Solid State lonics 18 & 19 (1986) 258-264 North-Holland, Amsterdam
258
COMPLEX FORbGTION AND IONIC CONDUCTIVITY OF POLYPHOSPHAZENE SOLID ELECTROLYTES
Peter M. BLONSKY + and Duward F. SHRIVER Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois 60201, U.S.A. Paul AUSTIN # and Harry R. ALLCOCK Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. The l i n e a r poly[(alkoxy)phosphazene], [NP(OC2H4OC2H4OCH3)2] n (MEEP), has b e e n synthesized and i n v e s t i g a t e d as a polymeric e l e c t r o l y t e host m a t e r i a l . Amorphouss o l v e n t f r e e polymers a l t complexes formed with a v a r i e t y of mono-, d i - , and t r i v a l e n t s a l t s and e x h i b i t high i o n i c c o n d u c t i v i t y . The c o n d u c t i v i t y v a r i e s with changes in the i d e n t i t y of the cation, the anion and the s a l t concentration. I t a l s o e x h i b i t s a non-Arrhenius temperature dependence. For a l k a l i - m e t a l s a l t complexes the c a t i o n s and anions both c o n t r i b u t e to the i o n i c c o n d u c t i v i t y . The complex (LiSO3CF3)o.25.MEEP e x h i b i t s a c o n d u c t i v i t y a t room temperature which i s 2.5 orders of magnitude g r e a t e r t h a t the corresponding p o l y ( e t h y l e n e oxide) complex.
I.
INTRODUCTION
t r o l y t e s based on s i l o x a n e and phosphazene
Most r e p o r t s o f high i o n i c c o n d u c t i v i t y in
systems.12 Of the two, the phosphazene poly-
polymers have been concerned with p o l y ( e t h y l -
mers are more a t t r a c t i v e for the i n t r o d u c t i o n
ene oxide),
of p o l a r s i d e - c h a i n s and for
es. I - I I
PEO, a l k a l i - m e t a l s a l t complex
We r e p o r t here a new s o l v e n t - f r e e
stability.
t h e i r chemical
L i n e a r polyphosphazenes c o n s i s t s
polymer e l e c t r o l y t e host which e x h i b i t s i o n i c
of a backbone of a l t e r n a t i n g phosphorus and
conductivity
nitrogen atoms with two side groups a t t a c h e d
2-3 o r d e r s o f
magnitude h i g h e r
than the PEO s a l t complexes a t moderate temp-
to each phosphorus atom.13
e r a t u r e s (<60 °C).
Our
Factors which i n f l u e n c e complex formation
initial
work on amino s u b s t i t u t e d
(NHCH3;N(CH3)2),
short-chain alkoxy-substi-
and c o n d u c t i v i t y of s o l v e n t - f r e e polymer e l
tuted
e c t r o l y t e s have been discussed p r e v i o u s l y ,3-8
NHC5H4 N) p o l y p h o s p h a z e n e s i n d i c a t e d t h a t
among these, a low g l a s s temperature i s espe-
these
c i a l l y important.
as
Owing to the importance of
(OCH2CF3) and
systems
electrolytes.
do n o t
mixed l i g a n d (OC6H5,
perform
The p o l y m e r
satisfactorily systems,
after
low Tg in both p o l y m e r - s a l t complex formation
a d d i t i o n of a l k a l i - m e t a l s a l t s , had r e l a t i v e -
and ion t r a n s p o r t , we have i n v e s t i g a t e d e l e c -
l y poor i o n i c c o n d u c t i v i t i e s (a < 10 6 ohm I_
+ #
Current Address: Union Carbide Corporation, Westlake, Ohio. Current Address: Union Carbide Corporation, Tarrytown, New York.
0 167-2738/86/$ 03.50 © ElsevierSciencePublishem B.V. (North-HoRand PhysicsPubUshmg DNision)
P.M. Blonsky et al. / Polyphosphazene solid electrolytes
cm- I
@ I00
°C).
No complex f o r m a t i o n was
i s one of t h e m o s t f l e x i b l e
observed between [NP(OCH2CF3)2]n and a v a r -
backbones known.
i e t y of s a l t s .
3. R e s u l t s
The p r e s e n t r e s e a r c h concerns the p r e p a r a t i o n 12 and c h a r a c t e r i z a t i o n o f t h e p o l y m e r
259
3.1
macromolecular
and D i s c u s s i o n
High P o l y m e r
The s o d i u m
salt
Reaction. of 2-(2-methoxyethoxy)-
and p o l y m e r - s a l t c o m p l e x e s formed between
ethanol
underwent reaction
poly(bis-(methoxyethoxyethoxide)phosphazene),
r o p h o s p b a z e n e ) (Vl)
MEEP (V) and a v a r i e t y of mono-, d i - and t r i -
n-butylammonium bromide,
v a l e n t s a l t s . 14
substituted,
2. Theory.
stable
with
in the
thermally
poly(dichlo-
p r e s e n c e of t e t r a to
yield
the
fully
and h y d r o l y t i c a l l y
h i g h p o l y m e r MEEP (V).
The mechanism of ion t r a n s p o r t in polymer
[N=PCI2]n + 2nNaOC2H4OC2H4OCH3 e l e c t r o l y t e s i s thought to i n v o l v e conforma-
n-Bu4NBr ........ %--> THF, 60 C
(vl) tion
f l u c t u a t i o n s of
the polymer. 1 ' 3 ' 9
This
[N=P(OC2H4OC2H4OCH3)2] n + 2nNaCl
(v)
t y p e o f t r a n s p o r t i s r e p r o d u c e d by e i t h e r a free
volume, 1 ' 9 ' 1 5 or excess e n t r o p y model, 6
r a t h e r t h a n A r r h e n i u s law.
The i o n i c c o n -
Evidence
of c o m p l e t e
obtained
from 31p NMR,
halogen
analysis.
h i g h e r in amorphous p o l y m e r - s a l t complexes as
involve
compared to p a r t i a l l y c r y s t a l l i n e m a t e r i a l s
bonds c o u l d be c o n v e r t e d
of the same composition.7'8
moieties.
The c o n d u c t i v i t y
was
13C NMR and elemental
d u c t i v i t y has been shown to be s i g n i f i c a n t l y
Since
exchange
the purification
treatment with water,
procedures
residual
P-C1
to POH or P(O)-NH
Hence the 31p spectrum was of par-
o f an amorphous p o l y m e r , as g i v e n by a c o n -
ticular
interest
f i g u r a t i o n e n t r o p y model,
singlet
u p f i e l d 6.3 ppm from 85% H 3 P O 4 / D 2 0 ,
f o l l o w s e q u a t i o n 1,
and
consisted
of a sharp
where the A term i s p r o p o r t i o n a l to the num-
no evidence of a P-C1 or P(O)-NH moieties was
b e r of c h a r g e c a r r i e r s
seen.
and t h e TO term,
in
The
13C NMR spectrum contains
5 sing-
the e x p o n e n t i a l , is c l o s e l y r e l a t e d to the
lets expected for the alkoxide sidegroup,
glass
the elemental
transition
t e m p e r a t u r e of
the
sam-
p l e . 1,6
analysis
fit the values
and
for a
f u l l y s u b s t i t u t e d polymer.12
a = AT-I/2exp [ B/(T-To) ]
(1)
The i n f r a r e d s p e c t r u m of MEEP c o n t a i n s
The g l a s s t r a n s i t i o n temperature of the p o l y -
t h e P-N-P a s y m m e t r i c s t r e t c h a t
mer and polymer s a l t complexes a r e a f u n c t i o n
which i s t y p i c a l f o r an a l k o x y s u b s t i t u t e d
of r e o r i e n t a t i o n a l m o b i l i t y of t h e b a c k b o n e
l i n e a r p h o s p h a z e n e .14
and sidegroups.
the s J d e c h a i n s a r e a l m o s t i d e n t i c a l to t h o s e
The polyphosphazene s k e l e t o n
1240 cm- I ,
Bands a t t r i b u t e d t o
P.M. Blonsky et al. / Polyphosphazene solid electrolytes
260
PEO.4
for
salt
X-ray d i f f r a c t i o n , DSC, and o p t i c a l micro-
complexes
formed the
polymer-salt
phous a t room temperature and above.
ray
diffraction
r e f r i n g e n c e i s observed when p o l a r i z e d l i g h t
material
i s employed. The DSC r e s u l t s
values
c o n s i s t of a
s i n g l e 2nd o r d e r h e a t c a p a c i t y t r a n s i t i o n ,
Nd2(S04) 3
a crystalline
scopy i n d i c a t e t h a t MEEP i s c o m p l e t e l y amorNo bi
of
phase
were were
to
a ratio
C. The
ter
than
s e a l e d s a m p l e s were c y c l e d a minimum of 3
ray
diffraction
t i m e s a t each h e a t i n g r a t e w i t h no e v i d e n c e
MSO3CF 3 c o m p l e x e s ,
where
of polymer d e g r a d a t i o n , s h i f t i n g Tg or add-
As e x p e c t e d ,
glass
assigned as a g l a s s t r a n s i t i o n a t
83
of
or
the
but
the
repeat
salt
the
pure
salt.
unit
grea-
was observed
optical
b y X-
microscopy, M = Li,
Na,
transition
for
Ag. tempera-
s t r a t e t h a t t h e polymer e x h i b i t s no s i g n i f
a higher
i c a n t weight l o s s
due to a reduction in the polymer f l u i d i t y .9
at
temperature
complexes
upon
shift
addition
of
to
salt,
The change in Tg i s r e f l e c t e d in the mechan
which point complete decomposition occurs. 3.2
polymer-salt
2e
tures
303 °C,
the
no excess
The X-
semicrystalline broad
salt/polymer
after
i t i o n a ] e x o / e n d o t h e r m s . TGS s t u d i e s demon-
(<2%) up to
of
2,
this
those
At
o
was formed.
generally
close of
of
Gd2(S04) 3
ca_:. 7 2 h o u r s
complex peaks
or
i c a l r i g i d i t y of the complexes.
ComplexFormation and Glass T r a n s i t i o n Temperatures.
In g e n e r a l ,
the complexes change from e]astomers to t h e r MEEP forms p o l y m e r - s a l t complexes with a m o p l a s t i c s with i n c r e a s i n g s a l t concentra v a r i e t y of mono , d i
and t r i v a l e n t
salts, t i o n . T a b l e 2 c o n t a i n s some r e p r e s e n t a t i v e
T a b l e 1.
As w i t h t h e p a r e n t polymer, t h e s e p o l y m e r - s a l t complexes and t h e i r r e s p e c t i v e
complexes are c o m p l e t e l y amorphous, s i n g l e g l a s s t r a n s i t i o n temperatures. phase s y s t e m s e x h i b i t i n g a s i n g l e Tg and no 3.3
b i r e f r i n g e n c e under p o l a r i z e d l i g h t
Conductivity Measurements.
when Complex
first
prepared.
Complexes
with
i m p e d a n c e a n a l y s i s was performed
Na3Co(NO2) 6 for the pure p o l y m e r and p o l y m e r
s a l t com
s l o w l y formed a c r y s t a l l i n e phase after applexes, proximately two weeks. not
match
that
1:1 Li: Na:
Rb: Ag:
of
on data which was c o l l e c t e d between
The X-ray pattern did
the
pure
Table
1.
salt.
Polymer
Representative
2:1
Salts
BF4, B r , SCN, NO 3, C I , SCN, CF3SO 3 I , SCN NO3 , CF3SO 3
Salts
CF3CO0. CF3SO 3
Li: Ca: Sr: Zn:
Which Form Complexes and
1:2
Salts
O2C(CF2)3CO 2 S03CF 3 SO3CF 3 SO3CF 3
with
MEEP 3:1
and
2:3
Salts
Na: C o ( N 0 2 ) 6 Gd: SO 4 Nd: SO 4
P.M. Blonsky et al. / Polyphosphazene solid electrolytes
2.
Table
Glass
Transition
Temperatures
M:P a
Tg b
(x:l)
(°C)
AgSO3CF 3 AgSO3CF 3 AgSO3CF 3 AgSO3CF 3 AgSO3CF 3 AgS03CF 3 AgS03CF 3
0 0.083 0.125 0.167 0.250 0.500 1.000 2.000
-83.5 -78.3 -74.3 -68.7 -60.0 -35.2 -11.6 +11.4
8.1x10 -8 1.6x10 -4 2.6x10 -4 .... .... 2.8x10 -5 2.5x10 -6 < 10 - 9 c
LiSO3CF 3 LiSO3CF 3 LiSO3CF 3 LiSO3CF 3
0.125 0.167 0.250 0.500
-69.4 -65.7 -62.4 -58.9
2.2x10 2.2x10 2.7x10 1.2x10
Salt
a30 °
and
Conductivities
for
a55 °
261
selected
MEEP C o m p l e x e s .
a70 °
a90°
1.6x10 -7 3.2x10 -4 5.3x10 -4 6.8x10 -4 4.8x10 -4 1.5xlO -4 3.3x10 -5 < 10 - 9 c
1.9xlO -7 4.8x10 -4 8.4x10 -4 9.8x10-4 9.4x10 -4 3.1xlO -4 1.OxlO -4 < 10 - 9 c
2.1xlO -7 7.5x10 -4 1.4x10 -3 .... d 1.4x10 -3 6.7x10 -4 3.7x10 -4 < 10 -9c
5.7x10 6.2x10 7.5x10 5.7x10
8.5x10 8.7x10 1.2x10 1.OxlO
1.3xlO 1.5x10 2.2x10 1.9x10
(ohm-cm) -I
-5 -5 -5 -5
-5 -5 -5 -5
-5 -5 -4 -4
-4 -4 -4 -4
a c t u a l s t o i c h i o m e t r i e s +0.02. b E x t r a p o l a t e d t o O°/min. stoichiometry; c Conductivity t o o l o w to measure, d Sample f~owed and s h o r t e d c e l l .
a Ideal
o
25 and 100
C.
a
of
variety
P l o t s o f i n (aT) v s . 1/T f o r
data
are
(trifluoromethyl)sulfonate,
1/T.
as
Curvature
S03CF3 , s a l t c o m p l e x e s a r e shown i n F i g u r e
ity
data
I.
due
to
S i m i l a r g e n t l e curves are obtained i f the
plotted
is
In
of
the
expected
(aT 1 / 2 )
or
In
electrical for
conductiv-
amorphous
the
T-T o temperature
low
but
(g) vs.
polymers,
dependence
(eq.
conductivity
of
1). The x -1
x
O
zl
significant
×
~.
+
the ×
D ~.
r7
~'4
MEEP h o s t
polymer
appears
to
be
due
to
x
D
X
x
Ag
residual
NaC1
trapped
in
the
polymer.
Thus,
-3 +
~
~
LI
+
passing
MEEP t h r o u g h
ion
exchange
columns
in
ANa +
the
+ +
to
+ S¢
-7
H+ a n d 8.1
x 10 -8
factor ple.
OH- f o r m s
of
reduces
ohm-l-cm
25 less
Complexes
than of
-1
the
at
the
conductivity
25 ° , which unexchanged
MEEP w i t h
is
a
sam-
triflate
salts
-9 O 0
-1i
l 2.7
,
~.~
0
~I~
O
O i
~.o
of
0
~J~
0
MEEP
~I~
~.~
q
IO00/T (degrees K)
simple
exhibited the
conductivity, vs 1/T for
ions,
ionic
with Sr;
cations,
Zn;
Li;
Na; Ag,
conductivities
the
salts
Ca,
and
thar~
having
dipos-
a further
reduc-
1. tion
Electrical as in (aT) complexes.
higher
complexes
itive Figure
monopositive
a(fl-l-cm-1), plotted [M(SO3CF3)x]O.25,MEEP
for
of
the
complexes
ionic
conductivity
of tripositive
is metal
observed salts.
P.M. Blonsky et al. / Polyphosphazene solid electrolytes
262
Figure
2 displays
the influence
rent anions on the ionic conductivity. data
are
compared at
met
ratio
and
only
a constant
transport,
in the
lithium
anions
accounts
decreasing
The i o n i c
were
nature
relative
complexes,
are
carrier
species
tigated
using
A.C.
by
complex
When i o n
X
~~.
× ÷+
+
]I
~"
x
0
+S03CF
t-
C
conductivity
the
blocking
and
of the different
vs anion)
and
Numbers.
D.C.
were inves-
potentials
and
impedance/admittance range
of
5-500,000
electrodes,
Pt,
were
Hz. em-
the complex
impedance plots
were con-
I
×
-5.0
ployed
!
+
~-'°
(cation
and
I
+
×
a nd T r a n s p o r t
contributions
over
Tg v a l u e s
6'9
of the
the
techniques
+
Species
ion
analyzed
+ X
the rising
conductivities.
3.4 C a r r i e r
almost i d e n t i c a l .
-3.0 ' I
for
for
energies
salt
The
cation/poly-
mononegative
The a c t i v a t i o n
employed.
ation
of diffe-
| SCN×
-6.Q
with a model
sisting
of
a
equivalent
parallel
circuit
geometric
con-
capacitance
3
x
O
sistent
and bulk
resistance
layer
capacitance.
sults
i n an a r c
in series
with
a double
Such a combination
followed
by a s p u r ,
re
with
the
-7.0 spur -8.0
2~7
'
2 8
!0 3.
2.-9
!O00/T
I
3J"l
(degcees
3.2
I
at
layer
3.3
K]
low
frequencies
ascribed
c a p a c i t a n c e . 16 When c a t i o n
electrodes
are
employed
the
to
double-
reversible
spur,
for
ion
F i g u r e 2. blocking Electrical conductivity, a(-1-cm-1), plotted a s I n (aT) v s 1/T f o r [LiX]0.167.MEEP complexes.
arc,
electrodes,
which
can
charge-transfer The
conductivity
plexes
increase
beyond
t h a t . 12
for with
a series
of
(AgSO3CF3)x. MEEP com-
up t o x = 0 , 1 7 , A similar
trend
to
lower
(Table
higher 2).
glass
around
ionic
complexes with high salt ited
is observed
of (LiSO3CF3)x°MEEP complexes,
maximum c o n d u c t i v i t y
addition
and decrease
conductivity, concentration
transition
The p r o g r e s s i v e
polymer chains,
x=0.25.
the exhib-
of
complex form-
be
ascribed
resistance
interface.
This
response
is
for
trolyte
observed
used to estimate and
to a second a parallel
double
layer
electrode
elec-
type
of
other
dual
arc
polymer elec-
reversible
elec-
11
A potentiostatic
obtained
and
systems with cation
trodes.2,10,
of this
to
at the reversible
trolyte
anions
temperatures
immobilization
by p o l y m e r - s a l t
In
capacitance
is converted
polarization
m e t h o d was
the transference
numbers for
cations.
technique with
In a r e c e n t reasonable
transference
application
agreement
was
n u m b e r s from Tu
P.M. Blonsky et al. / Polyphosphazene solid electrolytes
bandt,
pulsed field gradient NMR,
tracer techniques. 17
applied to a cell with the electrolyte wiched
between
Complete
cell
cation-reversible polarization
anion diffusion, exactly
is
Pt e l e c t r o d e s .
sand-
measured
electrodes.
hours.
salt gradient,
the m i g r a t i o n
of this
a D.C. p o t e n t i a l
plied to a symmetric
o c c u r s when the
created by a
opposes
the c o n d u c t i v i t y ,
and radio-
A constant potential
263
cell
current
decayed
and
ion
the electronic
conductivity
general
only,
phazenes are electrical
due to the cat-
current vs.
time polarization
result
fits
with
the
that ion-free polyphosinsulators. 14'18
system, MEEP, has been
s y n t h e s i z e d by a p p e n d i n g s h o r t - c h a i n
A typical
curve
observation
The polyphosphazene
number. Table 3 lists transport numbers for a complexes.
This
is f o u n d to
4. Conclusions.
ion and anion, yields the cation transference
of M E E P - s a l t
16
tally polarized with respect to ionic motion
The ratio of final current, due to the cation
variety
to z e r o w i t h i n
the
At this point the c e l l has b e e n to-
be n e g l i g i b l e .
current,
ion blocking
U n d e r these c o n d i t i o n s
under the influence of the applied potential.
to the inital
with
was ap-
ether g r o u p s to the p h o s p h a z e n e
exhibits is
bone.
polarized,
after which a constant current
is
complexes
observed.
The cation
is
display very good ionic conductivity at room
gradual
decay
until
transference
number
forms
(PN)x back-
the c e l l
a smooth,
MEEP
poly-
with
single-phase
alkall-metal
amorphous
salts,
which
affected by the cation and anion employed but
temperature.
appears
on polyphosphazene
may provide
a wide
of
for p o l y m e r
electro!yte
to be concentration
a slightly
independent.
modified experiment,
In
to test for
Salt
3.
Cation
hosts
formation.
the possibility of an electronic component to
Table
polymer
The variation of the sidechatns
Transport
Numbers a
M:P c
Temp.
Ia
(x:l)
(°C)
(~)
Initial
Idc(/iA )
Final
T+ b
Run T i m e
(hours)
.... AgS03CF 3 AgSO3CF 3 AgSO3CF 3
0 0.125 0.250 1.000
52.4 56.3 54.8 64.7
0.03 1.35 2.20 4.33
0.04 2.40 4.31 10.32
0.00 0.05 0.11 0.36
<.00 .02 .03 .03
16 42 50 44
LiSO3CF 3 LiSCN LJBF 4 LiBr Zn(SO3CF3) 2
0.167 0.167 0.167 0.167 0.167
54.0 58.5 55.0 55.0 61.6
3.48 1.52 2.71 1.38 1.55
3.59 1.60 2.94 1.37 1.73
1.15 0.68 0.49 0.79 0.01
.32 .42 .17 .58 <.01
92 105 94 100 15
a In all cases 0.01V was the applied potential, c Ideal stoichiometry, actual stoichiometries
b Errors +.02.
in
transport
numbers
+.02.
range
P.M. Blonsky et al. / Polyphosphazene solid electrolytes
264
ACKNOWLEDGEMENTS
8.
C. B e r t h i e r , W. Gorecki, M. M i n i e r , M.B. Armand, J.M. Chabagno and P. Rigaud, S o l i d S t a t e Ionics 11 (1983) 91.
9.
H. Cheradame, IUPAC M a c r o m o l e c u l e s , eds. H. B e n o i t and P. Rempp (Pergamon P r e s s , New York, 1982) p. 251.
This research was supported by the Office of Naval R e s e a r c h and t h e NSF through t h e N o r t h w e s t e r n U n i v e r s i t y M a t e r i a l s Center. Work a t P e n n s y l v a n i a S t a t e U n i v e r s i t y was
lO. L.C. H a r d y a n d D.F. S h r i v e r , S o c . 107 ( 1 9 8 5 ) 3 8 2 3 .
J.
Am. Chem.
supported by the P u b l i c Health Service. 11. J.E. Weston and B.C.H. S t e e l e , S o l i d S t a t e I o n i c s 7 (1982) 81.
REFERENCES 1.
M. Armand, J.M. Chabagno and M.J. D u c l o t , F a s t Ion T r a n s p o r t i n S o l i d s , eds. P. V a s h i s h t a , J.N. Mundy and G.K. Shenoy (North Holland, Amsterdam, 1979) p.131.
D.F. S h r i v e r , P. A u s t i n 12. P.M. B l o n s k y , H.R. A1 l c o c k , J. Amer. Chem. S o c . (1984) 6854.
2.
M. Armand, S o l i d S t a t e Ionics 9/10 (1983) 745 .
13. H.R. A l l c o c k , P h o s p h o r u s - N i t r o g e n Compounds (Academic P r e s s , New York, 1972) and r e f e r e n c e s t h e r e i n .
3.
D.F. S h r i v e r , B.L. P a p k e , M.A. R a t n e r , Dupon, T. Wong and M. B r o d w i n , S o l i d S t a t e I o n i c s 5 ( 1 9 8 1 ) 83.
14. P.M. B l o n s k y , P h . D . western University
4.
B.L. P a p k e , M.A. R a t n e r a n d D.F. S h r i v e r , J . P h y s . Chem. S o l i d s 42 ( 1 9 8 1 ) 4 9 3 .
5.
B.L. P a p k e , R. D u p o n , M.A. R a t n e r and D.F.Shriver, Solid State Ionics 5 (1981} 685.
6.
7.
R.
B.L. P a p k e , M.A. R a t n e r a n d D.F. S h r i v e r , J. E l e c t r o c h e m . S o c . 129 ( 1 9 8 2 ) 1 6 9 4 . M. S t a i n e r , L.C. Hardy, D.H. W h i t m o r e and D.F. S h r i v e r , J. A m e r . C h e m . Soc. 104 (1982) 6 2 4 7 .
Dissertation, (1985).
15. K. Arai and A. E i s e n b e r g , J. Sci. Phys. 817 (1980) 803. 16. J . R . M a c d o n a l d , 3977.
and 106
North-
Macromol.
J. Chem. P h y s . 61 ( 1 9 7 4 )
17. S.F. C l a n c y , Ph.D. western University
Dissertation, (1985).
North
18. P.D. M a r k o , G . G i r o , S . L o r a a n d M. G i e r i a , Mol. C r y s t . L i q . C r y s t . 118 ( 1 9 8 5 ) 439.