Coronary Artery Blood B/] GUNNAll SlgVELIUS ~HE I R E S E N I" n o n - r a d i o a c t i v e t e c h n i c for s t u d y i n g the coroI~m y cireulaI tiol~ in vivo is b a s e d on the d e t e r m i n a t i o n of the c l e a r a n c e rate of nitrous oxide gas f r o m the m y o e a r d i u m . ~ T h e c l e a r a n c e rate is r e la te d to Mood flow. T h e t e c h n i c involves a coronary sinus catheterization, a n d the r e f or e has l i m i t e d clinical value. In order to avoid the h e a r t catheterizatiol~, sur f a c e c o u n t i n g teelmic~ w i t h radioisotope tracers h a v e b e e n tried. An u p t a k e t e c h n i c like t h a t of p a , in tJ~e t h y r o i d g l a n d w a s first explored, l~ubidium-S6 was tried as a tracer s u b s t a n c e , e T h e p h y s i o l o g i c a l b e h a v i o r of r u b i d i u m r e s e m b l e s that of p o t a s s i u m a n d is c o n c e n t r a t e d in the m y o e a r d i u m to a large degree. ~'Vith p r o p e r shie ld in g , 70~ of the m o n i t o r e d counts w e r e r e c e i v e d f r o m the heart. T h e m y o c a r d i a l blood f l o w F w a s c a l c u l a t e d as F = u / ( y x A ) w h e r e u is u p t a k e p e r u n it time, y is the a v e r a g e extraction o f I ~ ~'a~by the m y o c a r d i u n l , a n d A is tl!e a v e r a g e l i b s~ c o n c e n t r a t i o n in the arterial blood. In or de r for the f o r m u l a to express blood flow, y should b e constant u n d e r a v a r i e ~ of conditions. M a c k a f o u n d t h a t .y w a s i n f l u e n c e d by p o t a s s i u m c o n c e n t r a t i o n a n d felt t h a t r u b i d i u m was n o t specific e n o u g h for surf a c e counting. A l t h o u g h r u b i d i u m - 8 6 ma), n o t b e satisfactory, the technic should b e ke pt in m i n d in case a mor e specific tracer appears. T h e d y e d i l u t i o n t e c l m i e for d e t e r m i n a t i o n of flow wa s t r a n s f e r r e d to s u r f a ~ c o u n t i n g by Prinzrnetal. 4 H u f f ~ s h o w e d ttmt this t e c h n i c c ould b e used for det e r m i n a t i o n of c a r d i a c output. T h e t i m e - c o n c e n t r a t i o n c ur ve r e c o r d e d b y su r f a c e c o t m t i n g o p e n e d possibilities for s t u d y i n g the circulation u n d e r clinical c i r c u m s tances. Before ,.ve start the d e t a i l e d discussion of c or ona r y blood ttow as d e t e r m i n e d t~y the sin,face c o u n t i n g teelmic, w e w o u l d like to i n t r o d u c e the r e a d e r to some of t h e factors i n f l u e n c i n g the different m e a s u r e m e n t s . B e c a u s e of t h e s i m i l a r i t y b e t w e e n the time-activity curve of the s u r f a c e c otmting t e c h n i c a n d the t i m e - c o n c e n t r a t i o n c u r v e of the d y e d i l u t i o n te c hnic , m a n y a s s u m e t h e s a m e m a t h e m a t i c a l a n d p h y s i c a l b a c k g r o u n d for the two technics. T h e differences, h o w e v e r , are f u n d a m e n t a l a n d a f e w i m p o r t a n t p o i n t s will b e described. ~ I n o r d e r to avoid the c o m p l i c a t e d m a t h e m a t i c a l d e r i v a t i o n witl~ integrals, w e will l~ere treat the area ( A ) u n d e r the flow c u r v e as a unit. T h e flow ( F ) t h r o u g h a t u b e can the n be expressed as F = k x I / A . 1 I r e p r e s e n t s the a m o u n t of tracer substances . T h e area u n d e r the time-dilutiol~ curve as re g i st e r e d by blood s a m p l i n g is pr opor tiona l to the in~ected dose a n d i n v e r s e l y p r o p o r t i o n a l to flow. F o r m u l a 1 c a n n o t lm used in t h e sur f a c e c o u n t i n g techl~ic. In this t e c h n i c the area is proportional to dose a n d inversely p r o p o r t i o n a l to f l o w as in f o r m u l a 1. l l o w e v e r , it is also p r o p o r t i o n a l to the m o n i t o r e d From the Departmtml o[ ,'~lcdich~', Un~ivcrsitg o[ Okhd~oma School o] Medich~e, and I{adioisotope ,~erv.ice, V~qe.rm~ Administratiml llo,~pital, Oklahoma City, Ok[ahtnna. 19
~0
(;UNNAIl SEVELIUS
volume, b e c a u s e a l a r g e r m o n i t o r e d v o l u m e holds m o r e of the b o l u s at a n y o n e time. In the d y e - d i l u t i o n technic, a k n o w n tracer c o n c e n t r a t i o n c a n b e u s e d for c a l i b r a t i o n . I n the s u r f a c e c o u n t i n g t e c h n i c the c a l i b r a t i o n h a s to take into a c c o u n t the specific m o n i t o r e d v o l u m e over w h i c h t h e flow c u r v e is r e g i s t e r e d . T h e c a l i b r a t i o n is a c c o m p l i s h e d w i t h a n e q u i l i b r i u m r e a d i n g ( E ) r e c o r d e d in tile s a m e r e g i o n as t h e flow c u r v e after c o m p l e t e m i x i n g of tile t r a c e r s u b s t a n c e w i t h t h e total b l o o d v o l u m e . This e q u i l i b r i u r n is p r o p o r t i o n a l to t h e a m o u n t of t r a c e r s u b s t a n c e , the m o n i t o r e d v o l u m e , a n d i n v e r s e l y p r o p o r t i o n a l to b l o o d v o l u m e . A b l o o d a l i q u o t ( B L C ) is p r o p o r t i o n a l to t h e i n j e c t e d dose a n d i n v e r s e l y p r o p o r t i o n a l to the b l o o d v o l u m e . I n t h e s u r f a c e c o u n t i n g techn i q u e t h e c a r d i a c o u t p u t f o r m u l a c o r r e s p o n d i n g to f o r m u l a 1 ha s to b e F =
E x I . T h e f o n n u l a is a p p l i c a b l e only if b l o o d v o l u m e is r e f l e c t e d A x BLC in E as w e l l as in I / B L C a n d if t h e m o n i t o r e d v o l m n e s of e q u i l i b r i u m a n d of the flow c u r v e are equal. A t r a c e r s u b s t a n c e i n j e c t e d i n s t a n t a n e o u s l y into a blood vessel f o r m s a b o l u s w h i c h m i x e s w i t h t h e blood. T h e c o n c e n t r a t i o n in the b o l u s is lo w at t h e f r o n t edge, gets h i g h e r s h o r t l y t h e r e a f t e r , a n d t h e n dr ops off e x p o n e n t i a l l y t o w a r d s t he tail e n d . T h e a m o u n t of r a d i o a c t i v i t y u n d e r t h e d e t e c t o r at a n y o n e t i m e a p p e a r s as the h e i g h t of t h e t i m e - a c t i v i t y curve. As t h e b o l u s travels in t h e vessel, it w ill d i l u t e a n d get longer. TMs d i l u t i o n takes p l a c e in a c e r t a i n f a s h i o n so t h a t e a c h p o r t i o n of t h e b M u s will diIute e q u a l l y . T h e p a r t i a l l e n g t h of the b o l u s w ill s t r e t c h out in p r o p o r t i o n to its total l e n g t h like a r u b b e r b a n d . If w e d i v i d e t h e b o l u s into two p o r t i o n s b y a c e r t a i n p e r c e n t a g e level of t h e m a x i m u m c o n c e n t r a t i o n , t h e p o r t i o n s will a l w a y s b e in a c e r ta in ratio. K n o w i n g t h e t i m e f r o m t h e f r o n t of t h e b o l u s to a g i v e n c o n c e n t r a t i o n level a n d ~ o w i n g t h e p o r t i o n s this c o n c e n t r a t i o n level is d i v i d i n g the bMus, t h e t i m e for t h e p a s s a g e of t h e total b o l u s can b e c a l c u l a t e d . T i l e p o r g o n of t h e c u r v e b e t w e e n t h e tail a n d the g i v e n c o n c e n t r a t i o n l e v e l can b e c M e u l a t e d b y s e m i - l o g a r i t h m i c p l o t t i n g . T h e a u t h o r h a s m a d e use of this t e c h n i c in o r d e r to r e c o n s t r u c t t h e heart curve u n d e r the coronary peak and the coronary peak u n d e r the reeircui a t i o n tracer. XYhen Dr. J o h n s o n a n d t h e a u t h o r s t a r t e d to do c a r d i a c o u t p u t b y s u r f a c e c o u n t i n g t e c h n i c , w e p l a c e d t h e d e t e c t o r d i r e c t l y over t h e h e a r t silhouette. W e f o u n d flint t h e t w o - p e a k e d h e a r t c u r v e s h o w e d a t h i r d p e a k on t h e d o w n slope of t h e pemk f r o m t h e left he a r t. W e s p e c u l a ~ d t h a t this pea~. m a y corr e s p o n d w i t h t h e p e r i p h e r a l c i r c u l a t i o n in t h e h e a r t region. In 1958, D a v i d S n y d e r s s h o w e d t h a t an occlusion of the c o r o n a r y vessels c a u s e d this p e a k to d i s a p p e a r . It w a s felt that t h e area u n d e r this p e r i p h e r M e ir e ula Non p e a k m a y correlate with the coronary eireula~on. ME~ioDs T h e p a t i e n t is p l a c e d e i t h e r in sitting o r sttpine p o s i t i o n in f r o n t of t h e d e c t o r . T h e
heart'silhouette is outlined on the chest wall with the aid of a chest x-ray or simultaneous {hloroseoDy, The detector system consists of two tqmnnels. One channel has its detector over the middle of the heart silhouette its projected on the chest wall. The other detector is
C O I I O F q A I ~ Y AIqTEI~Y B L O O D
Table
FLO~V
21
1 . - - T i m e D e l a y at Differen~ Pulse Rates
Pulse
50--70~ram. 70--90/rain. 90-120/rain. Above 120/min.
T i m e Delay
0 . 3 6 See. 0 . 3 0 see. 0 . 2 2 see. 0.i see.
p l a c e d on t h e neck, T h e d e t e c t o r o v e r the h e a r t consists o f a 2 x g i n c h s o d i u m i o d i d e crystal c o n n e c t e d w i t h a p h o t o m u l t i p l i c r t u b e . T h e s o d i m n i o d i d e erystal is s u r r o u n d e d b y o n e i n c h l e a d s h i e l d i n g on all s u r f a c e s e x c e p t t h e o n e t o w a r d s t h e c h e s t wall, w h i r l , has a 1/16 i n c h l e a d shield. C o l l i m a t i o n is b e s t a c c o m p l i s h e d b y a l o 0 hole, ¼ i n c h fl-~ick w a f e r collimator. T h e i m p u l s e s f r o m t h e h e a r t d e t e c t o r are f e d into a r a t e m e t e r w i t h a c h o i c e in f a s t t i m e r e s p o n s e s . W h e n t h e h e a r t e x p a n d s a n d c o n t r a c t s t h e r e is a c h a n g e in t h e m o n i t o r e d volurne. T h i s c h a n g e reflects itself in t h e flow c u r v e as p e a k s a n d valleys, m a k i n g the c u r v e i r r e g u l a r a n d difficuh to interpret. A t i m e d e l a y whid~ will read1 just across a s y s t o l e at d i f f e r e n t p u l s e rates will abolish t h e jiggle o f thc flow c u r v e . T h e t i m e d d a y s u s e d Hy the a u t h o r in t h e h e a r t r a t e m e t e r are listed in t a b l e I. T h e sensitivity I e v d of t h e r a t o m e t e r is p l a c e d so t h a t 100 t h o u s a n d c o u n t s p e r m i n u t e g i v e a full scale r e a d i n g at a h i g h v o l t a g e of 1300 volts. In o r d e r f o r t h e c a r d i a c o u t p u t f o r m u l a to b c correct, the e q u i l i b r i u m r e a d i n g has to reflect t h e b l o o d v o l u m e . Small c h a n g e s in v o l u m e e m m e t b e d e t e c t e d b y a r a t c m e t e r , A m o r e sensitive r e a d i n g c a n b e a c h i e v e d b y h a v i n g a scaler c o n n e c t e d in parallel w i t h the r a t e m e t e r for r e c o r d i n g t h e e q u i l i b r i u m height. T h e n e c k d e t e c t o r consists of a 2 x 2 inch s o d i u m i o d i d e crystal, a 2 i n c h l e a d shield w i t h t h e s a m e collimation, a n d a p h o t o m u l t i p l i e r t u b e . T h e sensitivity level is set ~t 05 t h o u s a n d c o u n t s p e r m i n u t e full scale at I 3 0 0 r o b s . T h e i m p u l s e s a r e f e d into a r a t e m e t e r w i t h a t i m e r e s p o n s e of 0.5 s e c o n d s . T h e i n t e g r a t e d i m p u l s e s f r o m b o t h r a t e m e t e r s a r e f e d into a d u a l - d m n n e l rectilinear ink r e c o r d e r w i t h a c h a r t s p e e d of 12 i n d a e s p e r m i n u t e . T h e t r a c e r s u b s t a n c e is I ~al b o u n d e i t h e r to h u m a n s e r u m a l b u m i n or to s o d i m n i o d o h i p p u r a t e . I o d i n a t e d s e r u m a l b u m i n is u s e d for single d e t e r m i n a t i o n s . T h e b i o l o g i c a l half life is t h r e e d a y s . F o r r e p e a t e d d e t e r m i n a t i o n s , o n e e t a ' r e is run w i t h i o d i n a t e d s e r u m a l b u m i n . F r o m this c u r v e t h e m o n i t o r e d v o h m m p e r t r a c e r a m o u n t can b e c a l c u l a t e d a n d u s e d for r e p e a t e d d e t e ~ i n a t i o n s . I f t h e m o n i t o r e d v o h n n e c a n b e a s s u m e d uncqmnged, rvp e a t d e t e r m i n a t i o n s can b e d o n e w i t h i o d i n a t e d h i p p u r a t e . T h i s t r a c e r has a biological h a l f life o f less t h a n ten m i n u t e s . T h e t r a c e r s u b s t a n c e is a s p i r a t e d into a t u b e r c u l i n s y r i n g e . T h e c o n c e n t r a t i o n o f t h e tracer is a b o u t 30 m i c r o e u r i e s in a 0.g ml. v o l u m e . T h e r a d i o a c t i v i t y is i n j e c t e d into t h e a n t i c u b i t a l veit~ t h r o u g h a 21 g a u g e n e e d l e . T h e a c t u a l p e r c e n t a g e i n j e c t e d is e s t i m a t e d b y d e t e r m i n i n g the r a d i o a c t i v i t y of t h e s y r i n g e b e f o r e a n d a f t e r injection. T h e injection into t h e a n t i c u b i t a l vein is d o n e i n s t a n t a n e o u s l y , f o l l o w e d b y an i m m e d i a t e lifting of the arm in o r d e r to f o r c e the i n j e c t e d tracer b o l u s to t h e heart as fast as p o s s i b l e . T h e m o r e distinct t h e bolus, t h e m o r e easily are t h e cnrve.~ i n t e r p r e t e d . A f t e r t h e t i m e - a c t i v i t y c u r v e is r e c o r d e d the t n l c e r s u b s t a n c e is a l l o w e d to mix w i t h t h e total b l o o d v 0 h t m e for ten mimltes. A f t e r c o m p l e t e mixing has occt~rred, the e q u i l i b r i u m is r e c o r d e d . T h i s c a n e i t h e r b e d o n e with t h e - s c a l e r w i t h a o n e n m i u t e c o u n t or b y the t a l e m e t e r w i t h a I 0 s e c o n d t i m e d d a y in o r d e r to r e c o r d an a v e r a g e c m m t h e i g h t . At the t i m e t h e c q t d l i b r i m n is r e c o r d e d , a b l o o d a l i q u o t is w i t h d r a w n for d e t e r m i n a t i t m of t h e a c t m d b l o o d w~lnme. T h i s is d o n e a c c o r d i n g to s t a n d a r d p r o c e d u r e . In t h e /tow c u r v e r e g i s t e r e d o v e r t h e heart a r e a (fig. I ), o n l y p a r t s of w h a t bapl~t'~3s w i t h the b o h t s c a n b e seen. q3m p a r t s that a r e not seen h a v e to lm e s t i m a t e d }rein the p o r t i o n s visualized, T h e c u r v e r e p r e s e n t i n g the |low t h r o u g h right a n d left c h a m b e r h a s to lat" exln~polaled | u ' y o n d the c o r o n a r y pt,ak a n d the ctwmmry p e a k has to h e e x t r a p o l a t e d b e y o n d rt,circnlation, q'htr a v a i l a b l e p o r t i o n s o f the d o w n s h ) p v s are u s u a l l y m~t long e n m i g h f~r s e m i - | o g a r i t h m i e e x t r a p o | a l i o n , A correlati~m b e t w e e n t h e p a s s a g e t i m e t h r o u g h the heart amd t h e p a s s a g e time t h r o u g h
~9
GUNNAI~ SEVELIUS
Fig. 1.--Time activity curves registered over head (upper curve) and heart ( l o w e r c u r v e ) . T i m e s e q u e n c e is f r o m r i g h t t o l e f t . T w o s m a l l b l o c k s r e p r e s e n t 1 second. For interpretation see appendix. t h e c o r o n a r y c i r c u l a t i o n a p p e a r e d r e a s o n a b l e a n d w a s i n v e s t i g a t e d . T h e start of d~e b o l u s e n t e r i n g t h e h e a r t is r e c o r d e d o n t h e h e a r t c h a n n e l Tile t i m e tile b o l u s leaves t h e h e a r t a n d e n t e r s t h e p e r i p h r a l circnlation is r e c o r d e d o n t h e h e a d c h a n n e l . T h e r e a r e p r o b a b l y .2 o f a s e c o n d t i m e l a g b e t w e e n tile t i m e t h e b o l u s e n t e r s Lhe a o r t a a n d t h e t i m e it e n t e r s t h e c a r o t i d circulation. T h i s d d a y is m i n i m i z e d b y t h e h i g h s p e e d in t h e arterial b l o o d s t r e a m as c o m p a r e d to t h e slow s p e e d of t h e ink r e c o r d e r . T h e s p e e d t h r o u g h t h e h e a r t c a n t h e r e f o r e b e e s t i m a t e d . F o r praeHcal p u r p o s e s , t h e c o r o n a ~ c i r c u l a t i o n c a n b e a s s u m e d to start at t h e t i m e t h e n e c k c i r c u l a t i o n starts. T h e first r e e i r c u l a t i o n is t h a t o f t h e c o r o n a r y b l o o d flow. T h e start o f t h e r c e i r c u l a t i o n c a n b e r e c o g n i z e d in m a n y curves. A n e s H m a t e o f tile p a s s a g e t i m e t h r o u g h t h e c o r o n a r y circulation can t h e n also b e d o n e . T h e t w o p a s s a g e tim~s are c o r r e l a t e d in figure 2. ~ c r e is a correlation coefficient of 0.87. T h e r e l a t i o n s h i p is linear, a n d t h e e q u a t i o n for t h e line passes t h r o u g h file origin as c a n b e e x p e c t e d . T h e s l o p e o f t h e line is I 0 / 7 . A c c o r d i n g to o u r flow . e x p e ~ m e n t s , an u n b r a n c h e d bolus c o u l d b e d i v i d e d at a g i v e n c o n c e n t r a t i o n level into t w o p o r t i o n s of a g i v e n ratio. W e d~ose a c o n c e n t r a t i o n level o f 82 p e r c e n t of t h e largest c o n c e n t r a t i o n , or of t h e I ~ a k h e i g h t o f t h e left h e a r t c u r v e . T h i s d i v i d e d t h e h e a r t c u r v e in a m e a n ratio of 3 to 5. ~ e m e a s u r e m e n t s w e r e easily a d l i c v c d
COI:~ONAIRY ARTERY BLOOD FLOW I0,. (0 50 ¸
40
:30
t* O e , . ~ I I / ~ OOt O OO
~IP O
O O
20
lo
HPT
0 10 20 30 40 50 Fig. 2.--Correlation between heart passage time time (CPT).
60
70
(I-1PT) a n d
coronary
passage
~3o
X: 0. 2o
e
115
,,, ~,
4
o
a
10
O=
,, .2
5. . . . . . . . . . . . .1. 0. . . . . . . . . . .115,. . . . . .
~-
. . . .2. .6. . . . . . . . . . .~. . . . . .
315
4 0. . . . . . . . . .4. .8. . . . . . . . . . . .
THT--
Fig. 3.--Correlation between partial bolus passage time (PHT) and total bolus p a s s a g e t i m e t h r o u g h t h e h e a ~ ( T H T ) w h e n t h e b o l u s is d i v i d e d a t a c o n c e n t r a t i o n l e v e l o f 8 2 p e r c e n t o f t h e p e a k e o n e e n t r a t l o n in t h e l e f t h e a r t . in heart curves r e g i s t e r e d xvhe~ the c o r ( m a r y cire~dation was o c c l u d e d . T h e m e a s u r e m e n t s are p l o t t e d in figtlre 3. "I'}le correlations b e t w e e n tile t w o portions had a correlation coefficient of 0.9,I. T h e 82 p e r c e n t c o n c e n t r a t i o n level wit| c o i n c i d e with the il~fleetion point of t h e ]eft h('art curve. As in a n y c l e a r a n c e curve, the c o n c a v e p o r t i o n has an exponenHal fall-off.
2.0-1 2.5-1 3.0-1 3.5-1 4.0-1 4.5d 5.0-1 5.5-1 6.0-1 6.5-1 7,0.1 7.5-1 8.0.1 S.5-1 9.0-1 9.0.4 9.5-4 10.0-4 10.5-4 11.0-4 11,0.8 I1.5-4 11.5.8 12.04 12.0,8 12.5-4 12.5-8 13.0.4
0.35 0.45 0.65 0.65 0.75 0.85 0.05 1.0{) !.10 1,20 1.30 1,40 1.50 1,56 1.65 1,75 1,85 1.95 2.05 2.10 2,2{) 0.45 0.55 0.65 0,80 0.9{) 1,00 1,10 1,25 1.35 1.45 1,55 1.70 1.8{) 1.00 2.00 2.10 2.25 2.35 2.45 2,55 2.70 0.50 0.65 0.75 0.90 1.00 1,10 125 1.40 1.50 1,65 1.75 1.90 2.00 2.10 2,25 2.40 2.50 2,65 2,75 2.90 3.00 {),55 0.65 O.S0 0.95 1.1{) 1.20 1.35 1.45 1,60 1.75 1,85 2.0{) 2.10 2.25 2.4{) 2,55 2.65 2.80 2.95 3.05 3.20 0.55 0,70 0.85 1.00 1.10 1.30 1,40 1.55 1.70 1.85 2,00 2.10 2.25 2,40 2.55 2.70 2.85 3.00 3.10 3.25 3,40 0.00 0,75 0.90 1.05 120 L35 1,60 1.65 1.75 1.90 2.05 2.20 2,35 2,50 2.65 2,80 2,95 3,10 3.25 3A0 3,55 0.60 0.75 0.90 1.05 1,25 1A0 1.55 1.70 1.85 2.00 2.t5 2,30 2.45 2.60 2.75 2.90 3.05 3,20 3.35 3,55 3.70 0,65 0.S{) {).95 I,i0 1,26 1.40 1.55 1.75 1.90 2,05 2.20 2.35 2.50 2,70 2,85 3.0{) 3,I5 3,30 3.45 3.60 3.75 {),65 0,80 {).95 1.16 1,25 1,45 1.60 1.75 1.95 2.1{) 2.25 2.40 2.60 2,75 2,90 3.05 3,20 3.40 3.55 3.7{) 3.85 {).65 0.80 l.O{) 1.15 1.30 1.50 1.65 1.8{) 1,95 2.10 2.30 2.45 2.65 2,80 2.95 3.10 3.30 3.45 3.60 3.75 3.95 0.65 0.85 1.00 1.15 1.36 1,5{) 1.65 1.85 2,00 2.15 2.35 2.50 2.65 2,85 3.{){) 3.I5 3.35 3.50 3.65 3,85 4.00 0.70 0.85 1,0O 1.29 1.35 1,50 1,70 1,85 2.05 2.20 2,:~5 2,65 2.70 2.85 3,05 3.20 3.4{) 3.55 3,70 3.90 4,05 0.70 0.85 1,05 1.29 1.35 1,55 1.70 1.90 2.05 2,2{) 2,40 2.55 2.75 2,90 3.1{) 3.25 3.45 3.60 3.75 3,95 4.10 0,70 0,85 1.05 1.20 1.4{) 1.55 1.75 1.90 2,10 2,25 2,40 2,60 2,75 2,95 3.1{) 3,30 3,45 3.65 3,80 4.00 4.15 0.70 0.90 1,05 1.25 1.40 1.60 1.75 t,95 2.10 2.30 2.45 2.65 2.80 3.00 3.15 3.35 3.50 3,70 3.85 4,05 4.20 0.9 1.1 1.2 1.4 1.5 1.7 1.8 1,0 1.1 1,3 1.4 1.6 1,7 1.9 1.O 1.2 1A 1,5 1.6 1.8 2.0 1.0 1.2 1A t.5 1.7 1.9 2.0 1.0 1.2 1.4 1.6 1.8 1,9 2.1 0,3 0.4 0,4 0.5 0.6 0.6 0.7 1.1 1.3 1.5 1,6 1.S 2,0 2.2 0,4 0,5 0,5 0,6 0.6 0.7 0.8 1.1 1.3 1.5 1.7 1.9 2.0 2.2 0,4 0.5 0.6 0.7 0.7 0.8 0.9 1.2 1.4 1.5 1.7 1,9 2.1 2.3 0.5 0.6 0,6 0.7 0A 0,9 1,0 1.2 1.4 1.6 1.8 2,0 2.2 2,4 2.0 2.0 2,1 2,2 2,3 0.7 2.4 0.9 2.4 9.9 L5 1.0 2.6
2.1 2.2 2,3 2,4 2.4 0,g 2,6 0,9 2.6 1.0 2.7 1.1 2.8
2.3 2.4 2.5 2,6 2.6 0.9 2.7 1.0 2.8 IA 2.9 1.2 3.0
2.4 2.5 2.6 2,7 2.8 0.9 2.9 1.1 8,0 1.2 3.1 1.3 3,1
2.6 2.7 2.8 2.9 3.6 1,0 3,1 1.1 ,~.2 1.2 3.3 1.3 3.3
2.7 2,g 3.0 3,1 3.2 1,0 3.3 1.2 3.4 1.3 3.5 1.4 3.5
2.9 3.0 3.1 3.2 3.4 ,1.1 3.5 1.2 3.6 1.4 3,6 1.5 3.7
3,0 3.2 3,3 3.4 3,5 1.1 3.6 1.3 3.7 1.4 3.8 1.6 3,9
3.3 3.5 3.6 3.8 3.9 1.3 3.8 4.0 1,4 1.4 3.9 4,1 1,5 1.6 4.0 4.2 1.6 1.7 4.1 4.3
3.2 3,3 3.5 3.5 3.7 1,2
3.6 3.g 4.0 4.I 4,2 1.4 4.4 1.6 4.4 1.7
3,g 4,0 4.I 4.2 4.4 1.5 4.5 1,6 4,6 1.8
3.9 4.1 4,3 4.4 4.6 1.5 4.7 1.7 4,8 1.8
4.2 4.4 4,6 4.8 5.0 1.6 5.1 1.g 5.0 5.2 1.0 2.0
4,1 4.2 4,4 4.6 4.8 1.6 4.9 1,8
2.0-I 2.5-I 3.0-1 3.5-1 4.0-1 4,5d 5.0-1 5.5-1 6,6-1 6.5-1 7.0.1 7.5-1 8.0-1 8.5-1 9.0-1 9.0-4 9.5-4 t0.0-4 10,5-4 11.0.4 11.0-8 11,5-4 11.5-8 12.0.4 I2.0-8 ).,8 1.9 2.0 2,0 2.1 2.2 12.54 4.5 4.7 4.9 5.1 5.3 5.5 13.0.4
4,4 4.6 4.8 5.0 5.2 5,4 12.5-4
3,5 3.5 3,8 3,9 4.{) 1.3 4.2 1.5 4,3 1.6
1,00 1.25 1.50 I,'t5 2.00 2,25 2.50 2.75 3,00 3,25 3.50 3.75 4.00 4.25 4,50 4.75 5.00 5.25 5.50 5.75 6.00 5.50 7.00 7,50 8.00 8.50 9,00 9,50 1O.{)0t6.69 11.0 11,5 12.0 12,5 13.0 t3.5 14.0
To~i time minus partial time in centimeters
CENTIMETERS AFTER START OF CORONARY PEAR A N D RECIRqULATION TO INTERMEDIATE POINT ON DOWNSLOPE OF DISAPPEARANCE CURVE
Table 2.--Nomogram for Intermediate Point on the Downslope
START OF CORONARY
PEAK
RECIRCULATION
TO INTERMEDIATE
Total time minus partial time in centimeters
AND
POINT ON DOWNSLOPE
OF DISAPPEARANCE
CURVE
0.5 1.2 0.5 1,2 0,5 1,2 0.6 1,2 0.6 1,3 0.6 1.3 03 1,3 0.7 1.3 0.7 1,3 0.7 1.4 0.8 1.4 0.8 1.4 0.8 1,4 0,8 1,4 0.8
0.6 1.4 0.6 1.4 0,6 1,4 0.7 1A 0.7 1.5 0.8 1.5 0,8 1,5 0.8 1,6 0• 1.6 0,9 1.6 0.9 1.6 0.9 1,6 0,9 1.6 0.9 1.6 1.0
0.7 1.6 0.7 1.6 0.7 1,6 0,8 1,7 0,8 1,7 0,9 1,7 0.9 1.8 0,9 1,8 1.0 1,8 1.0 1.8 1,0 1,8 1.0 1.8 1,1 1,11 I,I 1.0 1.1
0.8 1,11 0.8 1,8 0.11 1.11 0.9 1,O 0.9 1.9 l.O 2,0 l& 2.0 1,0 2,0 1,1 2.0 1,1 2.0 1.1 2.1 1.2 2.1 1,2 2,1 1.2 2.2 1.2
0,9 2,0 0.0 2.0 0.9 2,1 1,0 2,1 1.0 2.1 1.1 2.2 1,1 2.2 12 2.2 1.2 2.2 1,2 2.3 1.2 2,3 1,3 2.3 1,3 2,3 1,3 2,3 1.4
1.0 2,2 1,0 2,2 1.0 2,3 1,1 2,3 1A 2,3 1.2 2,4 1.3 2.4 1.3 2,4 1.3 2.5 1.4 2.5 1,4 2.5 1.4 2.5 1.5 2£ 1.5 2.6 1.5
1.0 2.4 L1 2.4 1.1 2,5 1.2 2.5 1.2 2,5 1,3 2.6 1,4 2,0 1.4 ~,6 1,4 2.7 1.5 2.7 !,5 2.7 1.6 2.11 1,6 2,8 1,6 2.8 13
LI 2.6 1.2 2,6 1.2 2.7 1.3 2,7 1.3 2.8 1.4 2,8 1.5 2.8 1,5 2,0 1,6 2,9 1,6 2.9 1.6 3,0 1,7 3.0 1.7 3,0 1.8 3,0 1,8
1.2 2.8 1.2 2.8 t.3 2.9 1.4 2,9 1.4 3,0 1.5 3.0 1.6 3,0 1,6 3.1 13 3A 1.7 3.2 1.8 3.2 1,8 3.2 1,9 3,3 1.0 FL3 1,9
1,3 L0 1.3 3.0 1.4 3.1 1,5 3.1 1.5 3.2 1.6 3.2 1.7 3.3 1.7 3.3 1,8 3.4 1.8 3,4 1.9 3,4 2.0 3,5 2,0 3.5 2.0 3.5 2.1
1.4 32 1A 3.2 1.5 3.3 1,6 3.3 1.6 3,4 1.7 3,4 1,8 3.5 1.3 3.5 1.9 3,6 1.9 3.6 2.0 3.7 2,1 3,7 2,1 3.7 2.2 3,7 2,2
1.4 3.4 1.5 3.4 1.6 3£ 1,7 3.6 1.7 3.6 1.8 33 1.9 3.7 2.0 3,8 2.0 3,8 2,0 3.8 2.1 3.9 2.2 3.9 2.3 3,9 2.3 4.0 2.3
1.5 3.6 1.6 3.6 1.7 3,7 1,8 3,8 1.0 3.8 1.9 3.9 2,0 3.9 2,1 4.0 2,1 4.0 2,1 4.I 2,3 4,1 2.3 4.2 2.4 42 2.4 4.2 2,5
1.6 3.8 13 3.8 L8 3.0 1.0 4,0 2.0 4.0 2.0 4,1 2,1 4.2 2,2 4,2 2.3 4.2 2,3 4.3 2,4 4.4 2.5 4.4 2.5 4A 2.6 4£ 2.6
1,7 4.0 1,3 4.0 1.9 4.1 2,0 4.2 2.1 4.3 2,1 4,3 2.3 4.4 2,3 4.4 2,4 4.5 2,5 4.5 2.5 4.6 2.6 4.6 2.6 4.6 2.7 4,7 2.8 1,8 4.2 1.0 4.2 2.0 4,3 2.1 4.4 2.2 4.5 2.3 4.5 2.4 4.6 2.4 4,6 2,5 4.7 2,6 4.8 2,6 4.8 2.7 4,8 2,l) 4.9 2.8 4,9 2.9
1.8 4.4 2.0 4.4 2.1 4.5 2,2 4.6 2.3 4.7 2,4 4,8 2.5 4,8 2.5 4.9 2.6 4.9 22 5.0 2.8 5.0 2.9 5.1 2,9 5.1 3,0 5.2 3.0
1.0 2,0 4.6 4.8 2,0 2,1 4,6 4.8 2.2 2.3 4.8 5.0 2.3 2.4 4.8 5,0 2.4 2.5 4.9 5.1 2.5 2.6 5.0 5.2 2.6 2.t 0,0 5.2 2.7 2.1t 5,1 5.3 2.8 2.9 5.1 5.4 2,8 3.0 11.2 5.4 2.9 3,0 5,3 5.5 3.0 3.1 5,3 5.5 3,1 3.2 5.4 5.0 3.1 3~2 5,4 5,6 3,2 3.3
2.1 5.0 2.2 5.1 2.4 5.2 2,5 5,2 2.6 5.3 2.7 5.4 2.8 5.5 2.9 L6 3,0 5.6 3.1 5,7 3.2 5.7 3.3 5~8 3,3 5,8 3.4 5.9 3,5
2.2 5.2 2.3 5.3 2.5 5,4 2.6 5,4 2.7 5.5 2.8 5,6 2,9 5,7 3,0 5.8 3.1 5.8 3,2 5,0 3.3 6,0 3,4 6.0 3.4 6,1 3.5 6.1 316
2.3 2A 13.0-8 5.4 5.6 13.5-4 2,4 2,5 13£-8 5.5 5.7 14,0-4 2.6 2.7 t4.04 5.6 5.8 14£-4 2.7 2.8 14,5-8 5.6 5,8 15.0-4 2.8 2.0 15.0-8 5.7 5,0 1L5-4 2.9 3.0 15.5-$ 5.3 6.0 16.0-4 3.0 3.2 16.0-11 5.11 8.1:16.5-4 3.1 3.2 I6.5.8 6.0 0.2 17.0-4 3,2 3,3 I7.0-8 6,0 62 17.5-4 3,3 3.4 17.5-8 6.1 6,3 18.0.4 3.4 3.6 18.0-8 0.2 6.4 18J1,4 3.5 3.6 111,5-11 6.2 6,5 19.0-4 3,6 3.7 19,0,8 6.3 6,6 19.5-4 3.7 3.8 19£.8 6.3 6,6 20.0-4 3.t 3.0 20.0-8
* t
*Height in ¢m. distance. tAbove baJeline (era,). The top ot the nomogram lists time base of the downslope. This first ngure on the side of the aomogrm-a lists the height of the downslopc. The figure after the dash line on the side lists the ordinate for the intermediate poi,~t on the downslope. Time Nglzres in the field list the abscissa for the intermediate points.
13,04 13.5-4 13.5-8 14.0-4 14.0-8 14.5-4 14.6-{~ 15.0-4 115.0-8 15.5-4 15,5-11 16.0.4 16,0-8 t6.5-4 16,5-8 17.fi.4 17,0-8 17,5-4 17.5-8 18,0-4 IS.0.8 11~.5-4 1$.5.8 19.04 19.0-$ 19,5-4 29.5-8 20.0-4 20,0-$
AFTER
1,O0 l.Z5 1.50 1.75 2.00 2.25 2,50 2.75 3.00 3.25 3,50 3.75 4,00 4,25 4,50 4.75 5.00 5.25 5£0 6.75 6.00 6.50 7,00 7.,50 8.00 8.50 9,00 9.5010,00 i0.50 I1,0 11,5 12.0 12£ 13.0 I3.5 i4.0
CENTIMETERS
Table 2.--Continued
26
GI_JNNAR SEVELIUS
O Ik 40
3o!
°
20 lO
0
10
~ZO
~
40
50
60
70
80
TCT
Fig. 4 . - - C o r r e l a t i o n b e t w e e n the p a s s a g e t i m e t h r o u g h t h e coronary circulation of the h e a d of the bolus and that of t h e total bolus. P l a c e d on s e m i - l o g a r i t h m i c p a p e r , flae 82 p e r c e n t point, the p o i n t p e r p e n d i c u l a r to it, a n d the last p o i n t of t h e h e a r t c u r v e will form a right ~ i a n g l e . A n y point o f t h e h y p o t e n u s e can b e r e c o n s t r u c t e d in a s e m i - l o g a r i t h m i c plot. T h e n o m o g r a m in t a b l e g lists t h e abscissa a n d o r d i n a t e s t:or all possible l o g a r i t h m i c d o w n s l o p c s o n e m a y e n c o u n t e r w i t h t h e sugg e s t e d m a c h i n e r y . T h e n o m o g r a m will s u g g e s t o n e or t w o i n t e r m e d i a t e points on the respective downslopes. T h e e n d of t h e b o h , s p a s s i n g the c o r o n a r y eirctdation c a n n o t b e f o u n d directly'. F r o m c u r v e s w h e r e w e c o n i d e s t i m a t e the e n d o f t h e c o r o n a r y b M u s w i t h s e m i d o g a r i t h m i e extrapolation, w e c o r r e l a t e d t h e p a s s a g e t i m e of the h e a d o f t h e c o r o n a r y b o l u s w i t h t h e p a s s a g e t i m e of the total c o r o n a r y bolus. T h e t w o p a s s a g e times are p l o t t e d in figure 4. T h e c o . e l a t i o n eoettleient is 0 . 9 2 . T h e relationship is linear, p a s s i n g t h e origin, a n d h a s an angle o f 5 / 1 1 . T h e missing slope b e t w e e n t h e start o f t h e r e c i r e u l a t i o n a n d t h e e n d p o i n t o f t h e c o r o n a r y b o l u s can b e r e c o n s t r u c t e d f r o m t h e n o m o g r a m in t a b l e 2. W i t h t h e h e l p of t h e listed n o m o g r a m s , t h e l~eart cz,rve c a n b e s e p a r a t e d f r o m t h e eoronm-y c u r v e a n d t h e c o r o n a r y c u r v e f r o m reeirenlation. ~ES1JLTS
Tile r e p r o d u c i b i l i t y of the described technic has b e e n tested. T h e experiments are listed in table 3. T h e coefficients of variance for cardiac o u ~ u t and certainty b l o o d flow d u r i n g the same session w e r e 5.21 p e r cent and 7.95 p e r cent respectively. T h e c o r r e s p o n d i n g figures d u r i n g different sessions w e r e 6.98 pea" cent for cardiac o u t p u t and 38.04 per cent for coronary blood flow. C o r o n a r y blood f l o w values as d e t e r m i n e d b y tim r e p o r t e d radioisotope technic were eoinpared w i t h values d e t e r m i n e d b y nitrous oxide t~chnie. 7 A good correlation was reported with a correlation c o e ~ c i e n t ot: 0.9,'37. T h e numerical values for respective flows also c o m p a r e d v e r y well. D e t e r m i n e d coronary, Mood flow should b e j u d g e d against an estimated normal for that p a r t i c u l a r p e r s o n . W e use as estimated normal c o r o n a r y blood flow 3 per cent of an estimated cardiac output. T h e e s t i m a t e d c a r d i a c o u t p u t is calculated as 160 per cent times an estimated blood volume. T h e estimated blood volume for the p a r t i c u l a r person is read from a n o m o g r a m b a s e d on height ancl weight. °
~7
COI~.ONAIIY AI1TEBY BLOOD F L O W
Table Subj~t
2.
3.
4.
C.O.
3 a . - - B e p r o d u c i b i l i t y o[ Ihe Same Session
C B F g~
Subject
CBF
7.80 8.27 9.45 8.20 8.74 2vq=5 X:8.49 SD=.56 CV~6.59%
3.03 3.16 2.85 2.78 2.92 N:5 ~X:2.95 SD=.77 CV=26A0%
236 261 269 228 255 ]:q:5 X~=250 ~D~---7 CV=2.82%
8.30 9.86 9.24 7.71 7.50 ]~q~5 X=3.52 8I)=.90 C'V=10.56%
2.16 2.29 2.30 2.32 1.93 N=5 X = ~ o. 2 0 SD~.15 CV~6.819~
lqO 226 213 179 145 N~5 ~X = 1 8 8 SD~27 CV~15-199¢~ ,
7.20 3.90 8.40 ~',~:3 X--~-8.17 SO=.71 CV~8.69%
3.80 3.60 3.70 N:3 X~3.70 SD~.03 CV:2.16%
274 320 310 N:3 i=301 SD~-.~20 CV:6.56%
6.00 6.20 6.3{)
2.61 2.30 2.40
167 143 151
~ =6.1q SD~-.12 C~r ~ 1 . 9 4 c7o
'X=2.44 8D:.13 CV=5.32c2~
X~150 SD:6 CV=3.32~o
7.40 7.00 7.20
2.80 2.60 2.50
207 182 180
X~7.20 8D~.16 CV~.22~
X-M=2.63 SD:.12 CV=4.56%
X~IgO SD=I2 CV ~-6.46~
7.80
3.15
246
8.30 8.36 8.48 8.12 8.~0 8.~R5 8,42 N=8 X~8.25 SD=.~0 C'V=2~,42%
3.20 3.14 3.20
266 263 273 253 323 339 390 N-~S X'-'-~-294 SD=48 CV=I(L32%
3.10 3.20 3.20 3.20 ~q:8 X--=-~3.17 SD-~.04 CV=1,26'7~
CI~F
1.5.% 1.52 1.51 N~3 X : 1.54 SD~-.03 CV---- 1.94~/~
132 121 124 N:3 : ¢ . ~ , 26 SI)~5 CV:3.69%
S.
S.O0 8.32 8.$4 N:3 :'~: 8 . 3 9 SD-~,3,5 CV~4.17%
1.51 1.07 1.28 N~3 X : t .29 S D---~.18 CV~-~I 3.95"7~;
121 089 I ]3 N~3 X~108 SD.-~.I 4 CV-~12.59%
9.
7.20 6-97 7.06 7.80 6~92 ~¢=5 ~.19 SD~.32 CV=4.45~,~
5.30 5-10 5.10 5.' 9 :b$~5 X=JS.18 SD:.07 CV=1.35~v
382 355 367 ~61 :~,59 ~=5 ~=365 S1):9 CV~2.58%
8.80 8.30 8.40 9.80
1.40 1.50 1.56 1.53
123 125 131 150
~=s.s~
~¢:=,.so
3:-=~32
SD=.50
GV=5.66~
SI)=.06 C~-~a.O0%
SD=I 1 CV~S.0S~/a
8.53 8,90 10.04 ~q~3
2.81 3.06; 2.29 N'~3
240 272 230 lq~3
S]3--~-.64 CV~6.98%
SI)~.32 CV~---I 1.76~o
SD~I 8 CV:7,25%
8.00 8.92 9A4 N~3 X~8.79 SD~.60 CV-----6.82%
1.76 1.93 1.5,5 ~,~3 X~I.75 SD--~.I6 CV~9.I 4~
:I~ :l 172 146 t~.~ 3 X ~ I ~:¢ SD---~ 14 CV~R.~f~%
N=48 C'V~---7.36 ¢'2~
N=48 CV=7.85~,
,0.
12. 6.
CBF %
8.30 7.04 8.24 N~3 X:8.16 SD~.IG CV:I.96%
II. 5~
C.O.
7.
Tots] Su,~je~cts N~---48 CV:.~5.21%
5.20
DISCUSSION
Any surface counting technic has ~he advantages over other technics of b e h l g fast and non-traumatic. A surface counting technic is so shnple, however, that one is apt to be careless and geometric factors to which the m e t h o d
GUNNAI~
28 ¸
Table Subjc~ct I,
C.O.
CBF
Subject
CBF ~
CBF
2,83
194
~.75
1.03
59
154
6.12
.87
53
7.82
800 154 I42 N:=5 ~'~189 SD-----58 CV~30.85c/o
6.15 1"4-~ 3 X~.01 SD=.I 8 CV:2.99e/b
~.22 1"~. 3 X-'=-.~-1.37 SD=.60 CV~43,79%
137 /'~3 k=83 SD=38 CV~45.98%
SD~-~.37 CV~5.16%
3.82 2.25 1.95 N=5 X"-~2.61 SD~.67 CV~25.67% 3.57 1.86
214
6.34 4.50 6.I9 4.86 I~=6 X--'--5.65 SD=.'/0 c % r = I 2.38~/b
1.04 1.83 .77 1.23 N=7 "X:1.69 SD=.85 CV~50.29%
66 82 48 60 N~--~6 X"--~97 SD~--~56 CV-~57-77c~
1.30 2.18 N=2 X ~ 1.74 S D = " .44 CV=25.28¢Tb
86
6.00 5.99
6.58 6.18 1~/---~2 "X---~6.35 SD~.22 CV~3.46%
134 N:2 X'-7-~110 SD=24 CV=21.81%
7~
9.64 9.0~ 11.35 N--3 X ~ I 0.01 SD=.98 CV-~9.79~Tb
1.11 2.47 3.98 N=3 -X=2.50 SD:I.15 CV:46.00~
107 223 446 ~4-----3 X-'7=259 SD:-141 C ~ 4 : 5 4 - 3 1 c/o
7.34
1.I I 1.84 1.86 LO2
81 144 126 73
8.
9.34 8.86 N==Z
1.82 4.16
170 369
X~=2.9~ SD--=1.17 CV-~9.13%
X---=270 SD~-~99 CV=36-~
N-~-29
1".~~ 3 0
2~/~29
C'-~;:6.98%
C-'~¢=35.16% C-v=38.04%
7.81
6.78 7.14
5~
C.O.
2.21
X-':7.16
4~
CBF %
6.96 7.30 N=5
3.
3b.~Hvproduczbd ty of Different Sessions
6.85
6.85
2.
SEVELgJS
6,
111
t'~/=4
1"4~4
N----4
X=9.I0
X~-----7.27 SD~.87 CV=5.08~
X------1.46 8D=.39 CV~6.7I~
X----~--106 SD---~30 CV---~28.13~
SD=.24 CV-~-2.63%
5.78 5.39 4.69 8.92 N--4 X-~4.95 SD-----.71 CV-~14.34~fb
1.82 3.36 3.73 2.88 N=4 X-----2.95 SD-----.72 CV~4.40~
105 181 I75 113 N=4 X=144 SD=41 CV==28.65c~
Total[ Subjects
is extremely sensitive will come into play. These general points are very important in flow determinations, because t h e c o u n ~ n g time is so short. During the reproducibility tests, w e experienced how important it was to reproduce the location of the detector. One inch ~ s p l a c e m e n t of the detector could halve the coronary circulation. T h e pressure against the chest wall has to be standardized: Normal breathing does not seem to affect results, b u t a deep breath displaces the heart significantly. The results are usually more reproducible d u r i n g one session fllan two. The form of the bolus is important. I f the bolus is too diluted, the curve profile becomes indistinct and cannot be subject to mathematical analysis. It is important that the tracer bolus injected into the anticubital vein is forced as fast as possible into the heart. It is likely that it ;rill be recorded as it passes through the superior vena eava. With the interpretation described, the time the bolus spends in the superior vena ~w~ will be counted into the heart passage time. If the speed in the superior vena cava is slow, there will
CORONARY
29
ARTERY BLOOD FLOW
Fig. 5.~Nomogram for passage times described in appendix. millimeters.
Units reads in
be distortion in the nornogram which cannot be taken into consideration. Only curves with steep right ventricular upstrokes should be interpreted. When the relationship between the unbranched flow and the branched flow in the heart and other organs is solved the whole circulation will be open for investigation. A
Procedure [or Interpretation o[ Recordi~gs (Reference is m a d e to figures i and 5 and table 2.) 1. Establish and draw a baseline for the heart curve. This is done with a 10 see. time delay on the ratemeter before any radioactivity is close to the 2. Extrapolate the upstroke of the right heart peak back to the baseline using a straight edge. 3. The intersection with the baseline, Hx, is considered the start of the heart curve.
4. Establish a baseline for the head curve, as the mean height of the head recording before the main upstroke. Extrapolate the upstroke of the head curve back to its baseline. The intersection is considered the start of the peripheral circulation ( P ) . 5. Measure the Hme difference between H1 and P in 0.g see. units ( r a m ) . This is considered heart passage time. 6. Find the coronary passage time, PRI, from the nomogram in ~g. 5, ( H P T -
30
GLINNAI:~ S E ~ L I L r S
7. F i n d passage time of the total coronary bolus PC2 from the n o m o g r a m in figure 5 ( P C - T C ) . 8. M e a s u r e t h e h e i g h t of the left h e a r t p e a k from the baseline. 9. M a r k point C, 82 per cent of the left h e a r t p e a k height on the line. 10. M a r k points C1 a n d R1 on fl~e baseline, p e r p e n d i c u l a r to C and 1~, re11. M e a s u r e the p a r t passage time t h r o u g h the h e a r t of the bolus (H1 C~ : PI-I) a n d receive T H from the n o m o g r a m in figure 5. 12. D r a w a parallel line 1 era. above the baseline. This will b e t h e ordinate for two i n t e r m e d i a t e points, one on the downslope of the h e a r t and one on the downslope of the coronary peak. 13. M e a s u r e CCD CIH_~, and RIi~, R~C._,, and find the abscissa of the int e r m e d i a t e points in the field of figure 2. T h e o r i g i n s for t h e i n t e r m e d i a t e points on the respective downslopes are C~ and R1. 14. C o n n e c t C w i t h He t h r o u g h its i n t e r m e d i a t e point. C o n n e c t B. with C2 t h r o u g h its i n t e r m e d i a t e point. Use a F r e n c h curve K a n d E 1860-4, the steeper curve for the faster downslope ( h e a r t ) a n d tjae slower curve for the slower downsIope ( c o r o n a r y ) . 15. M e a s u r e the area (Ah) u n d e r flae h e a r t curve and A~ u n d e r the coronary p e a k with a planimeter. T h e constants b e l o w are b a s e d on area m e a s u r e m e n t s in s q u a r e inches. 16. M e a s u r e t h e passage time u n d e r each area, Tn and T~ (turn.). 17. M e a s u r e the h e i g h t ( m m . ) a b o v e t h e baseline of t h e e q u i l i b r i u m read-
ing (E). 18. Calculate the actual blood volume, BV, according to s t a n d a r d procedures. 19. Calculate cardiac o u t p u t ( F ) : E X BV X 0.482
F =
(A h + A~) 20. Calculate C B F p e r cent: WCBF
A2 × T. × 100%
:
Tc
X
A2h
21. Calculate C B F ( m l . / m i n ) : CBF
=
F
X
CBF%
~EFERENCES 1. Bing, R. J.: Determination of corona~ C. E., and BJng, R. J.: Myocardial exblood flow. Meth. Med. Res. 8:269, traction of RbSC in the rabbit. Am. J. 1960. Physiol. 197:1175, 1959. 2. Love, XV. O., and Burch, G. E.: A study 4. Prinzmetal, M., Corday, E., Spdtzler, R. in dogs of methods notable for estiJ., and F|ieg, "~V.: Radiocardlography mating the rate of myocardial uptake and its clinical applications, J. A. M. A. of ttbS0 in man, and the effect of L139:617, 1949, norepinephrine and petressin on RbSa 5. IIuff, R. L., Feller, D. D., Judd, O. J., and uptake. J. Clin. Investig. 3{}:468, 1957. Bogardus, G. M.: Cardiac output of 3. Mack, R. E., Nolting, D. D., Hogencomp, men and dogs measured by in ~,dvo
CORONAIIY A I t ~ R Y
BLOOD FLO'~,V
analysis of iodinated (Ilzl) H ~ a n Serum Albumin. Circulation Res. 3: 564, 1955. 6. Sevdius, G. G., and Powers, J.: Flow model experiments. Circulation and Radioisotopes. Boston, Massadmsetts. Little, Brown and Company, In press. 7. ~ , and Johnson, P. C.: Myocardial blood flow determined by surface counting and ratio forrrmIa. J. Lab. & CIin. Med.
31
54:669, I959. 8. Snyder, D. D., Sevelius, G. G., Johnson, P. C., and Campbell, G. S.: Coronary blood flow measured by a surface counting technique. Surg. Gyn. Obst. 111:371, 1960. 9. Nadler, S. B., Hidalgo, J. U., and Bloch, T.: Prediction of blood volume in normal human adults. Surgery 51:o.9.24, 1962.
Gummr Sevelius, M.D., Instructor of Medicine, Univet;s'ity of Ok~hmna Medical School; Consultant, C.ioil Aeromedical Research In~.titute.