p+L,--adp+2--ada+p. Remark. Since folding, k+2fa+p+
u+p+il,
1.
. . . ,a+p+i,-,22a+p
only
if they come from
an un-
218
Ch. Frougnl
Let us call A> this new transducer. h> 1 the following lemma holds. Lemma 8.13. Let w~O[a+p+l]*. u = b= 1 then A~“(w)~[u+p]*.
It can be proved in the same manner
If
This achieves the proof of Proposition /I;” according to the different cases. II
a>b=l
then
that in case
A~“-l(w)~[a+p]*.
8.2 with Ap= Arm1 or /1; or A;“-’
Remark 8.14. The addition in u corzjluent numeration a right subsequential function.
system cunnot be realized
!f
or
by
Proof. Let x=0(2a)O”-l(uO”-‘)“O and y=O(uOm~l)“tlO, with n>O, be two words of { 0, . . ) 2u) *. words on (0, . . ..a} are The equivalent x’= l(u- l)O*-2((a-b+ l)(bl)OmM2)‘(u-b)b and y’=y. Since d,(x, y)=4 and d,(x’, y’)=4+2m(n + l), the addition cannot be realized by a right subsequential function. 0
8.2. Extended
normulizution
in the i@!nite case: the real numbers
As already mentioned a left subsequential transducer function determines a left sequential function on infinite tion given above we get the following results.
without a terminal output words. From the construc-
Theorem 8.15. Let C be an arbitrary ,finite set of integers. In a confluent linear numeration system there exists a left sequentialfunction which transforms u word of CN into a numericully equivalent word on AN. Corollary 8.16. In u conjluent linear numeration system there exists u left sequentiul ,function which maps two reul numbers written on the canonical alphabet A onto a word of AN having for value the sum of these two numbers. The result is generally not in normul form. Corollary 8.17. The extended system is a rutionul fimction.
normalization
of injinite words in u conjluent numeration
References D. Beauquier and D. Perrin, Codeterministic automata on infinite words, /nform. Process. Lett. 20 (1985) 95-98. [2] J. Berstel, Transductions and Confext-Free Languages (Teubner, Leipzig, 1979). [3] J. Berstel, Fibonacci words - A survey, in: G. Rozenberg and A. Salomaa, eds., 7%~ Book ?fL (Springer, Berlin, 1986) 13-27. [l]
Conjluenr linear numrrarion
[4] [S] [6] [7] [8] [9] [IO] [I I]
systems
219
A. Bertrand-Mathis, Le O-shift sans peine, to appear. A. Bertrand-Mathis, Comment &ire les nombres entiers dam une base qui ne I’est pas, to appear. F. Blanchard, fl-expansions and symbolic dynamics, Tllroret. Compur. Sci. 65 (1989) 131-141. Ch. Choffrut, Une caractCrisation des fonctions stquentielles et des fonctions sous-s&quentielles en tant que relations rationnelles, Theorrt. Cornput. Sci. 5 (1977) 325-337. S. Eilenberg, Auromutu, Languages and Machines, Vol. A (Academic Press, New York, 1974). C.C. Elgot and J.E. Mezei. On relations defined by generalized finite automata, IBM J. Res. Develop. 9 (1965) 47-68. Ch. Frougny, Systtmes de numtration linkaires et automates finis, Thtse d’Etat, Universitk Paris 7, Rapport LITP 89-69, 1989. Ch. Frougny. Fibonacci representations and finite automata, IEEE Trans. Inform. Theory 37 (2) (1991) 393-399.
[IZ]
Ch. Frougny, Representations of numbers and finite automata, Math. Systems Theory, to appear. F. Gire. Relations rationnelles infinitaires, Thise de 3e cycle, Universiti Paris 7, 1981. G. Huet, Confluent reductions: Abstract properties and applications to term rewriting systems, J. Assoc. Comput. Mach. 27 (1980) 797-821. [IS] D.E. Knuth, The art ofcomputer programming, vols. I, 2 and .3 (Addison-Wesley, Reading, MA, 1975). 1161 D.E. Knuth and P.B. Bendix, Simple word problems in universal algebras, in: J. Leech, ed., Computational Problems in Abstract Algebra (Pergamon Press, Oxford, 1970) 263-297. 1171 W. Parry, On the /I-expansions of real numbers, Acru Math. Acad. Sci. Hungur. 11 (1960) 401416. [IS] A. Rtnyi. Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. [I33 [I41
Hungar.
8 (1957) 477493.
1191 J. Sakarovitch. Description des monoi’des de type fini, E.I.K. S/9 (1981) 417-434. [20] E. Zeckendorf. Reprt-sentation des nombres naturels par une somme de nombres de Fibonacci nombres de Lucas, Bull. Sot. Roy. Sci. LiPge 3-4 (1972) 179-182.
ou de