Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension

Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension

Accepted Manuscript Title: Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tensio...

722KB Sizes 0 Downloads 46 Views

Accepted Manuscript Title: Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension Author: Jun Su Jun Zhang PII: DOI: Reference:

S0169-4332(15)02575-1 http://dx.doi.org/doi:10.1016/j.apsusc.2015.10.156 APSUSC 31637

To appear in:

APSUSC

Received date: Revised date: Accepted date:

7-8-2015 29-9-2015 22-10-2015

Please cite this article as: J. Su, J. Zhang, Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension, Applied Surface Science (2015), http://dx.doi.org/10.1016/j.apsusc.2015.10.156 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension

ip t

Jun Sua,b, Jun Zhang1a, a

Department of Polymer Science and Engineering, College of Materials Science and

cr

Engineering, Nanjing Tech University , Nanjing 210009, People’s Republic of China b

College of Mechanics Engineering, Nanjing Institute of Industry Technology, Nanjing, 210023,

us

People’s Republic of China.  

M

an

Highlight  (1)  The non‐polar and short vinyl groups can greatly reduce G’ of HDPE composites.  (2)  Long chains on BaTiO3 surface enhance the interaction of BaTiO3 with HDPE.    (3)  Polar amino groups on BaTiO3 surface raise the interaction of BaTiO3 with HDPE.  (4)  Polar amino groups can boost the dielectric constant of HDPE composites.  (5)  The potential use in electronic equipment of the KH550 composites is obtained   

d

Abstract

te

In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105),

Ac ce p

vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO3) particles. The Fourier transform infrared (FT-IR)

spectra confirm the chemical adherence of coupling agents to the particle surface. The long

hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO3 from 37.53mJ/m2 to 7.51 mJ/m2, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO3, but make BaTiO3 have both hydrophilic and oleophilic properties. The polar amino in

KH550 can keep BaTiO3 still with hydrophilic properties. It is found that SG-Si151 modified BaTiO3 has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO3 surface can improve the adhesion of BaTiO3 with HDPE matrix, which increases the                                                                 1

Correspondence to: Jun Zhang ([email protected])

Page 1 of 31

elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO3 can boost the dielectric properties of HDPE/BaTiO3 composites and decrease the volume resistivity of HDPE/BaTiO3 composites. The aim of this study is to investigate how functional groups affect the rheological, mechanical and electrical

ip t

properties of HDPE composites and to select a coupling agents to produce HDPE/BaTiO3

cr

composites with low dielectric loss, high dielectric constant and elongation at break.

Keywords: High density polyethylene (HDPE); Barium titanate (BaTiO3); Surface tension;

us

Rheology; Coupling agents; Mechanical and electrical properties

an

1. Introduction

Dielectric polymer/ceramic composites have become much attractive in electric domain.[1] Among them, fluoride polymer/ceramic is commonly used to fabricate embedded and multilayer

M

capacitors in electronic equipment, because of polar structure of matrix. [2] The presence of fluoride atom endows fluoride polymer/ceramic with the disadvantage of poor processability. [3] High Density Polyethylene (HDPE) is one of the widely used engineering materials with

d

highly tactic structure. Such tactic structure can enhance the crystallinity of HDPE, which can

te

both enhance the mechanical and electric properties of HDPE. [4, 5]What’s more, the crystal lattices can melt during process and then decrease the viscosity of HDPE, improving the processability at the meantime. The non-polar structure endows HDPE not only with good

Ac ce p

resistance to oxidation and solvents, but also with low dielectric constant and loss.[6] Because of high dielectric constant, Barium titanate (BaTiO3) is one of the most important

ceramic materials with perovskite structure and which is widely used in electronic applications.[7] The application of BaTiO3 has been limited because of its brittleness and high dielectric loss.[8, 9] So far, there are few reports about the incorporation of BaTiO3 into HDPE matrix to enhance

electrical properties of HDPE composites.[10] Thereby, it is interesting to incorporate BaTiO3 into

HDPE and obtain HDPE/BaTiO3 with high dielectric constant, low dielectric loss and improved toughness of BaTiO3.

The interface between BaTiO3 and HDPE is critical to the processability and overall properties of HDPE composites. [11] In literature, the application of coupling agents can improve the compatibility of inorganic fillers with polymer matrix. [12] In this study, BaTiO3 are modified by three types of coupling agents to introduce different functional groups on the surface of particles. The aim is to investigate how functional groups affect the rheological, mechanical and electrical properties of HDPE composites and to select a coupling agents to produce HDPE/BaTiO3 composites with low dielectric loss, high dielectric

Page 2 of 31

constant and elongation at break.

2. Experimental 2.1 Materials High Density Polyethylene (HDPE 4902T), used in this study, is purchased from Sinopec

ip t

Yangzi Petrochemical company limited, China. The density of HDPE is 0.952g/cm3. The melt flow index of HDPE 4902T is 0.3g/10min at 190oC under 5kg. Barium titanate (BaTiO3) particles

cr

are supplied from Baosong electrically functional Co., Ltd. in Foshan, Guangdong province. The  distribution of diameter of BaTiO3 particles is D10<0.6μm, D50<1.8μm, D90<5.0μm.

There are three types of coupling agents applied in this study. The chemical/commercial

us

names and structures of these coupling agents are listed in Table 1. Isopropyl trioleic titanate (NDZ105), Vinyltriethoxysilane (SG-Si151), 3-Aminopropyltriethoxysilane (KH550), are

an

obtained from Nanjing shuguang Chemical Group Co., Ltd, China.

(Table1)

M

2.2 Sample preparation

2.2.1 Surface modification of BaTiO3

In this work, NDZ105, SG-Si151, and KH550 were utilized for surface modification of the

d

BaTiO3 particles, respectively. The amount of coupling agents is 1% by weight (wt%) of BaTiO3

te

amount. For instance, 1.0g of NDZ105 is mixed in 100ml isobutanol for 15min. BaTiO3 (100 g) is then added into such solution with a 30 min stirring. The treated BaTiO3 particles are then dried at

Ac ce p

60°C for 4h. Similarly, SG-Si151 and KH550 are applied to modify the BaTiO3 surface in the same procedure.

2.2.2 Extraction of modified BaTiO3 particles

The modified BaTiO3 is extracted in ether solvent by Soxhlet extractor for 4h at 70oC. Then,

the extracted BaTiO3 particles are dried at 40 oC for 6 h. 2.2.3 Compounding of HDPE/BaTiO3 composites

HDPE and three kinds of modified BaTiO3 are mixed by a two roll mixing mill (Shanghai

Rubber Machinery Works, China), respectively. The formulations of HDPE/BaTiO3 are shown in Table 2. Obtained HDPE composites are heat-pressed at 170°C. (Table 2 ) 2.3 Testing procedures 2.3.1 Fourier Transform Infrared Spectroscopy Fourier transform infrared spectroscopy (FT-IR) spectra of untreated, NDZ 105 modified, SG-Si 151 modified, KH550 modified BaTiO3 particles before and after extraction are measured

Page 3 of 31

with Nicolet spectrometer (model NEXUS 670, American) 2.3.2 Water contact angle and surface tension measurement Static water contact angle is measured in a drop shape analysis system (model: DSA 100 Krüss, Germany) at 24 oC. The surface tension is calculated by Owens and Wendt method, using

ip t

the contact angles of both deionized water and diiodomethane solvent. 2.3.3 Rheological characterization

cr

Rheological properties of HDPE control and HDPE/BaTiO3 composites are characterized at 170°C in the range of frequency from 0.002 to 100 Hz by Rheo-Stress instrument (model

us

MCR302, Anton Paar, Austria).

2.3.4 Differential Scanning Calorimetry (DSC) measurement

an

The melting behaviors of HDPE control and HDPE/BaTiO3 composites are tested by DSC instrument (model Q20, TA, USA). Samples are firstly heated from 30 oC to 180 oC at 40 oC/min,

M

and then are held at 180 oC for 5 min to eliminate the effect of thermal history. Secondly, the samples are cooled from 180 oC to 30 oC at 10 oC/min. Thirdly, the samples are heated again from

d

30 oC to 180 oC at 10 oC/min. The relative crystallinity (Xc) of the HDPE/BaTiO3 composite is

te

calculated according to Equation (1). [4]

ΔH ×100%                                         (1)  ϕ × ΔH *

Ac ce p

X c=

Where  ΔH* stands  for  the  enthalpy  of  fusion  of  the  perfect  HDPE  crystals  and 

ΔH stands for the fusion enthalpy of HDPE in HDPE/BaTiO3 composites. The ΔH* of  HDPE is 277.1 J/g. φ is the weight fraction of HDPE in HDPE/BaTiO3 composites.

2.3.5 Scanning electron microscopy

The dispersion of BaTiO3 is detected by scanning electron microscopy (SEM) (model: JEOL

JSM-5900, Japan). 2.3.6 Mechanical properties The mechanical properties are measured by using electromechanical universal testing machine (model CMT 5254, Shengzhen SANS Testing Machine Co., Ltd. China), according to ISO 527. The Shore D hardness of the samples is measured by using a Shore D hardness degree tester (model LX-D Jiangsu Mingzhu Testing Machinery Co., Ltd., China).

Page 4 of 31

2.3.7 Electric properties 2.3.7.1 Volume and surface resistivity The volume and surface resistivity of HDPE/BaTiO3 composites are tested at 24oC by a high resistance meter , purchased from Shanghai Precision & Scientific Instrument Co., Ltd., China.

ip t

2.3.7.2 Dielectric constant and dielectric loss

The dielectric constant and loss of HDPE/BaTiO3 composites are measured in the range of

cr

10k~10MHz with precision impedance analyzer (model 4294A, Agilent American) following

us

IEC60243. 3. Results and discussion 3.1 FT-IR analysis

an

FT-IR spectra are utilized to detect functional groups on BaTiO3 particles. Figure 1 and Figure 2 illustrate the spectra of coupling agents and modified BaTiO3 particles after soxhlet

M

extraction, respectively. In Figure 1, it is shown that three coupling agents all have absorption peaks at 2922cm-1 and 2855 cm-1, assigned to asymmetric stretching vibration of methylene and symmetric stretching vibration of methylene, respectively. [12] Additionally, NDZ105 has

d

absorption peak at 1733 cm-1, assigned to C=O stretching vibration of carboxyl group. SG-Si151

te

has absorption peak at 1078 cm-1, assigned to Si-O-C rocking vibration. [11]The absorption peak

Ac ce p

of KH550 is at 1579 cm-1, assigned to transforming vibration of –NH. [13] Figure 2 shows FT-IR spectra of modified BaTiO3 after extraction. The coupling agents

which are physically adhered on the particle surface can be washed away by ether solvent during

the extraction. So the detection of absorption bands at 2922cm-1 and 2855 cm-1 after extraction can

prove the chemical adherence of three coupling agents to the surface of BaTiO3 particles. It is consistent with literature that alkoxy groups can alcoholize with hydroxyl groups on surface of inorganic particles and form chemical bonds between each other.[12, 14] (Fig.1)    (Fig.2) 

3.2 Water contact angle and surface tension measurement Water contact angles of HDPE resins and BaTiO3 are listed in Figure 3. It is apparent that the water contact angles of HDPE and untreated BaTiO3 is about 80o and 12o, respectively. The NDZ105 can greatly enhance the water contact angle of BaTiO3 from 12 o to about 130 o, while

Page 5 of 31

SG-Si151 and KH550 can slightly affect the water contact angle. The results of surface tension of modified BaTiO3 particles are shown in Table 3, which are calculated by Owens and Wendit method. The total surface tension ( γ s ) and polar surface tension

ip t

( γ sp ) of inorganic BaTiO3 particles and HDPE follow the order: Untreated BaTiO3 ≈ KH550 modified BaTiO3 > SG-Si151 modified BaTiO3 > NDZ105 modified BaTiO3 > HDPE control.

cr

This reason is that the NDZ105 has non-polar and long hydrocarbon chains, which can cover the surface of BaTiO3 particles to the greatest extent, resulting in the fact that the surface of

us

NDZ105 modified BaTiO3 particles changing from hydrophilic to hydrophobic properties. [15] By comparison, KH550 has polar amino groups, so the polar surface tension of BaTiO3

an

particles is slightly varied.

Although vinyl groups in SG-Si151 are non-polar, they have short hydrocarbon chains. In

M

this way, the surface of SG-Si151 modified BaTiO3 is only partially covered by non-polar vinyl groups, making the overall polar surface tension of BaTiO3 still high.[16]

d

  ( Fig.3 ) 

te

(Table 3)

3.3 Effect of coupling agents on dispersion properties of BaTiO3 in organic solvents

Ac ce p

Figure 4 shows dispersion of untreated BaTiO3 , NDZ105 modified, SG-Si151 modified and

KH550 modified BaTiO3 in two-phase solvent. Because of relatively high density, distilled water is at the bottom, while n-octane solvent is at the upper layer. It is shown from Figure 4 that the untreated BaTiO3 particles are suspended in bottom layer

of solvent, showing hydrophilic properties. In terms of modified BaTiO3 particles, NDZ 105 modified BaTiO3 particles disperse in the layer of n-octane, showing oleophilic properties;

SG-Si151 modified BaTiO3 particles disperse in the interface of two solvents, showing both hydrophilic and oleophilic properties; KH550 modified BaTiO3 disperse in the layer of water, showing hydrophilic properties.[17] Only the dispersion of SG-Si151 modified BaTiO3 is not as expected. Non-polar vinyl groups can only partially cover the surface of BaTiO3 and turn partial surface of BaTiO3 from hydrophilic to oleophilic properties. So, the rest of the BaTiO3 surface still has high polar surface tension and

Page 6 of 31

shows hydrophilic properties. In this way, SG-Si151 modified BaTiO3 particles show both hydrophilic to oleophilic properties and disperse in the interface of two solvents.

ip t

(Fig.4)

3.4 Effect of coupling agents on rheological properties of HDPE composites

The storage modulus (G’) and loss modulus (G’’) of HDPE composites are

cr

shown in Figure 5A and 5B, respectively. It is obvious that G’ and G’’ of samples all

us

increase with the grown frequency. The G’ and G’’ follow the order: HDPE with KH550 modified BaTiO3 > HDPE control ≈ HDPE with untreated BaTiO3 > HDPE with modified NDZ105 BaTiO3 > HDPE with SG-Si151 modified BaTiO3.

an

Generally, filler can interact with the polymer matrix to increase the storage modulus of composites. But the incorporation of untreated BaTiO3 has little effect on

M

the G’, because the content of BaTiO3 is less than 5vol%, and there is few functional groups on the surface of BaTiO3, which means less interaction between BaTiO3 and

d

HDPE matrix.[18]

te

Scheme 1 shows the possible dispersion models of BaTiO3 in HDPE matrix. It is shown that the modification can improve the aggregation and dispersion of BaTiO3.

Ac ce p

Coupling agent KH550 has polar amino groups which can restrict the motion of

non-polar HDPE chains. Thus, the interaction between HDPE matrix and BaTiO3

particles is strong, resulting in higher storage modulus. Coupling agent NDZ105 has non-polar and long hydrocarbon chains. The polar

surface tension of NDZ105 modified BaTiO3 (7.51mJ/m2) is close to that of HDPE

control (5.18mJ/m2), but the long hydrocarbon chains can entangle with HDPE matrix

to increase the interaction between BaTiO3 and HDPE matrix. In this way, the G’ of

HDPE with NDZ105 modified BaTiO3 is only a little lower than that of HDPE control. By comparison, SG-Si151 has non-polar vinyl groups with relatively shorter molecular chains. So SG-Si151 modified BaTiO3 can non only have excellent compatibility with HDPE matrix, but also have little physical entanglement with

Page 7 of 31

HDPE chains. Thereby, the interaction of BaTiO3 particles with HDPE matrix is the weakest, leading to the lowest value of storage modulus. It is illustrated in Figure 5C that with the increase of frequency, the curves of G’/G’’ ratios of all samples grow. Only the G’/G’’ of HDPE control and HDPE with

ip t

SG-Si151 modified BaTiO3 are below 1 at low frequency. The non-polar vinyl groups

in SG-Si151 have great compatibility with HDPE matrix and slightly hinder the

cr

motion of HDPE molecular chains. Thus, their G’/G’’ is below 1 at low frequency.

For other three HDPE composites, the G’/G’’ are all above 1 in the range of test

us

frequency, meaning the solid-like behavior of HDPE composites. This is due to the fact that the interaction of these modified BaTiO3 particles with HDPE matrix is

an

strong. [19]

The G’/G’’ rations of these two specimens exceed 1 at higher frequency, meaning

M

a rheological transition from liquid-like behavior to solid-like behavior at 0.193 Hz for both specimens. This transition is ascribed to the interconnected structures formed

d

in HDPE control and HDPE with SG-Si151 modified BaTiO3, at high frequency. [20] Figure 5D shows the Van Gurp plot with the loss phase angle δ versus the

te

absolute value of the complex modulus |G*|. [19]It is clear that when |G*| is lower

Ac ce p

than 25033 Pa, the phase angle of HDPE composites are all lower than that of HDPE control. In literature, loss angle is sensitive to long and branched structure of polymer and the Van Gurp curve can shift to lower value of the phase angle, with increased long branch content. [4, 21]It seems that only when |G*| is lower than 25033 Pa, the varied phase angle can show more branched structure content among HDPE matrix to some extent, caused by the incorporation of BaTiO3 particles.   (Fig.5 ) (Scheme 1)

3.5 Effect of coupling agents on crystallization of HDPE composites Table 4 lists DSC characteristics of HDPE composites. It is found that the onset onset melting temperature ( Tm ) of all samples are almost the same. The peak melting peak

temperature ( Tm

final

), final melting temperature ( Tm

) and relative crystallinity (Xc) of

Page 8 of 31

HDPE/BaTiO3 composites are a little different. The addition of un-modified BaTiO3 particles can both reduce the melting enthalpy (ΔH) and the crystallization degree (Xc) of HDPE composites. Because BaTiO3 particles in HDPE composites do not absorb heat and release heat, the

ip t

enthalpy of HDPE/BaTiO3 composite listed in Table 5 is the enthalpy of HDPE in

HDPE/BaTiO3 composites. In terms of HDPE/BaTiO3 composites, the mass ratio of

cr

HDPE to HDPE/BaTiO3 composite is 1:1.3, so the enthapy of HDPE in

HDPE/BaTiO3 composites is remarkably lower than enthalpy of HDPE control. When

us

calculating the crystallinity degree (Xc), the ethalpy of HDPE in HDPE/BaTiO3 composites and HDPE control was used at the same amount, according to Equation 1.

an

At the same HDPE amount, the ethalpy of HDPE in the HDPE with untreated BaTiO3 is 197.3J/g (151.8J/g multiplying 1.3), which is slightly lower than that of HDPE

M

control. This is consistent with literature in which the incorporation of inorganic filler can decrease theΔH and Xc.of polyolefin. [4, 5] Generally, crystallinity is correlated

d

with the chain’s ability to pack into crystal lattices. The addition of untreated BaTiO3

decrease of ΔH and Xc.

te

particles can hinder the pack of molecular chains into the crystal lattice, leading to the

Ac ce p

The functional groups of coupling agents on surface of BaTiO3 particles can increase the interaction of BaTiO3 particles with HDPE matrix and facilitate the pack of molecular chains into the crystal lattice, resulting in relatively higher Xc value than that of HDPE with un-modified particles.[22]

(Table 4 )

3.6 Effect of coupling agents on filler dispersion in HDPE composites Scanning electron micrographs (Figure 6) shows the dispersion of BaTiO3 in HDPE matrix. It is found that after surface modification, modified BaTiO3 particles also aggregate, but the interface between BaTiO3 and HDPE matrix become ambiguous, meaning the improved interaction. This can be explained by the fact the surface treatment of BaTiO3 particles can increase the interaction of BaTiO3 with

Page 9 of 31

HDPE matrix but affect the aggregation a little. [17] (Fig. 6 )

ip t

3.7 Effect of coupling agents on mechanical properties of HDPE composites

The data of mechanical properties of HDPE/BaTiO3 composites are shown in

elongation at break of HDPE control from 859% to 55%.

cr

Table 5. It is observed that the addition of untreated BaTiO3 can greatly lower the

us

Compared to that of untreated BaTiO3, the addition of NDZ105 and KH550 modified BaTiO3 can improve the elongation at break of HDPE composites from 55%

an

to 161% and 357%, respectively. The surface modification of BaTiO3 by SG-Si151 has little effect on the elongation of break of HDPE with untreated BaTiO3 composite.

M

The reason is that the long hydrocarbon chains from NDZ105 on BaTiO3 surface can physically entangle with HDPE matrix and that polar amino groups from KH550 on BaTiO3 surface can increase interfacial adhesion between BaTiO3 particle and

d

HDPE matrix. While SG-Si151 can only bring non-polar vinyl groups without other

te

long chains and polar groups. Thereby, the elongation at break of HDPE with un-modified BaTiO3 only can be lifted by the use of NDZ105 and KH550 modified

Ac ce p

BaTiO3. In literature, the 1wt% BaTiO3 coated with polydopamine can enhance the

beta-phase of poly(vinylidene fluoride) (PVDF), resulting in improvement of both tensile strength and elogation at break. However, the polar F groups make PVDF

more difficult to process than HDPE which has excellent fluidiy during manufacuturing.[23]

Although the un-modified BaTiO3 can decrease the crystallinity of HDPE

composites to a little extent, it can slightly lift the hardness of HDPE composites at 24oC temperature. It is reported that the increased crystallinity and filler amount can both enhance the hardness of polymer composites.[24] It is seemed in this study, that the addition of un-modified BaTiO3 plays the dominant effect on the rise of composite hardness. It is observed that the incorporation of modified and un-modified BaTiO3

Page 10 of 31

particles can reduce the tensile strength of HDPE control. It has been proved that the addition of BaTiO3 particles can decrease the crystallinity of HDPE control. In literature, the crystalline lattices can provide strength for composites to resist outside

ascribed to the decreased crystallinity of HDPE composites. [25]

3.8 Effect of coupling agents on electric properties

us

3.8.1 Effect of coupling agents on dielectric properties

cr

( Table 5 )

ip t

forces.[5] In this study, the reduced tensile strength of HDPE control can be mainly

Figure 7 and 8 show curves of relative dielectric constant and loss of HDPE

an

composites in the range of frequency from 10kHz to 10 MHz. The dielectric constants of HDPE composites follow the order: HDPE with KH550 modified BaTiO3 > HDPE

M

with SG-Si151 modified BaTiO3 ≈ HDPE with untreated BaTiO3 > HDPE with NDZ105 modified BaTiO3 > HDPE control.  It  is  consistent  with  literature  that  the 

d

increasing BaTiO3 can increase the dielectric constant of polymer composites.[26]  In general, the relative dielectric constant is mainly correlated with the polarity 

te

of  composites.  [11]  It  is  mentioned  above  that  coupling agent KH550 has polar

Ac ce p

amino groups which can boost the entire polarity of HDPE composites. In contrast, SG-Si151 has non-polar vinyl groups which partially cover the

surface of BaTiO3, making partial surface of BaTiO3 are still responsive to cyclic electric excitation. [9]

What’s more, NDZ105 has non-polar and long hydrocarbon chains, which can

greatly cover the surface of BaTiO3, leaving less surface of BaTiO3 responsive to cyclic electric excitation. In this way, the dielectric constant of HDPE with NDZ105 modified BaTiO3 is lower than HDPE with non-modified BaTiO3. It is observed from Figure 8 that the relative dielectric loss of HDPE composites

decreases drastically in the range of 10kHz~40kHz, and further decreases gradually in the frequency range of 40kHz~10MHz. The addition of un-modified and modified BaTiO3 can enhance the dielectric loss of HDPE composites, meaning that the energy lost during cyclic electric excitation is

Page 11 of 31

boosted by surface modification. (Fig. 7 ) (Fig.8 )

ip t

3.8.2 Effect of coupling agents on volume and surface resistivity Table 6 illustrates the volume resistivity and surface resistivity of HDPE

composites. It is observed that HDPE with KH550 modified BaTiO3 exhibits the

cr

lowest volume resistivity of HDPE.

us

The addition of un-modified BaTiO3 particles can increase the resistivity of HDPE composites, meaning BaTiO3 is non-conductive particles. [12]In terms of KH550 modified BaTiO3, the polar amino groups can provide polarity for easy

an

passage of current in HDPE with KH550 modified BaTiO3, leading to the decreased volume resistivity.

M

The addition of particles has the trend to enhance the surface resistivity of HDPE composites. This may be due to the fact that surface resistivity is mainly correlated

d

with the surface texture and material itself. It is shown that the coupling agents have

(Table 6 )

Ac ce p

te

little effect on surface resistivity of HDPE/BaTiO3 composites.

4. Conclusions

It is proved by FT-IR and contact angle measurements that the surface modification of

BaTiO3 by NDZ105, SG-Si151 and KH550 can attach chemically non-polar hydrocarbon groups,

non-polar vinyl groups and polar amino groups to the surface of BaTiO3 particles, respectively. The dispersion of powders in solvents shows NDZ105 modified, SG-Si151 modified and

KH550 modified exhibit oleophilic properties, both hydrophilic and oleophilic properties, and oleophilic properties, respectively. In terms of rheological properties, the polar amino groups from KH550 have remarkable interaction with HDPE matrix, and raise the storage modulus of HDPE composites. Although the non-polar long hydrocarbon chains from NDZ105 can greatly decrease the polar surface tension of BaTiO3, the long chains also can physically entangle with molecular chains in HDPE, leading to

Page 12 of 31

slight decrease of G’. Only non-polar and short vinyl groups from SG-Si151 can remarkably decrease the storage and loss modulus of HDPE/BaTiO3 composites. As for mechanical properties, the polar amino groups can improve the adhesion of BaTiO3 in HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent.

ip t

By comparison, the NDZ105 modified BaTiO3 particles with long hydrocarbon chains can also increase the elongation at break of HDPE composites.

cr

The dielectric constant of HDPE with KH550 modified BaTiO3 is the highest among other composites, due to the presence of polar amino groups. What is more, the presence of polar amino

us

groups on surface of BaTiO3 facilitates the passage of current in HDPE matrix and then lowers volume resistivity of HDPE with KH550 modified composite .

an

In sum, KH550 is selected as the optimum coupling agents, because HDPE with KH550 treated BaTiO3 has the highest dielectric constant of HDPE composites. In addition, after

M

incorporation of 30wt% BaTiO3, HDPE with KH550 treated BaTiO3 still has 357% elongation at

Acknowledgements

d

break.

te

The authors gratefully acknowledge the Priority Academic Program Development of Jiangsu

Ac ce p

Higher Education Institutions (PAPD).

References

[1]  C.  Ehrhardt,  C.  Fettkenhauer,  J.  Glenneberg,  Enhanced  dielectric  properties  of 

sol–gel‐BaTiO3/P(VDF‐HFP) composite films without surface functionalization, RSC Advances, 4 (2014)  40321. 

[2]  S.  Liu,  S.  Xiao,  S.  Xiu,  B.  Shen,  J.  Zhai,  Z.  An,  Poly(vinylidene  fluoride)  nanocomposite  capacitors 

with a significantly enhanced dielectric constant and energy density by filling with surfacefluorinated  Ba0.6Sr0.4TiO3 nanofibers, RSC Advances, 5 (2015) 40692. 

[3]  X.  Zhang,  H.  Chen,  Y.  Ma,  C.  Zhao,  W.  Yang,  Preparation  and  dielectric  properties  of  core‐shell  structural  composites  of  poly(1H,1H,2H,2H‐perfluorooctyl  methacrylate)@BaTiO3  nanoparticles,  Applied Surface Science, 277 (2013) 121‐127.  [4]  J.  Su,  S.  Chen,  J.  Zhang,  Reinforcement  of  EPDM/SmBO3  and  EPDM/ATO  Composites  by  Four  Polyolefins:  Assessment  of  Branch  Content  and  Crystallinity,  Journal  of  Elastomers  and  Plastics,  42  (2010) 471‐492.  [5] J. Su, S. Chen, J. Zhang, Reinforcement of EPDM/SmBO3 and EPDM/ATO composites by three types  of POE: Assessment of longer chain content on crystallinity, cure, mechanical and electric properties, 

Page 13 of 31

Polymer Testing, 30 (2011) 193‐198.  [6]  Y.  Kim,  O.N.L.  Smith,  M.  Kathaperumal,  L.R.  Johnstone,  M.‐J.  Panc,  J.W.  Perry,  Enhancement  of  breakdown  strength  and  energy  density  in  BaTiO3/ferroelectric  polymer  nanocomposites  via  processing‐induced matrix crystallinity and uniformity, RSC Advances, 4 (2014) 19668.  [7] S. Liu, J. Zhai, A small loading of surface‐modified Ba0.6Sr0.4TiO3 nanofiber‐filled nanocomposites  with enhanced dielectric constant and energy density, RSC Advances, 4 (2014) 40973. 

ip t

[8] Z.D. Liu, Y. Feng, W.L. Li, High dielectric constant and  low loss of polymeric dielectric composites  filled by carbon nanotubes adhering BaTiO3 hybrid particles, RSC Advances, 5 (2015) 29017. 

[9]  X.  Zhang,  Y.  Ma,  C.  Zhao,  W.  Yang,  High  dielectric  constant  and  low  dielectric  loss  hybrid  perfluoroalkylsilane, Applied Surface Science, 305 (2014) 531‐538. 

cr

nanocomposites  fabricated  with  ferroelectric  polymer  matrix  and  BaTiO3  nanofibers  modified  with 

[10] J.  Gonzalez‐Benito,  J.  Martinez‐Tarifa,  M.E. Sepulveda‐Garcia, R.A. Portillo,  G.  Gonzalez‐Gaitano,  dielectric properties, Polymer Testing, 32 (2013) 1342‐1349. 

us

Composites  based  on  HDPE  filled  with  BaTiO3  submicrometric  particles.  Morphology,  structure  and  [11]  J.  Su,  S.  Chen,  J.  Zhang,  Z.  Xu,  Combined  effect  of  pH  level  and  surface  treatment  of  Sm2O3, 

an

SmBO3 and ATO particles on cure, mechanical and electric properties of EPDM composites, Polymer  Testing, 28 (2009) 419‐427. 

[12] J. Su, S. Chen, J. Zhang, Z. Xu, Comparison of cure, mechanical, electric properties of EPDM filled  with Sm2O3 treated by different coupling agents, Polymer Testing, 28 (2009) 235‐242. 

M

[13] J. Su, S. Chen, J. Zhang, Z. Xu, Combined Effect of VA Content and pH Level of Filler on Properties  of  EPDM/SmBO3  and  EPDM/ATO  Composites  Reinforced  by  Three  Types  of  EVA,  Journal  of  Applied  Polymer Science, 117 (2010) 1741‐1749. 

d

[14] K. Nagata, Y. Takahashi, S. Shibusawa, Y. Nakamura, Interfacial structure in vulcanized EPDM filled  with  mercaptosilane‐treated  Al(OH)(3)  and  its  influence  on  the  mechanical  properties,  Journal  of 

te

Adhesion Science and Technology, 16 (2002) 1017‐1026.  [15]  S.  Pongdhorn,  S.B.  Chakrit,  K.  Hatthapanit,  U.  Thepsuwan,  Comparison  of  reinforcing  efficiency 

Ac ce p

between Si‐69 and Si‐264 in an efficient vulcanization system, Polymer Testing, 24 (2005) 439‐446.  [16]  P.  Sae‐oui,  C.  Sirisinha,  U.  Thepsuwan,  K.  Hatthapanit,  Comparison  of  reinforcing  efficiency 

between Si‐69 and Si‐264 in a conventional vulcanization system, Polymer Testing, 23 (2004) 871‐879. 

[17]  P.  Sae‐Oui,  U.  Thepsuwan,  K.  Hatthapanit,  Effect  of  curing  system  on  reinforcing  efficiency  of 

silane coupling agent, Polymer Testing, 23 (2004) 397‐403. 

[18] M.V. Gurp, J. Palmen, Time–temperature superposition for polymeric blends, Rheologica Acta, 67  (1998) 5‐8. 

[19]  T.  Stefan,  F.  Christian,  Van  Gurp‐Palmen‐plot:  a  way  to  characterize  polydispersity  of  linear 

polymers, Rheologica Acta, 40 (2001) 322‐328. 

[20] T. Stefan, W. Philipp, F. Christian, Van Gurp‐Palmen Plot II ‐ classification of long chain branched  polymers by their topology., Rheologica Acta, 41 (2002) 103‐1133.  [21]  J.  Su,  S.  Chen,  J.  Zhang,  Z.  Xu,  Reinforcement  of  Ethylene‐Propylene‐Diene  Rubber/Samarium 

Borate  and  Ethylene‐Propylene‐Diene  Rubber/Sb‐doped  SnO2  Composites  by  Three  Types  of  Ethylene‐Acrylic  Acid:  Assessment  of  Acrylic  Acid  Content  on  Crystallinity,  Cure,  Mechanical,  and  Electric Properties, Journal of Reinforced Plastics and Composites, 29 (2010) 2946‐2960.  [22] N. Yao, P. Zhang, L. Song, M. Kang, Z. Lu, R. Zheng, Stearic acid coating on circulating fluidized bed  combustion fly ashes and its effect on the mechanical performance of polymer composites., Applied  Surface Science, 279 (2013) 109‐115. 

Page 14 of 31

[23] N. Jia, Q. Xing, X. Liu, J. Sun, G. Xia, W. Huang, R. Song, Enhanced electroactive and mechanical  properties  of  poly(vinylidene  fluoride)  by  controlling  crystallization  and  interfacial  interactions  with  low  loading  polydopamine  coated  BaTiO3,  Journal  of  Colloid  and  Interface  Science,  453  (2015)  169‐176.  [24]  J.  Su,  S.  Chen,  J.  Zhang,  Effect  of  hot‐air  aging  on  properties  of  EPDM/SmBO3/EAA  and  EPDM/ATO/EAA composites, Journal of Composite Materials, 46 (2012) 589‐602. 

ip t

[25]  J.  Su,  S.  Chen,  J.  Zhang,  Effect  of  Hot  Air  Aging  on  Properties  of  EPDM/SmBO3/EVA  and  EPDM/ATO/EVA Composites, Journal of Applied Polymer Science, 122 (2011) 3277‐3289. 

[26]  S.D.  Vacche,  F.  Oliveira,  Y.  Leterrier,  V.  Michaud,  D.  Damjanovic,  J.‐A.E.  Manson,  The  effect  of 

cr

processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties 

Ac ce p

te

d

M

an

us

of P(VDF‐TrFE)/BaTiO3 composites, Journal of Materials Science, 47 (2012) 4763‐4774. 

Page 15 of 31

Figure captions Fig.1 Spectra of three coupling agents Fig.2 Spectra of treated BaTiO3 after extraction Fig.3 Water contact angle of HDPE and BaTiO3

ip t

Fig.4 Dispersion of BaTiO3 in a two-phase solvent, the bottom layer solvent is distilled water and the upper layer solvent is n-octane: A. Untreated BaTiO3; B. NDZ105 modified BaTiO3;C.

cr

SG-Si151 modified BaTiO3;D. KH550 modified BaTiO3 .

Fig.5 Rheological properties of HDPE composites: A. Storage modulus; B. Loss modulus; C.

us

Curves of G’/G’’ ratios; D. Van Gurp plot.

Fig. 6 SEM micrographs of HDPE with various coupling agents, A: HDPE with untreated BaTiO3;

with KH550 modified BaTiO3

d

Fig.8 Dielectric loss of HDPE composites

M

Fig. 7 Dielectric constant of HDPE composites

an

B: HDPE with NDZ105 modified BaTiO3; C: HDPE with SG-Si151 modified BaTiO3; D: HDPE

Scheme1 Possible dispersion models of BaTiO3 in HDPE matrix: A: HDPE with untreated BaTiO3;

te

B: HDPE with NDZ105 modified BaTiO3; C: HDPE with SG-Si151 modified BaTiO3; D: HDPE

Ac ce p

with KH550 modified BaTiO3 

Page 16 of 31

Table1 Chemical/commercial name and structure of coupling agents used in this study Chemical/commercial name

Molecular formation and structure C57H106O7Ti

ip t

Isopropyl trioleic titanate

cr

(NDZ 105)

C8H18O3Si

us

Vinyltriethoxysilane

an

(SG-Si 151)

C9H23NO3Si

3-Aminopropyltriethoxysilane

Ac ce p

te

d

M

(KH550)

Page 17 of 31

  Table 2 Formulation of HDPE/BaTiO3 composites used in this study (phr)

A B C D E

100 100 100 100 100

Untreated BaTiO3

NDZ105 treated BaTiO3

SG-Si151 treated BaTiO3

30 30 30

KH550 treated BaTiO3

ip t

HDPE

30

cr

Sample No.

Ac ce p

te

d

M

an

us

 

Page 18 of 31

  Table 3 Surface tension of HDPE, untreated and treated BaTiO3 Surface tension (mJ/m2)

γ sd 30.08 37.84 55.76 38.60 38.84

γs

HDPE Untreated BaTiO3 NDZ105 modified BaTiO3 SG-Si151 modified BaTiO3 KH550 modified BaTiO3

35.26 75.37 63.28 73.25 75.81

γ sp 5.18 37.53 7.51 34.65 36.97

ip t

Sample

Ac ce p

te

d

M

an

us

cr

γ s : solid surface tension; γ sd :dispersive solid surface tension; γ sp :polar solid surface tension.

Page 19 of 31

Table 4 DSC characteristics of HDPE composites

Tmpeak

121.4 121.6 121.9 121.8 121.2

Xc

C

J/g

%

136.0 135.0 134.9 134.9 134.3

200.5 151.8 154.0 154.7 155.1

72.4 71.2 72.2 72.6 72.8

o

C

HDPE Control HDPE with untreated BaTiO3 HDPE with NDZ105 treated BaTiO3 HDPE with SG-Si151 treated BaTiO3 HDPE with KH550 treated BaTiO3

ΔH

o

C

132.2 131.5 131.6 131.3 131.0

ip t

o

Tmfinal

cr

Tmonsett

Sample

Tmonset, onset melting temperature; Tmpeak , peak position in melting temperature range; Tmfinal ,

Ac ce p

te

d

M

an

us

final melting temperature; ΔH, enthalpy of fusion; Xc, relative crystallinity

Page 20 of 31

  Table 5 Mechanical properties of HDPE composites

HDPE with untreated BaTiO3 HDPE with NDZ105 treated BaTiO3

Elongation at

(Shore D)

break (%)

Tensile strength (MPa)

64

859±32

29.3±1.4

66

55±20

26.6±1.8

66

161±67

25.7±2.1

66

46±12

27.7±0.7

66

357±42

cr

HDPE with SG-Si151 treated BaTiO3 HDPE with KH550

27.9±1.0

Ac ce p

te

d

M

an

treated BaTiO3

ip t

HDPE Control

Hardness

us

Sample

Page 21 of 31

  Table 6 Volume and surface resistivity of HDPE composites Volume resistivity

Surface resistivity

Ω·m

Ω 2.08×108

8.45×1014

7.70×108

2.44×1014

6.93×108

3.54×1014

1.08×109

1.90×10

HDPE with untreated BaTiO3 HDPE with NDZ105 treated BaTiO3 HDPE with SG-Si151 treated BaTiO3 HDPE with KH550 treated BaTiO3

ip t

HDPE Control

14

cr

Sample

1.00×109

us

9.45×1013

Ac ce p

te

d

M

an

 

Page 22 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 1

Page 23 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 2

Page 24 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 3

Page 25 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 4

Page 26 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 5

Page 27 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 6

Page 28 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 7

Page 29 of 31

Ac

ce

pt

ed

M

an

us

cr

i

Figure 8

Page 30 of 31

Ac

ce

pt

ed

M

an

us

cr

i

scheme 1

Page 31 of 31