Controlled degradation of yeast tRNAPhe by spleen phosphodiesterase in the presence of ethidium bromide

Controlled degradation of yeast tRNAPhe by spleen phosphodiesterase in the presence of ethidium bromide

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Pages 4 7 7 - 4 8 3 Vol. 152, No. 1, 1988 April 15, 1988 CONTROLLED DEORADATIONOF YEAST tRNA Pbe...

830KB Sizes 0 Downloads 62 Views

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Pages 4 7 7 - 4 8 3

Vol. 152, No. 1, 1988 April 15, 1988

CONTROLLED DEORADATIONOF YEAST tRNA Pbe BY SPLEEN PHOSPH£~IESTERASE

IN THE PRESENCE OF ETHIDIUH BROHID£

Z b i g n i e w d. LeSniKowsKi

Polish

Academy o f S c i e n c e s , C e n t r e o f M o l e c u l a r and M a c r o m o l e c u l a r Studies, Department of Bioorganic Chemistry 9 0 - 3 6 £ LOdZ, Boczna 5, P o l a n d

Received March 8, 1988

SUMMARY: D e g r a d a t i o n o f y e a s t tRNA Phe W i t h spleen phOSphodiesterase in t h e p r e s e n c e o f e t h i d i u m b r o m i d e has been s t u d i e d . I t was f o u n d t h a t in t h e P r e sence of the intercalating dye, the digestion i s h a l t e d a f t e r a l i m i t e d number of nucleotides i s r e m o v e d , P o s s i b l e e x p l a n a t i o n s o f t h e o b s e r v e d Phenomenon in c o n n e c t i o n w i t h t R N A - e t h i d i u m brOmide c o m p l e x f o r m a t i o n a r e d i s c u s s e d . © 1988 A c a d e m i c

Routine

Press,

application

structurally still

Inc.

a

of

modified matter

the total tRNAs,

of

future.

tRNA's structure-function natural tRNA

digestion.

fragments

can be o b t a i n e d

Both,

chemical

emPloYed.

TI3e a n t i c o d o n

(6,10,11),

3'-terminal

cally

misacylated

tRNAs f r o m t h e i r Relatively shortened rature

It

3"-end,

less

(7-9)

for

preparation

the first

i s one o f t h e r e a s o n s why in t h e s t u d i e s

of

chemically

are

of

has

by e n d o n u c l e o l y t i c as w e l l

as

a

major

product

according

cleavage or exonucleolytic

enzymatic

tools

for

methods

(10-15)

anticodon

limited

(15).

Unfortunately

to the "retardation

this sites"

of chemi-

degradation

of

tRNA S t u d i e s .

been p a i d t o t h e P r e p a r a t i o n

tRNA w i t h

are

lOOp c l e a v a g e

(5) o r s y n t h e s i s

b o t h based on

useful

of

altered

in a w i d e use ( 4 - 6 ) .

spleen

In t h e c a s e o f y e a s t tRNA Pne, t h e tRNA t r u n c a t e d as

and e n z y m a t i c a l l y

of

t h e a m i n o a c y l s t e m . The m e t h o d d e s c r i b e d

i s b a s e d on t h e d i g e s t i o n

fragments

efforts

and is

tRNA Phe ( 1 4 ) ,

attention

natural (1-3)

r e p l a c e m e n t b a s e d on s p e c i f i c

provide

of

successful

a m i n o a c i d s t e m base changes

yeast

5'-terminus

of

relationship,

tRNAs and t h e i r fragments

synthesis

in s p i t e

tRNAS w i t h in the

plnospnodiesterase

by £7 n u c l e o t i d e s

approach usually pattern

a

lite(15).

is

isolated

yields

several

(15,16).

One o f t h e m a i n g o a l s o f o u r s t u d y was t o wor~ o u t t h e m e t h o d o f r e m o v i n g p o s sibly spleen

short

oligoribonucleotides

i~ospiqodiesterase

Abbreviations: diesterase.

f r o m t h e tRNA 5 ' - t e r ~ n i n u s .

towards the three-dimensional

y e a s t tRNAPhesPDE: y e a s t tRNA Phe t r e a t e d

477

Tl~e s e n s i t i v i t y

structure with

of

of the sub-

spleen

I~OSpho-

0006-291X/88 $1.50 Copyr~ht © 1988byAcademic Press, Inc. Allrighuofreproduction in anyform rese~ed.

Vol. 152, No. 1, 1988

strate acids making

(17)

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

and t h e Known f a c t

by i n t e r c a l a t i n g use

intercalating

of

agents

(18,19),

dye i n t e r a c t i o n .

is believed

protection

of

particular

For the controlled ethidium

t o Rave m a j o r

sites

in

p r o m p t e d us t o a p p r o a c h t h i s

t h e p r o m o t i o n o f new r e t a r d a t i o n

by spleen phospl~odiesterase, agent

of

site(s)

binding

sites

p r o b l e m bY

as a r e s u l t

digestion

b r o m i d e was c h o s e n .

nucleic

of

of yeast This

in the acceptor

tRNA-

tRNA Phe

intercalating

stem

of

yeast

tRNA Phe ( 2 0 , 2 1 ) .

HATER I ALS AND METHODS Y e a s t tRNA Phe was p u r c h a s e d f r o m B o e h r i n g e r Mannheim (1100 p m o l / A 2 6 0 u n i t ) and Institute of Bioorganic C~emistry, P o l i s h Academy o f S c i e n c e s , Pozna~, P o l a n d [1170 pmol/A260 unit after pretreatment with CTP (ATP): tRNA n u c l e o t i d y l transferase]. AlKaline phospllatase from E.coli (EC ~ . 1 , ~ . 1 ) , Polynucleotide K i n a s e f r o m T4 i n f e c t e d E . c o l i B (EC 2 . 7 . 1 . 7 . 8 ) and n u c l e a s e P1 f r o m P e n i c i l lium citrinum (EC 3 . 1 . ~ 0 . x ) w e r e f r o m P b a r m a c i a , Plsospl~odiesterase II from B o v i n e S p l e e n (EC 3. t . 1 6 . 1 ) and e t b i d i u m b r o m i d e w e r e p u r c h a s e d f r o m Sigma. [y_~2p] ATP (5000 C i / m ~ o l ) was PUrChased f r o m A m e r s h a m . ^ c r y l a m i d e and N,N'-bisacrylamide w e r e f r o m B i o m o l F e i n c h e m i K a l i e n GmDH, u r e a was f r o m BRL, tris(hydroxymethyl)aminomethane was f r o m J . T . B a K e r Clsemicals B . V . , b o r i c a c i d , EDTA, magnesium c h l o r i d e , sodium acetate were Merck products,

Gel e l e c t r o p h o r e s i 5 Denaturating polyacrylamide g e l s ( 2 0 0 x 2 0 0 x O . 5 mm) c o n t a i n e d lOX ( w / v ) a c r y l amide/N,N'-methylenebisacrylamide ( 1 9 : 1 . ) , 7M u r e a , 90 mR T r i s - b o r a t e , pH 8 . 3 , and 2 mR EDTA ( 2 2 ) . E l e c t r o p l ~ o r e s i s was u s u a l l y c a r r i e d o u t a t 3 0 0 - 5 0 0 V, The r u n s w e r e t e r m i n a t e d when t h e f r o n t o f b r o m o p r ~ n o l b l u e m a r k e r was a t t h e D o t tom o f t h e g e l . Analytical gels were stained wit~ methylene blue or autoradiograpl~ed by using Agfa-Gevaert 0 5 r a y M~ film. In the case o f preparative gels, RNA bands were located by U V shadowing or autoradiograplsy, cut out with a razor blade and recovered from tl~e gel by extraction (23). L)epho~phorylation The r e a c t i o n m i x t u r e c o n t a i n i n g 2 0 , 0 A260 u n i t s o f y e a s t tRNA Plqe and t 4 u n i t s o f E . c o l i a l k a l i n e p h o s p h a t a s e i n 400 pl o f 25 rnM T r i s - H C I , pH 8 . 0 , was inc u b a t e d f o r 30 m i n a t +50Oc, t h e n EDTA and d i t h i o t h r e i t o l w e r e added t o f i n a l c o n c e n t r a t i o n o f 4 rnH and 3 mR, r e s p e c t i v e l y . The i n c u b a t i o n was c o n t i n u e d f o r 15 m i n a t r o o m t e m p e r a t u r e and rise r e a c t i o n m i x t u r e was e x t r a c t e d w i t h 200 pl o f p h e n o l s a t u r a t e d w i t h b u f f e r c o n t a i n i n g 25 mR T r I S - H C I , pH 8 , 0 , 4 mR EDTA and 3 m R d i t h i o t h r e i t o l . The p h e n o l f r a c t i o n was r e e x t r a c t e d w i t h 200 pl of buffer as above saturated with Phenol. W a t e r fractions were combined, extracted six times with 200 Ul portions of ethyl ether tl~en I M NaOAC, pH 6.2, was added tO final concentration 0.2 M and the product was precipitated with four volumes of ethanol. Tl~e resulting solution was chilled with liquid nitrogen and left for 30min at -20Oc. The Pellet of dephosPnorylated yeast tRNA Phe was centrifuged o f f , washed w i t h e t h a n o l and e t h y l e t h e r and d r i e d u n d e r vacuum. P r e p a r a t i v e d e g r a d a t i o n o f 5 " - d e p D o s p D o r y l a t e d yeas~ tRl~ PDe b y ~ p l e e n p h o $ p h o d i e s t e r a s e i n tne p r e s e n c e o f e t ~ i d i u m O r o m i d e D e p h o s p h o r y l a t e d y e a s t tRNA Phe, 5 . 0 A260 u n i t s in 20 pl 10 n~ NaOAC, pH 6 . 2 , was h e a t e d f o r t 0 min a t +60°C t h e n i t was a l l o w e d t o c o o l down s l o w l y t o r o o m t e m p e r a t u r e i n rise c o u r s e o f a b o u t 2 h. To t h i s s o l u t i o n 1 4 . 5 Pl lOOrnM NaOAc, pH 6 . 2 , and 66 Pl 5 n~l e t N i d i u r n b r o m i d e w e r e a d d e d . The r e s u l t i n g m i x t u r e was i n c u b a t e d f o r 30 min a t +4°C. The r e a c t i o n was t h e n i n i t i a t e d by t h e a d d i t i o n o f 66 p l ( 6 , 6 u n i t s ) o f s p l e e n p h o s p h o d i e s t e r a s e . Final volume of reaction m i x t u r e was 165 p l , concentration o f NaOAc, e t h i d i u m b r o m i d e and s p l e e n pl~osp h o d i e s t e r a s e w e r e 10 mM, 2 mM and 40 u n i t s / m l , respectively. After 15-20 min

478

Vol. 152, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

o f t h e i n c u b a t i o n a t +20°C 1 M NaOAC pH 6 . 2 was added t o a f i n a l concentration of 0.2 M and t h e p r o d u c t was p r e c i p i t a t e d with four volumes of ethanol. The resulting s o l u t i o n was c o o l e d down w i t h l i q u i d n i t r o g e n and l e f t f o r 30 m i n a t -20°C, The P e l l e t o f 5 " - t r u n c a t e d y e a s t tRNA Phe was c e n t r i f u g e d down, washed w i t h e t h a n o l and e t h y l e t h e r , and d r i e d u n d e r vacuum. Labeling of 5'-ends w i t h T4 p o l y n u c l e o t i d e K i n a s e / [ y - ~ 2 P ] A T P was p e r formed according to the literature method (24). Two d i m e n s i o n a l a n a l y s i s o f t h e 5 " - t e r m i n a l n u c l e o t i d e was p e r f o r m e d as d e s c r i b e d (25) e x c e p t t h a t f o r t h e c h r o m a t o g r a p h y in t h e s e c o n d d i m e n s i o n , n-butyl alcohol/acetic acid/H20 (5:£:~, v / v / v ) as s o l v e n t s y s t e m was used i n s t e a d of isopropyl alcohol/concentrated HCI/H20 ( 7 0 : 1 5 : 1 5 , v / v / v ) , RESULTS AND DISCU6SION Spleen Pl3osphodiesterase hydrolyses ~'-rnononucleotides ral

fragw~nts

gestion mide,

of tlqe

cleotides

(17).

nucleic

The t r e a t m e n t

shortened at their

degradation is removed,

process yielding

o f tRNAs w i t h

5'-end

Y e a S t tRNA Phe i s p e r f o n l l e d

a c i d s f r o m t h e 5 " - e n d by r e l e a s i n g

(15.16).

t h e enzyme l e a d s t o s e v e -

We h a v e f o u n d t h a t

in the presence of

is halted

after

merely slightly

l-2mM

only a limited

if

the di-

ethidium

bro-

number o f n u -

s h o r t e n e d tRNA (FIGURE

1

and

FIGURE 2 ) . The

5'-terminal

was d e t e r m i n e d lysis ged

of

nucleoside

as A by means o f

a n u c l e a s e Pt d i g e s t

autoradiograPhy

three

tRNA Phe n a m e l y AS,

intact

traces of

In an e f f o r t

in tRNA,

A was e s t a b l i s h e d . the

thin-layer

5"-[3£P]-labeled

in t h e 5 " - p a r t

site

Y e a s t tRNA PIle ( y e a s t tRN&Pnespl) E)

two dimensional

also

A9 and A14.

promoted retardation terminal

of

revealed

adenosine residues

and o f

of 5"-truncated

yeast

There are

the

of

aminoacyl

to determine

By c o m P a r i n g t h e c h a i n the

A

Prolon-

o f G and U (FIGURE ~ ) ,

the exact position

y e a s t tRNA Phe w i t h

chromatograPhy anatRNAPhesPDE,

stem

the ethidium

YeaSt bromide

o f t h e y e a s t tlRNAPhe 5 ' -

lengths of

ladder obtained

on

the 5"-truncated a

8X

polyacryl-

3'

£

c 5'. A

G.C C.G G.C G'U A.U U.A U " AG U

DD O

GGA

ACA

C C Urn1A G

mG CU u CG U G A ~ ~

m7G

m2G A G C-G C'G A.U G -mSC A. CF.

tOA

u

Y

C~A

F I G U R E I. S e c o n d a r y s t r u c t u r e of y e a s t tRNA Pl3e siqowing presumable e t h i d i u m broml Cle inducecl s p l e e n p h o s P h o d ie s t e r a s e r e t a r d a t ion s ire.

479

VOI. 152, No. 1, 1988

BIOCHEMICAL A N D BIOPHYSICAL RESEARCH COMMUNICATIONS

AB

C XC

pA

Q

®"

I

FIGURE 2. lOX P o l y a c r y l a m i d e - T M urea g e l , Lane A: 5 " - d e p ~ o s p l q o r y l a t e d y e a s t tRNAP~e (0.15 A260). Lane B: 5'-depiqospl~orylated y e a s t tRNA Phe (0,3 A260), s p l e e n pnosplqodiesterase (0.4 u n i t ) , lOmM sodium a c e t a t e , pH 6 , 2 (10 p l ) , 30 min, 20°C, Lane C: 5 " - d e p ~ o s p l 3 0 r y l a t e d y e a s t tRNAPhe (0.3 A260), s p l e e n phospl~odiesterase (0.4 u n i t ) , lOmH sodium a c e t a t e , pH 6,2, 1 rnH e t h i d i u m bromide (10 p l ) , 30 min, 200C. FI6URE 3. A n a l y s i s o f tl'~e 5 ' - t e r m i n a l n u c l e o t i d e o f 5 " - [ 3 2 P ] - I a o e l e d 5 " t r u n c a t e d y e a s t tRNA Pl~e by two dimensional c e l l u l o s e t ~ i n - l a y e r chromatography (Nuclease PI d i g e s t ) . F i r s t dimension: i s o l ~ J t y r i c a c i d / O . 5 H armnonia (5:3, v / v ) , second dimension: n - b u t y l a l c o l l o l / a c e t i c acid/H£O ( 5 : 2 : 3 , v/v/v),

arnide

sequencing

gel

tRNA PI3e i s s h o r t e r adenosine

residue

The effect

of

phorylated

yeast

(data

than the in yeast

the

not

was

against

concentration

digestion

the

of

have 0.25-5

more y e a s t

Concentrations

b r o m i d e was a p p l i e d ,

spermine

and

not

of

ethidium

The 5"-terminal

b r o m i d e on t h e c l e a v a g e

8Permidine)

observed

a

mH c o n c e n t r a t i o n

The e f f e c t

decrease

of

ceased,

Na + i o n a l o n e

has little

concentration

of

ethidium

most probably effect

sodium acetate

higher for

binding

excess of excess)

sites

buffer

reasons

frag-

of

impro1-2

the degradation

sPecificity

,

rnH

tRNA in well

as

in tRNA ( 2 6 ) ,

SPecificity

(60 mH) a n d i n t h e

480

short

we

in t h e r a n g e o f

Mg2+ o v e r e t h i d i u m ) .

due t o enzyme i n h i b i t i o n

on d i g e s t i o n

the sub-

t h a n 2 m M do n o t

practical

In

concentration

Even tl3ough Mg2+ ( a s

the digestion

(five-fold

o f Mg2+ ( f i f t y - f o l d

of

o f Mg 2+ on t h e d i g e s t i o n

i n FIGURE 5.

competes for

resistance

as t h e e t h i d i u m

tRNAPhesPDE 7 6 - 1 3 and f e w e r

of ethidium

of dephos-

i 8 Shown in FIGURE 4,

the specific

and t h e r e f o r e

i s shown

n~l Mg£+ c o n c e n t r a t i o n

has almost

ethidium

agent,

of degradation

specificity

presence

the 5'-truncated

b y t h e enzyme i n c r e a s e d

As a r e s u l t

ments were observed.

ethidium

was f o u n d t h a t

b y 13 n u c l e o t i d e s .

tRNA Plqe b y S p l e e n P l 3 O S p h o d i e s t e r a s e

increased.

ve the

it

molecule

tRNAPhesPDE sI3oUId be t h u s A14.

t h e r a n g e o f 0 - 1 mM i n t e r c a l a t i n g strate

Shown)

intact

of

yeast

(17),

At

50

tRNA PI3e

Monovalent

however at a

high

absence of ethidium,

Vol. 152, No. 1, 1988

A B

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

A B C D E

C D E w

t

XE

XC

®

®

10X Pal y a c r y I ami de-TM urea ge I, FIGURE 4. D i g e s t i o n o f 5"-depttospt3orylated y e a s t tRNAPhe by spleen p h o s p n o d i e s t e r a s e in the presence o f e t h i d i u m bromide - e f f e c t o f e t h i d i u m c o n c e n t r a t i o n . Lane A: 5'-depRosPt~Orylated y e a s t tRNA Pbe (0.~ A260), spleen p n o s p h o d i e s t e r a s e (0,4 u n i t ) , 10 mM sodium a c e t a t e , iol4 6.2, 1 mH e t h i d i u m bromide (10 p l ) , 30 rain, 2K)°C. Lane B: as above, 0 . 5 mM etMidium. Lane c: as above, 0.25 mM e t h i d i u m . Lane D: as above b u t w i t h o u t e t h i d i u m . Lane E: 5 ' - d e p l 3 o s p ~ o r y l a t e d y e a s t tRNAPl~e (0.15 ^260)" FIGURE 5. IOX P o l y a c r y l a m i d e - 7M urea g e l , D i g e s t i o n o f 5"-depl3ospi3orylated y e a s t tRNAP13e by spleen pl3ospl3odiesterase in the presence o f e t n i a i um 13romicle - e f f e c t o f Mg2+ concentrat ion.

Lane A: 5'-depl~osprK)rylated y e a s t tRNAPtm (0.15 ^E60)' Lane B: 5'-depl~osPl30rylated y e a s t tRNAPr~ (0.~ A260), spleen pr~spt~odiesterase (0.4 u n i t ) , 10 rnH so(liurn a c e t a t e , pH 6.2, 1 mM etl~idium bromide, 15 rain, ¢~:)0C. Lane C: as above, 0 . 5 mM MgCIp. Lane D: as above, 5 mM MgCI2. Lane E: as above, 5O mM MgCI 2.

traces

of

addition possible spleen (2T)

yeast

t o Y e a S t tRNA Pl~e 7 6 - 2 7 explanations

for

phosphodiesterase

a mode t h a t

part

of

£x-ystallograpl3ic the

groups with spleen

P-IO

(28)

after

the molecule

fragment

the observed

anotl3er

of

tRNA c o n f o r m a t i o n

removing a defined

is not

accessible

d a t a shows t h a t

loop of yeast

possible

acts

one of

phenomena w o u l d r e q u i r e show

the

more detailed

possibility

of

product,

digestion

of

One

yeast

b r o m i d e may

by the

of

in tl3e

tRNA PT~ b y

be

changing

intercalating

number of nucleotides

the ethidium

binding

hydrogen bonded with

of

(29].

limited

This

agent

in

the remaining

The e x a c t studies, sPecific

481

sites its

finding

degradation

in t h e p r e s e n c e o f e t h i d i u m :

as " a s p r a g " .

( d a t a n o t shown)

t o enzyme a c t i o n .

tRNA Phe,

explanation

Pl~osphodiesterase dye

as a m a j o r

limited

t o baCKbone Pl~osphate P - 8 and P-15

tercalating report

(?)

were detected

in t h e p r e s e n c e o f e t h i d i u m

and s t a b i l i z a t i o n

such

in

tRNAPhesF1) E 7 6 - 1 3 f r a g m e n t

that

of

and e f f e c t i v e

is

located

yeast

of

amino

consistent tRNA Pl3e by

a molecule

interpretation The results

is

exocy¢lic

of

in-

the observed

presented shortening

in

this

of y e a s t

Vol. 152, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

tRNA Phe a t t h e 5 " - e n d y i e l d i n g structure

-

function

fication.

Our r e s u l t s

etbidium

bromide binding

Studies

on

well

presence of different

tRNA Phe

76-13

relationship

studies

also support

the assumption

sites

the reconstruction

as on t h e d i g e s t i o n

yeast

fra£vnent

and a l s o f o r

o f y e a s t tRNA Pne e x i s t s

that

further one

intercalating

tRNA8 w i t h

for

5'-endmodiof

the

major

a t t h e P - I O lOOp.

of the 5"-end of 5'-truncated

of other

suitable

y e a s t tRNA Pl~e as

SPleen p n o s p n o d i e s t e r a s e

a g e n t s a r e in p r o g r e s s

in

the

in o u r L a b o r a t o r y .

ACKNC~LEDGEMENTS This WOrl< was done in p a r t d u r i n g t h e a u t h o r ' s v i s i t in t ~ e Max-PlancK I n Stitute for Experimental Medicine, Prof. F r i t z Crarner L a b o r a t o r y , Gottingen, 1987. F i n a n c i a l Support o f Max-PlancK G e s e l l s c h a f t i s acKnowledged.

REFERENCES 1.

2.

OhtsuNa, E . , Tanal~a, S . , TanaKa, T . , HiyaKe, T . , Mar~13arn, A . F . , NaKagawa, E . , w a K a b a y a s h i , T . , Naniyama, Y . , N l S h i k a v a , S . , FuKumoto, R., Uemura, H . , D o i , T . , ToKunaga, T. and II
2_!, 3,

4. 5. 6. 7, 8, 9. t0. 11. 12. 13. 14. 15. 16, t7. 18. 19. £0. 21. 22.

ale-a19.

k o w a r y , P . , Sampson, d . , M i l i g a n , d , , Groebe, D. and OnlenbecK, O,C. (1986) in s t r u c t u r e and Dynamics o f RNA (van K n i p P e n b e r g , P.H. and Hi I h e r s , C.W. e d s . ) , NATO ASI S e r i e s , V o l . t10, pp. 6 9 - 7 6 , Plenum P r e s s , New Y o r ~ . T h i e b e , R., H a r b e r s , K. and z a c n a u , H.G. (197~_) E u r . J . B i o c n e m . 266, 144-152. D o i , T . , M o r i o K a , H . , H a t s u g i , d , , OntsuKa, E, and I K e h a r a , H. (1985) FEBS L e t t . 190, 125-128, a) B r u c e , A.G, and U n l e n b e c k , O.C, (1982) B i o c h e m i s t r y 2_J, 855-861. b) B r u c e , A.G, and UnlenbecK, O,C. (1982_) B i o c l l e m i s t r y 21, 3921-3936, T n i e b e , R. and z a c n a u , H.G, (1971) Methods Enzymol, 20, t 7 9 - 1 8 2 . N i s h i K a w a , K. and N e c h t , S.M. (1982) d , B i o l . O l 3 e m . 257 10836-10539. W i n t e r m e y e r , W. and Zachau, H.G. (1975) FEBS L e t t . 58, 306-309. D o i , T . , Yamane, A , , M a t s u g i , J . , OhtsuKa, E. and INehara, M. (1985) NUcl , A c i d s Res, t_33, 3685-3697, OlqtsuKa, E , , D o i , T , , FuKumoto, R . , M a t s u g i , J, and II~ehara, N. (1983) N u c I . A c i d s Res. 11, 3863-3872. Uemura, H . , I m a i , M., Olqtsuka, E . , I K e h a r a , H. arid $611, D, (1982) NU¢l . A c i d s Re8. 1__0, 6531-6539. S t u l b e r g , M.P. and Isnam, K,R. (1974) Methods EnzYmol. 2 9 , 477-482. H e c K l e r , T , G . , Chang, L i - H o , Zama, Y . , NaKa, T , , Cllorghade, H.S. and H e c n t , S.M. (1984) B i o c t 3 e m i s t r y 2_~, 1468-1473. P h i l i p p s e n , P, and Zacnau, H.G. (1974) Methods EnzYmol. 2 9 , 475-477. P h i l i p p s e n , P, and Zacnau, H,G, (1972) B i o c n i m . B i o p n y s , A c t a £77, 523-5~8. B e r n a r d i , A. and B e r ~ a r d i , G. ( t 9 7 t ) Tl~e Enzymes 4, 329-336. H a r b e r s , K . , T h i e b e , R. and Zachau, H.G, (1972) E u r , d . B i o c l q e m . 26, 13,~-143. T a n n e r , N.K. and Cech, T.R. (1985) N U C I . A c i d 8 Res. 1~3, 7759-7779. J o n e s , C . R . , B o l t o n , P.H. and Kear~ns, D.R. (1978) B i o c l ~ e m i s t r y 1~7, 601-607 Liel3man, M. R u b i n , O. and S u n d a r a l i n g a m , M. (1977) P r o C . N a t I . A c a d . Sci.USA 744, 4821-4825. Donis-Keller, H . , Maxam, A.M. and G i l b e r t , W. (1979) N u c I . A c i d S Res. 4 , £5£7-£538.

482

Vol. 152, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

23. Haxam, A.M. and G i l b e r t , W. (1980) Methods Enzymol. 65, 499-560. 24. Chaconas, G., van de Sande, J.H. and Church, R,B. (1975) Bioc~em.Biophys.Res.Cofm~n, 6._.66, 962-969, 25, KuChino, Y,, Kato, M., S u g i s a k i , H, and Nisnimura, S. (1979) NucI.Acid8 Res. 6, 3459-3469. £6. $aKai, T . T . , T o r g e t , R., Freda, C.E. and Cohen, S.S. (1975) NUCI.ACiO9 Res. 2, 1005-10££ 27. N i e l s e n , P.E. (1981) [email protected] 655, 89-95. 28, G o l d f i e l d , E.M., Luxon, B.A,, Bowie, V. and Gorenstein, D.G. (1983) B i o c h e m i s t r y 22, 3336-3344. 29. Q u i g l e y , G.J., T e e t e r , M.M. and Rich, A, (1978) Proc.Natl.Acad.SCi.USA 75, 64-68.

483