Cost analysis of a two-dissimilar unit cold standby redundant system with administrative delay and no priority in repair

Cost analysis of a two-dissimilar unit cold standby redundant system with administrative delay and no priority in repair

MIcroelectron. Reliab., Vol. 30, No. 6, pp. 1155-1177, 1990. 0026--2714/9053.00 + .00 © 1990 Pergamon Press pic Printed in Great Britain. COST ANAL...

621KB Sizes 3 Downloads 139 Views

MIcroelectron. Reliab., Vol. 30, No. 6, pp. 1155-1177, 1990.

0026--2714/9053.00 + .00 © 1990 Pergamon Press pic

Printed in Great Britain.

COST ANALYSIS OF A TWO-DISSIMILAR UNIT COLD STANDBY REDUNDANT SYSTEM WITH ADMINISTRATIVE DELAY AND NO

PRIORITY IN REPAIR S.S. ELIAS and S.W. LABIB Ain Shams University, Faculty of Science, Department of Mathematics, Cairo, Egypt (Received for publication 20 February 1990)

This paper deals with the cost analysis similar unit cold standby redundant for each unit under the assumption rative delay and no priority

system with three modes that there is administ-

in repair.

repair time and administrative

The failure time,

time distributions

ral and arbitrary.

Some reliability measures

to system designers

have been obtained.

vious results are derived

of a two-dis-

are gene-

of interest

Moreover

some pre-

from the present results as spe-

cial cases.

1.

IMTRODUCTIONAND

Gupta

F O R M U L A T I O M OF T H E PROBLEM:

[2] discussed

the stochastic

similar unit cold standby redundant unit works in three modes, and total failure.

nistrative

assumption

partial

failure

the same problem of [2], but with

delay and no priority

in repair.

The admi-

was assumed to be exponential.

Elias and Labib

state availability redundant

i.e., normal,

time distribution

Mokaddis,

system in which each

and arbitrary.

[3] discussed

administrative

[i] have derived

of a two-dissimilar

the steady

unit cold standby

system where each unit has three modes under the that there is an administrative

delay in getting

• the repairman at the system location and assuming randoms

of a two

The repair and failure time distribut-

ions are exponential Gupta

behaviour

variables

having general distributions. 1155

that all

1156

S.S. ELIAS and S. W. LABIB

The purpose of the present paper is to study the cost function of a two-dissimilar unit cold standby redundant system and three different modes, with administrative delay and no priority in repair. The following assumptions and notations are adopted for our model.

(1)

Two dissimilar units operate in cold standby configuration

i.e., a unit does not fail du=ing its standby

state.

(2)

Each unit of the system has three modes

:

i. normal mode, which means the functioning of the unit with full capacity, ii. partial mode which means the functioning of the unit with reduced capacity at a specified level, iii. total failure mode which means the functioning of the unit with a capacity below the specified level. (3)

Upon total failure of an operating certain administrative actions, trative delay in getting repair, a unit comprises two parts:

unit and due to

there is an adminisso the down time of

administrative delay

and repair time. (4)

No unit of the system can attain the total failure mode without passing through the partial failure mode.

(5)

Whenever the operative unit fails completely, standby unit is switched. instantaneous

(6)

the

The switching is perfect,

and without any damage to the system.

In P-mode, a unit is working as will as under going repair. mode,

On getting repaired,

the unit enters the N-

it is also possible that the unit during repair

deteriorates

further and enters the F-mode.

The events

of a P-unit passing into N- and F-modes are mutually exclusive.

Two-dissimilar unit cold standby redundant system

(7)

In case the N-unit

fails partially,

unit is in F-mode and under repair, till the repair of the F-unit

(8)

When one unit is o p e r a t i v e led unit is under repair, unit is completed, as standby,

1157

while the other the former waits

is completed.

and the other totally

fai-

if the repair of the failed

the o p e r a t i v e

unit will be taken

and the repair unit will be taken as ope-

rative. (9)

The repair time for a P-unit and F-unit,

administra-

tive delay time and times to transit between different modes are random variables ted such that Di

: Pi

generally

distribu-

:

> FAi

Hi :

FA i

>

Fr i ,

L i : Pwi----> Fw i

Vi :

Oi

>

Pi

>

0 i.

Gli:

Pi

> Oi

and

G2i : Fr i

We refer to the d i f f e r e n t

aspects

'

of unit i; i = 1,2

by : O i , St i

operative mode,

Pi

partially repair)

standby mode,

failed

(and stipulated

,

FAi

failed unit

Fri

repair of unit

i

under a d m i n i s t r a t i v e i

delay has finished Fci

to be under

totally

Pwi

partially

Fwi

totally

, i

and repair continued

preceding

failed unit

failed

unit

i i

state

from

,

waiting

for repair

and w a i t i n g

Under the above assumptions, one of the following

,

started after a d m i n i s t r a t i v e

failed unit

the i m m e d i a t e l y

delay

,

for repair.

the system will be in

states at any instant;

So E (01, St2)

,

S1 E (Stl, 02)

'

$2 ~ (PI ' St2)

'

$3 i (Stl , P2)

,

$4 m (FAI ' 02 )

,

S5 ~ (01 , FA2)

,

1158

S.S. ELIASandS. W. LABIs

S 6 • (Frl, 0 2 )

,

S 7 ~ (01 , Fr 2)

,

S8 E (FAI , p2 ) ,

$9 m (P1 ' FA2)

'

Sl0m

(Fc1' Fw2)

'

Sll ! (Pw I, Fc 2) ,

$12 ~ (Fr I, Pw 2) ,

S13 a (Pw I, Fr 2)

,

S14 a (FA I, Fw 2) ,

$15a

(Fw I, FA 2) ,

$16a

(Frl, Fw 2)

,

S17 a (Fw I, Fr 2) ,

$18E

(Fc I, Fw 2) ,

Slga

(Fw 1, Fc 2 )

Let tively,

U

thus

and

F

denote the up and failed state respec-

U e (So, S I, .-- , SI3),

The state diagram of the system

Fig.

Q

Up states

D

Down stores

F e (s14, s15,...,s19) is depicted

in Fig. I.

i. The state diagram of the system.

2. T R A N S I T I O N P R O B A B I L I T Y AND M E A N W A I T I N G T I M E S IN S T A T E S

Let

:

Eo

state of the system at time t = 0 ,

E

set of regenerative

states

i = 0, 1, 2, ..., 9, 12, 13,

~Si} ..., 17 ,

Two-dissimilar unit cold standby redundant system

set of non-regenerative

states

1159

{S j} ;

j = 10 , 11 , 18 , 19. Pij

one-step transition probability from state state

p(U,V)

ij

Sj ;

&

(S i

Sj e

S i to

E) ,

transition probability from state

S i to state Sj

through states Su&S v, (S i & Sj e E and S u & S v e E). Denote the complementary function of any distribution F(.) by

F(.) ffi l-F(.). Therefore,

P20

ffi I O

P31

= I

P46

OI

P02 = PI3 = P14,16 = P15,17 = PI6,7=PlT,6 ml' OO Dl(t)dGll (t) P24 " S allCt~ aDlCt~ O cO ' P35 = J" Gl2lt) dD2lt) D2(t)dGl2(t) O CO ' P48 = J~ HI (t) dV2(t) ' V2(tldHl(t )

O

O

P57

GO = I Vl(tldH2 (t) O Go

P60

" I o

p(10) 63

'

P59 =

,J~CDH2lt) dVllt) o

V2 (t) dG21(t) ffi f O O l t t=o x=o CO

-

L2(t-x) dV2(x) dG21(t)

0~

I I XffiO t=x

L2(t-x) dV2(x) dG21(t), put t-x=y

O0 X=O

L2(Y) dV2(x) dG21(Y + x) ,

y=o

p(10,18)= _(i0) r6'18

67

~ =

G9

I

I

XffiO

G21(t) dV2(x) dL2(t-x)

G21(t) dV2(x) dL2(t-x)

t=x

co

-

x=o

co

S

X=O

y

t=o

CO

S

y=o

G21(Y + x) dV 2 (x) d L 2 (y)

OD P71

=

I

(11) P72

-

I

V1 (t) d G22(t)

o

CO X~O

S

y=o

Ll(Y) d VI(X) d G2~Y + x) , oo

p(11,19)= 76

p~ll) ,19

-- S

x=o

CO

S

y=o

G22(Y+X) dVl(X) d Ll(Y)

'

1160

S.S. ELIASand S. W. LABIB

GO

GO , J~ Hz(t)D2(t)dGl2 (t) P8,12 ffi D2(t)Gl2(t)dHl(t) o

I o

P84

UB

:

P8,14

I

G12(t)Hl(t)dD2 (t)'

o

P95 :

CO I Dl(t)Gll(t)dH2(t), o

P9,13

=

P12,3

ffi I o

co

£2(tldG21(t)'

H2(-t)Dl(t)dGll(t)

I

o

P9,15 :

P12,18

T GII (t) H2(t)dDl (t)' o

= p(18) = 12,7

I o

G21(t)dL2(t),

GO £i (t)d S22(t) ,

P13,2

ffi I o

and

Pij = o

P13,19 = p(19) = T - G22 (t)dLl(t), 13,6 o

for other

i

and

j .

To obtain the mean waiting times in states, let mij denotes the mean time for direct transition from state

S.1 Sj ; (i, j = 0, i, 2, ..., 19) and Pij(s) denotes

to state

the Laplace-transform of time

Bi of the system in

PO = m02

'

Pij(t).

Therefore,

the mean stay

Si(i = 0,1,2,...,19) ~].

is given by

ffi m13

CO -d * (s) + * (s)] = .PGll(t)Dl(t)dt, ~2 ffim20+ m24 = ~ [P20 P24 sffio co -d • • = ~3 = m31 + m35 " ~ [51 Is) + 5 5 (Sl]s=o ~ Gl2(tID2(tldt' co g4 " m46

+ m48 " ~ s

[P46

(s) + P*

48

(s)]

sffio

ffi ~"o ~Z(t)~2(t)dt, co

~5 ". m57 + m59" ~sd [ p

* (s)] 7 (s) + P59

s=o

o

~2(t)gZCt)dt

,

(10,18)* ~6 " m60 + m63 + m6 ,i0 = ~-6 -d [P:0 (s) + p(10 )*(s) + p 63



67

(s)] s =o

co

Io ~7 " m71

+ m

72

+ m

-d [p;l ( _(ii _(11,19)* 7,11 = ~ s) + P72 )*(s) + P76

OD

~J~ Ql(t) G22(t)dt, o

V2(t) G21(t) dt ,

(s)] S=O

Two-dissimilar unit cold standby redundant system

1161

P8 = m84 + m8,12 + m8,14 = ~ss [P8,t s) + p ,12 (s) + P8,14 ( s ) ] oO I H1 ( t ) o

"

Gi2 I t )

52 I t )

s o

,

at

* (s) + p; ,13 (s) + p*9, 15(S)]sffio H9 = m95 + m9,13 + m9,15 = ~-d [P95

- ~

N2(t) ~lz(t) 5 z (t)

o

dt

GD PI2 = m12,3 + m12,18

ffi ~-d [~2,3 (s)

, p12,1e(s)] = ~ ~.2(t)~n(t)dt,

+

S=O

O

Co PI3 = m13,2 + m13,19 = ~-d [P~3, 2 (s)

3.

T I M E TO SYSTEM FAILURE

+ P13,19 * ( s )s=o ] = IoL l ( t ) G 2 2 ( t ) d t .

(TSF)

Let • TTi (t)

cdf of the time to system failure

T[~(s)

Laplace - Stieltjes transform o f ~ ( t )

®

I E

symbol for ordinary convolution, t

Act) @

s(t) =

~

s (t-

o symbol for Stieltjes

®

A(t)

Let

TO ,

T

the state

~

B(t)

=

u)

i.e., A

(u)

convolution

It o

o = Si

,

an

,

i.e. ,

B (t - u) dA (u)

denote the epoch at which the system enters

i (i e E) and let

state visited at time

Tn

T O = o.

If X n denotes

then ~ X n , Tn~

the

constitutes a

J

Markov renewal process with state space E , Q

=

Qij ( t )

where Qij " P ~Xn+l " J is

a

semi

-

Markov

;

Tn+l - Tn < t / Xn ffi i}

kernal over

E.

Using the theory of regenerative the following equations

:

~ o (t)

"

Q02 (t)

~

~2

(t)

,

]71 (t)

"

QI3 (t)

Q

]-[3 (t)

,

process, we obtain

1162

S. S. EUAS and S. W. LAmB

(t) TT2 TT3(t) .

,~,. ,t,

@ IT,,,,.

T4(t) .

o,, ,t,

-- , ~ ,t,

TF5(t)

, ~ ,t,

® . Tr~ ,t,

®

TT,,,:, .. Q,, ,,:,

T T 8 (t)

,

®

TI-~,,~, + Q, ,,:, @ IF9 (t,

,

IT6(t) = Q60 (t) @

~°(t)+

TFT(t, = TT,(t, =

%~6^(I0)(t)3@

TT3(t) + ~(I0)%16,18(t),

Q~.,,:,

®

Fr,,,:, .. ^,,~,,,:, ® TL,,:, + ^ " ~ ' ,,:,.

Q84(t)

®

Tr,t, + Q~..~,,:, ®

~72

~7,19

® %,,, +

[9(t) " Q95(t}

TL,,:, + o~..,,:,.

®

~12(t) =

Q12,3(t)@

if3 (t) + Q12,18(t) ,

% 3 (t) "

Q13,2( t' Q

~2 (t) + Q13,19 (t)

+

Taking Laplace-Stieltjes transform of these relations and solving fOrgo

(s), the

L-S

transform of the distribu-

tion function of the first passing time is given by :



(s)

-

:

N 1 (s) / D (s)

(1}

where Nl(S) "• Q02 Q24

{(Q48 [ Q8,14 + Q8,12 Q12,18 ] + W46~6,18 ^ ^1101"111;

QI3Q31 ) (I'Q59Q95) - Q35 Q57 QTI QI.3 }

+

(Q59[Q9,15 + Q9,13QI3,19] + ~57 ~ ^ ^(ii)7,19) ( Q35 [ l

•• 10 •

Q48 Q8,12 Q12,3 + Q4 6w63

] )$

'

Dl(S) - [(I-Q02Q20)(I-Q48Q84)-Q46Q60Q02Q24][(I-QI3Q31)(I-Q59Q95) -Q57QTIQI3Q35]-Q24Q35[Q48Q8,12QI2,3

+

Q59 Q9,13 Q13,2 + Q57 Q~½1) ] where for brevity we have omitted the argument s

n(Io) ] [

Q46 ~63

Two-dissimilar unit cold standby redundant system

The mean

time

1163

to system failure for the first

time

is given by : E(T)

=

ds

S=O

(2)

D1

where D1 -

P24 P35

E[(1-P48 P84 ) - P46 P60][(I-P59 P95)'P57P71 ] +

- [P48P8,12PI2,3 N1

=

N~(o)

=

"2

+ P24

-

(10)]

+

P46P63

[P59P9,13PI3,2

(11).7

P57P72

~

'

D'(o)

[CoCl

+ C2C3]

ICoC

+

%ci

+ %%

- C~C4 - CoC~

c c3

+

+

+ %%

c2c ]

where CO(S} = P~5 (s) [(I-P59(s) q95 (s)) - P57 (s) P71(s) ]

,

(i0) ' Cl(S) = P48 (s) (P8,14 (s) + P8,12 (s) P12,18(s) ) + P46(s) P6,18 C2(s)

=

P59(s) (pg,15(s) + P9,13 (s) P13,19 ('s)) + P57(s) P7,19

C3(s ) = P35(s) (P48(s) P8,12(s) P12,3(s) + P46(s) P63 _(I0)

C4(s) = P24(s)

[(1-P48(s)

P84(s))

- P46(s) P60 (s) |

(s),

(s})

,

Cs(S) = P24(S) [P59(s) Pg, 13(s) P13,2 (s) + P57(s) P72 -(ll)(s) ] , Ci(o) - C i , and d Ci(s) cl = i ds

;

i = 0,I,...,5

s=o

Special caset

If the two units are similar

NI(8) - Q01QI2 E(Q24[Q47 + Q46Q69 ] + ^~23w35 ^(9))((I-Q01QI0)( 1-Q24Q42 )QI2Q23Q30Q01 ) + (Q24[Q47 +

+ QI2 [ Q24 Q46 Q61

Q46Q69 ] +

^(5) Q23 ~31

(5))( Q23 Q39

] )~

" Q01QI2[Q24(Q47 + Q46Q69 ) + ^~23~39 ^(5)][(I-Q01QI0)

(I -

(5) + Q24Q42} + Q12(Q23Q31 Q24Q46Q61 - Q23Q30Q01 ) ] MR 30/(~--J

1164

S.S. ELIASand S. W. LABIB

2 Dl(S) = [(I - Q01QI0)(I - Q24Q42)

- Q23Q30Q01QI2] 2

[QI2(Q24Q46Q61

-

+ Q23Q(~I))]

Therefore,

(5) Q01Q12[Q23Q39 + Q24(Q47 + Q46 Q69 ) ] = [Q ~(5) (I-Q01Q10)(I-Q24Q42)-Q12 23~31 +Q24Q46Q61+Q23Q30Q01 ]

~l(S)

and the mean time to

system

failure

for

the

first time

is given by : (5) E(T) = P12[~2 + P23 ~3 + P24(~4 + P46~6)]-(P23P31 +P24P46P61)~o + (1-P24P42)(go

+ ~l)/P12[P2 3 p~5)+ 9 P 2 4 ( 1 - P 4 2 - P46 P61 )]

which coincide with the results given in [3]. 4.

POINTWISE

AVAILABILITY

We have define

AND

Ai(t)

system is up at time

t

generative state

at t=0

Si

STEADY

STATE

AVAILABILITY

as the probability that the

given that the system enters rei.e.

Ai(t) = P(System is up, i.e., available at time Eo

=

t = o /

Si )

and Mi(t) is the probability that the system is up initially in state t

Si

and

continues in that state at time

or in a non-regenerative

state.

Therefore,

Mo(t) = Vl(t)

,

Ml(t)

M2(t) = Gll(t)Dl(t)

,

M3(t) = Gl2(t) D2(t)

,

M4(t) = V2(t) ~l(t)

,

M5(t) = Vl(t) H2(t)

,

= V2(t)

,

M6(t) = G21 (t) IV2 (t) +

t o

L2 (t-u) dV2(u)

]

,

M7(t) = G22 (t) [VI (t) +

t o

£i (t-u) dVl(U)

]

,

M8(t) = Hl(t)Gl2(t)D2(t) Ml2(t) = L2 (t) G21 (t)

, '

S9(t) = H2(t)Gll(t)

Dl(t)

Ml3(t) = L1 (t) G22 (t)

,

1165

Two-dissimilar unit cold standby redundant ~ s ~ m

By probabilistic argument we have : Ao(t) = Mo(t) + q02 (t) @

A2(t)

,

Al(t) = Ml(t) + q13 (t) @

A3(t)

,

A2(t) = M2(t) + q20 (t) @

Ao(t) + q24(t)

A4(t),

A3(t) = M3(t) + q31 (t) @

Al(t) + q35(t)

A5(t),

A4(t) = M4(t) + q46 (t) @

A6(t) + q48(t)

A8(t),

A5(t) " M5(t) + q57 (t) @

A7(t) + q59(t)

A9(t),

A6(t) " M6(t) + q60 (t) @

Ao(t ) + q63 _(i0) (t) @

A3(t)

+ q67(10'18)(t) @

A7(t) '

A7(t) = M7(t) + q71(t)

Al(t) + q72

+ q76(ll'19)(t) Q

A4(t) + qs,12(t) @

@

Al2(t)

AI4 (t) :

A9(t) = M9(t) + q95 (t) @ + q9,15(t)

A2(t)

A6(t) '

A8(t) = M8(t) + q84(t) @ + q8,14(t) @

(t)

A5(t) + q9,13(t) @

Al3(t)

Als(t)'

Al2(t) = Ml2(t) + q12,3(t) Q

A3(t ) + q12,7 (18) (t) @

A7(t)

A13(Z) = Ml3(t) + q13,2(t) @

A2(t) + q13,6(19)(t) @

A6(t),

Al4(t) = q14,16(t) @

Al6(t)

Als(t)

= q15,17(t) @

Al7(t)

Al6(t)

= q16,7 (t) @

A 7 (t)

'Al7(t)

= q17,6 (t) @

A 6 (t)

,

Taking Laplace transform of these equations and solving for A* (s) we have : o

A~(s)u

=

Na(S) / Da(S)

(3)

| 166

S.S. ELIASand S. W. LABm

where Na(S)

=

* K?

M i

i=o

Da(S) = R(s)-Jo(S)Ro(S)-Jl(S)Rl(S)+J2(s)R2(s)+J3(s)R3(s)+J4(s)R4(s ........ ,

.

Ko

(4)

(l_q(10,18) (11,19) 67 q76 )[(l-q13q31)(l-q48 q84)(l-q59 q95 ) q24 q48 q8,12 q12,3 q35 q59 q9,13 q13,2 ]

_(ll) [( )( )(q46 _(10,18) b) - q72 q24 l-q13q31 I-q59 q95 q67 - q48 (q59 q67 -(10'18)a - q57 )(q48 q8,12 q12,3 q35 )] (I0) q35[ ( )( a (I1,19)) + q63 1-q48q84 q59 q57 q76

+

q59qg,13q13,2q24 (q48 q76 -(ii'19) b - q46 ) ] (10,18) - q71q13q35 [(1-q48q84)(q57 - q59q67 a) + q59qg,13q13,2q24 (q46 q67-(10'18) - q48 b) ] _(i0) -

q24 q35 q63

_(ll)

[

q72

q

q46

-

57

a bq48 q59 ]

where a

_ = -q9,15 q15,17 q17,6

b =

K1

'

_(18) -q8,14 q14,16 q16,7 - q8,12q12,7

~ q02q24 _

(19) qg,13q13,6

l_q59q9511- - (10,181 _(11,191)( q67 q76 q48q8,12q12,3q31 )

(l_q59q95). (i0) . (11,19) _ . . (10,18) |q63 q31(q76 q48D-q46)-q711q46q67 -bq48)]

• (10,18 )q59 a)+q~10) + q71q35[q48q8,12q12,3~q57-q67 3 (q46q57_abq48q59)]~ K*

2 = q02(l-q48 q84 ) C6 ;

C6

= (l-q13q31)(l-q59q95)('~-q67(10'18)-(ll'lg)q76) + q35 [_(I0)(q63qs~ (11,19) ) (q57 q57 q76 q71 ql3

K~

-

q02 q24 (i- q59 q95 ) C7 ;

(10,18) a ) ] , q59 q67

-

)

Two-dissimilar unitcoldstandbyredundantsystem =

(I

C7

q48q8,].2q12,3 +

K4* K~

=

_(10,18)_(].1,19))+ _(10)(q ¢ (11,19)b) -q67 q76 ~63 46-|48q76

(10,18) b ) , qTl q13 ( q46 q67 - q48

q02 q24

=

1167

C6

,

q02 q24 q35 C7 '

K*

q02q24 [(l-q13q31)(l-q59q95)(q46-q48

6

(11,19) q76

b)

(11,19) + q35 [q48q8,12 q12,3 (q57 q76 - q59 a - q71 q13 (q46 q57 - q48 q59 ab) ] , K* 7

q02q24 El_ql3q31) (l-q59q95)t,q 46q67 (10,18) - q48 b) (10,18) + q35[q48q8, 12 q12,3(q57-q59 q67

a)

+

(i0) (q46 q57 - q48 q5 9 a b)]~ q63 K*

=

q02 q24 q48

K*

9

=

q02 q24 q35 q59

K*

=

K*

=

8

12 13

C6

' C7

q02 q24 q48 q8,12

' C

,

6

C

q02 q24 q35 q59 q9,13 +

(10,18)

(ii)

Jo(S) =

q60 q02

Jl(S) =

q71 q13 +

J2(s) =

(11,19) q60 q02 q76

J3 (s) =

q71 q13 q(170'18) + q(6130) '

J4(s)

=

_(10) _(11) q60 q02 q71 q13 - q63 g72

R(s)

=

(I-

q67

7

q72

'

q76(11'19) q63(10) , +

_(ii)

g72

-(10'18)-(11'19))[(1-

q67

q76

'

'

q02q20

)(

l-q13q31)(l-q48q84)(l-

q59 q95)-q24q48qs,12q12,3q35q59q9,13q13,2 ] ' Ro(S ) . q24[q46(l-q13q31)(l-q59q95)-q48q 8,12q12,3q35q59 a ] ,

1168

S.S. ELIAS and S. W. LABIB

Rl(S) = q35 [q57(l-q02q20)(l-q48q84 ) - q59q9,13q13,2q24q48 b]'

R2(s) =

q24q48[(l-q13q31)(l-q59q95 )b- q8,12q12,3q35

=

--

)a

q57 ]

--

43(s)

q35q59 [(I q02q20)(l-q48q84

q9,13q13,2q24

R 4 (s) =

q2 4 q35 [q46 q57 - q48 q59 ab ]

The steady state availability

q46 | '

is given by : Na(S)

AoC-) =

~

AoCtl =

lim

S ~O

.... D'(S)

sA*ls) ~

a

(5) s=o

where N a (0)

13 ~--O= Ti ~i

=

.

=

TI

K?

;

l

I

qij =

Pij

and t

D'a (s) I

=

R'

S=O

- J o R'o

- J'o R o - J l

R1

!

-

43 ÷J34 where R(o),

, J4(O)

stand for

and

R'(s)

Special case:

M 8*

=

K* 0

+ K* = 1

M 9*

,

+

J2

44 ÷J44

t

R'O

,6,,

,

R~

, J'O

R2' (6)

* MI3

=

,,*

,

J~

..... J~ (s) I S=O

If two units are similar,

* MI2

#

then :

and

[(i-~'9))[( l-q24q42)-q12q24q46q61]

= (I~ q33 -(5, -

R'

J , R~(s) I S=O S=O

- q24a]~ C8

R1

Jl

R , R o, "''' R4' Jo' Jl .... ' J4 stand for ooo

_ (5 q31)q12[~23

C8 ;

))[( l-~lqlo) (l-q24q42)

+ q12 q24 q46 q61 ]

q12 (q30 q01- q31)(q23 + q24 a) ,

K2* + K3* =

(5,9)) q01 (i -q33

K~ + K~ =

qol ql2 (1-q33-(5'9))c8

'

( i-q24 q42) C8 '

Two-dissimilar unit cold standby redundant system

K~ + K* =

7

K*

8

+ K* =

*

(q

q01 q12

a

23- q24

(5,9)

9

q01 q12 q24 (1-q33

* -

) C8

,

) c8

'

(1 _ ( 5 , 9 ) )

KI2 + K13- q01 q12 q24 q46

C8

-g33

1169



Therefore , (9) ÷ q2,~q47q78%31 1 % 1 M*~-c"(~I M~1 Nacs~ = E %2 [q 2~+ %4q46%3 +

(5,9)) (1 - q33

[ (1

+

q12 (q01 (M*2 + q24 M~4

- q24 q42 +

) ( M* 0

+

M*) 1

q01

+

q24 q46 M*6 ) -

-M: q24q46q61 )]~ E('+ (5'9))[(l-q01q10) (1-q24 q42 ) z q33 + q12q24q46q61 ] - q12(q30 q01 - q31 ) ( q23 (9) q24 q46 q63 - q24 q47 q78 q83)~

'

and Da(S) =

-

~(1-q(5'9))[(1-q q )(1-q q ) - q q q q ] 33 01 I0 24 42 12 24 46 61 %

%2'%1 ÷ %o%1 ) (%3 ÷ q24q46q63 + % , % 7 % 8 % 3 ~ (1 + _ ( 5 , 9 ) ) [

g33

(l-qOlqlo)(l-q24q42

- q12(q30qOl-q31)(q23-q24q46q63

) +

[-"

q12q24q46q61 ]

- q24 q47 q78 q83

Then (9)+

A:(S) i

12[q23 + q24q46q63 (5)M*]

q31

O

+

(i

q24 q47 q78 q83

][

qOl

M* -

3

_(5,9)) [( ) (M: + *) + -q33 1-q24 q42 qolM1 q24 4

q24q46M~ )-

M*

/

E.. (5,9) )[ (l-q01ql0 )( i-q24 q42 )-q12 q24 q46 q61 ]%1-q33 q12(q23 + q24q46q63 + q24q47q78q83)(q31

+ q30 q01)~

The steady state availiability is given by : Na(S)

Ao(~) N a ( s ) ljlo =

=

D a(s) s=ol

)

(l-q(5~91)[(l-q24q42)~l+P12(~2+P24~4+P24P46

~6 ) ]

1170

S.S. ELIASand S. W. LABm

+ P12 [i - P24 P42 - P24 P46 P61 ] P3 + [(1- P24P42)(1 - P33 _(5,9) -P31 (5)P121-P30P12P24P46P61 . ]~O' D'(s)i - Na(S) I + P P P (I-p(5'9)) ( P7 s-o s=o 12 24 46 33

+

~8 ) "

which agree with the corresponding results obtained in [3]

5. E X P B C T E D BUSY PERIOD OF SERVER FOR R E P A I R

IN (O f t~

Let BJk(t)-the probability that at time

t

the server is busy

with repair , according to the distribution Gjk (t) given that the system entered regenerative state S i at

t =o.

By probabilistic argument we have the following relations for BiJk(t). For j = I,

k = 1

B101(t'" q02 (t, Q

Bll(t)2

'

Bl11(t'" qz3 (t, Q

BII3 (t)

,

B~ l(t) = q20 (t) Q

Bll(t)0 + q24 (t) Q

B141(t)+ GI1 (t' '

B~l(t) = q 3 1 ( t ) Q

Bll(t) + (t) Q 1 q35

Bll(t) 5

Bn(t)4 : q46 (t) (~ ezzctl6 + q48(t) (~) BiZet)8 BZl(t)5 " ~57 (t) (~BlZ(t)7 + q59 (t) (~)Bzzlt}9 BZi(t) :6

q60(t) (~BlZct) l ( t+-(10)(t)(~B~ "63 ~ o q 10'lS)(t) 67

B~z(t) - qTl(t) ~

Q

Bll(t) 7

BnIt) ÷ q72 -(n)(t) 1

q(11'19)(t) 76

Q

(t) 8,14

Q

Q

Bll.t) 2 t

Q

11 B12(t)

B~ l(t)

B~l(t~ " qe4 (t~ C) Bll(t~4 q

,

÷ qs,n(t)

Bll(t) 14

,

Two-dissimilar unit cold standby redundant system

B191(t) " q95(t) G

Blsl(t) + q9,13 (t)

%,lSCt> ~

Blltt)12 = ql2,3(t> Bll(t> 13

ffi q13,2

1171

11 B13(t)

Q

+

B~t> + ~11 ct~ , 15

(~

Bll~t~3 + ql2-ClB>,7(t~ (~) ell(t~ ,

(t) ~

8llct> +_~19> ~ 2

q13,6

Bll(t)14 = q14,16 (t)

Q

Bll(t)16

'

811(t)15 = qlS,l~ (t>

~)

sll(t)17

'

Bll(t) (~t) 16 = q16,7

Q

Bll(t) 7

,

Bll(t) (t) 17 = q17,6

Q

Bll(t) 6

Taking Laplace-Stieltjes

8Zl.t~ 6 t

,

transform and simplifying,

we obtain ~-11. mo ~s), as follows : ~ll(s) o

=

Mll(s) / Da(S)

(7)

where

Mll(s) and

Da

=

Gll(S) (K 2

+

K9 )

as given in (4). In the long run, the fraction of time for which system

is under repair according to the distribution

Gll(t)

is

given by : ~11 Bo

lim t )oo Mllls) D,a(S)

=

B II 't)

lim s >o

(8)

1 smo

where Mll(s) and For

I

s=o D~(o) J - 1

=

'

T2

+

T9

as given in 16) ,

ii s B o (s)

k = 2

Bl2(t) = q02 (t) Q

B12(t)2

'

Bl2(t)l " q13 (t) Q

B12(t)3

'

1172

S.S. ELIAS and S. W. LABIB

,,;,,,:, .-q,o,t, ® ,,,,,t, +o

B121t)4 = %6~t)

,t, @

C) ~12c~)6+ %8 (t)

B12(t)5 : q57(t) @

.

~

B12(t)7 + q59 (t) @

Bn~t)8 B12(t)9

I~o)itl ® B12(t)6 = q60(t)@ Bl2(t) + q63

c~o,.~(t) Q ~ , t , , B~ 3 (t)+q67 -

BT12(t) = q71(t) ~2(t)+q7211(t)~B12(t)+p(ll'lg)(t ) 2 76

Bn(t) 8

= %4

~t) ~Bl2(t) + 4

q8,14 (t) @

(tl ~

%,n

q9,15 (t) @

nct)

B12(t)14 + G12 (t) , Bl2(t) 13

B12(t)15 '

B12(t)12 = ql2,3(t) @

B12(t)3 + q12,7-(18)(t)@

Bl2(t) = (t) @ 13 q13,2

Bl2(t)+ _(19) 2 q13,6

B12(t)14 = q14,1~t)

@

Bl2(t) = (t) @ 15 q15,17 Bl2(t) (t) 16 = q16,7

@

Bl2(t) (t) @ 17 = q17,6

B12(t)'6

Bn

(t) @ Bl2(t) + 5 q9,13

B~2(t) = q 9 5 ( t ) @

~

@

B12(t)7 ' Bl2(t), 6

B12(t)16 ' Bl2(t)

,

17

Bl2(t)

,

7

Bl2(t) , 6

Taking Laplace-Stieltjes transform and simplifying, we obtain ~12(s), as follows : o ~12(s)

=

Ml2(s) / D (s)

MI2(s)

=

GI2(S) (K~

o

(9)

a

where +

K 8*)

and Da(S) as given in (4). In the long run, the fraction of time for which the

Two-dissimilar unitcoldstandbyredundantsystem

1173

server is busy according to the distribution law Gl2(t) is given by : B 12 o

=

lim t--->~ MI2(s)

=

D'(s)

BO12( t )

lim S s-->o

=

~ 1 2 (S)

(i0)

I

s

o

where

and

Ml2(s)

[ s=o

=

D'(s)

i s=o

as in

For

T3

j = 2

+

T8

(6)

,

B21(t)0 = q02(t) Q

B21(t)2

B21(t) (t) Q 1 -- q13

B~l(t)

.

k = 1 '

B21(t) = q20(t) , Q B201(t) +

(t) Q

B21(t) 4 '

B~l(t) + q35(t) Q

B215 (t) ,

B241(t) = q 4 6 ( t ) Q

B261(t) +

B21(t) , 8

B251(t) = q57(t) Q

B~l(t) + q 5 9 ( t ) Q

B21(t) , 9

B261(t) = q60 (t) Q

B21(t)+0 q63-(10)(t)Q

B231(t) +

B21(t) = 3

q31(t) Q

q(10'lS) (t) Q 67 B21(t) = 7

q71(t) ~

(t) Q

B21(t) + - (t) 7 G21 '

B21(t) 12

21 B14(t) ,

B21(t)5 4 q9,!3 (t) Q

q9,15 (t) G

+

B21(t), 6

B21(t)4 + q8,12 (t) Q

q8,14 (t) Q B21(t)9 = q95 (t) Q

q48

B21(t)+I ~72-(ii)(t)C)B221(t)

q(ll'lg)(t) ~ 76 B21(t)8 = q84 (t) Q

q24

B21(t) + 13

B21(t)15 '

G

B21(t) = (t) Q 12 q12,3

B21(t) + -(18)(t) 3 q12,7

21 (t) Q Bl3(t) = q13,2

B21(t) + -(19)(t) Q 2 q13,6

B21(t)

7

+

B21(t) , 6

21

(t),

1174

S.S. ELIAS and S. W. LABIB

B21Ct'14= %4,1~t' G

~211t'16

B21(t)15 = q15,1~ t)

Q

B21(t)17 '

B21(t) (t) 16 = q16,7

Q

B21(t) + - (t) 7 G21 '

B21(t) = (t) 17 q17,6

@

B21(t) 6

Taking Laplace-Stieltjes transform, we obtain~21(s), as follows : ~21(s')

=

M21(s) / Da(S)

(ii)

where M21(s)

=

G21(s)

and

Da(S)

[K;

K* + q8,14 q14,16 8

+

K* ], 12

as given in (4).

In the long run, the fraction of time for which the server is busy according to the distribution law G21(t) is given by :

B~l

=

lim

s

s

"~_21,

~o

)o

=

~)

M 2~s) D ~ (s)

I

~z21

s=o

where M21(s) ~=o

and

D'a(S)

J

=

T6 +

as in

P8,14 T8 + TI2

(6)

s=o

For

j

=

2

,

k=2,

B22 (t) '

B~2(t) = q02(t) B~2(t) = ql3(t)

B 22 (

B~2(t) = q20 ct, @

Bnct'0 * %4(tI Q

4 t,

B~2(t) = q31 ~t, Q

B2~It'l* %s ct, @ ,~nIt,s '

Bnct~4 = q4~t~, (~

B=2ct~ * q48(tl (~

snctl8

'

B~2(t~ =qs~ (t~ C)B22't)~ *qs9 (t) ( ~ B22(t~9 ' '~ 2't~ =%o `tl (~)Bn(tl *o q(10';18)(t) @ 67

'~,3-(l°l(t~ C ) ' ~ 2(t~ * B 22 (t) 7 '

Two-dissimilar unit cold standby redundant system

B~ 2(t) = q71 (t) Q

B22(t) + i

q76(ll'19)(t) Q

B22 8 ~t~ = q84(t~ ~

q72(ll)(t) Q

B~2(t)

B22(t~4 + q8,1~t~ ~ n

BI4 (t) Q

+

B22(t)6 + G22-(t),

q8,14(t) B22(t) = q95 (t)

1175

Bn(t~12 +

, B22(t) 13

B22(t)5 + q 9 , 1 3 ( t ) ~

+

q9,15 (t)

Q

B22(t)15 '

(t~

~

Bn(t)

B22(t)13 = ql3,2(t)

~

B22(t)2 + q13,6-(19)(t)Q B22(t)6 + G22(t) '

B22(t~ 12

= q12,3

+

3

(18~,.,

(~

q12,7 It;

B22(t) (t) 14 = q14,16

Q

B22(t) 16

,

B22(t) (t) 15 = q15,17

Q

B22(t)

,

B22(t) (t) 16 = q16,7

~)

B22(t) 7

Q

B22(t) + - (t) 6 G22 "

B22(t) , 7

17 ,

p

B22(t) = (t) 17 q17,6

Taking Laplace-Stieltjes transform, we obtainB22(s) as follows : ~22(S) o

=

M22(S) / Da(S)

(13)

where

and

M'2(S) = G22(s)(K~7 + -q9,15 q15 ' 17 K*9 + K*13 ). Da(S) as given in (4). In the long run, the fraction of time for which the

server is busy according to the distribution law

G22(t)

is given by z B ss o

=

lim s B~'(s) S'--->O

=

M''(s)

I

D~(s)

(14)

S=O

where M2S(s) and

i

=

s=0

D~(s) as in (6)

T

+

7

P

T

9,15

+

9

T

,

13

I176

S.S. ELIASand S. W. LABIB 6.

COST

ANALYSIS:

(I) The e x p e c t e d

up-time

of the s y s t e m

in

(o,t]

is

t ~up(t)

=

~ o

Ao(U)

du

so that ~*up(S) (2) The e x p e c t e d

=

down-time

A* (s)/s o

(15)

of the s y s t e m

~dn(t)

=

• Udn(S)

=

i6

(o,t]

is

:

t - Nup(t)

so that

(3) The e x p e c t e d

s12

busy period

~ *up (s)

of the s e r v e r

(16)

for repair

in (o,t]

t ~ll(t) P

=

~ o

B 11 o

*ll(s) ~b "

= ~ll~s) o '

(u) du

so that / s

(17) '

also ~12(s)

= ~12(s)/So

• 21 ~b (s)

=

~'22(s)

= ~22(s)/S~o

'

(18)

~21(s)/s o

(19)

and

Denote which

by G(t)

is e q u a l

revenue

the e x p e c t e d

to the d i f f e r e n c e

and the e x p e c t e d

total

total

(20) gain

between

cost

incurred

in

the e x p e c t e d

(o,t] total

in the same interval.

Therefore, Glt)

= Zl~uplt)

ii, t 12(t - z 2 ~b ~ ) - Z3 Ub

) - Z4~ b21 (t) - Z5~ p2 2 ( t ) (21)

where Z1

is the r e v e n u e

Z i, i = 2,3,4,5,

per unit

are the cost

ver is b u s y a c c o r d i n g 22,

,

per unit time

to the d i s t r i b u t i o n

for w h i c h

the ser-

Gij(t) , i j = l l , 1 2 , 2 1 ,

respectively. The e x p e c t e d

given G

up-time

by

= t =

total

cost per unit

time

~n s t e a d y

state

:

lim >~

G(t) t

= s

lim >o

s G*(s)

ZIAo - Z2 BIIo - Z3 B12o - Z4 Bo21 _ Z5 B22o

(22)

is

Two-dissimilar unit cold standby redundant system

REFERENCES I.

G. S. Mokaddis, Reliab,

2.

S.M. Gupta, Reliab.

3.

(1989).

N.K. Jaiswal and L.R. Goel, Microelectron.

23, 329-331

S.M. Gupta, Reliab.

S.S. Elias and S.W. Labib, Microelectron

29, 511-515

(1983).

D.K. Pandey and Renu Gupta, Microelectron,

26, 847-850

(1986).

1177