Empirical Process Methods in Econometrics D O N A L D W.K. ANDREWS
Abstract 1. Introduction 2. Weak convergence and stochastic equicontinuity 3. Applications 3.1. Review of applications 3.2. Parametric M-estimators based on non-differentiable criterion functions 3.3. Tests when a nuisance parameter is present only under the alternative 3.4. Semiparametric estimation
4.
Stochastic equicontinuity via symmetrization 4.1.
Primitive conditions for stochastic equicontinuity
4.2.
Examples
5. Stochastic equicontinuity via bracketing 6. Conclusion
Applied N o n p a r a m e t r i c M e t h o d s WOLFGANG H,~RDLE and OLIVER LINTON Abstract 1. N o n p a r a m e t r i c e s t i m a t i o n in e c o n o m e t r i c s 2. D e n s i t y e s t i m a t i o n 2.1. Kernels as windows 2.2. Kernels and ill-posed problems 2.3. Properties of kernels 2.4. Properties of the kernel density estimator 2.5. Estimation of multivariate densities, their derivatives and bias reduction 2.6. Fast implementation of density estimation 3. Regression e s t i m a t i o n 3.1. Kernelestimators 3.2. k-Nearest neighbor estimators 3.3. Local polynomial estimators 3.4. Spline estimators 3.5, Series estimators 3.6. Kernels, k-NN, splines, and series 3.7. Confidence intervals 3.8. Regression derivatives and quantiles 4. O p t i m a l i t y a n d b a n d w i d t h choice 4.1. Optimality 4.2. Choice of smoothing parameter 5. A p p l i c a t i o n to time series 5.1. Autoregression 5.2. Correlated errors 6. Applications to s e m i p a r a m e t r i c e s t i m a t i o n 6.1. The partially linear model 6.2. Heteroskedastic nonlinear regression 6.3. Single index models 7. C o n c l u s i o n s References
M e t h o d o l o g y a n d T h e o r y for the B o o t s t r a p PETER HALL Abstract 1. I n t r o d u c t i o n 2. A formal definition of the b o o t s t r a p principle 3. I t e r a t i n g the principle
2342 2342 2345 2352
Contents of Volume I V
xviii
Asymptotic theory 4.1. Summary 4.2. Edgeworth and Cornish-Fisher expansions 4.3. Edgeworth and Cornish-Fisher expansions of bootstrap distributions 4.4. Different versions of bootstrap confidenceintervals 4.5. Order of correctness of bootstrap approximations to critical points 4.6. Coverage error of confidenceintervals 4.7. Simple linear regression References .
2357 2357 2358 2362 2364 2367 2369 2375 2379
Chapter 40
Classical Estimation Methods for LDV Models Using Simulation VASSILIS A. HAJIVASSILIOU and P A U L A. R U U D
Restrictions of Economic Theory in Nonparametric Methods ROSA L. MATZKIN
Abstract 1. Introduction 2. Identification of nonparametric models using economic restrictions 2.1. Definition ofnonparametric identification 2.2. Identification of limited dependent variable models 2.3. Identification of functions generating regression functions 2.4. Identification of simultaneous equations models
3. Nonparametric estimation using economic restrictions 3.1. Estimators that depend on the shape of the estimated function 3.2. Estimation using seminonparametric methods 3.3. Estimation using weighted average methods
Analog Estimation of Econometric Models CHARLES F. MANSKI
Abstract 1. Introduction 2. Preliminaries
2560 2560 2561
xx
Contents of Volume I V
2.1. The analogy principle 2.2. Moment problems 2.3. Econometric models 3. M e t h o d - o f - m o m e n t s e s t i m a t i o n of separable models 3.L Mean independence 3.2, Median independence 3.3, Conditional symmetry 3.4, Variance independence 3.5, Statistical independence 3.6. A historical note 4. M e t h o d - o f - m o m e n t s e s t i m a t i o n of response models 4,1. Likelihood models 4.2. Invertible models 4.3. Mean independent linear models 4.4. Quantile independent monotone models 5. E s t i m a t i o n of general separable a n d response models 5.1. Closest-empirical-distributionestimation of separable models 5.2. Minimum-distance estimation of response models 6. C o n c l u s i o n References
Testing N o n - N e s t e d Hypotheses c. GOURIEROUX and A. MONFORT 1. 2.
3,
4.
Introduction N o n - n e s t e d hypotheses 2.1. Definitions 2.2. Pseudo-true values 2.3. Semi-parametric hypotheses 2.4. Examples 2.5. Symmetryof the problem Testing procedures 3.1. Maximum likelihood estimator under misspecification 3.2. The extended Wald test 3.3. The extended score test 3.4. The Cox procedure 3.5. Application to the choice of regressors in linear models 3.6. Applications to qualitative models Artificial nesting models 4.1. Examples 4.2. Localexpansions of artificial nesting models 4.3. A score test based on a modified Atkinson's compound model 4.4. The partially modified Atkinson's compound model
Comparison of testing procedures 5.1. Asymptotic equivalence of test statistics 5.2. Asymptotic comparisons of power functions 5.3. Exactfinite sample results 5.4. Monte Carlo studies 6. Encompassing 6.1. The encompassing principle 6.2. The encompassing tests References
P A R T 10
THEORY AND METHODS FOR DEPENDENT
2621 2622 2622 2624 2625 2626 2626 2628 2633
PROCESSES
Chapter 45
Estimation and Inference for Dependent Processes JEFFREY M. WOOLDRIDGE Abstract Part I. I n t r o d u c t i o n and overview 1. 2. 3.
Introduction Examples of stochastic processes Types of estimation techniques
Part II. 4.
5. 6.
7.
The essentially stationary, weakly dependent case
Asymptotic properties of M-estimators 4.1. Introduction 4.2. Consistency 4.3. Asymptotic normality 4.4. Adjustment for nuisance parameters 4.5. Estimating the asymptotic variance 4.6. Hypothesis testing M a x i m u m likelihood estimation Q u a s i - m a x i m u m likelihood estimation ( Q M L E ) 6.1. Conditional mean estimation 6.2. QMLE for the mean and variance Generalized m e t h o d of m o m e n t s estimation 7.1. Introduction 7.2. Consistency 7.3. Asymptotic normality 7.4. Estimating the asymptotic variance 7.5. Asymptotic efficiency 7.6. Testing
T h e g l o b a l l y n o n s t a t i o n a r y , w e a k l y d e p e n d e n t case
G e n e r a l results 8.1. Introduction 8.2. Asymptotic normality of an abstract estimator A s y m p t o t i c n o r m a l i t y of M - e s t i m a t o r s 9.1. Asymptotic normality 9.2. Estimating the asymptotic variance
P a r t IV.
The n o n e r g o d i c case
10.
G e n e r a l results 10.1. Introduction 10.2. Abstract limiting distribution result 11. S o m e results for linear m o d e l s 12. A p p l i c a t i o n s to n o n l i n e a r m o d e l s Appendix References
U n i t Roots, S t r u c t u r a l Breaks a n d T r e n d s JAMES H. STOCK Abstract 1. I n t r o d u c t i o n 2. M o d e l s a n d p r e l i m i n a r y a s y m p t o t i c t h e o r y 2.1. Basic concepts and notation 2.2: The functional central limit theorem and related tools 2.3. Examples and preliminary results 2.4. Generalizations and additional references 3. U n i t autoregressive r o o t s 3.1. Point estimation 3.2. Hypothesis tests 3.3. Interval estimation 4. U n i t m o v i n g average r o o t s 4.1. Point estimation 4.2. Hypothesis tests 5. S t r u c t u r a l b r e a k s a n d b r o k e n t r e n d s 5.1. Breaks in coefficients in time series regression 5.2. Trend breaks and tests for autoregressive unit roots 6. Tests of the I(1) a n d I(0) hypotheses: links a n d p r a c t i c a l limitations 6.1. Parallels between the I(0) and I(1) testing problems 6.2. Decision-theoretic classification schemes 6.3. Practical and theoretical limitations in the ability to distinguish I(0) and I(1) processes References
Vector Autoregressions a n d C o i n t e g r a t i o n MARK W. WATSON Abstract 1. I n t r o d u c t i o n 2. Inference in VARs with integrated regressors 2.1. Introductory comments 2.2. An example 2.3. A useful lemma 2.4. Continuing with the example 2.5. A general framework 2.6. Applications 2.7. Implications for econometric practice 3. C o i n t e g r a t e d systems 3.1. Introductory comments 3.2. Representations for the I(1) cointegrated model 3.3. Testing for cointegration in I(1) systems 3.4. Estimating cointegrating vectors 3.5. The role of constants and trends 4. Structural vector autoregressions 4.1. Introductory comments 4.2. The structural moving average model, impulse response functions and variance decompositions 4.3. The structural VAR representation 4.4. Identification of the structural VAR 4.5. Estimating structural VAR models References
Aspects of M o d e l l i n g N o n l i n e a r Time Series TIMO TERASVIRTA,DAG TJ(2)STHEIM and CLIVE W.J. GRANGER Abstract 1. I n t r o d u c t i o n 2. Types of n o n l i n e a r models 2.1. Modelsfrom economic theory 2.2. Modelsfrom time series theory 2.3. Flexible statistical parametric models 2.4. State-dependent, time-varying parameter and long-memory models 2.5. Nonparametric models 3. Testing linearity 3.1. Testsagainst a specific alternative 3.2. Testswithout a specific alternative 3.3. Constancy of conditional variance
5.1. Kitagawa's grid approximation for nonlinear, non-normal state-space 5.2.
models Extended Kalman filter
5.3.
Other approaches to nonlinear state-space models
References
3073 3076 3077 3077
xxvi
Contents of Volume I V
Chapter 51
Structural E s t i m a t i o n of M a r k o v Decision Processes JOHN RUST 1. 2.
3082 3088
Introduction Solving M D P ' s via d y n a m i c p r o g r a m m i n g : A brief review 2.1. Finite-horizon dynamic programming and the optimality of Markovian decision rules 2.2. Infinite-horizon dynamic programming and Bellman's equation 2.3. Bellman'sequation, contraction mappings and optimality 2.4. A geometric series representation for MDP's 2.5. Overview of solution methods 3. E c o n o m e t r i c m e t h o d s for discrete decision processes 3.1. Alternative models of the "error term" 3.2. Maximum likelihood estimation of DDP's 3.3. Alternative estimation methods: Finite-horizon DDP problems 3.4. Alternative estimation methods: Infinite-horizon DDP's 3.5. The identification problem 4. Empirical applications 4.l. Optimal replacement of bus engines 4.2. Optimal retirement from a firm References