> B2 E$
- 72 A2 "# %# " + ( 3 $% $ ) 0 '&# & % # %$ 2( % # % : 8<- A2 E$
- 72 2 I8 E )) J% "3 % #) 18 )4# - #" $M 2"E' & %2B2 E$
-722 &#-# # # %$ (3 2'4, # %
>> 4 $ +$ #' # 2 # # 2
×
Report "Comparing the Predictive and Classification Performances of Logistic Regression and Neural Networks: A Case Study on Timss 2011"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close