Microporous and Mesoporous Materials 73 (2004) 217–218 www.elsevier.com/locate/micromeso
Contents
Editorial Metal-organic open frameworks (MOFs) € cker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . € th and M. Sto S. Kaskel, F. Schu
1
Reviews Metal–organic frameworks: a new class of porous materials J.L.C. Rowsell and O.M. Yaghi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility M.J. Rosseinsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
Molecular-level design of efficient microporous materials containing metal carboxylates: inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activities for hydrogenation of olefins W. Mori, S. Takamizawa, C.N. Kato, T. Ohmura and T. Sato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
Metal phosphonate open-framework materials K. Maeda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
Regular Papers The role of reaction conditions and ligand flexibility in metal-organic hybrid materials––examples from metal diglycolates and iminodiacetates P.M. Forster and A.K. Cheetham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
Encapsulation of the large potassium cryptate ion [K222]+ by the super-Prussian blue framework [(Me3Sn)3Ru(CN)6)] H. Hanika-Heidl and R.D. Fischer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Dynamics and disposition of benzene guest molecules in the micropore channels of a flexible metal-organic framework studied by 2H NMR and X-ray crystallography C.I. Ratcliffe, D.V. Soldatov and J.A. Ripmeester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 K. Schlichte, T. Kratzke and S. Kaskel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
Eight-connected three-dimensional lanthanide coordination networks constructed by pyrazine-dioxide (pzdo) H.-L. Sun, S. Gao, B.-Q. Ma, F. Chang and W.-F. Fu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
89
A manganese metal-organic framework which remains crystalline on desolvation, and which gives insight into the rotational freedom of framework aromatic groups Q. Wei, M. Nieuwenhuyzen and S.L. James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97
Synthesis, structure and anion-exchange property of the first example of self-penetrated three-dimensional metal-organic framework with flexible three-connecting ligand and nickel(II) perchlorate S.-Y. Wan, Y.-T. Huang, Y.-Z. Li and W.-Y. Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
101
Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM-48 J.W. Lee, W.G. Shim and H. Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
109
Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu and D. Zhao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
121
doi:10.1016/S1387-1811(04)00260-4
218
Contents / Microporous and Mesoporous Materials 73 (2004) 217–218
The crystal structure of giuseppettite, the 16-layer member of the cancrinite–sodalite group E. Bonaccorsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
129
Synthesis, characterization and catalytic properties of mesoporous TiHMA molecular sieves: selective oxidation of cycloalkanes P. Selvam and S.K. Mohapatra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
137
Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides P.S. Tin, T.-S. Chung, S. Kawi and M.D. Guiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
151
Microwave-hydrothermal synthesis and characterization of microporous–mesoporous disordered silica using mixed-micellar-templating approach B.L. Newalkar, H. Katsuki and S. Komarneni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
161
Computational insights into the role of Ge in stabilising double-four ring containing zeolites M.A. Zwijnenburg, S.T. Bromley, J.C. Jansen and T. Maschmeyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
171
Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties J. Pires, A.C. Arau´jo, A.P. Carvalho, M.L. Pinto, J.M. Gonza´lez-Calbet and J. Ramı´rez-Castellanos . . . . . . . . .
175
Hydrothermal synthesis, characterization and catalytic properties of urano-silicate mesoporous molecular sieves D. Kumar, S. Varma, G.K. Dey and N.M. Gupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
181
Chemical pore closure of zeolite A using tetraethyl orthosilicate. A potential method for enhancing the use of zeolites as part of a long-term waste immobilization strategy C.D. Johnson and F. Worrall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
191
Well-ordered mesoporous silica prepared by cationic fluorinated surfactant templating S.E. Rankin, B. Tan, H.-J. Lehmler, K.P. Hindman and B.L. Knutson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
197
Sulphated zirconia by sol–gel route. The effects of the preparative variables S. Melada, S.A. Ardizzone and C.L. Bianchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
203
Corrigendum Corrigendum to ‘‘Hybrid periodic mesoporous organosilica materials prepared from 1,2-bis(triethoxysilyl)ethane and (3-cyanopropyl)triethoxysilane’’ [Micropor. Mesopor. Mater. 69 (2004) 19–27] M.A. Wahab, I. Kim and C.-S. Ha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
211
Author Index, Vol. 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
213
Subject Index, Vol. 73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
215
Contents, Vol. 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
217