Journal of Algebra 320 (2008) 3849
Contents lists available at ScienceDirect
Journal of Algebra www.elsevier.com/locate/jalgebra
Corrigendum
Corrigendum to “Duals of pointed Hopf algebras” [J. Algebra 262 (2003) 54–76] M. Beattie 1 Department of Mathematics and Computer Science, Mount Allison University, Sackville, N.B., Canada E4L 1E6
Table 2 in Section 4.2 of [1] should appear as below. Table 2 is as in the original except that the entries in column 6, rows 2 and 3 have been corrected. The updated version of this paper has also been posted at http://arxiv.org/abs/math/0202091. Table 2 G ( Ai )
Vi
Ai
A ∗i
corad( A ∗i )
C8
(c , c ∗4 )
I1
Theorem 3.3
k [C 2 ] ⊕
C4 × C2
(c , c ∗2 )
I1
Theorem 3.3
A7
C4 × C2
(cd, d∗ )
I1
Theorem 3.3
Mc (2, k) 2 k[C 2 × C 2 ] ⊕ i =1 Mc (2, k) 2 k[C 2 × C 2 ] ⊕ i =1 Mc (2, k)
A 14,1
C4
(c , c ∗2 ), (c , c ∗2 )
D
Corollary 3.5
k[C 2 ] ⊕ Mc (2, k)
A 14,2
C4
(c , c ∗2 ), (c , c ∗2 )
I2
Example 4.4
k [C 2 ] ⊕
A 16,1
C4
(c , c ∗2 ), (c 3 , c ∗2 )
D
Corollary 3.5
k[C 2 ] ⊕ M (2, k)
A 16,2
C4
(c , c ∗2 ), (c 3 , c ∗2 )
I2
Example 4.4
k [C 2 ] ⊕
A 20
C2 × C2
(c , c ∗ ), (cd, c ∗ )
E
Example 4.5
Ai A1 A5
References [1] M. Beattie, Duals of pointed Hopf algebras, J. Algebra 262 (2003) 54–76.
1
DOI of original article: 10.1016/S0021-8693(03)00034-6. E-mail address:
[email protected]. Thanks to G. García and C. Vay for pointing out this error.
0021-8693/$ – see front matter © 2002 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2008.09.008
3
i =1
2
i =1
Mc (2, k)
c
k [C 2 ] ⊕
2
i =1
Mc (2, k)
i =1
Mc (2, k)
2