Comparison of xylans from several annual plants

Comparison of xylans from several annual plants

AR(‘HIVES OP BlO(!lIEMISTHY ?LN,, R,O,‘,,YHI~‘S Comparison 93, 33”-:334 of Xylans ROY L. \YI-IISTLEK from (1!%1 ) Several ~sn I3LASCHE 1i1w...

226KB Sizes 0 Downloads 87 Views

AR(‘HIVES

OP BlO(!lIEMISTHY

?LN,, R,O,‘,,YHI~‘S

Comparison

93, 33”-:334

of Xylans

ROY L. \YI-IISTLEK

from

(1!%1 )

Several

~sn I3LASCHE

1i1wiro1~ lhxember

Annual

Plants’

1). E. GA1LLhR.D

19, 1960

Hemicc~llulose A frwtions from corn cobs, corn stalks, wheat straw, :dfa.lfa and SOYbean stcma. and annflowr slalks wfw: isolatctl from bolh chlorite and chlorine+thanolaminc liolo~rlh~loae~. Hcmiwllulo~c: h fractions from Aloritc l~olocelluloscs mrw obtained in slightly lower yields than those from chlorine-ethanolamine holocelluloscs. Hcmicellulosc A composition was cwntially intlcpcndent of the process for preparing holocellulosc. Hamicellulosc A from corn cob, rorn stalk, and wheat &raw contained n-glucuronic acid, I,-arabinosc, and u-xyloae units in t.he ratios of 1: 1:22, 1:2:39, and 1:3:43. Hemierllulose A from alfalfa and soybean stems and sunflower stalks had no arabinose and csontaincd one uranic: acid unit. per each 10-14 D-xylose units. Evident was obtained 111al the uranic acid in cnch hcmiwllulose was ~-~-Il~~~~1~~-D-g~U~~l~~~ll~~~ acid. ISTROI)UCTIOK

purl)osc of this work t.o isolat,c sy1u11s from Hemicelluloscs have been isolat,cd from a wvcral annual plants by identical means and to compare t,he polysaccharidcs in comwide variety of plants and much information ljosit.ion and riscosity. is accumulat,ing on t.hcir chemical and physical characteristics (I, 2 I. Sylans are those n-xylosc-containing l~cmici~lluloscs which are extract,cd from plants by alkaline solutions and which precipitate! when thcsc solut,ions The wrn stalks, whwb straw, eunfloacr at.:&+ arc ncwtralizcd or arc nladc acidic. Some few and :dfalf:t and soybean stems were lwwstcd in xylans may cont,ain only wxylose units. Sopt cwbrr, 1!)59 from commercial rariel ies of IIowcvcr, most licmicrlluloscs are not true nuktuw plants growing on lhc Purdue Agronomy xylans, but arc Iwtcroglycans composed fol J~:irin. .\I1 ~8l:tnt cwmpononts acre dqJithct1 by tlw mo6-t part, of u-xylosi~ units wit11 some hand inunc<rly after Iiarrrst. and dried to about. 10% moiblurc in :I currcnl of air at 50’. Corn (Bobs barabinosc and n-glucuronic acid units. ww c.onu~ic~rc~iall~ground :ind w*re frw of pith The I,-arabinow units occur as furanosidrs and arc’ usually side chains of from one to tuid cl&. All plant mstcritils wcrc groniitl to Iws :L 20-111wl1 wrccn :md Soshlrt.-cstInc.t(!(l will) im wwel units in length. n-Glucuronic acid :tacwlrol)ic’ mistuw 0i hcnecnc-cth;~iiol. units arc always nonrcclucing end units attachrd to D-splosc unite, and in nnau:d Illants tlicy arc \-cry frcqucntly monomctliyl:md at ttll! (J-4 llydl~os~l. SUCll polyaaci4wides lwlong to the group of nrahinoglucuronoxylogl~cans. Since workrrs usually irolatc tticw xylana or modified xylans ( lwiniccllulosc A1 hy ~omrwhat ilifiwrnt ~woccdurrs:, the protlucts arr not s;trirtly compar:~l~lc. It n-a* t,he ’ ,Jonmal l’nlwr vcwity ;\gricultwal

So. 1696 of t,lw Purtluo UniEs~wrimcnl Sl ntion. 332

filt.ttrctl, IO

;mcl

4

ml.,

conrrntratcd

unclcr

‘;hromntopr:~phetl

I”cl(fll(L))Yridinf~-\~,:if’,r

clulcd

w’w I.i\-oly

wit.11

15 ml.

‘lc~tcrmine’l

mct.l~otl I’S

(8:2:

of

u:lt’?s

in

by

1li:m

t r:iw

raiioa~luroni’~

(18:3:1:4 :uiilinct

Ii

the

wit1 m’d

(If,

~l~~l~~rttiinilt.io~i of

]B;I~M’I’

r;ug:ir

w:w ant1

not

hydrolyd

‘~ontcml,

the

1.0 lw

in

1 II’?

:itnouiit

lo in

1~‘.

lru’:c: 4 nlk

in

clct~ermiu’~~l Harris

(6). in

wmbim:~tion

alclol~icnux~ni’:

of

I hi:

cdcwl:~t’~‘l

wit1

D-S?‘lC’W

f’~lln’l

sy-

4.11 -I. fifi ‘)I . .2’j. 0 1.. , .-.‘)‘J

I’)

‘~Iironinlogrii.l’li~.

:wi’l

cwntcn~.

.\~iligclro:ir:il~iriosc

io

’ ;.

wllt.rllt.

of

iiroiiie

of

iw:ll)inow:

(.rotli’a

, ‘.;

w~ltc~rli.,

Alltl~tllo~luc~o~~~ R:‘l.io

“;

cwntcnt

;\Illly’Ir’Kyl’~sc!

‘.;.

:ic~i’l::l.r:ll’il~osc~:

fi.fi.1 0 93

1:0:1-I

I:20 I : I!)*

sylow

:~l’lot

:tcai’l.

riouronic*

~101~

/I),

wi’l.

/I’,

/ : I

~~c~rio’l:~tc/1tlol’~ I ow

.\lolr~

1~on51unc~‘l

foriui~ low

I,irllititlg

from

0.30

:tnhydrop’~ttin

0.75

j

+ 0 o.s-I

I:lT 1:12* ‘I’IWC

0 ft .s!t

+ ‘1’r:rw 0.!13

7’21) hr.

:witl/itlolr~

O.O.i!J

:inhy’lrojwtl--

~)ro~l~we’l

in

viw’wily

11iun1w1

origind

+ 0

0.75

3fi

‘I’IXCC~

wi’ls

:il~l’~l~i’~iirc~r~i’~

~~i’~l’l

found sunflowr

sylan

esl~2de’l

Ill’!

to

lornlc~l Another

a5wrne’f wnr

Martin, we

:IA’l

~\r~li~tlro1~rorii’~

1i:tl

tlw

wi’lr

D-syloxc

~I’l’l’d

antI (5).

from

of

Ibplucwronic:

~hromawitl-l’oriiii’a

irrigant

0.30),

\Vhirtlcr,

of

flow

slcm~.

wntrnl of

iu

p:lpc’r

reagent

hytlrol~zntc~s

:il’lol~icn1ronir

~In~cnmi.

as

spray

wylw:m

hod

hydroOIJ~WV’VI

rorrcq~outi’:tl

wmponont,

:mcl

Kroriic

\v:w

dwc:rihc~tl

w:w

atcLarctiC

V/V)

wit1

in

:~lf:llf:i

II

as

one

when

:i’,itl-‘,oiittlinin~

l.ll’!

It

:ic:cl

plwspli:lte

i~~uouiil~

wit

qusntikl-

fcrri’:yini’lc:

2-0-(4-0-lnrt~h~l-a-u-glu~c~pp-

cl hyl

311 :il’lolriouroni~

Sinw

sugsrn

nppiwi:iMy

only

:u:id)-D-sylose

:Icd-\r:ltw

I)y

ethyl

the

tin11

(3)

not

:~~in’~uiil~.

wit

Inwnic~

arc :intl

lo

I ogr:i~~h’~l

antI

water

Jcnsm

t rcdnicnt,

(13, O.i.5)

will1

and

alkaline

:mtl

:r’*ids

thix

mow

r:ll”

with

(4).

.5ldol~iouronic: lyac7l

caolcl

the

H:~prclorn

paper

1 v/v),

of

by

prrssure

rccluwd

on

71’0

11I:int

O.Ofii

hr.

m:~l.eri:tl.

‘.;

) I I

O.OliS

:

fifi.0

65.X

(i5.!l

:

W.-l*

iti.!)*

1i:i.o*

1

14.5*

10.3’

7.5*

334

WHISTLER

AND

the product,, direct.ly or nftcr an ether wash, in a vacuum desiccator over calcium chloride. Dry weights wcrp dclcrminctl by wet con+ bustion with chromic axid (11).

GAILLARD

polysaccharides except, for that from alfalfa in which a chromrttographic trarc was indicaatcd. ACKNOWLEDGMEST

It is evident that, plant holocelluloscs prcpared by the chlorite and chlorine processes yield similar alkali cxtractivcs (Table I). From chlorite holoccllulosee, xylans are obtained in slightly lower yield than from chlorine holocelluloscs. Viscosity numbers for xylans extracted from the two holoccllulosce are generally similar, which would suggest that warm chlorit,e dots not. cause apprcciably more degradation than chlorine! although some differrnccs in oxidativc action have been suggested (13, 14) .s Staudingcr and .Jurisch (15) find chlorination of cotton linters causrs more oxitlaticc degradation than dots t,he use of :~c~ucous clilorinc tlioxide. Sylans from citlior l~olorr~llulosc type arc composed of the sanlc sugar 1mit.s. Residues from the cereal grains have xylans of similar compositions, and alfalfa stems and soybean stalk have almost. identical compositions. Sylans from the cereal plants usually contain one I,-arabinosc unit for cacll 16-20 n-xylose units! whcrcas sunflower stalks and alfalfa and soybean stems have no I.-arabinose units in their hcmicellulose A fraction, which consists of chains of D-xylosc unit.s with periodic 4-O-methyl-n-glueuronic arid units. The prrscncr of thrsc lattor unit8 is strongly indicated by the product.ion on hydrolysis of an altlobiouronio acid with the same chromatograJ)hic mobility as 2-G (4o-methyl-a-n-glucopyranoeyluronic acid j n-xylose (12). Glucose was absent from a11 ’ Also, B. D. E. Gaillard,

unpublished

data.

\Vc wish to csprcss our npprcciation t,o SAT0 for providing a fellowship to one of us (B.D.E.G.) from bhc Laborai.ory for Animal Physiology, AgWagcningen, The Nctherricukural IYnivrrsil.y, l:mtb.

1.

WIIISTLI~H,

It.

I..,

ASD

charidc Chcmislry.” York, 19.53.

SM.~RT,

C.

Academic

2.

WIIIHTL~;R, R. I.., ASUS.~NN:LLA~

8.

JSTERN.4TIOh.AL

I:SIOS

(h~3iISTIIY.

J. Pnlpw~

I,., “PolysacPress, New

J. L., 2~ “Carbohytlratc Chemistry of Substances of Biological Intclrcst,” Vol. 1, 11. 1. Pcrgamon Press, New York, 1959. 3. Haoti~011x. H. C., AKI) JBKSEX, B. N., Biochcm. %. 135,46 (1923). 4. h’n:s, F. J., AND ASSOC!lATE~, hrntl. BUY. fhfrrb trrds circ. c440, 198 (1942). .5. I~arsos, d. I,., ASI) MITCHRLL, T. J., ~t’nlrrrc: 167,864 (1951). 6. \VI~~~TI,I~, R. I,., M:u+in, t\. R., AXD HAIWS, M., 1. 1Zrwmh Satl. hr. Standards 24, 13 (1940). 7. ;~KDRRSON. n. &I. h’., &~SWOOI), c. T., ,\sI> HIHST,

9.

IC. I,.? J. Chem.

Sm. OF

1955,225. fURI

hi.

ASD

.~I’PLIIU)

8, 257 (1952).

R. I,., ‘UACIIRAM, J., ASD Bown~ax, I). R., Arc/l. J?iochcm. 19, 2.5 (1948). 10. VAX lhx-KKM, W. G., ASD RITTER, C:. J., Trdr.. A.w(.. l’rlpcrs 21, 431 (1938). 11. J.ALXF.R. H. F., .I. Rwrvmk Null. Rur. ~‘%z~rdr~~tls 18,333 (1937). 12. ~7111STI.KII~ R. I,., AXI) RICHARDS,G. s., 1. Am. Che77t.Soc. 80, 4888 (1958). 13. TIMKLL, T. I<., ANU Ja~ra, E. C., fivcnsk Pappc~rxtd,/. 54, 831 (1951). 14. Trmm,, ‘I’. E., Pulp cwd Paper Mug. Cmtnth 60, T26 ( 1959). WIIISTLRR,

15. STAIWNXR. H., 35,462 (1937).

ASD

JIXIWH, J., Papicr-Frtbl.