Journal of Geometry and Physics 62 (2012) 1571
Contents lists available at SciVerse ScienceDirect
Journal of Geometry and Physics journal homepage: www.elsevier.com/locate/jgp
Erratum
Corrigendum to ‘‘Integrable deformations of nilpotent color Lie superalgebras’’ [J. Geom. Phys. 61 (2011) 1797–1808] Yu. Khakimdjanov a , R.M. Navarro b,∗ a
Laboratoire de mathématiques et applications, Université de Haute Alsace, Mulhouse, France
b
Dpto. de Matemáticas, Universidad de Extremadura, Cáceres, Spain
article
info
Article history: Received 26 January 2012 Accepted 30 January 2012 Available online 14 March 2012
In the paper, (Z3 , β)-color Lie superalgebras are considered. All the errors in the paper arise from considering β(g , h) = (−1)gh , g , h ∈ Z3 = {0, 1, 2}, as a commutation factor; in fact, the unique admissible commutation factor is exactly β(g , h) = 1, ∀g , h. Thus, (−1)gh must be replaced by 1 throughout the paper. If we consider the model filiform (Z3 , β)color Lie superalgebra Ln,m,p , then all the bracket products are anti-commutative ([X , Y ] = −[Y , X ]). As a consequence, all the 2-cocycles Z02 (Ln,m,p ; Ln,m,p ) are, in particular, skew-symmetric bilinear mappings; thus the subspace of 2-cocycles D is exactly Z 2 (L; L) ∩ Hom(L1 ∧ L1 , L2 ). Of the three theorems of the paper, the one that is affected is Theorem 1, that must be rewritten as follows: Theorem 1. If D = Z 2 (L; L) ∩ Hom(L1 ∧ L1 , L2 ), then we have the following values for the dimension of D:
dim D =
m(m − 1) 2 1 (4mp − p2 − 2p − 1) 8 1 (4mp − p2 − 2p + 3) 8 1 (4mp − p2 − 2p) 8
∗
if p ≥ 2m − 1 if p < 2m − 1,
p ≡ 1(mod 4) and m odd, or p ≡ 3(mod 4) and m even
if p < 2m − 1,
p ≡ 3(mod 4) and m odd, or p ≡ 1(mod 4) and m even
if p < 2m − 1
and p even.
DOI of original article: 10.1016/j.geomphys.2011.03.019. Corresponding author. Tel.: +34 927257213; fax: +34 927257203. E-mail addresses:
[email protected] (Yu. Khakimdjanov),
[email protected] (R.M. Navarro).
0393-0440/$ – see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2012.01.017