Convergence and certain control conditions for hybrid iterative algorithms

Convergence and certain control conditions for hybrid iterative algorithms

Applied Mathematics and Computation 219 (2013) 10325–10332 Contents lists available at SciVerse ScienceDirect Applied Mathematics and Computation jo...

260KB Sizes 0 Downloads 39 Views

Applied Mathematics and Computation 219 (2013) 10325–10332

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Convergence and certain control conditions for hybrid iterative algorithms q Shuang Wang School of Mathematical Sciences, Yancheng Teachers University, Yancheng, 224051 Jiangsu, PR China

a r t i c l e

i n f o

a b s t r a c t Very recently, Yao et al. (2010) [4] proposed a hybrid iterative algorithm. Under the parameter sequences satisfying some quite restrictive conditions, they derived a strong convergence theorem in a Hilbert space. In this paper, under the weaker conditions, we prove the strong convergence of the sequence generated by their iterative algorithm to a common fixed point of an infinite family of nonexpansive mappings, which solves a variational inequality. An appropriate example, such that all conditions of this result that are satisfied and that other conditions are not satisfied, is provided. Moreover, the method of our paper is different from the method in Yao et al. (2010) [4]. Ó 2013 Elsevier Inc. All rights reserved.

Keywords: Strong convergence Variational inequality Fixed points k-Lipschitzian g-Strongly monotone Hilbert spaces

1. Introduction Let H be a real Hilbert space. Recall that a mapping T : H ! H is said to be nonexpansive if kTx  Tyk 6 kx  yk; 8x; y 2 H. We use FðTÞ to denote the set of fixed points of T, that is FðTÞ ¼ fx 2 H : Tx ¼ xg. Yamada [1] introduced the following hybrid iterative method for solving the variational inequality

xnþ1 ¼ Txn  lkn FðTxn Þ;

n P 0;

ð1:1Þ 2

where F is a k-Lipschitzian and g-strongly monotone operator with k > 0; g > 0; 0 < l < 2g=k . Under a sequence fkn g of P 2 real numbers in (0, 1) satisfying the conditions: (C1) limn!1 kn ¼ 0, (C2) 1 n¼0 kn ¼ 1 and (C3) limn!1 ðkn  knþ1 Þ=knþ1 ¼ 0, he proved that fxn g generated by (1.1) converges strongly to the unique solution of variational inequality

hF ~x; x  ~xi P 0;

8x 2 FðTÞ:

An example of sequence fkn g which satisfies conditions (C1)-(C3) is given by kn ¼ 1=nr , where 0 < r < 1. We note that the condition (C3) was first used by Lions [2]. It was observed that Lion’s conditions on the sequence fkn g excluded the canonical choice kn ¼ 1=n. This was overcome in 2003 by Xu and Kim [3], if fkn g satisfies conditions (C1), (C2) and (C4)

ðC4Þ : lim kn =knþ1 ¼ 1; n!1

or equivalently;

lim ðkn  knþ1 Þ=knþ1 ¼ 0:

n!1

It is easy to see the condition (C4) is strictly weaker than condition (C3), coupled with conditions (C1) and (C2). Moreover, (C4) includes the important and natural choice f1=ng of fkn g. Very recently, motivated by the above work, Yao et al. [4] considered the following algorithm: for an arbitrary point x0 2 C,

q

Supported by the Natural Science Foundation of Yancheng Teachers University under Grant (12YCKL001). E-mail addresses: [email protected], [email protected]

0096-3003/$ - see front matter Ó 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.04.004

10326

S. Wang / Applied Mathematics and Computation 219 (2013) 10325–10332



yn ¼ xn  kn Fðxn Þ; xnþ1 ¼ ð1  an Þyn þ an W n yn ;

n P 0;

ð1:2Þ

where F is a k-Lipschitzian and monotone operator on H; W n is a W-mapping defined by below (2.4). They proved  g-strongly  if k 2 ½1; 1Þ; g 2 ð0; 1Þ, an 2 c; 12 for some c > 0 and fkn g satisfying appropriate conditions, the sequence fxn g and fyn g defined by (1.2) converge strongly to x 2 \1 n¼1 FðT n Þ, which solves the variational inequality

hFx ; x  x i P 0;

8x 2 \ 1 n¼1 FðT n Þ:

We remind the reader of the following fact: in order to guarantee the strong convergence of the iterative sequence fxn g, we need k 2 ½1; 1Þ; g 2 ð0; 1Þ and an 2 ½c; 12 for some constant c > 0 in Yao et al. [4]. The assumptions are quite restrictive. The purpose of this paper is twofold. Firstly, we use contractions to regularize the nonexpansive mapping T to propose a scheme that generates a net fxt gt2ð0;g=k2 Þ and prove the strong convergence of fxt g to a fixed point x of T which solves the variational inequality hFx ; x  ui 6 0; 8u 2 FðTÞ. Secondly, under the weaker conditions, we prove the sequence generated by the iterative algorithm (1.2) converges to a common fixed point of an infinite family of nonexpansive mappings, which solves variational inequality hFx ; x  x i P 0; 8x 2 \1 n¼1 FðT n Þ. Moreover, the method of our paper is different from the method in Yao et al. [4]. An appropriate example, such that all conditions of this result that are satisfied and that other conditions are not satisfied, is provided. The advantages of our results in this paper are that weaker and fewer restrictions are imposed on parameters. 2. Preliminaries Let H be a real Hilbert space with inner product h; i and norm kk. For the sequence fxn g in H, we write xn * x to indicate that the sequence fxn g converges weakly to x. xn ! x means that fxn g converges strongly to x. In a real Hilbert space H, we have

kx  yk2 ¼ kxk2 þ kyk2  2hx; yi;

8x; y 2 H:

ð2:1Þ

A mapping F : H ! H is called k-Lipschitzian if there exists a positive constant k such that

kFx  Fyk 6 kkx  yk;

8x; y 2 H:

ð2:2Þ

F is said to be g-strongly monotone if there exists a positive constant g such that

hFx  Fy; x  yi P gkx  yk2 ;

8x; y 2 H:

ð2:3Þ

~ > 0 such that Let A be a strongly positive bounded linear operator on H, that is, there exists a constant c

~kxk2 ; hAx; xi P c

8x 2 H:

A typical problem is that of minimizing a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

min

x2FðTÞ

1 hAx; xi  hx; bi; 2

where b is a given point in H. Remark 2.1. From the definition of A, we note that a strongly positive bounded linear operator A is a kAk-Lipschitzian and c~-strongly monotone operator. In order to prove our main results, we need the following Lemmas. Lemma 2.2 ([5]). Let H be a Hilbert space, C a closed convex subset of H, and T : C ! C a nonexpansive mapping with FðTÞ – ;, if fxn g is a sequence in C weakly converging to x and if fðI  TÞxn g converges strongly to y, then ðI  TÞx ¼ y. Lemma 2.3 ([6]). Let fxn g and fzn g be bounded sequences in Banach space E and fcn g be a sequence in ½0; 1 which satisfies the following condition:

0 < lim inf cn 6 lim sup cn < 1: n!1

n!1

Suppose that xnþ1 ¼ cn xn þ ð1  cn Þzn ; n P 0, and lim supn!1 ðkznþ1  zn k  kxnþ1  xn kÞ 6 0. Then limn!1 kzn  xn k ¼ 0. Lemma 2.4 ([7,8]). Let fsn g be a sequence of non-negative real numbers satisfying

snþ1 6 ð1  kn Þsn þ kn dn þ cn ;

n P 0;

10327

S. Wang / Applied Mathematics and Computation 219 (2013) 10325–10332

P1 where fkn g; fdn g and fcn g satisfy the following conditions: (i) fkn g  ½0; 1 and n¼0 kn ¼ 1, (ii) lim supn!1 dn 6 0 or P1 P1 n¼0 kn dn < 1, (iii) cn P 0ðn P 0Þ; n¼0 cn < 1. Then limn!1 sn ¼ 0. Let fT i : H ! Hg be a family of infinitely nonexpansive mappings, fni g be a real sequence such that 0 6 ni 6 b < 1; 8i P 1. For any n P 1 define a mapping W n : H ! H as follows:

8 U n;nþ1 ¼ I; > > > > U n;n ¼ nn T n U n;nþ1 þ ð1  nn ÞI; > > > >U > n;n1 ¼ nn1 T n1 U n;n þ ð1  nn1 ÞI; > > > > < U n;k ¼ nk T k U n;kþ1 þ ð1  nk ÞI > > > U n;k1 ¼ nk1 T k1 U n;k þ ð1  nk1 ÞI > > > >  > > > > > > U n;2 ¼ n2 T 2 U n;3 þ ð1  n2 ÞI; : W n ¼ U n;1 ¼ n1 T 1 U n;2 þ ð1  n1 ÞI:

ð2:4Þ

Such a mapping W n : H ! H is called a W-mapping generated by T n ; T n1 ; . . . ; T 1 and nn ; nn1 ; . . . ; n1 . We have the following crucial conclusion concerning W n . We can find them in [9–12]. Now we only need the following similar version in Hilbert spaces. Lemma 2.5. Let H be a real Hilbert space, fT i : H ! Hg be a family of infinitely nonexpansive mappings with \1 i¼1 FðT i Þ – ;; fni g be a real sequence such that 0 < ni 6 b < 1; 8i P 1. Then: (1) (2) (3) (4)

W n is a nonexpansive and FðW n Þ ¼ \1 i¼1 FðT i Þ for each n P 1; For every x 2 H and k 2 N, the limit limn!1 U n;k x exists; If we define a mapping W : H ! H as: Wx ¼ limn!1 W n x ¼ limn!1 U n;1 x, for every x 2 H. Then, FðWÞ ¼ \1 i¼1 FðT i Þ; For any bounded sequence fxn g  H, we have limn!1 kWxn  W n xn k ¼ 0. 2

Lemma 2.6. Let F be a k-Lipschitzian and g-strongly monotone operator on a Hilbert space H with 0 < g 6 k and 0 < t < g=k . qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 Then S ¼ ðI  tFÞ : H ! H is a contraction with contraction coefficient st ¼ 1  tð2g  tk Þ. Proof. From (2.1)–(2.3), we have

kSx  Syk2 ¼ kðx  yÞ  tðFx  FyÞk2 ¼ kx  yk2 þ t2 kFx  Fyk2  2thFx  Fy; x  yi 2

2

6 kx  yk2 þ t 2 k kx  yk2  2tgkx  yk2 ¼ ½1  tð2g  tk Þkx  yk2 2

2

for all x; y 2 H. From 0 < g 6 k and 0 < t < g=k , we have 0 < 1  tð2g  tk Þ < 1 and

kSx  Syk 6 st kx  yk; where

st ¼

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1  tð2g  tk Þ 2 ð0; 1Þ. Hence S is a contraction with contraction coefficient

st . h

3. Main results Let F be a k-Lipschitzian and g-strongly monotone operator on H with 0 < g 6 k; T : H ! H be a nonexpansive mapping. qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 Let t 2 ð0; g=k Þ and st ¼ 1  tð2g  tk Þ, consider a mapping St on H defined by

St x ¼ T½ðI  tFÞx;

x 2 H:

It is easy to see that St is a contraction. Indeed, from Lemma 2.6, we have

kSt x  St yk 6 kT½ðI  tFÞx  T½ðI  tFÞyk 6 kðI  tFÞx  ðI  tFÞyk 6 st kx  yk for all x; y 2 H. Hence it has a unique fixed point, denoted xt , which uniquely solves the fixed point equation

xt ¼ T½ðI  tFÞxt ;

xt 2 H:

ð3:1Þ

Theorem 3.1. Let H be a real Hilbert space. Let T : H ! H be a nonexpansive mapping such that FðTÞ–;. Let F be a k-Lipschitzian 2 and g-strongly monotone operator on H with 0 < g 6 k. For each t 2 ð0; g=k Þ, let the net fxt g be generated by (3.1). Then, as t ! 0, the net fxt g converges strongly to a fixed point x of T which solves the variational inequality:

hFx ; x  ui 6 0;

8u 2 FðTÞ:

ð3:2Þ

10328

S. Wang / Applied Mathematics and Computation 219 (2013) 10325–10332

Proof. We first show the uniqueness of a solution of the variational inequality (3.2), which is indeed a consequence of the strong monotonicity of F. Suppose x 2 FðTÞ and ~ x 2 FðTÞ both are solutions to (3.2), then

hFx ; x  ~xi 6 0

ð3:3Þ

hF ~x; ~x  x i 6 0:

ð3:4Þ

and

Adding (3.3) to (3.4), we gets

hFx  F ~x; x  ~xi 6 0: The strong monotonicity of F implies that x ¼ ~ x and the uniqueness is proved. Below we use x 2 FðTÞ to denote the unique solution of (3.2). Next, we prove that fxt g is bounded. Taking u 2 FðTÞ, from (3.1) and using Lemma 2.6, we have

kxt  uk ¼ kT½ðI  tFÞxt   Tuk 6 kðI  tFÞxt  uk 6 kðI  tFÞxt  ðI  tFÞu  tFuk 6 kðI  tFÞxt  ðI  tFÞuk þ tkFuk 6 st kxt  uk þ t kFuk; that is,

kxt  uk 6

t kFuk: 1  st

ð3:5Þ

Observe that

lim

t!0þ

t 1 ¼ : 1  st g

From t ! 0, we may assume, without loss of generality, that t 6 kg2  , where  is an arbitrary small positive number. Thus, we have 1t st is continuous, 8t 2 ½0; kg2  . Therefore, we obtain

sup



  t g < þ1: : t 2 0; 2   1  st k

ð3:6Þ

From (3.5) and (3.6), we have fxt g is bounded and so is fFxt g. On the other hand, from (3.1), we obtain

kxt  Txt k ¼ kT½ðI  tFÞxt   Txt k 6 kðI  tFÞxt  xt k ¼ tkFxt k ! 0ðt ! 0Þ:

ð3:7Þ



To prove that xt ! x . For a given u 2 FðTÞ, by (2.1) and using Lemma 2.6, we have 2 2 kxt  uk2 ¼ kT½ðI  tFÞxt   Tuk 6 kðI  tFÞxt  ðI  tFÞu  tFuk 6 s2t kxt  uk2 þ t 2 kFuk2 þ 2thðI  tFÞu  ðI  tFÞxt ; Fui

6 st kxt  uk2 þ t 2 kFuk2 þ 2thu  xt ; Fui þ 2t 2 hFxt  Fu; Fui 6 st kxt  uk2 þ t 2 kFuk2 þ 2thu  xt ; Fui þ 2t 2 kkxt  ukkFuk: Therefore,

kxt  uk2 6

t2 2t 2t2 k kFuk2 þ hu  xt ; Fui þ kxt  ukkFuk: 1  st 1  st 1  st

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 From st ¼ 1  tð2g  tk Þ, 2t limt!0 1st hu  xt ; Fui ¼ 0.

we

have

2

limt!0 1t st ¼ 0

ð3:8Þ 2

2t k limt!0 1 st ¼ 0.

and

Observe

that,

if

xt * u,

we

have

x, then by (3.8), we see Since fxt g is bounded, we see that if ft n g is a sequence in ð0; g2   such that tn ! 0 and xtn * ~ k

x. Moreover, by (3.7) and using Lemma 2.2, we have ~ x 2 FðTÞ. We next prove that ~ x solves the variational inequality xtn ! ~ (3.2). From (3.1) and u 2 FðTÞ, we have 2 kxt  uk2 6 kðI  tFÞxt  uk ¼ kxt  uk2 þ t 2 kFxt k2  2thFxt ; xt  ui;

that is,

hFxt ; xt  ui 6

t kFxt k2 : 2

Now replacing t in (3.9) with tn and letting n ! 1, we have

hF ~x; ~x  ui 6 0:

ð3:9Þ

S. Wang / Applied Mathematics and Computation 219 (2013) 10325–10332

10329

That is ~ x 2 FðTÞ is a solution of (3.2), hence ~ x ¼ x by uniqueness. In a summary, we have shown that each cluster point of fxt g (at t ! 0) equals x . Therefore, xt ! x as t ! 0. Setting F ¼ A in Theorem 3.1, we can obtain the following result. Corollary 3.2. Let H be a real Hilbert space. Let T : H ! H be a nonexpansive mapping such that FðTÞ – ;. Let A be a strongly ~ 6 kAk. For each t 2 ð0; c~ 2 Þ, let the net fxt g be generated by positive bounded linear operator with coefficient 0 < c kAk

xt ¼ T½ðI  tAÞxt . Then, as t ! 0, the net fxt g converges strongly to a fixed point x of T which solves the variational inequality:

hAx ; x  ui 6 0;

8u 2 FðTÞ:

Setting F ¼ I, the identity mapping, in Theorem 3.1, we can obtain the following result. Corollary 3.3. Let H be a real Hilbert space. Let T : H ! H be a nonexpansive mapping such that FðTÞ–;. For each t 2 ð0; 1Þ, let the net fxt g be generated by xt ¼ T½ð1  tÞxt . Then, as t ! 0, the net fxt g converges strongly to a fixed point x of T which solves the variational inequality:

hx ; x  ui 6 0;

8u 2 FðTÞ:

Theorem 3.4. Let H be a real Hilbert space. Let F be a k-Lipschitzian and g-strongly monotone operator on H with 0 < g 6 k. Let 1 fT n g1 n¼1 : H ! H be an infinite family of nonexpansive mappings such that \n¼1 FðT n Þ–; and W n be a W-mapping defined by (2.4). Let fkn g be a sequence in ½0; 1Þ and fan g be a sequences in ½0; 1. Assume that P (A1) limn!1 kn ¼ 0 and 1 n¼0 kn ¼ 1; (A2) 0 < c < lim inf n!1 an 6 lim supn!1 an < 1 for some c 2 ð0; 1Þ. For given x0 2 H arbitrarily, let the sequence fxn g be generated by (1.2). Then the sequence fxn g and fyn g converge strongly to a x 2 \1 n¼1 FðT n Þ which solves the variational inequality

hFx ; x  ui 6 0;

8u 2 \1 n¼1 FðT n Þ:

Proof. We proceed with the following steps. Step 1. We claim that fxn g is bounded. From (A1), we may assume, without loss of generality, that 0 < kn 6 g2   for all n, k where  is an arbitrary small positive number. In fact, let u 2 \1 n¼1 FðT n Þ, from (1.2) and using Lemma 2.6, we have

kyn  uk ¼ kxn  kn Fðxn Þ  uk 6 kðI  kn FÞxn  ðI  kn FÞu  kn Fuk 6 skn kxn  uk þ kn kFuk; where

skn

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ¼ 1  kn ð2g  kn k Þ 2 ð0; 1Þ. Then from (1.2) and (3.10), we obtain

ð3:10Þ

kxnþ1  uk ¼ kð1  an Þðyn  uÞ þ an ðW n yn  uÞk 6 kyn  uk 6 ½1  ð1  skn Þkxn  uk þ kn kFuk   kn kFuk : 6 max kxn  uk; 1  skn By induction, we have

kxn  uk 6 maxfkx0  uk; M1 kFukg;

n o where M 1 ¼ sup 1ksnk : 0 < kn 6 kg2   < þ1. Therefore, fxn g is bounded. We also obtain that fyn g, fW n yn g and fFxn g are n bounded. Step 2. We claim that limn!1 kxnþ1  xn k ¼ 0. To this end, define xnþ1 ¼ ð1  an Þxn þ an zn . We observe that

xnþ2  ð1  anþ1 Þxnþ1 xnþ1  ð1  an Þxn  kznþ1  zn k ¼ anþ1 an ð1  anþ1 Þynþ1 þ anþ1 W nþ1 ynþ1  ð1  anþ1 Þxnþ1 ð1  an Þyn þ an W n yn  ð1  an Þxn 6  anþ1 an anþ1 W nþ1 ynþ1  ð1  anþ1 Þknþ1 Fðxnþ1 Þ an W n yn  ð1  an Þkn Fðxn Þ 6  a a nþ1

6

ð1  anþ1 Þknþ1

kFðx

Þk þ

n

ð1  an Þkn

kFðxn Þk þ W nþ1 ynþ1  W n yn

nþ1 anþ1 an ð1  cÞknþ1 ð1  cÞkn kFðxnþ1 Þk þ kFðxn Þk þ W nþ1 ynþ1  W n yn : 6 c c

ð3:11Þ

10330

S. Wang / Applied Mathematics and Computation 219 (2013) 10325–10332

From (2.4), for u 2 \1 n¼1 FðT n Þ, we have

kW nþ1 yn  W n yn k ¼ n1 T 1 U nþ1;2 yn  n1 T 1 U n;2 yn 6 n1 U nþ1;2 yn  U n;2 yn ¼ n1 n2 T 2 U nþ1;3 yn  n2 T 2 U n;3 yn 6 n1 n2 U nþ1;3 yn  U n;3 yn 6    6 n1 n2    nn U nþ1;nþ1 yn  U n;nþ1 yn ! nþ1 Y ¼ n1 n2    nn knnþ1 T nþ1 yn þ ð1  nnþ1 Þyn  yn k 6 ni ðkT nþ1 yn  uk þ ku  yn kÞ nþ1 Y

6

! ni

i¼1 nþ1 Y ð2kyn  ukÞ 6 M 2 ni ;

i¼1

ð3:12Þ

i¼1

where M 2 ¼ supf2kyn  uk; n P 0g. By (1.2) and (3.12), we have

W nþ1 ynþ1  W n yn 6 W nþ1 ynþ1  W nþ1 yn þ kW nþ1 yn  W n yn k 6 ynþ1  yn þ kW nþ1 yn  W n yn k 6 kxnþ1  knþ1 Fðxnþ1 Þ  xn þ kn Fðxn Þk þ M2

nþ1 Y ni i¼1

6 kxnþ1  xn k þ knþ1 kFðxnþ1 Þk þ kn kFðxn Þk þ M2

nþ1 Y ni :

ð3:13Þ

i¼1

Substituting (3.13) into (3.11), we have

kznþ1  zn k 6 ¼

ð1  cÞknþ1

c knþ1

c

kFðxnþ1 Þk þ

kFðxnþ1 Þk þ

kn

c

ð1  cÞkn

c

kFðxn Þk þ kxnþ1  xn k þ knþ1 kFðxnþ1 Þk þ kn kFðxn Þk þ M 2

nþ1 Y

ni

i¼1

kFðxn Þk þ kxnþ1  xn k þ M 2

nþ1 Y

ni ;

i¼1

that is,

kznþ1  zn k  kxnþ1  xn k 6

knþ1

c

kFðxnþ1 Þk þ

kn

c

kFðxn Þk þ M 2

nþ1 Y ni : i¼1

Observing limn!1 kn ¼ 0 and 0 < ni 6 b < 1, it follows that

lim sup ðkznþ1  zn k  kxnþ1  xn kÞ 6 0:

ð3:14Þ

n!1

By (A2) and using Lemma 2.3, we have limn!1 kzn  xn k ¼ 0. Therefore

lim kxnþ1  xn k ¼ lim an kzn  xn k ¼ 0:

n!1

n!1

Step 3. We claim that limn!1 kxn  W n xn k ¼ 0. Observe that

kxn  W n xn k 6 kxn  xnþ1 k þ kxnþ1  W n xn k 6 kxn  xnþ1 k þ ð1  an Þkyn  W n xn k þ an kW n yn  W n xn k 6 kxn  xnþ1 k þ ð1  an Þkyn  xn k þ ð1  an Þkxn  W n xn k þ an kyn  xn k ¼ kxn  xnþ1 k þ kyn  xn k þ ð1  an Þkxn  W n xn k; that is,

kxn  W n xn k 6

1

an

ðkxnþ1  xn k þ kyn  xn kÞ 6

1

c

ðkxnþ1  xn k þ kn kFðxn ÞkÞ ! 0ðn ! 1Þ:

ð3:15Þ

Step 4. We claim that limn!1 kxn  Wxn k ¼ 0. Observe that

kxn  Wxn k 6 kxn  W n xn k þ kW n xn  Wxn k:

ð3:16Þ

By (3.15) and (3.16) and using Lemma 2.5, we obtain

lim kxn  Wxn k ¼ 0:

n!1

Step 5. We claim that lim supn!1 hFx ; x  xn i 6 0, where x ¼ limt!0 xt and xt defined by xt ¼ W½ð1  tFÞxt . Since xn is bounded, there exists a subsequence fxnk g of fxn g which converges weakly to x. From Step 4, we obtain Wxnk * x. From Lemma 2.2, we have x 2 FðWÞ. Hence, by Theorem 3.1, we have

lim suphFx ; x  xn i ¼ lim hFx ; x  xnk i ¼ hFx ; x  xi 6 0: n!1

k!1

Step 6. We claim that fxn g and fyn g converge strongly to x 2 \1 n¼1 FðT n Þ. From (1.2), we have

10331

S. Wang / Applied Mathematics and Computation 219 (2013) 10325–10332 2 kxnþ1  x k2 6 ð1  an Þkyn  x k2 þ an kW n yn  x k2 6 kyn  x k2 ¼ kxn  kn Fðxn Þ  x k 2

2

6 kðI  kn FÞxn  ðI  kn FÞx  kn Fx k 6 s2kn kxn  x k2 þ k2n kFx k þ 2kn hðI  kn FÞx  ðI  kn FÞxn ; Fx i 2

6 skn kxn  x k2 þ k2n kFx k þ 2kn hx  xn ; Fx i þ 2k2n hFxn  Fx ; Fx i 2

6 ½1  ð1  skn Þkxn  x k2 þ k2n kFx k þ 2kn hx  xn ; Fx i þ 2kk2n kxn  x kkFx k " # k2n 2kn 2k2n   2  6 ½1  ð1  skn Þkxn  x k þ ð1  skn Þ M3 þ hx  xn ; Fx i þ M3 1  s kn 1  s kn 1  skn " # 3k2n 6 ½1  ð1  skn Þkxn  x k2 þ ð1  skn Þ M 3 þ 2M 1 hx  xn ; Fx i ¼ ð1  ln Þkxn  x k2 þ ln dn ; 1  s kn 2

2

n M3 where M 3 ¼ supfkFx k ; kkxn  x kkFx kg, ln ¼ 1  skn , dn ¼ 3k þ 2M 1 hx  xn ; Fx i. It is easy to see that 1skn lim supn!1 dn 6 0. Hence, by Lemma 2.4, the sequence fxn g converges strongly to x 2 \1 n¼1 FðT n Þ. On the other hand, we have

P1

n¼1

ln ¼ 1 and

kyn  xn k 6 kn kFðxn Þk ! 0 ðn ! 1Þ:   It follows that the sequence fyn g converges strongly to x 2 \1 n¼1 FðT n Þ. From x ¼ limt!0 xt and Theorem 3.1, we have x is the unique solution of the variational inequality: hFx ; x  ui 6 0; u 2 \1 FðT Þ. h n n¼1 From Theorem 3.4, we can obtain the following result immediately.

Corollary 3.5 (Yao et al. [4, Theorem 3.2]). Let H be a real Hilbert space. Let F : H ! H be k-Lipschitzian and g-strongly monotone 1 operator with k 2 ½1; 1Þ and g 2 ð0; 1Þ. Let fT n g1 n¼1 : H ! H be an infinite family of nonexpansive mappings such that \n¼1 FðT n Þ – ; and fW n g be W-mapping defined by (2.4). Let fkn g be a sequence in ½0; 1Þ and fan g be a sequences in ½0; 1. Assume that (i) limn!1 kn ¼ 0; P1 (ii) n¼0kn ¼  1; (iii) an 2 c; 12 for some c > 0. Then the sequence fxn g and fyn g generated by (1.2) converge strongly to x 2 \1 n¼1 FðT n Þ which solves the following variational inequality hFx ; x  xi 6 0; x 2 \1 n¼1 FðT n Þ. Remark 3.6. Theorem 3.4 include [4, Theorem 3.2] as a special case. The following example shows that all conditions of   Theorem 3.4 are satisfied. However, the conditions g 2 ð0; 1Þ and an 2 c; 12 for some c > 0 in [4, Theorem 3.2] are not satisfied. Example 3.7. Let H ¼ R the set of real numbers and T n  T. Define a nonexpansive mapping T : H ! H and an operator F : H ! H as follows:

Tx ¼ 0 and FðxÞ ¼ x;

8x 2 R:

1 1 It is easy to see that FðTÞ ¼ f0g; \1 n¼1 FðT n Þ ¼ f0g and W n x ¼ ð1  n1 Þx; 8x 2 R. Take n1 ¼ 2, We have W n x ¼ 2 x; 8x 2 R. Given sequences fan g and fkn g : an ¼ 23 ; kn ¼ 1n for all n P 0. For an arbitrary x0 2 H, let fxn g defined as follows



yn ¼ xn  kn Fðxn Þ; xnþ1 ¼ ð1  an Þyn þ an W n yn ;

that is,

1 2 y þ W n yn 3 n 3  2 1 ¼ xn  Fðxn Þ 3 n  2 1 xn ; n P 0: 1 ¼ 3 n

xnþ1 ¼

Observe that for all n P 0,

 2 1 x 1   0 kxnþ1  0k ¼ n 3 n  2 1 ¼ kxn  0k 1 3 n 2 6 kxn  0k: 3

n P 0;

10332

S. Wang / Applied Mathematics and Computation 219 (2013) 10325–10332

nþ1 Hence we have kxnþ1  0k 6 23 kx0  0k for all n P 0. This implies that fxn g converges strongly to 0 2 \1 n¼1 FðT n Þ. On one other hand, we have

kyn  0k ¼

 1 1 kxn k 6 kxn k: n

Therefore fyn g converges strongly to 0 2 \1 n¼1 FðT n Þ. On the other hand, we have hFð0Þ; 0  ui 6 0; u 2 \1 n¼1 FðT n Þ, that is, 0 is the solution of the variational inequality hFx ; x  ui 6 0; u 2 \1 FðT Þ. n n¼1 By Fx ¼ x, we have g ¼ k ¼ 1. Furthermore, it is easy to see that there hold the following: P (B1) limn!1 kn ¼ 0 and 1 n¼0 kn ¼ 1; (B2) 0 < 12 < lim inf n!1 an ¼ 23 ¼ lim supn!1 an < 1 for some constant c ¼ 12.     Hence there is no doubt that all conditions of Theorem 3.4 are satisfied. Since an ¼ 23 R c; 12 , the conditions an 2 c; 12 for some c > 0 and g 2 ð0; 1Þ of Yao et al. [4, Theorem 3.2] are not satisfied. Acknowledgments The author thanks the editor and the referees for their useful comments and suggestions. References [1] I. Yamada, The hybrid steepest descent for the variational inequality problems over the intersection of fixed points sets of nonexpansive mapping, in: D. Butnariu, Y. Censor, S. Reich (Eds.), Inherently Parallel Algorithms in Feasibility and Optimization and Their Application, Elservier, New York, 2001, pp. 473–504. [2] P.L. Lions, Approximation de points fixes de contractions, C.R. Acad. Sci. Paris 284 (1977) 1357–1359. [3] H.K. Xu, T.H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl. 119 (2003) 185–201. [4] Y.H. Yao, M.N. Noor, Y.C. Liou, A new hybrid iterative algorithm for variational inequalities, Appl. Math. Comput. 216 (2010) 822–829. [5] K. Geobel, W.A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge Univ. Press, 1990. pp. 473– 504. [6] T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one parameter nonexpansive semigroups without Bochner integral, J. Math. Anal. Appl. 35 (2005) 227–239. [7] L.S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995) 114–125. [8] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240–256. [9] W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Model. 32 (2000) 1463–1471. [10] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001) 387–404. [11] S.-S. Chang, A new method for solving equilibrium problem and variational inequality problem with application to optimization, Nonlinear Anal. 70 (2009) 3307–3319. [12] Y.H. Yao, Y.C. Liou, J.C. Yao, Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory Appl. 2007 (2007) (Article ID 64363, 12 p.).