Corrigendum to “Methyl chloride synthesis over Al2O3 catalyst coated microstructured reactor—Thermodynamics, kinetics and mass transfer” [Chem. Eng. Sci. 95 (2013) 232–245]

Corrigendum to “Methyl chloride synthesis over Al2O3 catalyst coated microstructured reactor—Thermodynamics, kinetics and mass transfer” [Chem. Eng. Sci. 95 (2013) 232–245]

Chemical Engineering Science 99 (2013) 250–251 Contents lists available at SciVerse ScienceDirect Chemical Engineering Science journal homepage: www...

190KB Sizes 1 Downloads 35 Views

Chemical Engineering Science 99 (2013) 250–251

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Science journal homepage: www.elsevier.com/locate/ces

Corrigendum

Corrigendum to “Methyl chloride synthesis over Al2O3 catalyst coated microstructured reactor—Thermodynamics, kinetics and mass transfer” [Chem. Eng. Sci. 95 (2013) 232–245] Sabrina A. Schmidt a,n, Narendra Kumar a, Arne Reinsdorf b, Kari Eränen a, Johan Wärnå a, Dmitry Yu. Murzin a, Tapio Salmi a a Åbo Akademi University, Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Department of Chemical Engineering, FI-20500 Åbo/Turku, Finland b Technische Universität Dresden, Institut für Verfahrens- und Umwelttechnik, Münchner Platz 3, 01062 Dresden, Germany

art ic l e i nf o Article history: Received 27 May 2013 Accepted 4 June 2013 Available online 28 June 2013

The authors would like to inform and apologize that there are spelling mistakes in a number of formulae published in the original paper. The formulas 6–8, 17, 18 and 25 in the manuscript should read: r 1 ¼ k1

cMeOH cHCl −cMeCl cH2 O =K 1 D

ð6Þ

r 2 ¼ k2

c2MeOH −cDME cH2 O =K 2 D

ð7Þ

r 3 ¼ k3

cDME cHCl −cMeCl cMeOH =K 3 D

ð8Þ

r 2 ¼ k2

r 3 ¼ k3

XA ¼

ðc2MeOH −cDME cH2 O =K 2 Þ ð1 þ cHCl K HCl Þ2 ðcDME cHCL −cMeOH cMeCl =K 3 Þ ð1 þ cHCl K HCl Þ2

  β   cMeCl β  1−cMeCl =c0 − 1−cMeCl =c0 þ 1−β c0

ð17Þ

ð18Þ

ð25Þ

On page 243 the last paragraph of Section 4.4 should read: In case of a heavy pore diffusion resistance, the effectiveness factor is proportional to the reciprocal Thiele modulus, ηei ¼ 1=ji where qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ji ¼ kcn−1 =Dei ðRL Þ. The experimentally observed rate is r=ji ¼ r= kcn−1 =Dei ðRL Þ, which implies that ri′ is proportional to k ¼ Ae−Ea=ðRTÞ i i

n

DOI of original article: http://dx.doi.org/10.1016/j.ces.2013.03.040 Corresponding author. Tel.: +358 469064572. E-mail address: sschmidt@abo.fi (S.A. Schmidt).

0009-2509/$ - see front matter & 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ces.2013.06.003

S.A. Schmidt et al. / Chemical Engineering Science 99 (2013) 250–251

251

and the apparent activation energy is 1/2EA under strong diffusion control. This can explain the factor of two between the obtained and the previously published activation energies. Appendix Formulas A24 and 22 should read: β  i cC β h 1−cC =c0 − 1−cC =c0 XA ¼ þ c0 1−β dci 1 ¼ εp dt

2

Dei

d ci þ r i ρp dr 2

ðA24Þ

! ð22Þ